Dataset Pruning Using Early Exit Networks

Alperen Gormez

Abstract

We present EEPrune, a novel dataset pruning al-
gorithm that leverages early exit networks during
training. EEPrune utilizes the innate ability of
early exit networks to assess the difficulty of in-
dividual samples and applies different criteria to
decide whether to prune them. Specifically, for
a training sample to be discarded, the confidence
level of the model at the early exit should be above
a certain threshold, along with a correct classifi-
cation at both the early exit and final layers. We
describe several other variants of our EEPrune
algorithm. Extensive experiments on CIFAR-10,
CIFAR-100 and Tiny Imagenet datasets demon-
strate that EEPrune and its variations consistently
outperform other dataset pruning methods.

1. Introduction

Sutton’s “bitter lesson” states (Sutton, 2019; Sevilla et al.,
2022) that “general methods that leverage computation are
ultimately the most effective, and by a large margin.” Larger
models trained on larger datasets with more compute still
seem to be an important research direction due to major
outcomes and great performances (Brown et al., 2020; Ope-
nAl, 2023; Thoppilan et al., 2022; Chowdhery et al., 2022;
Zhang et al., 2022; Dehghani et al., 2023; Schuhmann et al.,
2022). However, creating larger models and training on
larger datasets for longer, along with the expenses associ-
ated with retraining and hyperparameter tuning only add to
the already high training costs. These ever-increasing costs
may not sustainable in the long run and are thus a significant
problem that need to be addressed.

Dataset pruning methods have emerged as a potential solu-
tion to address the costs of training deep learning models.
By discarding redundant samples and keeping, for example,
only the difficult samples for training, the model perfor-
mance on the test set stays the same even when the model

"Department of Electrical and Computer Engineering, Uni-
versity of Illinois Chicago, USA. Correspondence to: Alperen
Gormez <agorme2@uic.edu>.

In ICML Workshop on Localized Learning (LLW), Honolulu,
Hawaii, USA. 2023. Copyright 2023 by the author(s).

1

Erdem Koyuncu !

is trained on the pruned dataset (Paul et al., 2021; Toneva
et al., 2018; Coleman et al., 2019; Nohyun et al., 2023;
Sorscher et al., 2022b). While dataset pruning methods
strive to decrease training expenses, they typically train an
ensemble of models or train a single model fully (Paul et al.,
2021; Toneva et al., 2018; Coleman et al., 2019). This is
particularly undesirable for resource-constrained devices
due to the large memory footprint of the ensemble and high
computational demands of full training.

A different class of techniques to reduce computational
complexity is conditional computation through early exit
(Panda et al., 2016; Teerapittayanon et al., 2016; Kaya et al.,
2019; Gormez et al., 2022; Huang et al., 2017; Yang et al.,
2020; Han et al., 2021), which allows one to exploit the
heterogeneous nature of real-world data (Bolukbasi et al.,
2017). Specifically, an early exit model introduces multiple
exit points or intermediate classifiers to an ordinary neural
network, called the “base” network. An input that is con-
fidently classified at an intermediate exit point may then
“exit’ early without the need for traversing the remaining
layers, thereby reducing the overall computation required
for inference. Early exit networks can also provide reduced
training costs by allowing the end user to train only the
attached exits while keeping the base model frozen, which
is particularly useful for edge devices (Scardapane et al.,
2020; BAC, 2020).

Earlier works thus demonstrate that utilizing not only the
final outputs but also the intermediate representations can
greatly reduce the overall inference or training costs of a
network. However, to the best of our knowledge, this obser-
vation has not yet been exploited for dataset pruning, which
becomes the focus of the present work. In fact, existing
work on dataset pruning uses only the features of the final
layer. We show that incorporating intermediate features in
the pruning decision process can greatly improve the train-
ing performance, measured in terms of the floating point
operations (FLOPs) to reach a certain level of accuracy.

The rest of this paper is organized as follows: In Section
2, we present the related work. In Section 3, we present
our new dataset pruning scheme that we call EEPrune. In
Section 4, we provide numerical results. Finally, in Section
5, we draw our main conclusions. Extended discussions and
more experiments are provided in the appendices.

Dataset Pruning Using Early Exit Networks

2. Related Work

Our research integrates two methods that are commonly
employed to lower the inference and training costs of deep
learning models: early exit networks and dataset pruning.

2.1. Early Exit Networks

The first idea of adding early exits to neural networks goes
back to the GoogleNet (Szegedy et al., 2015). The primary
purpose of adding the early exits was to solve the vanishing
gradient problem. To reduce the inference cost, researchers
have incorporated an exit criterion based on the entropy or
the confidence level of the output of the early exit layer
(Panda et al., 2016; Teerapittayanon et al., 2016; Kaya et al.,
2019; Gormez et al., 2022; Huang et al., 2017; Yang et al.,
2020; Han et al., 2021). Samples that meet the exit criterion
are considered easy and prediction is made at the early
exit layer, resulting in a faster computation. More complex
samples that do not meet the exit criterion are forwarded
to the next layers for further processing. Early exit layers
can be trained jointly with the base model or separately
(Scardapane et al., 2020), but approaches that do not require
any training also exist (Gérmez et al., 2022). These make
early exit networks suitable for performing training and
inference for localized learning (BAC, 2020).

2.2. Dataset Pruning

Dataset pruning methods aim to select the most represen-
tative samples from a dataset and remove the rest in order
to reduce the training cost (Feldman & Langberg, 2011;
Agarwal et al., 2005; Sorscher et al., 2022a). This process
can be accomplished through the use of scoring techniques,
which evaluate the importance or difficulty of each sample
in the dataset. Various scoring methods have been proposed
in the literature. We summarize them in the Appendix.

3. The EEPrune Scheme

‘We now introduce our EEPrune scheme. Let (:c((f), y) e
D be a training sample-label pair from the dataset D where
there are N samples and C classes, i € {1,2,..., N} and
y® is one-hot-encoded vector of length C. Let F be a
network with one early exit, as shown in Figure 1. The
network input-output relationships can be expressed as

ey

where [; are layers of the base model, k is the early exit

point, g is the linear layer at the early exit, Qeie) is the early
exit output, h is the linear layer at the final exit, and 3}532 is

the final exit output.

(i) (4)

] T M
a:(é)—) k L
Y
Early Exit Final Exit
v N
NG . (7)
e i

Figure 1. The computation graph of EEPrune.

Our ultimate goal is to reduce the training cost while keeping
the model’s performance on the test set as high as possible.
We achieve this by reducing the size of the training set.
More specifically, while training our early exit network on
the dataset for a short time, we discard training samples
from our dataset if 1) the early exit can predict the correct
class correctly, 2) and the final exit can predict the correct
class correctly, 3) and the maximum prediction probability
given by the early exit is greater than a specified threshold.
In practice, we flag samples for pruning one by one over
multiple epochs of learning. After E epochs, where E is a
user-defined parameter, the learning process is stopped and
all flagged samples can be removed from the dataset. We
can then train a new model over the pruned dataset.

As can be seen, EEPrune verifies three conditions before
flagging an input sample for pruning. The first condition
ensures that the training sample of interest is easy enough
to be correctly classified by using the features of a layer at
the middle (or even an earlier point) of the network. This
condition uses the easiness notion from the neural collapse
phenomenon (Papyan et al., 2020; Hui et al., 2022; Gormez
et al., 2022) and the early exit networks (Panda et al., 2016;
Teerapittayanon et al., 2016; Kaya et al., 2019; Gérmez
et al., 2022). The neural collapse phenomenon, and more
specifically the cascading collapse phenomenon states that
the intermediate representations of the samples at each layer
form clusters and the clusters get separated from each other
more as we move deeper in the network. The idea of early
exit networks is simply some samples are easier to predict
and they can be predicted correctly at earlier layers.

The second condition appears to be obvious because when
there is no computational budget, the final exit gives the best
prediction. However, in some cases overthinking can occur,
which means that although the early exit can give a correct
prediction, the computations after that change the output
and the final exit gives an incorrect prediction (Kaya et al.,
2019). With the second condition, we guarantee that the
samples which are prone to overthinking are not discarded
from the training set. This condition is also important be-
cause studies show that adversarial attacks can make the
network choose the final exit most of the time although the
sample is easy, which leads to redundant computation (Kaya

Dataset Pruning Using Early Exit Networks

Epoch 1 Epoch 8 Epoch 9 Epoch 10

4 v Cnv

Figure 2. EEPrune discards samples (red) that are furthest away
from the decision boundaries.

et al., 2019). Hence, this condition also serves as protection
against adversarial attacks.

The third condition effectively determines the rate of prun-
ing. Depending on the threshold, if the early exit model is
sure enough about its prediction, that sample is pruned. Our
full algorithm can be seen in the Appendix.

To better understand the effectiveness of EEPrune, we apply
it to a toy dataset and analyze which samples are pruned.
The dataset is shown in Figure 2. There are 5 classes with
1000 samples each. The data is two dimensional. We use a
simple 3 layer feed forward neural network with 10, 10, and
5 neurons at each layer respectively. To make it an early exit
network, we add a linear layer with 5 neurons after the first
layer. We use ¢ = 0.7 as our threshold and run EEPrune
for E = 10 epochs. We show the pruned samples at certain
epochs in Figure 2 with red. It can be seen that the pruned
samples are the ones which are farthest away from any
decision boundary. As the model is trained more, more data
is pruned but the pruning pattern stays the same. When the
model is trained on the remaining samples, it still performs
the same without loss in accuracy. The behavior of EEPrune
resembles that of support vector machines (SVMs): Note
that in the latter, removing the non-support vectors does not
change the decision boundaries. At least, for the example
in Fig. 2, EEPrune correctly identifies the “non-support
vector” that are irrelevant for the class decision boundaries
and successfully removes them from the training process.

3.1. Variations of EEPrune

EEPrune is simple and flexible, new data pruning schemes
can be easily be proposed. Here, we describe two natural
ideas based on accumulating the loss values of the exits and
assigning weights to the original conditions of EEPrune.

3.1.1. EEPRUNE-LOSS

According to a previous study conducted by (Lee et al.,
2015), early exits can act as a form of regularization when
the exit losses are accumulated and the exit layers are opti-
mized together. In an ideal scenario, easy samples would
have both low early exit losses and low final exit losses, but
this may not always be the case. We propose evaluating the
samples based on the sum of the exit losses, akin to how the
exit layers are trained jointly by accumulating losses. By
sorting the samples based on their aggregate losses, we can
prune those with the lowest overall loss.

3.1.2. EEPRUNE-SOFT

EEPrune is a strict pruning method in the sense that it re-
quires all three conditions to be met for a sample to be
pruned. However, it can be made more lenient by assigning
weights to the conditions. To this end, we propose assigning
weights wy, wy, w3 to the three conditions, where the sum
of the weights is one. This approach allows for a better
assessment of the conditions, with each weight indicating
the degree to which the condition should be met in order for
a sample to be pruned. For example, if the first condition is
satisfied, the sample would be assigned a score of wy, and
so on for the other conditions.

While this weighting system provides a more refined ap-
proach to scoring the samples, it may not be sufficient in
cases where there is a tie. To address this limitation, we pro-
pose the addition of a fourth score, (max y”é? + max gjj(f(,)) -
wy, which averages the maximum element of the early exit
prediction vector and the final exit prediction vector for the
sample of interest. Here, w4 should be very small to avoid
dominating the other scores. By incorporating this fourth
score, we can better differentiate between samples with sim-
ilar scores and make more informed decisions about which
samples to prune. Finally, the samples can be sorted accord-
ing to their total score and the samples with the lowest total
score can be pruned.

4. Numerical Results

In this section, we provide numerical results. In our ex-
periments, we used CIFAR-10, CIFAR-100 and Tiny Ima-
genet datasets (Krizhevsky et al., 2009; Le & Yang, 2015).
We utilized two widely-used and highly-regarded models:
MobileNetV3-large (Howard et al., 2019) and ResNet-50
(He et al., 2016). For the MobileNetV3-large model, we
added a linear layer after the ninth network layer to serve
as the early exit point. For the ResNet-50 model, we added
a linear layer after the seventh bottleneck block to serve as
the early exit point.

4.1. Training Details

We train our models for 200 epochs using stochastic gra-
dient descent with a single NVIDIA RTX A6000 GPU.
To reduce overfitting and improve generalization, we use
label smoothing with @ = 0.1 (Miiller et al., 2019) and
mixup with &pizup = 0.2 (Zhang et al., 2017). We also
employ cosine learning rate decay with a warm-up dura-
tion of 5 epochs to gradually reduce the learning rate over
the course of training. To optimize GPU memory usage
and accelerate training, we set different batch sizes for the
MobileNetV3-large and ResNet-50 models. We use 2048
for MobileNetV3-large and 1024 for ResNet-50 models. To
ensure the stability and reliability of our results, we repeat

Dataset Pruning Using Early Exit Networks

each method-model-dataset evaluation 3 times and report
the mean and standard deviation in our figures.

4.2. Experiments

We conducted six experiments for each method, model, and
dataset combination to prune 10% to 60% of the training
set. After each dataset pruning phase, the models are reini-
tialized and trained from scratch on the pruned dataset. We
repeated each experiment 3 times. Due to limited space, we
only present some of the experimental results here. Addi-
tional figures can be found in the Appendix.

For EEPrune and its variations, we used £ = 10 for CI-
FAR datasets and 2 = 15 for the Tiny Imagenet dataset.
Since EEPrune depends on satisfying three conditions si-
multaneously, it was not always possible to find enough
samples that satisfied the conditions at each of the afore-
mentioned percentages. Therefore, we ran experiments for
t € {0.4,0.5,0.6,0.7,0.8,0.9} and stopped the training
early (i.e., before 200 epochs) for some ¢ values to ensure
that all methods used an equal number of forward and back-
ward passes for a fair comparison.

For EEPrune-Loss, after training for E epochs, we calcu-
lated the sum of the early exit loss and the final exit loss
for each sample, sorted them, and pruned the lowest scor-
ing 10%, 20%, 30%, 40%, 50%, 60% of samples based on
their loss. For EEPrune-Soft, we used w; = 0.4, wy = 0.2,
w3 = 0.4, and wy = 0.001 for weighting the conditions.

We compared our 3 methods with the following baselines:
EL2N (Paul et al., 2021), forgetting (Toneva et al., 2018),
SVP (Coleman et al., 2019), complexity gap (Nohyun et al.,
2023), no pruning, and random pruning. We explain each
baseline further in the Appendix.

From Figure 3a, and it is evident that for the MobileNetV3-
large model on the CIFAR-10 dataset, EEPrune, EEPrune-
Loss, and EEPrune-Soft methods outperform the no pruning
baseline at a moderate pruning rate of 30%. Complexity
gap and random pruning achieves comparable performance,
but EL2N, SVP, and forgetting methods exhibit noticeably
worse performance than EEPrune. For low and high pruning
rates, please see the Appendix. EEPrune and its variations
continue to exhibit superior performance compared to all
other methods. At high pruning rates, it is evident that
EEPrune variations clearly outperform all other methods,
including EEPrune itself. This demonstrates that EEPrune
has an advantage in that its conditions can be easily modified
to achieve excellent performance across various pruning
rates. Figure 3b shows that EEPrune outperforms every
other method. We attribute this to the fact that by pruning
the simpler samples, the model can make the training set
distribution more closely resemble the distribution of the
test set. It is worth noting that at high pruning rates, random

pruning surpasses all non-early-exit-based pruning methods.
In the low and moderate pruning regimes, the complexity
gap method performs very similarly to EEPrune variations
but not EEPrune itself.

EEPrune
EL2N
Random
No pruning
Forgettting
—— EEPrune-Loss
SVP

—— Complexity-gap
—— EEPrune-Soft

Test accuracy

1 2 3 4 5 6 7
Number of samples trained on in total le6

(a) CIFAR-10, MobileNetV3-Large

754

EEPrune
EL2N
Random
No pruning
Forgettting
EEPrune-Loss
SVP

—— Complexity-gap
—— EEPrune-Soft

Test accuracy

|

60 -

1 2 3 4 5 6 7
Number of samples trained on in total le6

(b) CIFAR-100, ResNet-50

Figure 3. Dataset pruning performances of various algorithms.
30% of the dataset is pruned.

5. Conclusion

We presented EEPrune, a dataset pruning algorithm that
utilizes the inherent ability of early exit networks to dis-
tinguish easy samples from the difficult ones. We showed
that EEPrune achieves superior performance across various
pruning rates as compared to existing approaches. We note
that EEPrune and variants do not need a full training session
to identify the easy samples, unlike competing algorithms.
This makes them valuable for resource constrained settings.

Acknowledgements

This work was supported in part by the Army Research
Lab (ARL) under Grant W911NF-21-2-0272, and in part
by the National Science Foundation (NSF) under Grant
CNS-2148182.

Dataset Pruning Using Early Exit Networks

References

Optimized training and scalable implementation of con-
ditional deep neural networks with early exits for fog-
supported iot applications. Information Sciences, 521:
107-143, 2020. ISSN 0020-0255.

Agarwal, P. K., Har-Peled, S., Varadarajan, K. R., et al.
Geometric approximation via coresets. Combinatorial
and computational geometry, 52(1):1-30, 2005.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. Adap-
tive neural networks for efficient inference. In Interna-
tional Conference on Machine Learning, pp. 527-536.
PMLR, 2017.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:

1877-1901, 2020.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597-1607. PMLR, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Bartham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P.,, Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wel, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. Palm: Scaling language
modeling with pathways, 2022.

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B.,
Bailis, P, Liang, P., Leskovec, J., and Zaharia, M. Selec-
tion via proxy: Efficient data selection for deep learning.
arXiv preprint arXiv:1906.11829, 2019.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A., Caron, M., Geirhos, R.,
Alabdulmohsin, 1., Jenatton, R., Beyer, L., Tschannen,
M., Arnab, A., Wang, X., Riquelme, C., Minderer, M.,
Puigcerver, J., Evci, U., Kumar, M., van Steenkiste, S.,
Elsayed, G. F., Mahendran, A., Yu, F., Oliver, A., Huot,
F., Bastings, J., Collier, M. P., Gritsenko, A., Birodkar,
V., Vasconcelos, C., Tay, Y., Mensink, T., Kolesnikov,

A., Pavetié, F., Tran, D., Kipf, T., Luci¢, M., Zhai, X.,
Keysers, D., Harmsen, J., and Houlsby, N. Scaling vision
transformers to 22 billion parameters, 2023.

Feldman, D. and Langberg, M. A unified framework for
approximating and clustering data. In Proceedings of the
Sorty-third annual ACM symposium on Theory of comput-
ing, pp. 569-578, 2011.

Gormez, A., Dasari, V. R., and Koyuncu, E. E2cm: Early
exit via class means for efficient supervised and unsu-
pervised learning. In 2022 International Joint Confer-
ence on Neural Networks (IJCNN), pp. 1-8, 2022. doi:
10.1109/1JCNN55064.2022.9891952.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang,
Y. Dynamic neural networks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(11):7436-7456, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. Searching for mobilenetv3. In Proceedings of the

IEEE/CVF international conference on computer vision,
pp. 1314-1324, 2019.

Huang, G., Chen, D., Li, T., Wu, F.,, Van Der Maaten, L.,
and Weinberger, K. Q. Multi-scale dense networks for
resource efficient image classification. arXiv preprint
arXiv:1703.09844, 2017.

Hui, L., Belkin, M., and Nakkiran, P. Limitations of neural
collapse for understanding generalization in deep learn-
ing. arXiv preprint arXiv:2202.08384, 2022.

Kaya, Y., Hong, S., and Dumitras, T. Shallow-deep net-
works: Understanding and mitigating network overthink-
ing. In International conference on machine learning, pp.
3301-3310. PMLR, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z.
Deeply-supervised nets. In Artificial intelligence and
statistics, pp. 562-570. PMLR, 2015.

Miiller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? Advances in neural information
processing systems, 32, 2019.

Dataset Pruning Using Early Exit Networks

Nohyun, K., Choi, H., and Chung, H. W. Data valu-
ation without training of a model. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
1d=XIz08zr-WbM.

OpenAl. Gpt-4 technical report, 2023.

Panda, P., Sengupta, A., and Roy, K. Conditional deep learn-
ing for energy-efficient and enhanced pattern recognition.
In 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 475—-480. IEEE, 2016.

Papyan, V., Han, X., and Donoho, D. L. Prevalence of
neural collapse during the terminal phase of deep learn-
ing training. Proceedings of the National Academy of
Sciences, 117(40):24652-24663, 2020.

Paul, M., Ganguli, S., and Dziugaite, G. K. Deep learning on
a data diet: Finding important examples early in training.
Advances in Neural Information Processing Systems, 34:
20596-20607, 2021.

Scardapane, S., Scarpiniti, M., Baccarelli, E., and Uncini,
A. Why should we add early exits to neural networks?
Cognitive Computation, 12(5):954-966, 2020.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C.,
Wightman, R., Cherti, M., Coombes, T., Katta, A., Mullis,
C., Wortsman, M., Schramowski, P., Kundurthy, S., Crow-
son, K., Schmidt, L., Kaczmarczyk, R., and Jitsev, J.
Laion-5b: An open large-scale dataset for training next
generation image-text models, 2022.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

Settles, B. Active learning literature survey. 2009.

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M.,
and Villalobos, P. Compute trends across three eras of
machine learning. In 2022 International Joint Conference
on Neural Networks (IJCNN), pp. 1-8. IEEE, 2022.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and Mor-
cos, A. Beyond neural scaling laws: beating power law
scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523-19536, 2022a.

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and Mor-
cos, A. Beyond neural scaling laws: beating power law
scaling via data pruning. Advances in Neural Information
Processing Systems, 35:19523-19536, 2022b.

Sutton, R. The bitter lesson. Incomplete Ideas (blog), 13(1),
2019.

Swayamdipta, S., Schwartz, R., Lourie, N., Wang, Y., Ha-
jishirzi, H., Smith, N. A., and Choi, Y. Dataset car-
tography: Mapping and diagnosing datasets with train-
ing dynamics. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pp. 9275-9293, 2020.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1-9, 2015.

Teerapittayanon, S., McDanel, B., and Kung, H.-T.
Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd International Conference
on Pattern Recognition (ICPR), pp. 2464-2469. IEEE,
2016.

Thoppilan, R., Freitas, D. D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H., Jin, A., Bos, T., Baker, L., Du,
Y., Li, Y., Lee, H., Zheng, H. S., Ghafouri, A., Mene-
gali, M., Huang, Y., Krikun, M., Lepikhin, D., Qin, J.,
Chen, D., Xu, Y., Chen, Z., Roberts, A., Bosma, M.,
Zhou, Y., Chang, C., Krivokon, I., Rusch, W., Pickett,
M., Meier-Hellstern, K. S., Morris, M. R., Doshi, T.,
Santos, R. D., Duke, T., Soraker, J., Zevenbergen, B.,
Prabhakaran, V., Diaz, M., Hutchinson, B., Olson, K.,
Molina, A., Hoffman-John, E., Lee, J., Aroyo, L., Ra-
jakumar, R., Butryna, A., Lamm, M., Kuzmina, V., Fen-
ton, J., Cohen, A., Bernstein, R., Kurzweil, R., Aguera-
Arcas, B., Cui, C., Croak, M., Chi, E. H., and Le, Q.
Lamda: Language models for dialog applications. CoRR,
abs/2201.08239, 2022. URL https://arxiv.org/
abs/2201.08239.

Toneva, M., Sordoni, A., Combes, R. T. d., Trischler, A.,
Bengio, Y., and Gordon, G. J. An empirical study of
example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

Yang, L., Han, Y., Chen, X., Song, S., Dai, J., and Huang,
G. Resolution adaptive networks for efficient inference.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2369-2378, 2020.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz,
D. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412, 2017.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V,,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

https://openreview.net/forum?id=XIzO8zr-WbM
https://openreview.net/forum?id=XIzO8zr-WbM
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239

Dataset Pruning Using Early Exit Networks

A. The EEPrune Algorithm

Algorithm 1 EEPrune

Input: Data D, early exit network F' with parameters 6, threshold ¢, epoch
P+ {}
for epoch = 1 to E do
for (2o, y®) € D do
9%, 3% = F(ao®)
J ==y log(ie.) — Yo ye@ log(3))
60— y% | |
if arg max g]éle) = arg max y(¥) and arg max gjgfg = arg max y(") and max ;t]é? > t then
P+ PU{z,"}
end if
end for
end for
D+ D\ P
Train F' on D as desired

B. Dataset Pruning Methods

The Error-L2-Norm (EL2N) method (Paul et al., 2021) creates an ensemble of a few models and trains them for a short
period of time. The error vectors from each model are then averaged, and the samples with the lowest error norm are
discarded. By discarding the samples with the lowest error norm, this method ensures that the most critical samples are
retained for further training. In our experiments, we used an ensemble of 10 models with the same architecture as our main
model trained on the pruned dataset. Each model in the ensemble was trained for 15 epochs. We calculated the average
£5-norm of the models’ error (i.e., prediction minus the ground truth label vector) for each sample and pruned the lowest
10%, 20%, 30%, 40%, 50%, 60%. Considering EEPrune and its variants use only one model and use F = 10 for a short
amount of training, it can be seen that EEPrune and its variations use much less computational resources for pruning.

Forgetting method (Toneva et al., 2018) tracks the number of times each training sample is first predicted correctly but later
incorrectly throughout an entire training session. Selection via proxy (SVP) method (Coleman et al., 2019) does the same,
but uses smaller models and shorter training. Dataset cartography method (Swayamdipta et al., 2020) also analyzes the
training dynamics by looking at the model’s confidence in its output and the variance of its predictions. In our experiments,
we trained the model on the full dataset for 200 epochs and tracked the amount of forgetting events for each sample. We
then sorted the samples based on the amount of forgetting events and pruned the lowest 10%, 20%, 30%, 40%, 50%, 60%.
For SVP, we followed the same approach as forgetting, but used a MobileNetV3-small and ResNet-18 model instead of
MobileNetV3-large and ResNet-50 respectively. We also trained the model for 50 epochs instead of the full 200 epochs.
Since EEPrune and its variants use £ = 10 for a short amount of training, it can be seen that EEPrune and its variations use
much less computational resources for pruning compared to forgetting and SVP.

(Nohyun et al., 2023) proposed a novel training-free scoring method called the complexity gap score. This approach involves
measuring the difference between the data complexity when a sample is removed from the training set. The data complexity
measure is defined as the extent to which a data sample contributes to the movement of network parameters during training
(Nohyun et al., 2023). In our experiments we used the source code provided by (Nohyun et al., 2023) to calculate the
complexity gap score for each dataset and we pruned the lowest 10%, 20%, 30%, 40%, 50%, 60% samples based on the
score. Calculating complexity gap scores does not require training, therefore in that sense it requires less computational
resources for pruning compared to EEPrune. Similarly, random pruning also does not require training. However, the amount
of computational resources EEPrune demands is still very low, e.g. E' = 10 epochs of training, and EEPrune performs better
than complexity gap method and random pruning by a significant margin.

Two other areas related to dataset pruning are active learning and dataset distillation. Active learning involves selecting the
most informative data to label from a pool of unlabeled data, with the aim of maximizing the model’s accuracy (Settles,
2009; Sener & Savarese, 2017). This approach differs from dataset pruning, which discards some labeled data once and for
all to keep the size of the training set small and training cost low. In contrast, active learning repeats the process of selecting

7

Dataset Pruning Using Early Exit Networks

unlabeled data and training the model on it. Dataset distillation also aims to reduce the size of the dataset but does so by
creating a smaller and often more difficult to interpret dataset from a larger, more human-understandable dataset (Wang
et al., 2018).

C. More Results

Here we present the entirety of our results.

As seen from Figure 4, EEPrune and its variations achieve the same performance as the no pruning baseline. At low pruning
rates, EEPrune and its variations show comparable performances to each other, but at high pruning rates EEPrune-Soft
outperforms the others. EL2N, SVP and forgetting consistently performs poorer than EEPrune and its variations. Complexity
gap method performs on par witth EEPrune at low pruning rates, but its performance decreases as pruning rate increases.
Also, it is important to note that random pruning outperforms EL2N, SVP and forgetting across all pruning rates. Figure 6
shows that EEPrune performs the best among all pruning rates. At 60% pruning rate, all baselines perform poorly except
EEPrune.

When the number of classes increases, it can be seen from Figure 5 that EEPrune performs the best among all methods, it
even outperforms the no pruning baseline. We attribute this phenomenon to the pruning of simpler samples, which enables
the model to align the distribution of the training set more closely with that of the test set. When we increase the number of
classes even more, Figure 8 shows that EEPrune and its variations continue to perform better than the others.

D. Future Work

EEPrune’s simplicity and practical approach to assessing sample difficulty make it an attractive method for modification to
improve the quality of dataset pruning. We outline some promising research directions that could enhance its performance.

One potential modification draws inspiration from contrastive learning and data augmentation techniques (Chen et al., 2020).
Similar to how contrastive learning generates positive pairs from augmented samples, EEPrune could be adapted to discard
a sample from the dataset if a specific set of augmented versions of the sample also satisfy the pruning conditions.

As the amount of unlabeled data is typically much greater than the amount of labeled data, EEPrune may also be extended to
unsupervised learning tasks. Early exit networks have been shown to be effective in unsupervised learning tasks too, making
them a promising candidate for further exploration in this area (Gérmez et al., 2022). It is possible to modify the conditions
of EEPrune to make it applicable to unsupervised learning tasks, opening up new avenues for cost-efficient training. Finally,
the effect of having more exits and changing the exit locations can be investigated, which we leave as a future work.

Test accuracy
Test accuracy

Complexity-gap Complexity-gap
8 — EEPrune-soft 78 — EEPrune-soft

2 3 4 5 6 7 s 2 6 7
Number of samples trained on in total 1e6 Number of samples trained on in total 1e6

(a) 10% (b) 20%

Test accuracy
Test accuracy

5 50 10 15 20 2 40

2 3 4 5 6 10 15 20 25 35 a0 4 5 30 35
Number of samples trained on in total 1e6 Number of samples trained on in total 1e6 Number of samples trained on in total 1e6

(d) 40% (e) 50% () 60%

Figure 4. Dataset pruning performances of various algorithms on CIFAR-10 at various pruning rates. The model is MobileNetV3-large.

Dataset Pruning Using Early Exit Networks

725

70.0

67.5

65.0

62.5

Test accuracy

60.0

57.5

72,5

70.0

67.5

65.0

62.5

Test accuracy

60.0

57.5

Figure 5. Dataset pruning performances of various algorithms on CIFAR-100 at various pruning rates. The model is MobileNetV 3-large.

Test accuracy
®» ® o
& 8 8

@
4

82

9

Test accuracy
®
8

©
a

EEPrune
EL2N
Random
No pruning
Forgettting
EEPrune-Loss
svP
Complexity-gap
EEPrune-Soft

1 2 3 a 5 6 7 8
Number of samples trained on in total

(a) 10%

9
1le6

EEPrune

Complexity-gap £
EEPrune-Soft

— ELN L —

—— Random | = ~

—— No pruning o
~—— Forgettting P— o~

—— EEPrune-Loss = e

— sw AT

1 2 3 4 5
Number of samples trained on in total

6
le6

(d) 40%

EEPrune
EL2N
Random
No pruning
Forgettting
EEPrune-Loss
SVP
Complexity-gap
EEPrune-Soft

1 2 3 a 5 6 7 8 9
Number of samples trained on in total leb

(2) 10%

EEPrune
EL2N
Random

No pruning
Forgettting
EEPrune-Loss
svp
Complexity-gap
EEPrune-Soft

111

2 3 4 5 6
Number of samples trained on in total leb

(d) 40%

Complexity-gap
EEPrune-Soft

72.5
70.0
67.5 1
>
3
e
5 65.0
g —— EEPrune
4625 == FLoN
ki —— Random
—— No pruning
60.0 peunng
—— Forgettting
—— EEPrune-Loss
57.5 — svp
6

1 2 3 4 5
Number of samples trained on in total

(b) 20%

7 8
le6

~—— EEPrune
725 EL2N
— Random
70.0 1 — No pruning
——— Forgettting
67.5{ — EEPrune-Loss
o —— svp
2 y
€ 65.0{ — Complexity-gap
3 —— EEPrune-Soft
®
ge2s
@
60.0
575
55.0

1.0 15 2.0 25 3.0 35 4.0 4.5 5.0
Number of samples trained on in total 1e6

(e) 50%

94

©
S

Complexity-gap
EEPrune-Soft

%90
e
5
S 88 —— EEPrune
= — ELN
o —— Random
=86 —— No pruning
—— Forgettting
84 —— EEPrune-Loss
—— svp
6

3 4 5
Number of samples trained on in total

(b) 20%

8
1e6

EEPrune
EL2N
Random
No pruning
Forgettting
EEPrune-Loss
svp
Complexity-gap
EEPrune-Soft

91

Test accuracy
© @
& &

3
®

10 15 20 25 30 35 40 45 50
Number of samples trained on in total leb

(e) 50%

72,5
70.0
675
>
9
e
5 65.0
g —— EEPrune
7 625 — ELN
K —— Random
0.0 —— No pruning
: ~—— Forgettting
—— EEPrune-Loss
575 —— svp
—— Complexity-gap
55.0 —— EEPrune-Soft
1 2 3) 5 6 7
Number of samples trained on in total 1e6

(c) 30%

- :
~—— EEPrune
72.5 — EL2N
— Random
70.0 4 — No pruning
—— Forgettting e
67.54 —— EEPrune-Loss / E _/
> —
9 — svp
€ 6504 — Complexity-gap /
3 —— EEPrune-Soft
s
+ 62.5 2 pr —
7 ~
© WS &
60.0 ?gsﬁﬁw
575 /\/__/_,\/\,
=
55.0 |

1.0 15 2.0 25 3.0 35 4.0
Number of samples trained on in total 1e6

() 60%

—— EEPrune
~—— EL2N
~—— Random

Test accuracy

No pruning
Forgettting
EEPrune-Loss

—— svP

~—— Complexity-gap

— EEPrune-Soft

2 3 a 5 6
Number of samples trained on in total

(c) 30%

7
1e6

EEPrune
EL2N
Random

No pruning
Forgettting
EEPrune-Loss
SVP p

Complexity-gap
EEPrune-Soft

86 / \'
84

1.0 15 2.0 25 3.0 35 4.0
Number of samples trained on in total le6

() 60%

©
S

©
S

Test accuracy
®
&

Figure 6. Dataset pruning performances of various algorithms on CIFAR-10 at various pruning rates. The model is ResNet-50.

Dataset Pruning Using Early Exit Networks

| |
75 i “
70
I
g v
o | —— EEPrune
&
265 || — EL2N
28 ‘ —— Random
—— No pruning
~—— Forgettting
60 | —— EEPrune-Loss
‘ —— swp
| —— Complexity-gap
—— EEPrune-Soft
55
1 2 3 a 5 6 7 8 9
Number of samples trained on in total 1e6
(a) 10%
—— EEPrune
— EL2N
75 — Random
—— No pruning
~—— Forgettting
—— EEPrune-Loss
3704 — svp
g —— Complexity-gap
S —— EEPrune-Soft
©
n 65
e
60
55
1 2 3 4 5 6
Number of samples trained on in total 1e6

(d) 40%

75
704
@
g
I+ —— EEPrune
®
2 65] — EL2N
K —— Random
—— No pruning
~—— Forgettting
60 —— EEPrune-Loss
—— svp
—— Complexity-gap
—— EEPrune-Soft
55
1 2 3 4 5 6 7 8
Number of samples trained on in total 1e6
(b) 20%
—— EEPrune
— EL2N
754 — Random
—— No pruning
—— Forgettting
~— EEPrune-Loss
3704 — svp
@ y
£ —— Complexity-gap
I —— EEPrune-Soft
®
0 65
2
60
55,

1.0 15 2.0 25 3.0 35 4.0 4.5 5.0
Number of samples trained on in total 1e6

(e) 50%

75
370 -
e
S
g —— EEPrune
o — EL2N
2 o —— Random
—— No pruning
| ~—— Forgettting
60 ! —— EEPrune-Loss
\‘ ‘V —— svP
| —— Complexity-gap
| —— EEPrune-Soft
55
1 2 3) 5 6 7
Number of samples trained on in total 1e6
(c) 30%
—— EEPrune
— EL2N
75 — Random
—— No pruning
~— Forgettting L
—— EEPrune-Loss]
> — Y
G707 —— sv /
£ —— Complexity-gap —
g —— EEPrune-Soft /
®
o
o
2

1.0 15 2.0 25 3.0 35 4.0
Number of samples trained on in total 1e6

() 60%

Figure 7. Dataset pruning performances of various algorithms on CIFAR-100 at various pruning rates. The model is ResNet-50.

60.0
57.5
55.0
>
3
25
§ —— EEPrune
5 500 — EL2N
2 —— Random
47.5 —— No pruning
~—— Forgettting
45.0 —— EEPrune-Loss
—— svP
425 —— Complexity-gap
— EEPrune-Soft
400
02 04 06 08 1.0 12 14 16 18
Number of samples trained on in total le7
(2) 10%
—— EEPrune
60.04 — Elon
—— Random
57.51 —— No pruning
~—— Forgettting
55.0 1 —— EEPrune-Loss
) — sv
g 52.51 —— Complexity-gap _
g —— EEPrune-Soft
® 50.0
B
Fars
45.0
225
400
02 0.4 0.6 0.8 1.0 12
Number of samples trained on in total le7

(d) 40%

Figure 8. Dataset pruning performances of various algorithms on Tiny Imagenet at various pruning rates. The model is MobileNetV3-large.

60.0
57.5
55.0
g
H] 525
g EEPrune
S s00 — EL2N
K —— Random
47.5 —— No pruning
~— Forgettting
45.0 —— EEPrune-Loss
—— swp
225 —— Complexity-gap
— EEPrune-Soft
40.0
0.2 0.4 06 08 1.0 12 14 16
Number of samples trained on in total le7

(b) 20%

—— EEPrune
6001 — ELan
—— Random
57.51 — No pruning T
—— Forgettting
55.0 1 —— EEPrune-Loss
o) —— swp
£ 525 — complexity-gap
g —— EEPrune-Soft
© 50.0 {
B
= 475
45.0
425
40.0
01 02 03 04 05 06 07 08 09 10

Number of samples trained on in total le7

(e) 50%

10

60.0
57.5
55.0
>
9
€525
E —— EEPrune
2 50.0 — EL2N
K —— Random
47.5 —— No pruning
~—— Forgettting
45.0 —— EEPrune-Loss
—— svp
425 —— Complexity-gap
—— EEPrune-Soft
40.0 ! :
0.4 06 08 10 12 14
Number of samples trained on in total le7
(c) 30%
—— EEPrune
60.04 — Elon
—— Random
57.51 —— No pruning
~—— Forgettting
55.0 1 —— EEPrune-Loss
z — svp
g 52.5 1 —— Complexity-gap
g —— EEPrune-Soft ’
© 500
£ 77 =z
475 a
45.0 :
425 A
40.0

1 2 7

3 4 6 8
Number of samples trained on in total le6

() 60%

