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Abstract001

Large language models (LLMs) rely heavily on002
sampling methods to generate diverse and high-003
quality text. While existing sampling methods004
like top-p and min-p have identified the detri-005
mental effects of low-probability tails in LLMs’006
outputs, they still fail to effectively distinguish007
between diversity and noise. This limitation008
stems from their reliance on probability-based009
metrics that are inherently sensitive to tempera-010
ture scaling. Through empirical and theoretical011
analysis, we make two key discoveries: (1) the012
pre-softmax logits exhibit a clear statistical sep-013
aration between informative tokens and noise,014
and (2) we prove the mathematical equivalence015
of min-p and top-(1-p) under uniform distri-016
bution over logits. These findings motivate017
the design of top-nσ, a novel sampling method018
that identifies informative tokens by eliminat-019
ing noise directly in logit space. Unlike existing020
methods that become unstable at high temper-021
atures, top-nσ achieves temperature-invariant022
token selection while preserving output diver-023
sity. Extensive experiments across reasoning024
and creative writing tasks demonstrate that our025
method consistently outperforms existing ap-026
proaches, with particularly significant improve-027
ments in high-temperature settings.028

1 Introduction029

Large Language Models (LLMs) have revolution-030

ized natural language processing (NLP), demon-031

strating remarkable capabilities across various do-032

mains, including code generation (Chen et al.,033

2021), mathematical reasoning (Lewkowycz et al.,034

2022), and complex problem-solving (Wei et al.,035

2022). These advancements are largely driven by036

the models’ text generation mechanisms, which037

underpin their versatility in diverse applications.038

The generation process of LLMs involves a fun-039

damental trade-off between creativity and quality,040

which is controlled by the temperature parameter041

T . This parameter shapes the output’s sharpness042
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Figure 1: Temperature sensitivity analysis of min-p sam-
pling (p = 0.1) by prompting LLaMA-3-8B with “Ran-
domly pick a digit between 0~9: ” (verbatim prompt).
Blue tokens represent valid digits (0-9), and red tokens
indicate noise. The sampling space is denoted by high-
lighted tokens and numbers below each token show their
sampling probabilities.

and influences how the model selects its next to- 043

kens (Ackley et al., 1985; Chen and Ding, 2023; 044

Bellemare-Pepin et al., 2024). Specifically, a lower 045

temperature causes the model to favor the most 046

probable outputs, which may limit exploration and 047

creativity. Conversely, a higher temperature en- 048

courages exploration and unconventional choices, 049

though this increased diversity may increase the 050

risk of errors and inconsistencies. 051

To empirically investigate the trade-off men- 052

tioned above, we employ the popular min-p sam- 053

pling (Nguyen et al., 2024) which claims to be 054

more stable under high temperature. This tech- 055

nique truncates tokens with probabilities below 056

p · pmax (where pmax denotes the maximum prob- 057

ability), and we set p = 0.1 in our analysis. We 058

prompt LLaMA-3-8B with “Randomly pick a digit 059

between 0~9: ” and visualize the output probability 060

distribution under different temperature settings in 061

Figure 1. Given T = 1.0, though min-p selects the 062

correct tokens, the model produces a highly skewed 063

distribution that clearly favors certain digits. For 064

example, the probability of selecting 3 or 7 is more 065
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than twice that of 9, which contradicts the explicit066

randomness requirement in the prompt. When T067

is increased to 1.5, the distribution becomes more068

uniform, yet this method begins including invalid069

tokens like 123 and \xa0, whose probabilities are070

larger than the threshold 0.004 (i.e., 0.1× 0.04).071

Notably, we know that a perfectly uniform dis-072

tribution over the entire vocabulary is theoretically073

achievable through infinite temperature scaling (i.e.,074

T → ∞). However, existing methods fail to cor-075

rectly identify valid tokens under such conditions,076

as they rely on temperature-dependent probabil-077

ity thresholds for token selection. This limitation078

prompts a critical question: is it possible to develop079

a criterion that simultaneously effectively identi-080

fies valid tokens and remains invariant to temper-081

ature scaling? If such a criterion exists, we could082

achieve the ideal scenario illustrated in Figure 1.083

Since temperature scaling operates directly on the084

pre-softmax logits, it naturally motivates an inves-085

tigation into their structural properties.086

Intriguingly, through our empirical analysis (Sec-087

tion 3.1), we discover that the logits naturally088

are separated into two distinct components: a089

Gaussian-distributed background and several090

outliers. This clear statistical separation suggests091

logits as a better foundation for token selection, in-092

stead of probabilities. More importantly, we prove093

the mathematical equivalence of top-p and min-p094

under the uniform assumption in Section 3.2. This095

equivalence provides valuable insight for the un-096

derlying distribution of these outliers, which are097

precisely the informative tokens to be preserved.098

Building upon these findings, we propose top-099

nσ, a novel sampling approach that operates di-100

rectly on logits using standard deviation as the se-101

lection criterion. Our method achieves temperature-102

invariant control over token selection: as tempera-103

ture increases, top-nσ only elevates the probabil-104

ities of chosen tokens without introducing addi-105

tional ones, allowing separated optimizations of to-106

ken selection and distribution shaping. Our method107

also eliminates the computational overhead of sort-108

ing and softmax transformations, ensuring compu-109

tational efficiency.110

Our main contributions include:111

• Novel Logit-based Perspective: Through em-112

pirical analysis, we discover that LLM’s pre-113

softmax logits exhibit a natural separation be-114

tween informative tokens and noise.115

• Theoretical Understanding: We prove the116

equivalence between min-p and top-(1-p) un- 117

der the assumption of uniform logit distribu- 118

tion. This reveals the deeper connection be- 119

tween these approaches and provides insights 120

into the distribution of informative tokens. 121

• Temperature-Invariant Dynamic Sampling: 122

We introduce a sampling method that selects 123

candidate tokens dynamically using logit stan- 124

dard deviation, making the selection totally 125

independent of temperature scaling. 126

• Comprehensive Validation: Through exten- 127

sive experiments across diverse datasets and 128

tasks, we demonstrate significant improve- 129

ments in both generation quality and diver- 130

sity compared to existing methods, especially 131

under high temperatures. 132

2 Related Work 133

2.1 Probability-based Methods 134

Probability-based sampling methods directly ma- 135

nipulate the raw probability distribution output 136

from LLMs, presenting the most widespread ap- 137

proaches. OpenAI (OpenAI, 2025), Anthropic (An- 138

thropic, 2025), and Google (Google AI, 2025) all 139

incorporate them as standard API parameters in 140

their inference services. These methods typically 141

begin with temperature scaling (Ackley et al., 1985) 142

to balance generation quality and diversity. Sub- 143

sequently, as the most straightforward approach, 144

top-k (Fan et al., 2018) restricts the sampling space 145

to the k most probable tokens. However, a fixed 146

value of k might exclude relevant tokens or include 147

irrelevant tokens. To address this limitation, top-p 148

(nucleus) sampling (Holtzman et al., 2019) dynami- 149

cally selects the smallest set of tokens whose cumu- 150

lative probability exceeds a threshold p. However, 151

top-p exhibits high sensitivity to temperature set- 152

tings, even slight increases in temperature will lead 153

to deteriorated output quality. More recently, min-p 154

sampling (Nguyen et al., 2024) filters out tokens 155

whose probabilities are below a fraction p of the 156

maximum probability, partially alleviating but not 157

fully resolving the challenges in high-temperature 158

settings, as discussed in Section 1. 159

2.2 Entropy-based Methods 160

In parallel with probability-based approaches, 161

researchers have explored sampling methods 162

grounded in information theory, particularly en- 163

tropy. These methods establish their own optimiza- 164
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Figure 2: Distribution of logits and sorted token proba-
bilities of LLaMA3-8B-Instruct on an AQuA sample. A
vertical line at µ+ 5σ is drawn in the logit distribution
to depict the separation. Its corresponding threshold
in the probability plot shows which tokens have logits
exceeding this threshold.

tion criteria. For example, mirostat sampling (Basu165

et al., 2020) targets a constant perplexity through166

cross-entropy regulation, η-sampling (Hewitt et al.,167

2022) adjusts truncation thresholds based on token-168

level entropy, and REAL (Chang et al., 2024) opti-169

mizes for asymptotic entropy in the sampling pro-170

cess. Despite their theoretical guarantees, these171

entropy-based methods have not gained widespread172

adoption. This is mainly due to their implemen-173

tation complexity, additional computational over-174

head, and the lack of substantial performance im-175

provements over simpler probability-based alter-176

natives, as reported in (Zhou et al., 2024; Nguyen177

et al., 2024).178

3 Insights179

3.1 Limitation from Gaussian Intuition180

Modern LLMs rely on the softmax function to pro-181

duce output probabilities. Due to its exponential182

nature, softmax aggressively pushes small logits183

towards zero probabilities, making it impossible to184

distinguish the underlying distribution of noise. To185

better illustrate this effect, we examine the output186

logits and probabilities of LLaMA-3-8B-Instruct187

on an AQuA sample, as illustrated in Figure 2. We188

observe that the majority of logits follow a Gaus-189

sian distribution in the lower-value region, which190

corresponds to the low-probability tails that are191

commonly treated as noise in the probability distri-192

bution. This pattern suggests the potential for more193

meaningful truncation in the logit space.194

Intuitively, given that the majority of logits ex-195

hibit a Gaussian distribution, a natural first attempt196

would be to identify informative tokens as statisti-197

cal outliers using the conventional methods, e.g.,198

the µ + 3σ rule (Kazmier, 2009). To formalize199

this intuition, let us first review how LLMs gen- 200

erate token probabilities and how existing sam- 201

pling methods operate on them. Given an input 202

context x, an LLM first generates a logit vector 203

l = (l1, · · · , lV ) ∈ RV , where V is the vocabulary 204

size. These logits are firstly scaled by temperature 205

(l ← l/T ) and then transformed into probabili- 206

ties p = (p1, · · · , pV ) ∈ RV through the softmax 207

function 208

pi =
eli

s
, where s =

V∑
j=1

elj , 1 ≤ i ≤ V (1) 209

Fundamentally, all truncation sampling methods 210

operate by determining a probability threshold 211

p(t) ∈ [0, 1]. Tokens with probabilities above this 212

threshold form the sampling nucleus, and their cu- 213

mulative probability defines the nucleus mass. For- 214

mally, for a threshold p(t), the nucleus N is 215

N = {i | pi ≥ p(t)} (2) 216

Typical outlier detection approach (such as µ+ 217

3σ) can be generalized as selecting tokens whose 218

logit values exceed µ + cσ, where µ is the mean 219

of logit values, c is a constant parameter and σ is 220

their standard deviation. Accordingly, Equation (2) 221

can be described as 222

N = {i | li ≥ µ+ cσ} (3) 223

To validate the feasibility of this criterion, we 224

examine how it aligns with the nuclei produced by 225

existing sampling methods. We introduce two crit- 226

ical measures: the Inner Boundary Z-score (ZIB) 227

and the Outer Boundary Z-score (ZOB). Specifi- 228

cally, for a logit value β, Zβ is defined as 229

Zβ =
β − µ

σ
(4) 230

where IB corresponds to the smallest logit value 231

within the nucleus (i.e., β = minli∈N li), and OB 232

corresponds to the largest logit value outside the 233

nucleus (i.e., β = maxli ̸∈N li). Any parameter c 234

between ZIB and ZOB will result in the same nu- 235

cleus. Ideally, if this Gaussian-based criterion truly 236

captures the underlying token distribution pattern, 237

we should observe nearly constant Z-scores across 238

different scenarios. 239

However, our empirical analysis reveals a dif- 240

ferent story. As shown in Figure 3(a), when ex- 241

amining LLaMA-3-8B-Instruct’s behavior on an 242
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Figure 3: Comparison of Z-scores and Top-based Sigma
Distances (TSDs) with their 95% confidence intervals
(CI) during generation on an AQuA sample. The region
between the IB curve and the OB curve represents the
nucleus boundary range.

AQuA sample using top-p as the reference sam-243

pling method, the Z-scores exhibit substantial vari-244

ations across different nucleus sizes. This incon-245

sistency prompts us to rethink the fundamental as-246

sumptions behind the µ+cσ criterion. Such a crite-247

rion implicitly assumes that the specific distribution248

of informative tokens is trivial. In fact, this assump-249

tion fundamentally contradicts the core purpose250

of sampling, which is precisely to preserve these251

informative tokens. Due to their inherent scarcity,252

statistically characterizing their distribution proves253

challenging. Fortunately, we have discovered an254

alternative approach to this problem.255

3.2 Solution from Uniform Assumption256

Our investigation starts from an empirical obser-257

vation. The two popular methods min-p and top-p258

with complementary parameters (e.g., min-0.1 vs.259

top-0.9) are frequently compared and exhibit simi-260

lar behaviors in low-temperature scenarios. While261

this empirical connection was previously noted but262

dismissed as coincidental by Nguyen et al. (2024),263

it motivates us to investigate whether a deeper rela-264

tionship exists or not.265

To analyze this relationship rigorously, we need266

to understand how these sampling methods operate.267

Top-p (Holtzman et al., 2019) uses the nucleus268

mass as the criterion. Formally, given p (typically269

0.9), the probability threshold p(t) is the solution270

to
∑

pi≥p(t) pi = p. Min-p (Nguyen et al., 2024)271

scales the maximum probability by a fraction p272

(typically 0.1) and uses the result as the threshold,273

i.e., p(t) = pmax · p,where pmax = max1≤i≤V pi.274

Since probabilities are transformed from logits275

by softmax, the probability threshold p(t) can be276

equivalently translated into a corresponding logit277

threshold t = ln(s · p(t)), where s is the sum of 278

exponentials in Equation (1). The corresponding 279

logit threshold of min-p is thus t = M+ln p, where 280

M = ln(s · pmax) = max1≤i≤V li. However, the 281

solution of top-p is not apparent. To make this 282

problem tractable, we assume that the logits are 283

independently and identically distributed according 284

to some distribution f . This statistical perspective 285

leads to a series of useful lemmas. 286

Lemma 3.1. Assume V logits {l1, · · · , lV } inde- 287

pendently and identically distributed according to 288

f(x). For any threshold t, we have 289

∑
li>t

eli
P→ V

∫ +∞

t
exf(x) dx

The complete proof is provided in Appendix A.1. 290

It is conceptually simple and allows us to leverage 291

the overall distribution information instead of dis- 292

crete samples. 293

Lemma 3.2. Denote I(t) =
∫ +∞
t exf(x) dx, and 294

thus s = V · I(−∞). The nucleus mass of a given 295

logit threshold t is 296

pN =
∑
i∈N

pi =
I(t)
I(−∞)

(5) 297

Lemma 3.2 is particularly useful for solving the 298

logit threshold of top-p if I has a closed-form so- 299

lution in elementary functions. Remarkably, we 300

discover a surprising equivalence between the two 301

methods, presented in Theorem 3.3. 302

Theorem 3.3. For logits following a uniform distri- 303

bution U(−∞,M), min-p sampling is equivalent 304

to top-(1− p) sampling. 305

Proof. For li ∼ U(−∞,M), the logit threshold of 306

min-p is simple as 307

t = ln(s · pmax · p) = ln(eM · p) = M + ln p (6) 308

To solve the threshold t of top-p, we can treat 309

U(−∞,M) as a limiting case of U(M − a,M) as 310

a→∞. As derived in Appendix A.2, for any finite 311

value of a, the logit threshold of top-(1− p) under 312

U(M − a,M) distribution is 313

t = M − ln

[
1

1− (1− p)(1− e−a)

]
(7) 314

Taking a→∞, we obtain 315

t = M + ln p (8) 316

This is exactly the same threshold as min-p sam- 317

pling. 318
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Theorem 3.3 provides significant insights into319

the empirical observations of similarity between320

min-p and top-(1-p) sampling, rather than being321

merely coincidental. More importantly, this theo-322

retical result offers a valuable perspective on the323

distribution of informative tokens, suggesting uni-324

form distribution as a reasonable approximation.325

Given our goal of retaining informative tokens, it326

can be viewed as a denoising process from a uni-327

form distribution with a known maximum. This328

suggests measuring the distance from the top rather329

than the mean, motivating our investigation of the330

Top-based Sigma Distance (TSD) metric. Similar331

to Equation (4), TSDβ is defined as332

TSDβ =
M − β

σ
(9)333

where M is the maximum of logits. Similarly,334

two variants are of particular interests: TSDIB and335

TSDOB. As illustrated in Figure 3(b), TSD val-336

ues exhibit a relatively stable pattern across dif-337

ferent nucleus sizes, indicating superiority against338

Z-scores. Specifically, within the region defined339

by TSDIB and TSDOB, there appears to be a con-340

sistent central value around 1.0, which we don’t341

observe on Z-scores. This advantage motivates342

the design of our top-nσ algorithm, which begins343

from the maximum value and extends downward,344

using the standard deviation of the distribution to345

dynamically adjust the boundary.346

4 Algorithm347

4.1 Algorithm Description348

Our method introduces a statistical threshold to fil-349

ter candidate tokens before sampling. Algorithm 1350

outlines the main steps of our method. The algo-351

rithm operates directly on logits, capturing a region352

that extends nσ below the maximum value and353

masking out all other logits (Lines 5~7), where a354

threshold multiplier n controls the size of the sam-355

pled region. Finally, the logits are transformed via356

softmax into probabilities for the next token sam-357

pling. We further analyze its theoretical range and358

connections to existing methods in Section 4.2. Fur-359

thermore, we demonstrate that our method main-360

tains a consistent nucleus size across different tem-361

perature settings in Section 4.3, ensuring robust362

sampling behavior.363

4.2 Range of n364

While the precise distribution of overall logits re-365

mains unknown, we propose a tractable analyti-366

Algorithm 1 Top-nσ Sampling

1: Input: Input context x, temperature T , thresh-
old multiplier n

2: Output: Next token
3: Compute logits l = LLM(x)
4: Scale logits: l′ = l/T
5: Calculate M = max(l′) and σ = std(l′)

6: Create mask: mi =

{
1 if l′i ≥M − nσ

0 otherwise

7: Apply mask: l′i =

{
l′i if mi = 1

−∞ otherwise
8: p = softmax(l′)
9: Sample token from distribution p

cal framework based on the discussions in Sec- 367

tion 3.2. We model the logit as a random variable 368

L = αX + (1− α)Y , where X ∼ U(M − a,M) 369

represents the informative component and Y ∼ 370

N(µn, σ
2
n) captures the noise component with mix- 371

ing factor α ∈ (0, 1). Since the actual mix- 372

ing mechanism between components is inherently 373

unidentifiable, we opt for a clean separation as- 374

sumption where all logits in [M − a,M ] are sam- 375

ples from X . 376

This separation assumption leads to an impor- 377

tant property: σu =
√

Var(X) ≤ σ, where σ is the 378

standard deviation of the overall logit distribution. 379

By the law of total variance (Weiss et al., 2006), 380

Var(L) = E[Var(L|I)] + Var(E[L|I]), where I 381

indicates whether a logit belongs to the informa- 382

tive component X or not. Under our separation 383

assumption, Var(L|I = 1) = Var(X), and there- 384

fore Var(X) must be less than or equal to the total 385

variance Var(L) = σ2. 386

The goal of the truncation algorithm is to pre- 387

serve the uniform component X while eliminating 388

the normal component Y . The optimal truncation 389

is clearly M − a, but a is unknown. Since the vari- 390

ance of a uniform distribution is a2/12, we have 391

a = 2
√
3σu = 2

√
3
σu
σ
σ (10) 392

This indicates the optimal truncation parameter 393

should be n = 2
√
3σu

σ ≈ 3.46k, where k = σu
σ . 394

Unfortunately, determining σu is impossible, as 395

we cannot definitively attribute each sample to ei- 396

ther distribution. Given that σu ≤ σ under our as- 397

sumption, we can derive an upper bound n ≤ 3.46. 398

Since informative tokens and noisy tokens are typi- 399

cally far apart, k tends to be small, suggesting that 400

3.46 is a rather loose upper bound. 401
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To complement our theoretical analysis, we can402

gain practical intuition for choosing n by exam-403

ining the widely-adopted min-p sampling method.404

Since min-p truncation is equivalent to removing405

tokens with logits below M − ln(1/p), we can406

establish a direct correspondence by n = ln(1/p)
σ .407

For example, with a reference logit standard devia-408

tion σ = 2.2 (see Appendix F for details), a min-p409

threshold of 0.1 corresponds to n ≈ 1.05. In prac-410

tice, we use n = 1.0 as the default setting, which411

provides an effective quality-diversity trade-off.412

4.3 Temperature Invariance413

A key advantage of our method is its temperature414

invariance, as stated in the following theorem.415

Theorem 4.1. For any temperature T > 0, the416

nucleus of top-nσ remains invariant.417

This temperature invariance follows from the418

fact that temperature scaling affects both the max-419

imum value and standard deviation of the logits420

proportionally by 1/T , thereby preserving the rel-421

ative selection criterion for each token (see Ap-422

pendix A.3 for details).423

This invariance distinguishes our method from424

other common sampling approaches. While top-k425

sampling also maintains temperature invariance, it426

relies on a fixed k value that cannot adapt to vary-427

ing token distributions across different contexts. In428

contrast, methods like top-p and min-p sampling429

have temperature-dependent selection sets: as tem-430

perature increases, their sampling nuclei tend to in-431

clude more noise tokens due to the flattening effect432

on probability distributions. Our method combines433

the benefits of temperature invariance with adap-434

tive token selection, better aligning with human435

language patterns where grammatical consistency436

is maintained even as vocabulary choices vary.437

5 Experiments438

5.1 Setup439

Models. We evaluate our proposed top-nσ using440

LLaMA-3 (Dubey et al., 2024), specifically with441

LLaMA-3-8B-Instruct and LLaMA-3-70B-Instruct.442

We also report the results of Qwen2.5 (Yang443

et al., 2024) in Appendix D. Besides, we use444

vLLM (Kwon et al., 2023) for inference.445

Benchmarks. We conduct experiments on two446

distinct task categories:447

• Reasoning: We evaluate four question-448

answering datasets spanning elementary to449

doctoral-level mathematics: AQuA (Ling 450

et al., 2017), MATH500 (Lightman et al., 451

2023; Hendrycks et al., 2021), GSM8K 452

(Cobbe et al., 2021), and GPQA-main (Rein 453

et al., 2024). Each problem is transformed 454

into an open-ended generation task. 455

• Creative Writing: Following (Nguyen et al., 456

2024), we adopt a diverse collection of 500 457

samples. Detailed experimental settings can 458

be found in Appendix B. 459

Baselines. We evaluate top-nσ against top-k 460

(Fan et al., 2018) (k = 20), top-p (Holtzman 461

et al., 2019) (p = 0.9), min-p (Nguyen et al., 462

2024) (p = 0.1), η-sampling (Hewitt et al., 2022) 463

(η = 9 × 10−4), and mirostat (Basu et al., 2020) 464

(τ = 5.0). The hyperparameter values are adopted 465

from previous work (Hewitt et al., 2022; Nguyen 466

et al., 2024), practical guidelines (Siml, 2024) 467

and our empirical tests (discussed in Appendix C). 468

These values keep fixed across different tempera- 469

tures to demonstrate stability. For top-nσ, we prove 470

a theoretical bound n ∈ (0, 2
√
3), with n = 1.0 471

as an effective default value. We omit the reason- 472

ing results of η-sampling and mirostat as they are 473

designed for a diverse generation. 474

Metrics. We use Exact Match (EM) for reason- 475

ing tasks and win rate against greedy decoding us- 476

ing DeepseekV3 (Liu et al., 2024) as judge through 477

Alpaca2.0 framework (Li et al., 2023) (see Ap- 478

pendix B for details). 479

5.2 Main Results 480

5.2.1 Reasoning 481

Table 1 compares the performance of different sam- 482

pling methods across temperature settings (e.g., 0.7- 483

4.0) on four representative datasets. While conven- 484

tional methods achieve competitive performance 485

occasionally, their effectiveness is highly sensitive 486

to temperature settings, requiring careful param- 487

eter tuning for each specific application scenario. 488

The results demonstrate that top-nσ sampling not 489

only outperforms or matches the peak performance 490

of other methods at optimal temperatures but also 491

maintains consistent performance across all tem- 492

perature settings. This robustness is particularly 493

valuable for real-world applications, where optimal 494

temperature parameters are typically unknown a 495

priori and may vary across different tasks or user 496

requirements. In contrast, methods that are sensi- 497

tive to temperature settings provide weaker perfor- 498
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Table 1: Performance comparison (%) of different sampling methods on LLaMA3-8B-Instruct and LLaMA3-70B-
Instruct across different temperature settings.

Dataset Method LLaMA3-8B-Instruct LLaMA3-70B-Instruct
0.7 1.0 1.5 2.0 3.0 4.0 0.7 1.0 1.5 2.0 3.0 4.0

AQuA

Top-k 52.76 51.57 40.94 20.47 3.15 0.39 75.59 70.87 72.05 64.57 28.35 3.54
Top-p 51.18 50.00 36.61 0.00 0.00 0.00 75.20 77.95 70.87 32.28 0.00 0.00
Min-p 50.39 51.18 47.24 37.80 11.42 0.00 74.80 74.41 73.62 73.23 63.78 22.83

Top-nσ 54.33 52.76 48.82 51.97 49.21 50.00 76.77 76.38 72.44 73.23 74.41 76.38

GSM8K

Top-k 75.51 71.87 56.03 29.11 2.50 0.45 92.19 90.98 90.37 84.76 50.27 10.92
Top-p 76.65 75.59 66.34 0.00 0.00 0.00 91.51 90.90 90.60 53.90 0.00 0.00
Min-p 76.72 74.15 71.34 63.68 25.47 0.91 91.28 90.90 91.58 91.05 85.29 52.08

Top-nσ 76.19 75.97 75.28 75.28 74.53 73.24 92.34 91.28 91.74 91.74 91.28 91.89

GPQA-main

Top-k 31.47 32.81 27.68 20.09 6.25 0.67 41.07 39.51 38.84 36.38 18.97 5.36
Top-p 32.59 33.26 16.52 0.00 0.00 0.00 37.50 38.39 40.18 2.01 0.00 0.00
Min-p 32.14 32.59 29.24 29.46 11.38 0.45 39.29 38.62 40.63 41.29 35.04 9.82

Top-nσ 31.70 31.47 29.02 30.80 31.47 29.91 36.38 38.39 40.85 39.51 40.63 41.74

MATH500

Top-k 23.20 21.40 14.00 5.20 1.20 0.40 46.40 40.60 40.00 33.60 10.00 1.20
Top-p 25.40 22.20 13.20 0.00 0.00 0.00 47.60 45.60 40.40 6.20 0.00 0.00
Min-p 24.80 23.60 19.00 16.00 4.20 0.00 46.60 42.60 42.20 40.60 28.00 11.20

Top-nσ 26.80 25.00 24.80 23.40 22.80 23.20 45.80 44.80 45.80 43.00 47.60 46.80

mance guarantees, as their accuracy can fluctuate499

significantly depending on the chosen temperature500

parameter. Furthermore, by minimizing the impact501

of temperature on accuracy, top-nσ enables flexible502

control over output diversity without compromis-503

ing accuracy.504

5.2.2 Creative Writing505

To examine whether the performance of top-nσ506

sacrifices diversity for accuracy or not, we evaluate507

it on creative writing tasks following Nguyen et al.508

(2024). As shown in Table 2, top-nσ achieves the509

highest win rates against greedy decoding (56.40%510

for 8B and 53.80% for 70B), demonstrating its abil-511

ity to maintain both creativity and coherence. The512

robust performance of top-nσ opens up a unique513

opportunity to explore the impact of extremely high514

temperatures in LLM sampling. While conven-515

tional wisdom suggests that higher temperatures516

lead to increased diversity (Bellemare-Pepin et al.,517

2024; Nguyen et al., 2024), this hypothesis has re-518

mained untested due to the instability of traditional519

sampling methods at high temperatures. With top-520

nσ’s temperature invariance, we are finally able to521

push the boundaries to T = 3.0 and even T = 10.0.522

Intriguingly, our results reveal that the benefits of523

temperature scaling eventually saturate, with win524

rates stabilizing around 55.40% and 53.40% for 8B525

and 70B models, respectively. This finding com-526

plements our understanding about the relationship527

between temperature and diversity, suggesting that528

further temperature increases may not yield addi-529

tional benefits.530

Table 2: Win rates (%) against greedy decoding on
AlpacaEval Creative Writing using LLaMA-3-8B/70B-
Instruct.

8B 70B

Method T =1.0 T =1.5 T =1.0 T =1.5

Top-k 53.40 51.00 50.40 51.00
Mirostat 49.50 2.20 51.50 5.20
η-sampling 55.10 9.40 52.00 34.00
Top-p 53.40 7.00 49.80 34.04
Min-p 53.60 54.00 51.40 50.90
Top-nσ 56.40 52.90 53.80 50.50

T =3.0 T =10.0 T =3.0 T =10.0

Top-nσ 55.40 55.40 51.30 53.40

5.3 Test-time Scaling Analysis 531

Recent work has demonstrated the effectiveness of 532

test-time scaling techniques in enhancing model 533

capabilities without additional training (Snell et al., 534

2024; Brown et al., 2024; Zhang et al., 2024). 535

Among these techniques, majority voting with re- 536

peated sampling (Brown et al., 2024) stands out 537

as one of the simplest yet effective approaches. 538

However, the effectiveness of such techniques is 539

constrained by underlying sampling methods. Tra- 540

ditional sampling at lower temperatures typically 541

leads to higher single-shot accuracy but limited 542

output diversity, reducing the potential gains from 543

majority voting. Conversely, sampling at higher 544

temperatures can provide more diverse outputs but 545

often at the cost of quality. 546

To demonstrate how top-nσ enhances these scal- 547

ing techniques by overcoming this diversity-quality 548

trade-off, we conduct experiments on LLaMA-3- 549
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Figure 4: Repeated sampling performance of LLaMA-
3-8B-Instruct on GSM8K with N (up to 100) repetitions
and majority voting. Top-nσ achieves both higher accu-
racy and better stability across different N values.

8B-Instruct using a 128-sample subset of GSM8K550

benchmark (following the same experimental setup551

as Brown et al. (2024)), comparing different sam-552

pling methods across varying numbers of sampling553

repetitions (up to 100). We use the Majority@N554

score, where we generate N independent responses,555

extract their answers in a standardized format, and556

select the most frequent one as the final prediction.557

For each method, we explore temperature settings558

ranging from 0.5 to 3.0 and report the performance559

curve with the optimal temperature.560

As shown in Figure 4, while conventional meth-561

ods show unstable performance with fluctuations562

and drops in the intermediate stage when repe-563

titions increase, top-nσ maintains robust perfor-564

mance improvements and reaches higher final ac-565

curacy (~93%). Notably, top-nσ achieves its best566

performance at relatively higher temperatures, suc-567

cessfully maintaining output quality while provid-568

ing the diversity necessary for effective majority569

voting570

5.4 Sensitivity Analysis of n571

To provide practical guidance for implementing572

top-nσ sampling and validate our theoretical anal-573

ysis, we conduct a sensitivity study of the key hy-574

perparameter n. Specifically, we investigate how575

different combinations of n and temperature affect576

model performance on GSM8K using Llama-3-577

8B-Instruct, with n ranging from 0.3 to 3.0 and578

temperature from 0.5 to 3.0. We are particularly579

interested in the critical threshold of n where per-580

formance significantly degrades under high tem-581

peratures, as the model’s learned probability dis-582

tribution has minimal impact in this regime, and583

therefore such degradation indicates the quality of584

the nucleus. This critical threshold can be used to585

0.3 0.5 1.0 1.5 2.0 3.0

n
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Figure 5: Parameter sensitivity analysis of top-nσ sam-
pling on GSM8K. The heatmap shows accuracy (%)
under different combinations of n (0.3-3.0) and tem-
perature (0.5-3.0). The method maintains stable per-
formance (~78%) with moderate n values but degrades
when n ≥ 2.0, especially under high temperatures.

verify our theoretical bounds. 586

As shown in Figure 5, we observe that the 587

method exhibits robust performance when n is 588

within a moderate range (0.3-1.0), maintaining an 589

accuracy of approximately 77-78% across differ- 590

ent temperature settings. However, as n increases 591

beyond 1.5, we witness a noticeable performance 592

degradation, with accuracy dropping to around 70% 593

and falling below 60% when n reaches 2.0. This 594

empirical observation aligns well with our theo- 595

retical bound of n = 2
√
3σu/σ ≤ 3.46. The 596

observed critical threshold around n = 1.5 sug- 597

gests that σu ≈ 0.43σ, which is reasonably con- 598

sistent with our theoretical expectation given that 599

informative tokens are typically far from the noisy 600

tokens. While this alignment is not exact due to 601

the unknown true token distribution, it provides a 602

practical validation of our theoretical analysis. 603

6 Conclusion 604

Based on empirical and theoretical analysis of 605

LLM’s output logits, we propose top-nσ, which 606

achieves temperature-invariant sampling and pre- 607

serves output diversity. The significance of our 608

analysis extends beyond sampling strategies, as it 609

reveals fundamental characteristics and limitations 610

of softmax-based approaches in practice. The ob- 611

served separation between informative and noise 612

components in logits can be valuable for any sce- 613

nario involving softmax operations, opening up 614

promising directions for future research, such as 615

leveraging these properties in model training to 616

improve their robustness and effectiveness. 617
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Limitations618

Several limitations deserve attention in our work.619

First, a static n might not capture the precise bound-620

ary especially when the model is not confident. We621

have a more detailed discussion about σ and the622

sampling process in Appendix F. However, we still623

have not been able to draw any definitive conclu-624

sion. We acknowledge that we know little about625

the relationship between informative tokens and626

Gaussian noise, and the assumption presented in627

the main text is too ideal. Second, our evaluation628

primarily focused on reasoning tasks and creative629

writing, leaving its effectiveness in other domains630

to be verified, like code generation. Third, while631

we analyzed and improved token-level sampling be-632

havior, the impact of our method on sequence-level633

generation remains poorly understood, suggesting634

the need for further investigation into how local635

sampling decisions affect global generation qual-636

ity. Finally, top-nσ aims to eliminate Gaussian637

noise in logits. In other words, it attempts to pre-638

serve the model’s own output as much as possible639

without modification. This may potentially retain640

the model’s inherent hallucinations and biases. For641

domain-specific fine-tuned models, top-nσ will am-642

plify their bias on OOD (out-of-distribution) data643

(due to enhanced background noise)1. This might644

be beneficial for researchers as it helps identify645

OOD problems, but it will amplify the issues that646

fine-tuned models face with OOD data.647
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A Theoretical Analysis821

A.1 Proof of Theorem 3.1822

Proof. We can rewrite
∑

li>t e
li to823 ∑

1≤i≤V eliI(li > t), where I(·) is the indi-824

cator function, its value is 1 if the condition holds,825

0 otherwise.826

And,827 ∑
1≤i≤V

eliI(Xi > t) = V ·
∑

1≤i≤V

eliI(li > t)

V

(11)828

By Weak Law of Large Numbers, we can assert829

the second terms converges to E[eLI(L > t)] in830

probability, where L denotes the random variable831

whose realizations are {li}Vi=1.832

Since833

E[eLI(L > t)] =

∫ +∞

−∞
exI(x > t)f(x) dx834

=

∫ +∞

t
exf(x) dx (12)835

We finally conclude:836 ∑
li>t

eli
P→ V

∫ +∞

t
exf(x) dx (13)837

838

A.2 Threshold Calculation839

For data following uniform distribution U(M −840

a,M), where M is the maximum value and a is841

the range of distribution support, we first utilize the842

shift invariance of softmax (c is any constant):843

Softmax(X) =
exi∑
j e

xj
=

exi−c∑
j e

xj−c844

= Softmax(X − c) (14)845

By setting c = M , we can reduce our analysis846

to U(−a, 0). The probability density function is847

f(x) =

{
1
a −a ≤ x ≤ 0

0 otherwise
(15)848

Computing the integral as849 ∫ +∞

t
exf(x) dx =

∫ 0

t

ex

a
dx =

1

a
(1− et) (16)850

After solving the equation and transforming back851

to the original scale, we obtain852

t = M − ln

[
1

1− p(1− e−a)

]
(17)853

A.3 Proof of Temperature Invariance 854

Here we provide the proof for Theorem 4.1. 855

Proof. Consider any token i and temperature T > 856

0. Let li be the original logit. After temperature 857

scaling, we have l′i = li/T for all tokens. For any 858

given token i: 859

M ′ = max
j

(l′j) =
M

T
860

σ′ =

√
1

N

∑
j

(l′j − µ′)2 861

=

√√√√ 1

N

∑
j

(
lj
T
− µj

T
)2 =

σ

T
862

Token i is selected if and only if l′i ≥M ′ − nσ′. 863

Substituting li, M and σ for l′i, M
′ and σ′: 864

l′i ≥M ′ − nσ′ ⇐⇒ li
T
≥ M

T
− nσ

T
865

⇐⇒ li ≥M − nσ 866

This final condition is independent of T . There- 867

fore, for any token i, its inclusion in the selected 868

set is determined by the same condition regardless 869

of temperature. 870

B Experimental Details 871

B.1 Implementation 872

One of the major advantages of top-nσ is its 873

remarkable simplicity — the core algorithm can 874

be integrated into any inference framework with 875

merely two lines of code. To demonstrate this, we 876

provide a reference implementation based on the 877

Huggingface framework (Wolf et al., 2020), shown 878

in Code 1. 879

Our experiments were primarily conducted us- 880

ing vLLM (Kwon et al., 2023). While the core im- 881

plementation remains straightforward, it is worth 882

noting that vLLM did not support custom sam- 883

plers during our experimental phase, which neces- 884

sitated some intricate adaptations. For the sake of 885

reproducibility and transparency, we have made 886

our vLLM implementation and the corresponding 887

evaluation code available2. 888

We note that since the initial development of this 889

approach, independent implementations of top-nσ 890

2https://anonymous.4open.science/r/top_nsigma_
anon-D2A3/readme.md
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1 from transformers import LogitsProcessor
2 import torch
3

4 class TopNSigma(LogitsProcessor):
5 def __init__(self , nsigma: float , device: str):
6 self.n = torch.tensor(nsigma , device=device)
7

8 def __call__(self , input_ids: torch.Tensor , logits: torch.Tensor) -> torch.
Tensor:

9 M, std = logits.max(dim=-1, keepdim=True).values , logits.std(dim=-1, keepdim
=True)

10 logits[logits < M - self.n * std] = float(’-inf’)
11 return logits

Code 1: TopNSigma Logits Processor Implementation

sampling have emerged in several popular open-891

source LLM inference frameworks and applica-892

tions3. This independent adoption by the open-893

source community provides additional validation894

of our method’s practical utility.895

B.2 Evaluation Framework896

To ensure fair comparison among all algorithms897

and guarantee reproducibility, we developed a cus-898

tom evaluation framework. The evaluation pipeline899

consists of the following key components and900

steps:901

1. Dataset-specific Preprocessing: For each902

dataset, we implement a dedicated preproces-903

sor that:904

• Converts raw data into a standardized905

format with questions and output format906

specifications.907

• For multiple-choice questions, structures908

the data to include questions, options,909

and output format controls.910

• Handles dataset-specific requirements911

and constraints.912

2. Input Processing:913

• Applies template-based formatting to en-914

sure consistent model inputs.915

• Incorporates necessary control tokens916

and format specifications.917

3. Algorithm Execution:918

• Loads and configures models with appro-919

priate parameters.920

3Due to double-blind review requirements, we cannot pro-
vide specific references to these implementations at this time.

• Processes the formatted inputs through 921

the models. 922

• Collects raw outputs. 923

4. Output Processing and Evaluation: 924

• Extracts answers through predefined out- 925

put pattern matching. 926

• Normalize the answers. 927

• Computes evaluation metrics based on 928

extracted answers. 929

This standardized pipeline ensures fair evaluation 930

across different models and datasets. While we 931

utilize vllm’s seed option and set random, numpy, 932

pytorch and cuda’s seeds to ensure reproducibility, 933

it is important to note that reproducibility may still 934

be affected by GPU’s precision error4. 935

B.2.1 Reasoning 936

We use a prompt template to instruct LLaMA to 937

follow user’s instructions (raw python string). 938
939

<|begin_of_text|><|start_header_id|>system<| 940
end_header_id|>\n\nYou are a helpful expert 941
problem solver. Please strictly follow the 942
user’s instructions, especially the output 943
format.<|eot_id|><|start_header_id|>user<| 944
end_header_id|>\n\nPlease answer the 945
following question:\n\n{question}<|eot_id 946
|><|start_header_id|>assistant<| 947
end_header_id|>\n\n 948949

where {question} is a placeholder subject to 950

different datasets. It not only contains the question, 951

but also an output format instruction for extraction. 952

For example, we use following instruction (placed 953

directly after the question) for GSM8K test: 954
955

Your response *must* end with "The final answer 956
is (answer)". No units. For example:\n( 957
Question and your reasoning)\nThe final 958
answer is 33. 959960

4https://github.com/vllm-project/vllm/pull/2514
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And the corresponding output regular expression961

is:962
963

The final answer is .*?(\d+\.?\d*|\.\d+)[\s\S964
]*?(?<!\.)\.$965966

We use slightly different prompts for different967

datasets because desired answer formats are differ-968

ent and the Exact Match metric is very sensitive969

to the format. We tried our best to mitigate this970

issue through prompt engineering, complex regular971

expressions and output normalization.972

Metrics. We use Exact Match (EM) metric for973

the four reasoning benchmarks. EM reports the974

ratio of identical extracted answers and targets.975

Datasets. The detailed statistics is provided in976

Table 3.977

B.2.2 Creative Writing978

The pipeline of Creative Writing is slightly dif-979

ferent, since there is no ground-truth answer. For980

each model, the text generated by greedy decoding981

is set as reference answer, and texts generated by982

each method would be compared with the reference,983

judged by DeepseekV3 (we set temperature as 0.0984

to guarantee reproducibility). We use the Alpaca985

(Li et al., 2023) as the LLM-as-a-judge framework.986

Metrics. We report win rate for the creative writ-987

ing benchmark. For each instruction, we compare988

responses generated by each method against those989

produced by standard greedy decoding. The LLM990

judge (DeepseekV3) receives a pair of responses991

(A, B) and outputs a binary preference, indicating992

which response better satisfies the given instruction.993

The win rate is then calculated as the number of994

wins divided by the total number of comparisons.995

Datasets. The dataset is a collection of 500996

writing prompts, same as Nguyen et al. (2024).997

C Hyperparameters998

The selection of appropriate hyperparameters is cru-999

cial for fair comparison among different sampling1000

methods. Our selection criteria are based on three1001

perspectives: (1) widely adopted parameters in the1002

literature and production, (2) authors’ recommen-1003

dations from original papers, and (3) empirically1004

optimal values from our experiments.1005

It is worth noting that for most sampling meth-1006

ods, extreme parameter settings can achieve ro-1007

bustness to temperature variations. For instance,1008

using an extremely small p value (e.g., 0.1) in top-p1009

sampling can maintain consistency across different 1010

temperatures. However, such settings essentially 1011

reduce the sampling method to greedy decoding, 1012

thereby compromising the method’s ability to gen- 1013

erate diverse outputs. Similarly, top-nσ sampling 1014

with an extremely small n (e.g., 0.1) exhibits com- 1015

parable behavior, but this deviates from practical 1016

scenarios and results in a significant loss of diver- 1017

sity. Therefore, in our experimental setup, we avoid 1018

such extreme parameter settings that could poten- 1019

tially skew the comparison or lead to degenerate 1020

sampling behaviors. 1021

For top-nσ, n is typically less than 1.5. Its pre- 1022

cise lower bound remains unclear as it is difficult to 1023

measure the diversity loss. We recommend n = 1.0 1024

as the default setting. Although smaller values of 1025

n can achieve better accuracy in our experiments 1026

(as shown in Figure 5), we choose this value for 1027

its simplicity and good balance in maintaining di- 1028

versity. As part of our hyperparameter recommen- 1029

dations, we suggest different values of n based 1030

on the intended use case. For scenarios requiring 1031

more rational and focused outputs, we recommend 1032

smaller values such as n = 0.8. Conversely, for 1033

applications emphasizing diversity, larger values 1034

like n = 1.3 are more appropriate. It is impor- 1035

tant to note that unlike probability-based metrics, 1036

top-nσ operates on logits, making the impact of n 1037

exponential rather than linear. For instance, with 1038

σ = 2.2, n = 1.0 corresponds to min-p sam- 1039

pling with p = 0.1, while n = 2.0 corresponds 1040

to p = 0.01 in min-p sampling, which is too loose 1041

to be practically useful. 1042

For min-p sampling, the value of p typically 1043

ranges from 0.05 to 0.1. We adopt p = 0.1 based 1044

on our empirical results and its widespread adop- 1045

tion in combination with temperature T = 1.5, 1046

which has proven to be highly effective in practice. 1047

For top-k sampling, parameter recommendations 1048

from various sources are inconsistent, with k rang- 1049

ing from 10 to 300. This parameter is inherently 1050

related to the vocabulary size, making some earlier 1051

recommendations potentially obsolete due to the 1052

evolution of model vocabularies. Our experiments 1053

with k ∈ {10, 20, 50, 180, 300} reveal dramatic 1054

variations in performance. Small k values make 1055

the sampling relatively insensitive to temperature 1056

changes but tend to approximate greedy decoding. 1057

Conversely, large k values exhibit high temperature 1058

sensitivity, leading to rapid degradation at higher 1059

temperatures. As a result, we choose k = 20 as 1060

a compromise. This also explains why top-k is 1061
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Table 3: Dataset Statistics

Dataset Description Samples
AQuA AQuA (Ling et al., 2017) is an algebraic word problems dataset.

We use its test split for experiment.
254

GSM8K GSM8K (Cobbe et al., 2021) (Grade School Math 8K) is a dataset
of high-quality linguistically diverse grade school math word prob-
lems. We use its test split for experiment.

1319

GPQA-main GPQA (Rein et al., 2024) is a multiple-choice, Q&A dataset of
very hard questions written and validated by experts in biology,
physics, and chemistry.

448

MATH500 MATH (Hendrycks et al., 2021) is a new dataset of 12,500 chal-
lenging competition mathematics problems. Each problem in
MATH has a full step-by-step solution which can be used to teach
models to generate answer derivations and explanations. We use a
500 subset (Lightman et al., 2023) of it.

500

rarely used alone in practice despite occasionally1062

achieving good performance.1063

For η-sampling, we experimented with η = 2×1064

10−4 and η = 9 × 10−4. At lower temperatures,1065

η = 9 × 10−4 shows better performance, while1066

at higher temperatures, both values lead to rapid1067

quality degradation. Therefore, we report results1068

using η = 9× 10−4.1069

For mirostat, we set a relatively high target en-1070

tropy of 5.0 to evaluate its performance in diverse1071

text generation. Similar to η-sampling, even slight1072

temperature increases cause mirostat to deteriorate1073

rapidly.1074

D Expanded Experiments using Qwen2.51075

We further extended our experiments to the1076

Qwen2.5 series models (Yang et al., 2024) to val-1077

idate the generalizability of our findings across1078

different model architectures. The results (Table 41079

and Table 5) largely align with Llama’s. For rea-1080

soning tasks, in the low-temperature regime (T ≤1081

1.5), top-nσ either outperforms other methods or1082

achieves comparable results across all datasets. In1083

the high-temperature regime (T ≥ 2.0), top-nσ1084

consistently exhibits superior performance across1085

all test scenarios.1086

For creative writing tasks, top-nσ also exhibit1087

similar behavior. It is worth noting that top-nσ with1088

T = 1.0 demonstrates compelling performance,1089

consistently achieving optimal or near-optimal re-1090

sults across all evaluated models.1091

E Combination with other samplers 1092

In practice, multiple samplers are often combined 1093

to meet complex decoding requirements. The typ- 1094

ical sampling process involves passing a logits 1095

vector as an intermediate value through multiple 1096

samplers, each performing its specific logic. For 1097

instance, a top-k sampler retains the top k logits 1098

while setting all others to −∞. Since top-nσ sam- 1099

pling requires standard deviation calculations, it 1100

must be positioned as the first sampler when used 1101

in combination with other sampling methods to 1102

avoid computing standard deviations of −∞ val- 1103

ues. This constraint is crucial for implementations 1104

that set discarded tokens to −∞. However, for 1105

implementations that directly discard tokens (e.g., 1106

CPU implementations) rather than setting them to 1107

−∞, the positioning of top-nσ sampling becomes 1108

more flexible and is not strictly required to be first. 1109

Nevertheless, we recommend placing it early in the 1110

sampling pipeline to ensure meaningful standard 1111

deviation calculations based on a more complete 1112

token distribution. 1113

Top-nσ focuses on reflecting the model’s inher- 1114

ent capabilities rather than introducing human pri- 1115

ors. Therefore, we recommend using it as an alter- 1116

native to top-p and min-p sampling, which serve 1117

similar purposes. Additionally, the community has 1118

developed many specialized samplers addressing 1119

specific issues, such as DRY (Don’t Repeat Your- 1120

self)5 which focuses on reducing repetition. These 1121

samplers typically modify the target distribution 1122

by introducing human priors, making them orthog- 1123

5https://github.com/oobabooga/text-generation-
webui/pull/5677

14



Table 4: Performance comparison of different sampling methods on Qwen2.5 models

Qwen2.5-14B-Instruct Qwen2.5-32B-Instruct
Dataset Method 0.7 1.0 1.5 2.0 3.0 4.0 0.7 1.0 1.5 2.0 3.0 4.0

AQuA

Top-k 83.46 81.10 75.20 55.91 14.96 1.57 85.43 81.10 75.98 47.64 12.60 0.79
Top-p 81.89 82.28 72.05 11.42 0.00 0.00 86.22 84.65 81.89 9.45 0.00 0.00
Min-p 80.32 80.32 82.68 77.56 36.22 1.57 87.01 86.22 80.71 82.28 33.07 2.76

Top-nσ 82.28 83.86 78.74 78.74 77.56 77.56 85.04 85.04 83.07 83.46 81.10 83.86

GSM8K

Top-k 91.05 91.05 88.40 77.56 12.59 1.44 93.03 92.42 91.74 81.43 13.42 1.36
Top-p 92.04 90.37 90.37 34.04 0.00 0.00 92.95 92.87 91.96 39.65 0.00 0.00
Min-p 91.58 91.13 90.75 88.55 68.46 7.88 92.95 92.80 93.18 91.66 76.65 11.83

Top-nσ 91.05 91.21 90.45 90.67 89.01 89.84 93.03 93.18 92.42 93.03 92.49 93.33

GPQA-main

Top-k 43.08 38.39 35.49 31.03 18.97 6.25 41.52 44.42 36.16 29.02 15.18 4.46
Top-p 39.96 39.73 22.77 0.00 0.00 0.00 43.75 42.41 33.04 0.22 0.00 0.00
Min-p 39.73 39.73 40.18 34.82 16.52 0.45 43.97 41.74 43.97 36.16 23.66 1.79

Top-nσ 39.29 42.86 40.85 38.17 38.84 34.60 43.75 43.97 41.74 42.63 43.97 43.75

MATH500

Top-k 74.20 75.00 62.80 30.60 3.40 1.20 77.00 75.20 66.80 30.40 4.60 1.00
Top-p 74.80 74.80 66.00 9.00 3.20 3.20 77.20 78.40 64.20 2.80 1.40 2.20
Min-p 73.80 76.00 72.80 65.40 15.20 1.00 76.60 74.60 71.00 68.00 17.00 1.40

Top-nσ 76.00 74.00 72.40 72.60 70.00 69.20 79.00 78.20 76.20 76.40 74.00 71.80

Table 5: Win rates (%) against greedy decoding on
AlpacaEval Creative Writing using Qwen2.5-14B/32B-
Instruct. We omitted the experimental results of top-p,
mirostat, and η-sampling at temperature 1.5, as previ-
ous experiments on LLaMA have demonstrated their
inherent instability at elevated temperatures.

14B 32B

Method T =1.0 T =1.5 T =1.0 T =1.5

Top-k 55.80 53.40 50.00 44.20
Mirostat 47.00 - 47.60 -
η-sampling 49.00 - 50.10 -
Top-p 53.00 - 52.60 -
Min-p 55.60 57.40 53.40 53.60
Top-nσ 56.40 57.80 54.40 53.40

T =3.0 T =10.0 T =3.0 T =10.0

Top-nσ 57.20 51.80 52.10 52.43

onal to top-nσ’s objectives. As a result, they can1124

complement each other to enhance overall perfor-1125

mance.1126

F Disscussions about σ and sampling1127

process1128

Given that top-nσ directly employs the standard1129

deviation of logits as a measurement criterion, it1130

is crucial to investigate the correlation between1131

standard deviation and the sampling process. In-1132

tuitively, one might expect that when the model1133

exhibits uncertainty, the standard deviation of its1134

logits would increase, and conversely, decrease1135

when the model is more confident. However, our1136

empirical studies refute this hypothesis.1137

We demonstrate this by testing an AQuA exam-1138

ple using Llama-3-8B-Instruct, shown below:1139
1140

<|begin_of_text|><|start_header_id|>system<| 1141
end_header_id|>You are a helpful expert 1142
problem solver. Please strictly follow the 1143
user’s instructions, especially the output 1144
format.<|eot_id|><|start_header_id|>user<| 1145
end_header_id|>Given the following problem, 1146
reason and give a final answer to the 1147
problem. 1148

1149
Question: A car is being driven, in a straight 1150

line and at a uniform speed, towards the 1151
base of a vertical tower. The top of the 1152
tower is observed from the car and, in the 1153
process, it takes 10 minutes for the angle 1154
of elevation to change from 45◦ to 60◦. 1155
After how much more time will this car reach 1156
the base of the tower? 1157

Choices: 1158
(A)5(√3 + 1) 1159
(B)6(√3 + √2) 1160
(C)7(√3 - 1) 1161
(D)8(√3 - 2) 1162
(E)None of these<|eot_id|><|start_header_id|> 1163

assistant<|end_header_id|> 11641165

To facilitate the analysis, we visualize three met- 1166

rics throughout the generation process in Figure 6: 1167

the standard deviation of logits, the number of to- 1168

kens within one standard deviation (1σ) of the max, 1169

and the top-3 candidate tokens. For experimental 1170

clarity, we employed greedy decoding where the 1171

highest-probability token is selected at each step. 1172

For simplicity, we interpret the number of tokens 1173

within one standard deviation as a proxy for model 1174

confidence — fewer tokens within this range indi- 1175

cate a more concentrated distribution, suggesting 1176

higher confidence. 1177

Through this lens, our analysis reveals several 1178

interesting patterns: 1179

• The standard deviation of logits typically fluc- 1180

tuates between 1.8 and 2.5. We thus pick 2.2 1181
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(b) Logits dynamics for tokens 20-40
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(c) Logits dynamics for tokens 40-60

Figure 6: Visualization of logits dynamics during the generation process. Each subplot shows the standard deviation
of logits, number of tokens within 1σ of max, and top-3 next tokens at different generation steps. In most steps
the model is highly confident with only one candidate. Notably, multiple tokens tend to fall within one standard
deviation primarily during the generation of connective words or punctuation marks, while the overall relationship
between standard deviation and model confidence remains inconclusive.
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as a typical value.1182

• There appears to be no strong correlation be-1183

tween the standard deviation and model confi-1184

dence. We observe cases where high standard1185

deviation coincides with high confidence, as1186

well as cases showing the opposite pattern.1187

• Notably, the model exhibits lower confi-1188

dence when generating connective words (e.g.,1189

“Let”, “and”) and punctuation marks. This ob-1190

servation is reasonable since connective words1191

are often interchangeable with other connec-1192

tive words (e.g., “in” vs. “at”), and similarly,1193

different punctuation marks can often be sub-1194

stituted for one another (e.g., semicolons vs.1195

periods) while maintaining grammatical cor-1196

rectness.1197

This lack of clear pattern suggests that the re-1198

lationship between logits distribution and model1199

confidence may be more complex than initially an-1200

ticipated.1201

Based on our preliminary observations, we can1202

only conclude that the distribution of noisy tokens1203

appears to be statistically independent of that of1204

informative tokens. The underlying mechanisms1205

driving this phenomenon and its potential implica-1206

tions remain unclear. Given the exploratory nature1207

of this analysis and its inconclusive results, we1208

present these findings in the appendix rather than1209

the main text. We hope these initial observations,1210

though incomplete, may stimulate future research1211

to better understand the relationship between logits1212

statistics and model behavior during the sampling1213

process.1214
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