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Abstract001

Mixture-of-Experts (MoE) models are crucial002
for scaling model capacity while controlling003
inference costs. While integrating MoE into004
multimodal models like CLIP improves per-005
formance, training these models is notoriously006
challenging and expensive. We propose CLIP-007
Upcycling (CLIP-UP), an efficient alternative008
training strategy that converts a pre-trained009
dense CLIP model into a sparse MoE architec-010
ture. Through extensive experimentation with011
various settings and auxiliary losses, we demon-012
strate that CLIP-UP significantly reduces train-013
ing complexity and cost. Remarkably, our014
sparse CLIP B/16 model, trained with CLIP-015
UP, outperforms its dense counterpart by 7.2%016
and 6.6% on COCO and Flickr30k text-to-017
image Recall@1 benchmarks respectively. It018
even surpasses the larger CLIP L/14 model on019
this task while using only 30% of the inference020
FLOPs. We further demonstrate the general-021
izability of our training recipe across different022
scales, establishing sparse upcycling as a practi-023
cal and scalable approach for building efficient,024
high-performance CLIP models.025

1 Introduction026

CLIP (Radford et al., 2021; Jia et al., 2021) has027

become foundational across domains such as im-028

age classification, multimodal retrieval, and AI-029

driven multimodality content generation (Zhou030

et al., 2022; Rao et al., 2022; Gan et al., 2022;031

Ramesh et al., 2021; Liu et al., 2023). As applica-032

tions grow, scaling CLIP becomes essential. Most033

efforts focus on enlarging dense models (Cherti034

et al., 2023), which improves performance but in-035

curs high computational and inference costs.036

An efficient alternative is sparse modeling with037

Mixture-of-Experts (MoE) (Mustafa et al., 2022;038

Shazeer et al., 2017). However, training MoE-039

based CLIP models like LIMOE (Mustafa et al.,040

2022) from scratch remains expensive and often041

requires auxiliary losses for stability. For instance,042

<

<≈
≪

≪

Sparse Upcycling

Shared Separated

Scratch

!"

#

LIMOE auxiliary loss

<

➕

ImageNet@1: 75.2%

COCO I2T@1: 72.7%  
COCO T2I@1: 51.6%

ImageNet@1: 76.9% 
COCO I2T@1: 71.5% 

COCO T2I@1: 52.1%

ImageNet@1: 69.7%

COCO I2T@1: 65.6% 

COCO T2I@1: 46.7%

ImageNet@1: 74.5%

COCO I2T@1: 70.6% 

COCO T2I@1: 53.1%

ImageNet@1: 73.1%

COCO I2T@1: 69.7% 

COCO T2I@1: 49.7%

Training 
ZFLOPS

Dense:  1.8

Upcycling: 1.9


Total: 3.7

Total: 4.2

≪

Figure 1: Our proposed MoE CLIP pre-training
recipe. We highlight key factors for efficient training,
including backbone sharing, training from scratch vs.
sparse upcycling, and auxiliary losses. A detailed analy-
sis is provided in Section 3.1 and Section 3.2.

LIMOE outperforms dense CLIP but demands 043

1.35× more training FLOPs (Mustafa et al., 2022). 044

To address this, we explore sparse upcycling (Ko- 045

matsuzaki et al., 2023), which initializes MoE lay- 046

ers from a pre-trained dense model. As shown 047

in Figure 1, our extensive experiments demon- 048

strate that sparse upcycling with a separated back- 049

bone achieves the best performance while reduc- 050

ing training ZFLOPs from 4.2 to 3.7 compared 051

to training from scratch. Although LIMOE’s en- 052

tropy losses (Mustafa et al., 2022) improve shared- 053

backbone models trained from scratch, they still un- 054

derperform other setups. Section 3.1 details these 055

strategies and the effects of auxiliary losses. 056

In contrast, we propose CLIP-UP, a single-stage 057

sparse upcycling method for CLIP. By leveraging 058

pre-trained weights, CLIP-UP provides a warm 059

start that boosts efficiency and surpasses both dense 060

continued training and sparse-from-scratch meth- 061

ods across model scales.1 062

Our main contributions are: 063

1. We introduce CLIP-UP, a simple and effec- 064

tive training recipe for MoE CLIP models 065

1Concurrent work CLIP-MoE (Zhang et al., 2024) also
explores MoE upcycling, using cluster-and-contrast learning
to initialize experts. However, it requires additional training
stages per expert, making it difficult to scale.
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Figure 2: CLIP-UP overview with sparse upcycling
initialization. Selected MLP layers are replaced with
MoE layers, initialized from the dense checkpoint, while
routers are randomly initialized.

via sparse upcycling, avoiding complex auxil-066

iary losses and outperforming existing methods067

across shared and separated backbones.068

2. CLIP-UP significantly improves performance069

on text-image retrieval, surpassing dense CLIP070

by 7.2% and 5.5% (recall@1) on COCO and071

Flickr30K, respectively, with a B/16 backbone.072

3. We demonstrate CLIP-UP’s scalability from073

B/32 to L/14 and provide insights into key fac-074

tors and challenges to inform future design.075

2 CLIP-UP076

Figure 2 illustrates the CLIP-UP architecture and077

training strategy. We detail both in this section.078

2.1 CLIP079

Given n pairs of image and text captions080

{(Ij ,Tj)}nj=1, CLIP (Radford et al., 2021) learns081

image and text embeddings f(Ij) and g(Tj) using082

a contrastive loss. With batch size B and tempera-083

ture θ, the loss is084

LContrastive = − 1

2B

B∑
j=1

(log
esim(f(Ij),g(Tj))/θ∑B
k=1 e

sim(f(Ij),g(Tk))/θ

+ log
esim(f(Ij),g(Tj))/θ∑B
k=1 e

sim(f(Ik),g(Tj))/θ
)

(1)085

2.2 CLIP with Mixture-of-Experts upcycling086

Each MoE layer consists of E MLP experts and087

a router that activates the top-K experts per input088

token based on predicted gating logits. Let Xj ∈089

RD be the input for the j-th token, Ge,j ∈ RD the090

gating logits, and We ∈ RD the router weights for 091

expert e. The output MoE(Xj) is computed as: 092

MoE(Xj) = Xj +
∑

e∈Top-K

Ge,jMLPe(Xj) 093

094

Ge,j =

{
Softmax(WT

e Xj), if e ∈ Top-K,

0, otherwise,
(2) 095

Each expert is assigned a fixed buffer capac- 096

ity (Fedus et al., 2022), allowing it to process a 097

limited number of tokens at a time. With capac- 098

ity factor C, batch tokens Bt, the capacity per ex- 099

pert is Be = (Bt/E) × C. This ensures compu- 100

tational efficiency and effective resource manage- 101

ment. Tokens are assigned to experts on a "first- 102

come-first-serve" basis (Fedus et al., 2022). This 103

simple mechanism avoids prioritization overhead 104

while efficiently distributing tokens across experts. 105

Auxiliary loss. Simplified token assignment re- 106

duces overhead but risks imbalanced token distri- 107

bution, leading to token dropping and performance 108

degradation (Zeng et al., 2024). To mitigate this, 109

we adopt an auxiliary loss (Zoph et al., 2022) com- 110

bining load balance loss and router z-loss with 111

scaling factors α and β. The load balance loss pro- 112

motes uniform token allocation across experts. For 113

a sequence of length S, it is defined as: 114

LBalance = α ·
E∑

e=1

Re · Pe (3) 115

where Re =
E

K·S
∑S

j=1 1(Token j → Expert e) 116

and Pe = 1
S

∑S
j=1Ge,j , denoting the token as- 117

signment ratio and average router probability for 118

expert e respectively. 119

The router z-loss stabilizes gating by regulariz- 120

ing router logits to keep outputs within a reasonable 121

range. It is defined as: 122

LRouter = β · 1
S

S∑
j=1

(
log

E∑
e=1

eGe,j

)2

(4) 123

LIMOE auxiliary loss. We experimented with 124

LIMOE’s local and global entropy losses (Mustafa 125

et al., 2022), tuning hyperparameters accordingly. 126

While LIMOE auxiliary loss improves shared back- 127

bone trained from scratch, it underperforms in other 128

settings. Therefore, we use load balance and router- 129

z losses as our auxiliary loss. 130
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Table 1: Ablation study comparing shared vs. sepa-
rated backbones and training from scratch vs. sparse
upcycling, evaluated on ImageNet (Accuracy@1 %)
and COCO/Flickr30K text-to-image (T2I)/image-to-text
(I2T) retrieval (Recall@1 %)

BACKBONE UPCYCLE?
IMAGENET COCO FLICKR30K

T2I I2T T2I I2T
ACC@1 R@1 R@1 R@1 R@1

SHARED N 69.7 46.7 65.6 71.4 86.3

SHARED Y 75.2 51.6 72.7 78.0 92.0

SEPARATED N 74.5 53.1 70.6 78.3 88.2

SEPARATED Y 76.9 52.1 71.5 80.9 92.3

2.3 Sparse Upcycling Training131

Sparse upcycling begins with a pre-trained dense132

CLIP, replacing selected MLP layers with MoE lay-133

ers—experts initialized from the dense weights and134

routers randomly initialized. All other layers re-135

main unchanged. The model is then fine-tuned with136

slightly reduced learning rate and weight decay for137

improved stability, as shown in Figure 2.138

3 Experiments139

Datasets. We trained both the initial dense CLIP140

checkpoint, CLIP-UP, and the baseline model141

on the same paired image-text datasets—WIT-142

300M (Wu et al., 2024) and DFN-5B (Fang143

et al., 2023). Evaluation was performed on Im-144

ageNet (Deng et al., 2009; Shankar et al., 2020) for145

classification and on COCO (Lin et al., 2014) and146

Flickr30K (Plummer et al., 2017) for image-text147

retrieval, with additional benchmarks provided in148

the Appendix C.2. The input image resolution is149

224 for all of the datasets.150

Setup. We train a dense CLIP model for 440k151

steps, then upcycle it into an MoE version with152

350k additional steps. Both use AdamW with a153

32k batch size; the dense model uses a learning154

rate of 5× 10−4 and weight decay of 0.2, reduced155

to 5 × 10−5 and 0.05 for upcycling. In the MoE156

model, half of the Transformer’s MLP layers follow157

an alternating [dense, sparse] pattern (Zoph et al.,158

2022; Du et al., 2022), each sparse layer using 8159

experts with top-2 routing. Router loss coefficients160

α = 0.01 and β = 0.001 balance expert usage161

without dominating training (Zoph et al., 2022;162

Xue et al., 2024). For fair comparison, we also163

train a dense CLIP for 790k steps using the same164

settings.165
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Figure 3: Impact of LIMOE auxiliary loss under dif-
ferent training setups. Adding LIMOE loss sometimes
causes instability, especially with unshared backbones,
while our upcycling recipe remains more robust.

3.1 Recipe Study 166

We compare shared vs. separated backbones and 167

training from scratch vs. sparse upcycling using 168

the CLIP-B/16 model, with the shared setup us- 169

ing 16 experts to match the separated configura- 170

tion (8 per modality). As shown in Table 1, the 171

separated backbone with sparse upcycling delivers 172

the best overall performance due to dedicated pa- 173

rameters per modality, while the shared backbone 174

sees greater relative gains from sparse upcycling. 175

Overall, sparse upcycling consistently outperforms 176

training from scratch, demonstrating CLIP-UP’s 177

versatility and efficiency across configurations. 178

3.2 Impact of LIMOE auxiliary loss. 179

We examine the LIMOE auxiliary loss by set- 180

ting τ = 6 in the global entropy loss (Mustafa 181

et al., 2022), encouraging use of at least six experts 182

per modality, and tuning the loss weight for our 183

setup. As shown in Figure 3, it improves ImageNet 184

and COCO performance with a shared backbone 185

trained from scratch, consistent with prior work 186

(Mustafa et al., 2022), but still underperforms com- 187

pared to other configurations without it. Apply- 188

ing the loss to our best setup (Separated-Upcycle) 189

slightly boosts text-image retrieval but falls short 190

on ImageNet zero-shot classification. 191

These auxiliary losses also increase training com- 192

plexity due to more hyperparameters. As LIMOE 193

loss didn’t work reliably across all setups, we use 194

load balance and router-z losses to simplify tuning 195

under resource constraints. 196
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Table 2: Performance comparison of CLIP-UP, dense models, and LIMOE across model sizes. CLIP-UP is upcycled
from a 440k-step CLIP checkpoint with 350k additional steps; a 790k-step dense CLIP is trained for fair comparison.

MODEL STEPS INFERENCE
IMAGENET COCO RETRIEVAL FLICKR30K RETRIEVAL

CLASSIFICATION T2I T2I I2T I2T T2I T2I I2T I2T
(K) GFLOPS ACC@1 ACC@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

B/32

OPENAI-CLIP - 14.8 63.2 88.8 30.8 55.9 51.6 75.7 - - - -

LIMOE - 22.3 67.5 - 31.0 - 45.7 - - - - -

CLIP (OURS) 440 14.8 72.4 92.8 41.7 68.2 62.3 84.3 68.0 90.0 86.5 97.7

CLIP (OURS) 790 14.8 72.4 92.8 41.9 67.8 62.4 84.1 67.8 88.7 85.6 96.4

CLIP-UP 790 19.6 73.2 93.3 47.3 74.0 66.6 86.7 72.9 91.9 85.9 96.9

B/16

OPENAI-CLIP - 41.2 68.4 91.9 33.1 58.4 53.8 77.9 - - - -

LIMOE - 48.7 73.7 - 36.2 - 51.3 - - - - -

CLIP (OURS) 440 41.2 76.0 94.7 44.4 70.3 65.7 87.0 73.6 92.1 88.0 97.8

CLIP (OURS) 790 41.2 76.8 95.1 44.9 70.8 66.0 86.6 74.3 92.7 88.9 98.0

CLIP-UP 790 54.3 76.9 95.1 52.1 77.6 71.5 89.2 80.9 95.6 92.3 99.2

L/14

OPENAI-CLIP - 175.5 75.3 94.5 36.1 60.8 57.7 79.1 - - - -

CLIP (OURS) 440 175.5 81.1 96.4 49.6 74.4 70.9 89.6 78.4 94.7 91.9 99.2

CLIP (OURS) 790 175.5 81.6 96.6 50.2 75.2 71.4 89.9 79.3 94.9 91.7 99.0

CLIP-UP 790 231.7 81.2 96.6 53.9 79.4 73.8 92.0 82.0 96.1 92.4 99.1

3.3 Final Model Evaluation and Baselines197

Based on previous results, we adopt the separated198

backbone with sparse upcycling as the default setup199

and evaluate CLIP-UP across model sizes from200

B/32 to L/14. Table 2 compares zero-shot classi-201

fication and retrieval performance against dense202

CLIP models trained for the same number of steps.203

While extending dense CLIP training from 440k204

to 790k steps yields minor gains, CLIP-UP shows205

consistent, significant improvements across scales,206

especially in retrieval. Notably, CLIP-UP B/32207

uses only 47% of the inference GFLOPS yet out-208

performs dense CLIP B/16 in COCO T2I recall@1209

by 2.4%, while CLIP-UP B/16 uses just 31% of210

the GFLOPS and surpasses dense CLIP L/14 by211

1.9%. These results demonstrate the efficiency and212

effectiveness of sparse upcycling for scaling CLIP213

models.214

3.4 Training Efficiency215

To highlight the effectiveness of upcycle training,216

Figure 4 compares dense pretraining + upcycling217

with training from scratch. The pretrained dense218

model provides a strong starting point, while train-219

ing from scratch requires significantly more com-220

pute to match CLIP-UP’s performance—especially221

on COCO image-to-text and ImageNet. Although222

sparse upcycling initially causes a performance223

1000 2000 3000
Training EFLOPS

30

35

40

45

50

CO
CO

 T
2I

 R
@

1 
(%

)

1000 2000 3000
Training EFLOPS

45
50
55
60
65
70

CO
CO

 I2
T 

R@
1 

(%
)

1000 2000 3000
Training EFLOPS

60

65

70

75

Im
ag

eN
et

 A
cc

@
1 

(%
)

dense
sparse upcycling
scratch

Figure 4: Performance vs. training EFLOPS for CLIP-
UP and sparse-from-scratch model on CLIP B/16.

drop on ImageNet due to reconfiguration, CLIP- 224

UP consistently outperforms the scratch baseline, 225

demonstrating better efficiency and overall perfor- 226

mance. 227

4 Conclusions 228

We present CLIP-UP, an efficient CLIP training 229

strategy that combines MoE with sparse upcycling. 230

Extensive experiments show it reduces training 231

costs and inference FLOPs while improving perfor- 232

mance across scales, even outperforming larger 233

dense models. Ablation studies shown in Ap- 234

pendix B further validate key design choices, high- 235

lighting CLIP-UP’s practicality and scalability. 236
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5 Limitation237

While our proposed method demonstrates strong238

performance improvements in retrieval tasks such239

as COCO and Flickr30K, it reveals a trade-off with240

classification performance on ImageNet and its241

variants. Specifically, we have not yet identified a242

training configuration that yields significant gains243

across both retrieval and classification simultane-244

ously. Our current best setup prioritizes retrieval245

effectiveness, achieving notable improvements on246

COCO and Flickr30K, but leads to only marginal247

gains on ImageNet.248

We discuss this trade-off in more detail in Ap-249

pendix B.3, highlighting the role of the expert ca-250

pacity factor in shaping task-specific performance.251

In particular, we provide examples showing how252

ImageNet and COCO respond differently to token253

dropping under varying expert capacities, which254

we believe contributes to the observed trade-off.255

While these insights offer a preliminary understand-256

ing, we are still exploring more effective strategies257

to better balance retrieval and classification perfor-258

mance.259
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A Training Details 403

Below, we provide detailed training hyper-parameters and setups for dense CLIP (weights are used for 404

sparse upcycling), sparse CLIP trained from scratch, and CLIP-UP. 405

A.1 Training hyper-parameters 406

We primarily follow (Radford et al., 2021) for hyper-parameter selection, using the WIT-3000M (Wu 407

et al., 2024) and DFN-5B (Fang et al., 2023) training datasets. Table 3 summarizes the hyper-parameters 408

for all experiments, including MoE-specific configurations and parameters for dense CLIP, sparse CLIP, 409

and CLIP-UP. 410

Table 3: Training hyper-parameters and settings for dense CLIP used for sparse upcycling and CLIP-UP

GENERAL

BATCH SIZE 32768

IMAGE SIZE 224× 224

TEXT TOKENIZER T5 (RAFFEL ET AL., 2023), LOWERCASE

TEXT MAXIMUM LENGTH 77 TOKENS

OPTIMIZER ADAMW (β1 = 0.9, β2 = 0.98)

LR SCHEDULE COSINE DECAYS WITH LINEAR WARM-UP (FIRST 2K STEPS)

DROPOUT RATE 0.0

MOE

INNER STRUCTURE PRE-LAYER NORMALIZATION (XIONG ET AL., 2020)

ROUTER TYPE TOP-2 ROUTING

EXPERT CAPACITY FACTOR (C) 2.0 (BOTH TEXT AND IMAGE)

MOE POSITION [DENSE, SPARSE] (HALF OF MLP LAYERS REPLACED BY MOE LAYERS)

LOAD BALANCE LOSS WEIGHT 0.01

ROUTER-Z LOSS WEIGHT 0.0001

DENSE MODEL

STEPS 439087 (i.e., ∼ 14B EXAMPLES SEEN)

PEAK LEARNING RATE (LR) 5e−4

WEIGHT DECAY 0.2

CLIP-UP

STEPS 351269 (i.e., ∼ 11B EXAMPLES SEEN)

PEAK LEARNING RATE (LR) 5e−5

WEIGHT DECAY 0.05

EXPERT COUNT 8 (FOR TEXT AND IMAGE SEPARATELY)

SPARSE MODEL

STEPS 790356 (i.e., ∼ 25B EXAMPLES SEEN)

PEAK LEARNING RATE (LR) 5e−4

WEIGHT DECAY 0.2

EXPERT COUNT 8
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B Ablation study411

B.1 MoE added to single or multiple modalities412

In the CLIP-UP model, the MoE setup is applied to both the text encoder and image encoder. We also413

explore the effect of adding MoE layers to only one modality while keeping the other modality fully dense.414

The COCO retrieval and ImageNet results for these configurations are shown in Figure 5, measured across415

different training steps.416

We observe that the initial performance of newly upcycled models tends to decline compared to the417

starting dense model, regardless of where the MoE setup is applied. However, all configurations recover418

after approximately 5k training steps. Applying MoE layers to both modalities leads to a more significant419

initial drop on average. When MoE layers are applied to only one modality (either image or text), the final420

performance remains comparable. Notably, the initial performance drop is more pronounced when MoE421

layers are applied to the image modality, suggesting that the model is more sensitive to changes in image422

representations.423
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Figure 5: CLIP-UP with MoE upcycling for only the text encoder, image encoder, or both. We observe upcycling
both the image and text encoders into MoE generally helps, especially for retrieval tasks.

B.2 Expert capacity factor424

Intuitively, the number of tokens processed by each expert plays a crucial role in determining model425

quality. In CLIP-UP, this is controlled by the expert capacity factor, denoted as C. A higher C results in426

less token dropping, thereby reducing the initial quality drop. However, this doesn’t necessarily guarantee427

a higher final model quality. By default, we set the capacity factor to 2.0 for both modalities. As shown in428

Figure 6, increasing Cimage to 4.0 significantly boosts the ImageNet zero-shot metrics. However, this429

adjustment results in a noticeable drop in performance on COCO and Flickr30k retrieval tasks.
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Figure 6: Effects of different expert capacity C.

430
Figure 7 visualizes the behavior of dropped image tokens under different capacity settings of COCO and431

Imagenet. The red squares represent the dropped image tokens. With a higher Cimage, fewer image tokens432

are discarded. This benefits ImageNet performance since the dataset primarily consists of single-object433

images. Retaining more tokens allows the model to focus on the key features. In contrast, COCO images434

often depict complex scenes with multiple objects, but not all of which are relevant to the paired captions.435

Dropping less important image tokens helps the model concentrate on the most important objects, which436

explains the drop in COCO performance when fewer tokens are discarded. We leave the further study of437

capacity factor for different tasks to a future work.438
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Figure 7: Visualization of image tokens dropped by the router (i.e., not being assigned to any expert due to capacity
constraint) on COCO (Top) and ImageNet (Bottom).

B.3 Normalize gating weights before or after routing. 439

To mitigate the initial quality drop observed when applying sparse upcycling, we experimented with 440

normalizing the router output logits after routing. This ensures the remaining gating weights are normalized 441

to sum to 1, even when some tokens are dropped due to expert capacity constraints. The intuition behind 442

this approach is that in the dense model, each token was previously processed by a single expert MLP. 443
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Figure 8: Model performance for gating normalization applied before or after routing

As shown in Figure 8, normalizing gating weights post-routing helps reduce the initial quality drop. 444

However, in terms of final model performance, this approach shows improved results in image-to-text 445

retrieval, but performs worse in text-to-image retrieval. 446

A possible explanation for this discrepancy is that post-routing normalization maintains the magnitude 447

of all remaining tokens, which benefits the image encoder, as most image tokens are informative. In 448

contrast, text encoder often deals with padding tokens, and reducing the magnitude of these tokens can 449

enhance the text encoder’s ability to focus on meaningful content. It also aligns with the finding that the 450

initial quality drop is the biggest when adding MoE layers into image modality only. 451
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C Tabular results452

C.1 Comparison of model architectures and impact of LIMOE auxiliary loss453

All results for different model architectures, with and without LIMOE auxiliary loss, as discussed in454

Section 3.1.455

Table 4: All results from Table 1 and Figure 3 as discussed in Section 3.1

MODEL
IMAGENET COCO FLICKR30K

ACC@1 T2I R@1 I2T R@1 T2I R@1 I2T R@1

SHARED 69.7 46.7 65.6 71.4 86.3

+LIMOE AUX. LOSS 73.1 49.7 69.7 75.6 87.9
∆ +3.4 +3.0 +4.1 +4.2 +1.6

SHARED-UPCYCLE 75.2 51.6 72.7 78.0 92.0

+LIMOE AUX. LOSS 73.9 50.9 70.1 73.8 85.5
∆ -1.3 -0.7 -2.6 -4.2 -6.5

SEPARATED 74.5 53.1 70.6 78.3 88.2

+LIMOE AUX. LOSS 72.6 46.4 62.6 73.4 85.2
∆ -2.0 -6.7 -8.0 -4.9 -3.0

SEPARATED-UPCYCLE 76.9 52.1 71.5 80.9 92.3

+LIMOE AUX. LOSS 75.9 52.9 73.5 81.3 92.5
∆ -1.0 +0.8 +2.0 +0.4 +0.2

C.2 Performance on ImageNet variants456

To complement the performance comparison in Table 2, we additionally evaluated our models on several457

ImageNet variants, including ImageNet-V2 (Recht et al., 2019), ImageNet-A (Hendrycks et al., 2021b),458

and ImageNet-R (Hendrycks et al., 2021a). As shown in Table 5, the performance trends on these datasets459

are consistent with those observed on the original ImageNet benchmark.

Table 5: Performance on ImageNet Variants of CLIP-UP, dense models across model sizes.

MODEL STEPS
IMAGENET-V2 IMAGENET-A IMAGENET-R

CLASSIFICATION CLASSIFICATION CLASSIFICATION
(K) ACC@1 ACC@5 ACC@1 ACC@5 ACC@1 ACC@5

B/32

CLIP (OURS) 440 64.0 88.0 32.1 65.4 80.0 92.7

CLIP (OURS) 790 64.0 87.7 32.6 64.8 80.3 92.7

CLIP-UP 790 65.1 88.5 34.2 66.8 79.9 92.8

B/16

CLIP (OURS) 440 68.2 90.7 47.7 78.5 84.6 95.3

CLIP (OURS) 790 69.3 91.2 50.5 80.2 85.9 95.8

CLIP-UP 790 69.6 91.1 49.2 78.6 85.9 95.6

L/14

CLIP (OURS) 440 74.3 93.5 67.1 89.0 90.6 97.7

CLIP (OURS) 790 74.7 93.6 68.2 88.9 91.2 97.8

CLIP-UP 790 73.8 93.6 66.1 88.1 89.7 97.3

460
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C.3 Comparison of MoE added to single modality or both modalities 461

All results from Figure 5 to compare MoE added into different modalities. 462

Table 6: All results from Figure 5. MoE-text: MoE layers are added into text modality only. MoE-image: MoE
layers are added into image modality only. MoE-both: MoE layers are added into both text and image modalities.

MODEL STEPS
IMAGENET COCO FLICKR30K

ACC@1 T2I R@1 I2T R@1 T2I R@1 I2T R@1

MOE-TEXT

0 70.2 42.7 52.5 72.1 79.4

5 72.3 42.2 63.2 70.0 86.9

100 73.3 42.9 63.1 70.4 88.0

200 75.4 42.8 64.1 72.7 88.6

350 77.2 45.5 66.0 74.2 89.6

MOE-IMAGE

0 62.6 29.1 50.9 56.1 73.7

5 72.4 41.4 62.5 70.0 84.8

100 73.8 42.2 63.6 71.7 88.2

200 75.6 43.8 65.0 72.2 88.4

350 77.6 45.5 66.3 74.5 89.4

MOE-BOTH

0 57.2 33.0 45.3 62.7 73.4

5 71.4 44.9 67.9 71.6 87.8

100 72.8 49.7 71.4 74.9 89.1

200 75.1 49.0 68.5 73.1 85.1

350 76.9 52.1 71.5 80.9 92.3

C.4 Comparison of capacity factor 463

As discussed in Section B.2, expert capacity factor C plays a crucial role in balancing classification 464

performance on ImageNet and its variants with retrieval performance on Flickr and COCO. As shown in 465

Table 7, increasing C from 2.0 to 4.0 consistently improves accuracy on ImageNet and its variants, but at 466

the expense of COCO performance—highlighting an inherent trade-off. 467

Table 7: All results from Figure 6

MODEL
IMAGENET IMAGENET-V2 IMAGENET-A IMAGENET-R COCO FLICKR30K

ACC@1 ACC@1 ACC@1 ACC@1 T2I R@1 I2T R@1 T2I R@1 I2T R@1

Cimage = 2, Ctext = 2 76.9 69.4 49.8 83.9 52.1 71.5 80.9 92.3

Cimage = 4, Ctext = 2 78.4 71.0 53.7 86.9 46.3 66.9 75.5 90.2
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D Router Analysis468

D.1 Routing distribution469

The routing is balanced across all transformer layers. The average token ratios assigned to each expert for470

both text and image modalities on ImageNet and COCO are shown in Figure 9 and Figure 10, respectively.471

Token assignment appears more balanced for images than for text, likely due to the higher number472

of tokens in images, many of which carry similar or redundant information. This redundancy facilitates473

a more uniform distribution of tokens across experts. In contrast, text is typically more discrete and474

information-dense, leading to a stronger preference for certain experts that specialize in specific linguistic475

patterns.476
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Figure 9: Visualization of the token assignment ratios to each expert in each layer by the router on ImageNet —
image tokens (top) and text tokens (bottom).

12



E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 1

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 2

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 3

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 4

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 5

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 6

Image modality token assignment ratio

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 1

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 2

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 3

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 4

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 5

E1 E2 E3 E4 E5 E6 E7 E8
Experts

5

10

15

20

25

To
ke

n 
Ra

tio
 (%

)

Layer 6

Text modality token assignment ratio

Figure 10: Visualization of the token assignment ratios to each expert in each layer by the router on COCO —
image tokens (top) and text tokens (bottom).

D.2 Expert preference pattern 477

We observe distinct preference patterns among experts. As illustrated in Figure 11, one expert predomi- 478

nantly processes tokens related to "eyes," consistently attending to the eye regions of various animals and 479

humans. Another expert demonstrates specialization in "symbols," handling text tokens from a wide range 480

of contexts, including posters, machine interfaces, book titles, store signage, and instructional materials. 481
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common redshank common redshank husky tusker French Bulldog

proboscis monkey pufferfish Treeing Walker Coonhound European polecat lion

Preference pattern: eyes

pelican iPod sunglasses analog clock school bus

movie theater beer bottle parking meter barbershop barbell

Preference pattern: symbols

Figure 11: Visualization of expert preference pattern examples. Red bounding boxes highlight the image tokens
assigned to the expert.
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