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Abstract

Mixture-of-Experts (MoE) models are crucial
for scaling model capacity while controlling
inference costs. While integrating MoE into
multimodal models like CLIP improves per-
formance, training these models is notoriously
challenging and expensive. We propose CLIP-
Upcycling (CLIP-UP), an efficient alternative
training strategy that converts a pre-trained
dense CLIP model into a sparse MoE architec-
ture. Through extensive experimentation with
various settings and auxiliary losses, we demon-
strate that CLIP-UP significantly reduces train-
ing complexity and cost. Remarkably, our
sparse CLIP B/16 model, trained with CLIP-
UP, outperforms its dense counterpart by 7.2%
and 6.6% on COCO and Flickr30k text-to-
image Recall@1 benchmarks respectively. It
even surpasses the larger CLIP L/14 model on
this task while using only 30% of the inference
FLOPs. We further demonstrate the general-
izability of our training recipe across different
scales, establishing sparse upcycling as a practi-
cal and scalable approach for building efficient,
high-performance CLIP models.

1 Introduction

CLIP (Radford et al., 2021; Jia et al., 2021) has
become foundational across domains such as im-
age classification, multimodal retrieval, and Al-
driven multimodality content generation (Zhou
et al., 2022; Rao et al., 2022; Gan et al., 2022;
Ramesh et al., 2021; Liu et al., 2023). As applica-
tions grow, scaling CLIP becomes essential. Most
efforts focus on enlarging dense models (Cherti
et al., 2023), which improves performance but in-
curs high computational and inference costs.

An efficient alternative is sparse modeling with
Mixture-of-Experts (MoE) (Mustafa et al., 2022;
Shazeer et al., 2017). However, training MoE-
based CLIP models like LIMOE (Mustafa et al.,
2022) from scratch remains expensive and often
requires auxiliary losses for stability. For instance,
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Figure 1: Our proposed MoE CLIP pre-training
recipe. We highlight key factors for efficient training,
including backbone sharing, training from scratch vs.
sparse upcycling, and auxiliary losses. A detailed analy-
sis is provided in Section 3.1 and Section 3.2.

LIMOE outperforms dense CLIP but demands
1.35% more training FLOPs (Mustafa et al., 2022).
To address this, we explore sparse upcycling (Ko-
matsuzaki et al., 2023), which initializes MoE lay-
ers from a pre-trained dense model. As shown
in Figure 1, our extensive experiments demon-
strate that sparse upcycling with a separated back-
bone achieves the best performance while reduc-
ing training ZFLOPs from 4.2 to 3.7 compared
to training from scratch. Although LIMOE’s en-
tropy losses (Mustafa et al., 2022) improve shared-
backbone models trained from scratch, they still un-
derperform other setups. Section 3.1 details these
strategies and the effects of auxiliary losses.

In contrast, we propose CLIP-UP, a single-stage
sparse upcycling method for CLIP. By leveraging
pre-trained weights, CLIP-UP provides a warm
start that boosts efficiency and surpasses both dense
continued training and sparse-from-scratch meth-
ods across model scales.'

Our main contributions are:

1. We introduce CLIP-UP, a simple and effec-
tive training recipe for MoE CLIP models

'Concurrent work CLIP-MoE (Zhang et al., 2024) also
explores MoE upcycling, using cluster-and-contrast learning
to initialize experts. However, it requires additional training
stages per expert, making it difficult to scale.
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Figure 2: CLIP-UP overview with sparse upcycling
initialization. Selected MLP layers are replaced with
MOoE layers, initialized from the dense checkpoint, while
routers are randomly initialized.

via sparse upcycling, avoiding complex auxil-
iary losses and outperforming existing methods
across shared and separated backbones.

2. CLIP-UP significantly improves performance
on text-image retrieval, surpassing dense CLIP
by 7.2% and 5.5% (recall@1) on COCO and
Flickr30K, respectively, with a B/16 backbone.

3. We demonstrate CLIP-UP’s scalability from
B/32 to L/14 and provide insights into key fac-
tors and challenges to inform future design.

2 CLIP-UP

Figure 2 illustrates the CLIP-UP architecture and
training strategy. We detail both in this section.

2.1 CLIP

Given n pairs of image and text captions
{(I;, T;)}j—;, CLIP (Radford et al., 2021) learns
image and text embeddings f(I;) and g(T;) using
a contrastive loss. With batch size B and tempera-
ture 0, the loss is
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2.2 CLIP with Mixture-of-Experts upcycling

Each MoE layer consists of E MLP experts and
a router that activates the top- K experts per input
token based on predicted gating logits. Let X; €
RP be the input for the j-th token, G, ; € R” the

gating logits, and W, € RP the router weights for
expert e. The output MoE(X ) is computed as:

MOE(X;) =X; + Y G MLP.(X;)
ecTop-K

| Softmax(W!Xj), ife e Top-K,
“7 o, otherwise,
2
Each expert is assigned a fixed buffer capac-
ity (Fedus et al., 2022), allowing it to process a
limited number of tokens at a time. With capac-
ity factor C, batch tokens By, the capacity per ex-
pert is B, = (B;/E) x C. This ensures compu-
tational efficiency and effective resource manage-
ment. Tokens are assigned to experts on a "first-
come-first-serve" basis (Fedus et al., 2022). This
simple mechanism avoids prioritization overhead
while efficiently distributing tokens across experts.
Auxiliary loss. Simplified token assignment re-
duces overhead but risks imbalanced token distri-
bution, leading to token dropping and performance
degradation (Zeng et al., 2024). To mitigate this,
we adopt an auxiliary loss (Zoph et al., 2022) com-
bining load balance loss and router z-loss with
scaling factors « and 3. The load balance loss pro-
motes uniform token allocation across experts. For
a sequence of length S, it is defined as:
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where R, = £ Zle 1(Token j — Expert e)
and P, = % Zle G, j , denoting the token as-
signment ratio and average router probability for
expert e respectively.

The router z-loss stabilizes gating by regulariz-
ing router logits to keep outputs within a reasonable
range. It is defined as:
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LIMOE auxiliary loss. We experimented with
LIMOE’s local and global entropy losses (Mustafa
et al., 2022), tuning hyperparameters accordingly.
While LIMOE auxiliary loss improves shared back-
bone trained from scratch, it underperforms in other
settings. Therefore, we use load balance and router-
z losses as our auxiliary loss.



Table 1: Ablation study comparing shared vs. sepa-
rated backbones and training from scratch vs. sparse
upcycling, evaluated on ImageNet (Accuracy@1 %)
and COCO/Flickr30K text-to-image (T2I)/image-to-text
(I2T) retrieval (Recall@1 %)

IMAGENET COCO FLICKR30K

BACKBONE UPCYCLE? T2I 12T T2I 12T

Acc@] R@1R@1R@1 R@1
SHARED N 69.7 46.7 65.6 71.4 86.3
SHARED Y 75.2 51.6 72.7 78.0 92.0
SEPARATED N 74.5 53.1 70.6 78.3 88.2
SEPARATED Y 76.9 52.1 71.5 80.9 92.3

2.3 Sparse Upcycling Training

Sparse upcycling begins with a pre-trained dense
CLIP, replacing selected MLP layers with MoE lay-
ers—experts initialized from the dense weights and
routers randomly initialized. All other layers re-
main unchanged. The model is then fine-tuned with
slightly reduced learning rate and weight decay for
improved stability, as shown in Figure 2.

3 Experiments

Datasets. We trained both the initial dense CLIP
checkpoint, CLIP-UP, and the baseline model
on the same paired image-text datasets—WIT-
300M (Wu et al., 2024) and DFN-5B (Fang
et al., 2023). Evaluation was performed on Im-
ageNet (Deng et al., 2009; Shankar et al., 2020) for
classification and on COCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2017) for image-text
retrieval, with additional benchmarks provided in
the Appendix C.2. The input image resolution is
224 for all of the datasets.

Setup. We train a dense CLIP model for 440k
steps, then upcycle it into an MoE version with
350k additional steps. Both use AdamW with a
32k batch size; the dense model uses a learning
rate of 5 x 10~* and weight decay of 0.2, reduced
to 5 x 1075 and 0.05 for upcycling. In the MoE
model, half of the Transformer’s MLP layers follow
an alternating [dense, sparse] pattern (Zoph et al.,
2022; Du et al., 2022), each sparse layer using 8
experts with top-2 routing. Router loss coefficients

= 0.01 and 8 = 0.001 balance expert usage
without dominating training (Zoph et al., 2022;
Xue et al., 2024). For fair comparison, we also
train a dense CLIP for 790k steps using the same
settings.
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Figure 3: Impact of LIMOE auxiliary loss under dif-
ferent training setups. Adding LIMOE loss sometimes
causes instability, especially with unshared backbones,
while our upcycling recipe remains more robust.

3.1 Recipe Study

We compare shared vs. separated backbones and
training from scratch vs. sparse upcycling using
the CLIP-B/16 model, with the shared setup us-
ing 16 experts to match the separated configura-
tion (8 per modality). As shown in Table 1, the
separated backbone with sparse upcycling delivers
the best overall performance due to dedicated pa-
rameters per modality, while the shared backbone
sees greater relative gains from sparse upcycling.
Overall, sparse upcycling consistently outperforms
training from scratch, demonstrating CLIP-UP’s
versatility and efficiency across configurations.

3.2 Impact of LIMOE aucxiliary loss.

We examine the LIMOE auxiliary loss by set-
ting 7 = 6 in the global entropy loss (Mustafa
et al., 2022), encouraging use of at least six experts
per modality, and tuning the loss weight for our
setup. As shown in Figure 3, it improves ImageNet
and COCO performance with a shared backbone
trained from scratch, consistent with prior work
(Mustafa et al., 2022), but still underperforms com-
pared to other configurations without it. Apply-
ing the loss to our best setup (Separated-Upcycle)
slightly boosts text-image retrieval but falls short
on ImageNet zero-shot classification.

These auxiliary losses also increase training com-
plexity due to more hyperparameters. As LIMOE
loss didn’t work reliably across all setups, we use
load balance and router-z losses to simplify tuning
under resource constraints.



Table 2: Performance comparison of CLIP-UP, dense models, and LIMOE across model sizes. CLIP-UP is upcycled
from a 440k-step CLIP checkpoint with 350k additional steps; a 790k-step dense CLIP is trained for fair comparison.

IMAGENET COCO RETRIEVAL FLICKR30K RETRIEVAL
MODEL STEPS | INFERENCE | CLASSIFICATION T2I T21 12T 12T T2I T2I 2T 12T
(k) | GFLOPS |Acc@l Acc@5|R@1 R@5 R@1 R@5|R@1 R@5 R@I R@S5
B/32
OPENAI-CLIP | - 14.8 63.2  88.8 |30.8 559 516 757 | - - - -
LIMOE . | - ] 223 | 675 - |30 - 45T - - oo
CLIP (OURS) | 440 14.8 72.4 928 |41.7 682 623 843 [68.0 90.0 86.5 97.7
CLIP (OURS) | 790 14.8 724 928 |41.9 67.8 624 84.1|67.8 887 856 96.4
CLIP-UP 790 19.6 732 933 |47.3 740 66.6 86.7 | 72.9 919 859 96.9
B/16
OPENAI-CLIP | - 41.2 68.4  91.9 |33.1 584 538 77.9| - - - -
LIMOE - | - ] 87 |73T - 4362 - SW3 - 1 - - oo
CLIP (OURS) | 440 41.2 76.0 947 |444 703 657 87.0|73.6 92.1 88.0 97.8
CLIP (OURS) | 790 41.2 76.8 951 | 449 70.8 66.0 86.6 | 743 92.7 88.9 98.0
CLIP-UP 790 54.3 76.9 951 |521 77.6 715 89.2 | 80.9 95.6 92.3 99.2
L4
JOPENALCLIP | - [ 1755 | 753 __945_ |361 608 577 7911 - __ - __~__:_.
CLIP (OURS) | 440 175.5 81.1 964 |49.6 74.4 709 89.6|78.4 947 919 99.2
CLIP (OURS) | 790 175.5 81.6  96.6 |50.2 752 71.4 89.9 793 949 91.7 99.0
CLIP-UP 790 231.7 81.2  96.6 |53.9 79.4 73.8 920|820 961 92.4 99.1
3.3 Final Model Evaluation and Baselines £, | & P
& i
Based on previous results, we adopt the separated ﬂ_@é) * ' ‘/’ % ZZ / {
backbone with sparse upcycling as the default setup g o yd g g 5514 /,«”‘
and evaluate CLIP-UP across model sizes from §zz T éiz T
B/32 to L/14. Table 2 compares zero-shot classi- _ 1$‘r’§inirfg°§FLo3§g° I%’mirfg"gmfg?
fication and retrieval performance against dense 9:375 e
CLIP models trained for the same number of steps. @ « e dense
While extending dense CLIP training from 440k f o *,/ —a— sparse upcycling
to 790k steps yields minor gains, CLIP-UP shows % o0 /«/'*/ T scratch
consistent, significant improvements across scales, g el

especially in retrieval. Notably, CLIP-UP B/32
uses only 47% of the inference GFLOPS yet out-
performs dense CLIP B/16 in COCO T2l recall@1
by 2.4%, while CLIP-UP B/16 uses just 31% of
the GFLOPS and surpasses dense CLIP L/14 by
1.9%. These results demonstrate the efficiency and
effectiveness of sparse upcycling for scaling CLIP
models.

3.4 Training Efficiency

To highlight the effectiveness of upcycle training,
Figure 4 compares dense pretraining + upcycling
with training from scratch. The pretrained dense
model provides a strong starting point, while train-
ing from scratch requires significantly more com-
pute to match CLIP-UP’s performance—especially
on COCO image-to-text and ImageNet. Although
sparse upcycling initially causes a performance

1000 2000 3000
Training EFLOPS

Figure 4: Performance vs. training EFLOPS for CLIP-
UP and sparse-from-scratch model on CLIP B/16.

drop on ImageNet due to reconfiguration, CLIP-
UP consistently outperforms the scratch baseline,
demonstrating better efficiency and overall perfor-
mance.

4 Conclusions

We present CLIP-UP, an efficient CLIP training
strategy that combines MoE with sparse upcycling.
Extensive experiments show it reduces training
costs and inference FLOPs while improving perfor-
mance across scales, even outperforming larger
dense models. Ablation studies shown in Ap-
pendix B further validate key design choices, high-
lighting CLIP-UP’s practicality and scalability.



5 Limitation

While our proposed method demonstrates strong
performance improvements in retrieval tasks such
as COCO and Flickr30K, it reveals a trade-off with
classification performance on ImageNet and its
variants. Specifically, we have not yet identified a
training configuration that yields significant gains
across both retrieval and classification simultane-
ously. Our current best setup prioritizes retrieval
effectiveness, achieving notable improvements on
COCO and Flickr30K, but leads to only marginal
gains on ImageNet.

We discuss this trade-off in more detail in Ap-
pendix B.3, highlighting the role of the expert ca-
pacity factor in shaping task-specific performance.
In particular, we provide examples showing how
ImageNet and COCO respond differently to token
dropping under varying expert capacities, which
we believe contributes to the observed trade-off.
While these insights offer a preliminary understand-
ing, we are still exploring more effective strategies
to better balance retrieval and classification perfor-
mance.
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A Training Details

Below, we provide detailed training hyper-parameters and setups for dense CLIP (weights are used for
sparse upcycling), sparse CLIP trained from scratch, and CLIP-UP.

A.1 Training hyper-parameters

We primarily follow (Radford et al., 2021) for hyper-parameter selection, using the WIT-3000M (Wu
et al., 2024) and DFN-5B (Fang et al., 2023) training datasets. Table 3 summarizes the hyper-parameters
for all experiments, including MoE-specific configurations and parameters for dense CLIP, sparse CLIP,
and CLIP-UP.

Table 3: Training hyper-parameters and settings for dense CLIP used for sparse upcycling and CLIP-UP

GENERAL
BATCH SIZE 32768
IMAGE SIZE 224 x 224
TEXT TOKENIZER TS5 (RAFFEL ET AL., 2023), LOWERCASE
TEXT MAXIMUM LENGTH 77 TOKENS
OPTIMIZER ADAMW (81 = 0.9, B2 = 0.98)
LR SCHEDULE COSINE DECAYS WITH LINEAR WARM-UP (FIRST 2K STEPS)
DROPOUT RATE 0.0

MOE

INNER STRUCTURE PRE-LAYER NORMALIZATION (XIONG ET AL., 2020)
ROUTER TYPE ToOP-2 ROUTING
EXPERT CAPACITY FACTOR (C) 2.0 (BOTH TEXT AND IMAGE)
MOE POSITION [DENSE, SPARSE] (HALF OF MLP LAYERS REPLACED BY MOE LAYERS)
LOAD BALANCE LOSS WEIGHT 0.01
ROUTER-Z LOSS WEIGHT 0.0001

DENSE MODEL

STEPS 439087 (i.e., ~ 14B EXAMPLES SEEN)
PEAK LEARNING RATE (LR) 5e =%
WEIGHT DECAY 0.2
CLIP-UP
STEPS 351269 (i.e., ~ 11B EXAMPLES SEEN)
PEAK LEARNING RATE (LR) 5e~°
WEIGHT DECAY 0.05
EXPERT COUNT 8 (FOR TEXT AND IMAGE SEPARATELY)

SPARSE MODEL

STEPS 790356 (i.e., ~ 25B EXAMPLES SEEN)
PEAK LEARNING RATE (LR) 54

WEIGHT DECAY 0.2

EXPERT COUNT 8




B Ablation study

B.1 MokE added to single or multiple modalities

In the CLIP-UP model, the MoE setup is applied to both the text encoder and image encoder. We also
explore the effect of adding MoE layers to only one modality while keeping the other modality fully dense.
The COCO retrieval and ImageNet results for these configurations are shown in Figure 5, measured across
different training steps.

We observe that the initial performance of newly upcycled models tends to decline compared to the
starting dense model, regardless of where the MoE setup is applied. However, all configurations recover
after approximately Sk training steps. Applying MoE layers to both modalities leads to a more significant
initial drop on average. When MoE layers are applied to only one modality (either image or text), the final
performance remains comparable. Notably, the initial performance drop is more pronounced when MoE

layers are applied to the image modality, suggesting that the model is more sensitive to changes in image
representations.
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Figure 5: CLIP-UP with MoE upcycling for only the text encoder, image encoder, or both. We observe upcycling
both the image and text encoders into MoE generally helps, especially for retrieval tasks.

B.2 Expert capacity factor

Intuitively, the number of tokens processed by each expert plays a crucial role in determining model
quality. In CLIP-UP, this is controlled by the expert capacity factor, denoted as C'. A higher C results in
less token dropping, thereby reducing the initial quality drop. However, this doesn’t necessarily guarantee
a higher final model quality. By default, we set the capacity factor to 2.0 for both modalities. As shown in
Figure 6, increasing Cjpqqe to 4.0 significantly boosts the ImageNet zero-shot metrics. However, this
adjustment results in a noticeable drop in performance on COCO and Flickr30k retrieval tasks.
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Figure 6: Effects of different expert capacity C.

Figure 7 visualizes the behavior of dropped image tokens under different capacity settings of COCO and
Imagenet. The red squares represent the dropped image tokens. With a higher Cj;q4¢, fewer image tokens
are discarded. This benefits ImageNet performance since the dataset primarily consists of single-object
images. Retaining more tokens allows the model to focus on the key features. In contrast, COCO images
often depict complex scenes with multiple objects, but not all of which are relevant to the paired captions.
Dropping less important image tokens helps the model concentrate on the most important objects, which
explains the drop in COCO performance when fewer tokens are discarded. We leave the further study of
capacity factor for different tasks to a future work.



Query: Two people in the background doing
make-up with shoes and flowers in the foreground.
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Figure 7: Visualization of image tokens dropped by the router (i.e., not being assigned to any expert due to capacity
constraint) on COCO (Top) and ImageNet (Bottom).

B.3 Normalize gating weights before or after routing.

To mitigate the initial quality drop observed when applying sparse upcycling, we experimented with
normalizing the router output logits after routing. This ensures the remaining gating weights are normalized
to sum to 1, even when some tokens are dropped due to expert capacity constraints. The intuition behind
this approach is that in the dense model, each token was previously processed by a single expert MLP.
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Figure 8: Model performance for gating normalization applied before or after routing

As shown in Figure 8, normalizing gating weights post-routing helps reduce the initial quality drop.
However, in terms of final model performance, this approach shows improved results in image-to-text
retrieval, but performs worse in text-to-image retrieval.

A possible explanation for this discrepancy is that post-routing normalization maintains the magnitude
of all remaining tokens, which benefits the image encoder, as most image tokens are informative. In
contrast, text encoder often deals with padding tokens, and reducing the magnitude of these tokens can
enhance the text encoder’s ability to focus on meaningful content. It also aligns with the finding that the
initial quality drop is the biggest when adding MoE layers into image modality only.



C Tabular results

C.1 Comparison of model architectures and impact of LIMOE auxiliary loss

All results for different model architectures, with and without LIMOE auxiliary loss, as discussed in
Section 3.1.

Table 4: All results from Table 1 and Figure 3 as discussed in Section 3.1

MODEL IMAGENET COCO FLICKR30K
Acc@1 T2IR@1 I2TR@1 T2IR@1 I2TR@1
SHARED 69.7 46.7 65.6 71.4 86.3
+LIMOE Aux. Loss 73.1 49.7 69.7 75.6 87.9
A +3.4 +3.0 +4.1 +4.2 +1.6
SHARED-UPCYCLE 75.2 51.6 72.7 78.0 92.0
+LIMOE Aux. Loss 73.9 50.9 70.1 73.8 85.5
A -1.3 -0.7 -2.6 -4.2 -6.5
SEPARATED 74.5 53.1 70.6 78.3 88.2
+LIMOE AuUX. Loss 72.6 46.4 62.6 73.4 85.2
A -2.0 -6.7 -8.0 -4.9 -3.0
SEPARATED-UPCYCLE 76.9 52.1 71.5 80.9 92.3
+LIMOE Aux. Loss 75.9 52.9 73.5 81.3 92.5
A -1.0 +0.8 +2.0 +0.4 +0.2

C.2 Performance on ImageNet variants

To complement the performance comparison in Table 2, we additionally evaluated our models on several
ImageNet variants, including ImageNet-V2 (Recht et al., 2019), ImageNet-A (Hendrycks et al., 2021b),
and ImageNet-R (Hendrycks et al., 2021a). As shown in Table 5, the performance trends on these datasets
are consistent with those observed on the original ImageNet benchmark.

Table 5: Performance on ImageNet Variants of CLIP-UP, dense models across model sizes.

IMAGENET-V2 IMAGENET-A IMAGENET-R
MODEL STEPS CLASSIFICATION CLASSIFICATION CLASSIFICATION
(K) Acc@1 Acc@5 | Acc@l Acc@5 | Acc@l  Acc@s
B/32
CLIP (OURS) 440 64.0 88.0 32.1 65.4 80.0 92.7
CLIP (OURS) 790 64.0 87.7 32.6 64.8 80.3 92.7
CLIP-UP 790 65.1 88.5 34.2 66.8 79.9 92.8
B/16
CLIP (OURS) 440 68.2 90.7 47.7 78.5 84.6 95.3
CLIP (OURS) 790 69.3 91.2 50.5 80.2 85.9 95.8
CLIP-UP 790 69.6 91.1 49.2 78.6 85.9 95.6
L/14
CLIP (OURS) 440 74.3 93.5 67.1 89.0 90.6 97.7
CLIP (OURS) 790 74.7 93.6 68.2 88.9 91.2 97.8
CLIP-UP 790 73.8 93.6 66.1 88.1 89.7 97.3
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C.3 Comparison of MoE added to single modality or both modalities

All results from Figure 5 to compare MoE added into different modalities.

Table 6: All results from Figure 5. MoE-text: MoE layers are added into text modality only. MoE-image: MoE
layers are added into image modality only. MoE-both: MoE layers are added into both text and image modalities.

IMAGENET COCO FLICKR30K
MODEL STEPS Acc@l1 T2IR@1 I2TR@1 T2IR@1 I2TR@1
0 70.2 42.7 52.5 72.1 79.4
MOE-TEXT 5 72.3 42.2 63.2 70.0 86.9
100 73.3 42.9 63.1 70.4 88.0
200 75.4 42.8 64.1 72.7 88.6
350 77.2 45.5 66.0 74.2 89.6
0 62.6 29.1 50.9 56.1 73.7
MOE-IMAGE 5 72.4 41.4 62.5 70.0 84.8
100 73.8 42.2 63.6 71.7 88.2
200 75.6 43.8 65.0 72.2 88.4
350 77.6 45.5 66.3 74.5 89.4
0 57.2 33.0 45.3 62.7 73.4
MOE-BOTH 5 71.4 44.9 67.9 71.6 87.8
100 72.8 49.7 71.4 74.9 89.1
200 75.1 49.0 68.5 73.1 85.1
350 76.9 52.1 71.5 80.9 92.3

C.4 Comparison of capacity factor

As discussed in Section B.2, expert capacity factor C' plays a crucial role in balancing classification
performance on ImageNet and its variants with retrieval performance on Flickr and COCO. As shown in
Table 7, increasing C from 2.0 to 4.0 consistently improves accuracy on ImageNet and its variants, but at
the expense of COCO performance—highlighting an inherent trade-off.

Table 7: All results from Figure 6

IMAGENET IMAGENET-V2 IMAGENET-A IMAGENET-R COCO FLICKR30K
MODEL Acc@1 Acc@1 Acc@1 Acc@]l T2IR@RIIRTR@1T2IR@1I2TR@1
Cimage = 2,Cltear =2 76.9 69.4 49.8 83.9 52.1 71.5 80.9 92.3
Cimage = 4,Ctear =2 78.4 71.0 53.7 86.9 46.3 66.9 75.5 90.2
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D Router Analysis
D.1 Routing distribution

The routing is balanced across all transformer layers. The average token ratios assigned to each expert for
both text and image modalities on ImageNet and COCO are shown in Figure 9 and Figure 10, respectively.

Token assignment appears more balanced for images than for text, likely due to the higher number
of tokens in images, many of which carry similar or redundant information. This redundancy facilitates
a more uniform distribution of tokens across experts. In contrast, text is typically more discrete and

information-dense, leading to a stronger preference for certain experts that specialize in specific linguistic
patterns.

Image modality token assignment ratio
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Figure 9: Visualization of the token assignment ratios to each expert in each layer by the router on ImageNet —
image tokens (top) and text tokens (bottom).
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Image modality token assignment ratio
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Figure 10: Visualization of the token assignment ratios to each expert in each layer by the router on COCO —
image tokens (top) and text tokens (bottom).

D.2 Expert preference pattern

We observe distinct preference patterns among experts. As illustrated in Figure 11, one expert predomi-
nantly processes tokens related to "eyes," consistently attending to the eye regions of various animals and
humans. Another expert demonstrates specialization in "symbols," handling text tokens from a wide range
of contexts, including posters, machine interfaces, book titles, store signage, and instructional materials.
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Preference pattern: eyes

French Bulldog

common redshank

common redshank

Preference pattern: symbols

sunglasses
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Figure 11: Visualization of expert preference pattern examples. Red bounding boxes highlight the image tokens
assigned to the expert.
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