
CodeMirage: A Multi-Lingual Benchmark for
Detecting AI-Generated and Paraphrased Source Code

from Production-Level LLMs

Hanxi Guo
Purdue University

guo778@purdue.edu

Siyuan Cheng
Purdue University

cheng535@purdue.edu

Kaiyuan Zhang
Purdue University

zhan4057@purdue.edu

Guangyu Shen
Purdue University

shen447@purdue.edu

Xiangyu Zhang
Purdue University

xyzhang@purdue.edu

Abstract

Large language models (LLMs) have become integral to modern software de-
velopment, producing vast amounts of AI-generated source code. While these
models boost programming productivity, their misuse introduces critical risks,
including code plagiarism, license violations, and the propagation of insecure
programs. As a result, robust detection of AI-generated code is essential. To sup-
port the development of such detectors, a comprehensive benchmark that reflects
real-world conditions is crucial. However, existing benchmarks fall short—most
cover only a limited set of programming languages and rely on less capable gen-
erative models. In this paper, we present CodeMirage, a comprehensive bench-
mark that addresses these limitations through three major advancements: (1) it
spans ten widely used programming languages, (2) includes both original and
paraphrased code samples, and (3) incorporates outputs from ten state-of-the-
art production-level LLMs, including both reasoning and non-reasoning models
from six major providers. Using CodeMirage, we evaluate ten representative
detectors across four methodological paradigms under four realistic evaluation
configurations, reporting results using three complementary metrics. Our analysis
reveals nine key findings that uncover the strengths and weaknesses of current
detectors, and identify critical challenges for future work. We believe CodeMi-
rage offers a rigorous and practical testbed to advance the development of ro-
bust and generalizable AI-generated code detectors. The dataset is available at
https://huggingface.co/datasets/HanxiGuo/CodeMirage.

1 Introduction

Large Language Models (LLMs) are rapidly evolving and demonstrating increasing capabilities in
coding, fundamentally transforming the software development ecosystem. Recent LLMs such as
ChatGPT [55] and Claude [4] exhibit remarkable code generation performance, producing high-
quality outputs in response to concise natural language prompts. The emergence of reasoning-capable
models like DeepSeek-R1 [26] has further accelerated LLM adoption among developers. According
to Stack Overflow’s industry report [72], 82.1% of the 65,000 surveyed developers report using
ChatGPT [55] during their development workflow. Capitalizing on the strong coding abilities
of LLMs, assistant tools such as GitHub Copilot [20] and Cursor [12] have been developed to
enhance productivity by helping developers write, modify, and debug code directly within integrated

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 4th Deep Learning
for Code (DL4C) Workshop.

https://huggingface.co/datasets/HanxiGuo/CodeMirage

development environments (IDEs). Furthermore, state-of-the-art LLM-based agentic systems such
as OpenHands [83] achieve up to a 65.8% resolved rate on SWE-Bench [34], demonstrating the
effectiveness of LLMs in addressing real-world software engineering tasks. These trends indicate that
LLMs and their associated tools are becoming integral to modern software development workflows.

However, the rapid spread of AI-generated code has raised concerns about new vulnerabilities and
misuse. Systematic benchmarks show that LLM outputs often ship with logic errors and latent security
flaws[45, 21, 78, 96, 61, 36]. Comparative evaluations reveal that AI suggestions can embed at least
as many vulnerabilities as human code[40, 82, 76, 80, 5, 77]. Furthermore, LLMs are susceptible to
manipulation [36], including poisoning attacks [91, 11, 54] and prompt injections [49, 95], which can
induce the generation of targeted vulnerable code. At the same time, educators warn of an impending
wave of AI-driven plagiarism that evades conventional detectors [31, 74, 38, 13, 85, 69, 39], while
legal scholars highlight intellectual-property [94, 43, 86, 73] and licence-compliance [88] risks.
Robust AI-code detection is therefore critical for secure software supply chains, responsible academic
practice, and licence compliance.

To address the challenges of AI-generated code identification, various detection methods have been
proposed, leveraging statistical features of code [32], the capabilities of language models [90, 70,
92, 93, 89, 53, 52], and code embedding models [75, 46]. However, evaluations based on existing
benchmarks and datasets [75, 59, 14, 62, 58, 87] often fall short in three key aspects. First, they
typically cover only a narrow set of programming languages—primarily C++ and Python—while
neglecting other widely used languages such as Go and HTML, resulting in limited language diversity
compared to real-world software development. Second, most benchmarks rely on open-source LLMs
with relatively small model sizes and lower generation quality, or include only a small number of
commercial models, leaving a gap between benchmark conditions and real-world usage. Third,
most existing datasets lack practical adversarial scenarios, such as paraphrasing [41, 68], which are
common in practice and essential for evaluating the robustness of detection systems. Thus, a rigorous
benchmark that captures real-world language diversity, modern commercial models, and adversarial
scenarios is indispensable for driving meaningful progress in this emerging field.

We introduce CodeMirage, a comprehensive benchmark for evaluating AI-generated code detectors
under realistic and adversarial conditions, to solve the three major limitations identified in prior
benchmark work. CodeMirage is constructed from real-world human-written code and enriched with
both AI-generated and paraphrased variants produced by a diverse set of state-of-the-art reasoning
and non-reasoning LLMs from six major service providers. The paraphrasing techniques are domain-
specific and tailored to source code, enabling rigorous evaluation of generalization and robustness.

Our key contributions are as follows:

• We present a large-scale, multilingual benchmark for AI-generated code detection, spanning
10 widely used programming languages. The dataset comprises approximately 210,000
samples, including 10,000 human-written code files sourced from GitHub [9], as well as
AI-generated and paraphrased counterparts produced by 10 production-level LLMs. We
have released the data to promote transparency and reproducibility.

• We design four progressively challenging evaluation configurations with three comple-
mentary performance metrics to facilitate rigorous and realistic assessment of detector
effectiveness under various real-world scenarios.

• We conduct a comprehensive evaluation of 10 representative detectors across four method-
ological paradigms using CodeMirage, providing insights into their accuracy, robustness,
and generalization across program languages, models, and adversarial settings.

2 Background and Related Work

2.1 Taxonomy of AI-Generated Code Detection Methods

Detecting AI-generated content has been a long-standing challenge in both the natural language [79,
22, 2, 23] and computer vision domains [67, 24, 97, 15, 98], predating even the emergence of
large language models (LLMs) [81, 1] and diffusion-based generative models [71, 29]. In contrast,
detecting AI-generated source code is a relatively new research direction, emerging primarily in the
last two years due to the rapid advancements in the coding capabilities of LLMs [55, 4].

2

Table 1: Comparison between existing AI-generated code benchmarks and our CodeMirage. Gran.
= granularity (Func: function/snippet, Doc: whole file). IID = in–distribution; OOD = out-of-
distribution. Baseline categories: Z (zero-shot detector), E (embedding-based detector), F (fine-
tuning-based detector), P (pre-trained LLM + downstream detector). Columns “Open LLMs” and
“Comm. LLMs” show whether the dataset includes any open-source or commercial generators.

Dataset ↓ Stat.→ #Lang Gran. IID OOD #Open
LLMs

#Comm.
LLMs

Reasoning
Model

#Human
Code

#AI
Code

Adv.
Test

Quality
Check

Baseline
#/Cat.

Suh et al. [75] 3 Func ✓ ✓ 1 3 ✗ ∼ 3.7k ∼ 29.5k ✗ ✗ 8 / Z,E,F
Pan et al. [59] 1 Func ✓ ✓ 0 1 ✗ ∼ 5k ∼ 71k ✓ ✗ 5 / Z
AIGCodeSet[14] 1 Func ✓ ✗ 2 1 ✗ ∼ 4.8k ∼ 2.9k ✗ ✓ 3 / E,F
MAGECODE[62] 3 Doc ✓ ✗ 0 3 ✗ ∼ 81k ∼ 45k ✗ ✓ 8 / Z
CoDet-M4[58] 3 Func ✓ ✓ 4 1 ✗ ∼ 252k ∼ 246k ✓ ✓ 6 / F,P
LLMGCode[87] 8 Doc ✓ ✗ 1 3 ✗ < 1k 2k ✗ ✗ 10 / Z,F,P

CodeMirage (Ours) 10 Doc ✓ ✓ 4 6 ✓ 10k ∼200k ✓ ✓ 10 / Z,E,F,P

Inspired by traditional statistical-based methods used for AI-generated text detection [64, 33], early
approaches for code focus on analyzing surface-level statistical features. For example, Whodunit [32]
extracts stylometric and complexity-based features from both raw source code and its abstract
syntax tree (AST). However, these methods often struggle to distinguish code generated by modern,
high-performing LLMs [55, 4, 26, 37], which can mimic human coding styles more closely.

To improve detection effectiveness, recent research has explored more advanced techniques—often
leveraging large language models (LLMs) or code embedding models—which can be broadly
categorized into the following four methodological paradigms:

Zero-shot Detector. This category of detectors assigns detection confidence scores based on token-
level statistics derived from pretrained LLMs, without requiring task-specific fine-tuning. For example,
LogRank [22] and Entropy [42] rely on average next-token log-rank and entropy, respectively, to
quantify AI-generated token distributions. DetectGPT [51] evaluates the divergence between original
and perturbed text using a scoring model, which is a strategy extended in code-specific settings by
DetectCodeGPT [70], GPT4Code [92], and AIGC Detector [90], each employing tailored perturbation
schemes for code. CR [93] instead measures divergence between original and LLM-rewritten code
samples. Binoculars [28] introduces a model-comparison approach, using cross-perplexity between
instruction-tuned and non-instruction-tuned LLMs as a detection signal.

Embedding-based Detector. Embedding-based detectors [40] utilize pretrained code embedding
models, such as CodeT5+ Embedding [84] and CodeXEmbed [46], to extract high-level semantic
representations from either raw source code or abstract syntax trees (ASTs). These embeddings
are then fed into lightweight classifiers, e.g., MLP [66], to perform binary classification between
human-written and AI-generated code.

Fine-tuning-based Detector. This class of detectors fine-tunes transformer-based models to di-
rectly capture discriminative patterns between human-written and AI-generated code. For example,
GPTSniffer [52, 53] fine-tunes CodeBERT [19] on labeled code samples to perform binary clas-
sification. Other approaches [75] explore different backbone architectures, such as CodeT5+ [84]
and RoBERTa [47], to enhance detection performance across varied programming languages and
generative models.

Pretrained LLM with Downstream Detector. Unlike zero-shot methods, detectors in this category
extract rich semantic representations or statistical signals from pretrained LLMs and train downstream
classifiers on these features. For instance, MageCode [62] uses statistical features derived from the
hidden state of the classification token in a pretrained CodeT5+ [84] to train a two-layer linear
classifier. Some detectors originally developed for text, such as Raidar [48], could be extended to
code by comparing metrics between original and LLM-rewritten samples, followed by an XGBoost [8]
classifier. BiScope [27] applies a novel bi-directional cross-entropy analysis using pretrained LLMs
and feeds the resulting features into a Random Forest [6] classifier.

2.2 Existing AI-generated Code Datasets and Benchmarks

Prior studies [75, 59, 14, 62, 58, 87] has laid important groundwork for building benchmarks to
evaluate AI-generated code detectors. As shown in Table 1, several benchmarks introduce valuable
contributions: for instance, Suh et al. [75] propose a large-scale function-level dataset spanning three

3

Human CodeData FilterGithub

Fetch Filter

C, C++, C#, Go, HTML, Java,
JavaScript, PHP, Python, Ruby

Human Code Pre-Processing1

Summarizer

Summarize

AI Code Summarization & Generation2

Generator

Generate

Inspector Paraphraser

Paraphrasing3 Benchmarking4

Evaluator

API Call
Production-Level

LLM Services Finetuning-based

Embedding-based

Zero-shot

Pretrained + CLF

Baseline Detectors
In-Distribution

Paraphrase

Cross-Model (CM)

CM Paraphrase

Evaluation Configurations

Select

A
I-Paraphrased C

ode
AI-Generated Code

Figure 1: Overview of the CodeMirage framework. We collect and preprocess human-written code
from GitHub, then leverage 10 state-of-the-art LLMs to summarize, generate, and paraphrase code
with quality inspection. Finally, CodeMirage evaluates 10 baseline AI-generated code detectors
across four categories under four configurations, covering a wide range of real-world scenarios.

programming languages. Pan et al. [59] and CoDet-M4 [58] incorporate adversarial perturbations
into AI-generated code to test robustness. AIGCodeSet [14] and MAGECODE [62] employ quality
checks during code generation. LLMGCode [87] expands language coverage to eight programming
languages. Collectively, these datasets serve as solid foundations for evaluating AI-generated code
detectors.

However, each of these benchmarks has notable limitations. Most cover only a small number of
programming languages, rely on open-source or less capable LLMs, and none of them leverage
latest reasoning models [26, 57, 35]. Furthermore, baseline evaluations in these benchmarks do not
comprehensively include all four major categories of detection methods, and only two out of the six
existing benchmarks include adversarial testing, which is critical for assessing real-world robustness.

To address these gaps, our proposed benchmark, CodeMirage, includes: (1) code samples across 10
widely used programming languages; (2) outputs from 10 state-of-the-art production-level LLMs,
including three reasoning models; (3) both out-of-distribution and adversarial evaluation settings; and
(4) baselines covering all four methodological categories of AI-generated code detection.

3 CodeMirage Framework

3.1 Benchmark Construction

Human Code Pre-Processing. To construct a comprehensive benchmark of AI-generated and para-
phrased code, we begin by sourcing high-quality human-written code samples from the CodeParrot
Github-Code-Clean dataset [9], a curated subset of the original Github-Code dataset [10], as shown
in Figure 1. This cleaned version filters out overly short snippets, auto-generated files, and samples
with excessive alphanumeric characters. The dataset was collected and sanitized in May 2022, prior
to the widespread deployment of code LLMs and AI coding agents, ensuring the selected samples are
genuinely human-authored. Based on its statistics, we select the ten most commonly used program-
ming languages—C, C++, C#, Go, HTML, Java, JavaScript, PHP, Python, and Ruby—and randomly
extract 1,000 code snippets per language. Additional length-based filtering is applied during the
sampling to preserve code diversity while ensuring the code remains within a controlled length scale.

Production-Level LLMs. In CodeMirage, we leverage ten production-level LLMs from six leading
companies to generate code samples, covering the majority of LLMs commonly used for real-
world coding tasks. Among these ten models, four are open-source and three are designed with
reasoning capabilities. Specifically, CodeMirage includes GPT-4o-mini [56], o3-mini [57], Claude-
3.5-Haiku [3], Gemini-2.0-Flash [63], Gemini-2.0-Flash-Thinking-Experimental [35], Gemini-2.0-
Pro-Experimental [37], DeepSeek-V3 [44], DeepSeek-R1 [26], Llama-3.3-70B [50], and Qwen-2.5-
Coder-32B [30]. We access all ten LLMs via API-based services with default temperatures. For
additional details on the LLM configurations and generation settings, please refer to Appendix A.

AI Code Summarization. To generate high-quality AI-generated code samples while avoiding direct
copying of human-written code, CodeMirage adopts a text-to-code generation strategy. As the first

4

Pe
rc

en
ta

ge
 (%

)
0

5

10

Lines of Code
0 100 200 300

Pe
rc

en
ta

ge
 (%

)

0

5

10

Character Length
0 5,000 10,000

Pe
rc

en
ta

ge
 (%

)

0

5

10

AST Depth
0 10 20 30 40

Pe
rc

en
ta

ge
 (%

)

0

5

10

CodeBLEU Score
0 0.5 1.0

Pe
rc

en
ta

ge
 (%

)

0

10

20

30

BLEU Score
0 0.5 1.0

Pe
rc

en
ta

ge
 (%

)

0

10

20

Weighted BLEU Score
0 0.5 1.0

Pe
rc

en
ta

ge
 (%

)

0
2
4
6

AST Match Score
0 0.5 1.0

Pe
rc

en
ta

ge
 (%

)

0

2

4

6

Data-Flow Match Score
0 0.5 1.0

(a) Lines of Code (b) Character Length (c) AST Depth (d) CodeBLEU

(e) BLEU (f) Weighted BLEU (g) Syntactic AST Match (h) Semantic Data-Flow Match

Human-Written Code AI-Generated Code AI-Paraphrased Code

Figure 2: Benchmark statistics of CodeMirage.

step, we produce a comprehensive yet concise summary for each human-written code sample. Since
these samples are typically full documents—including library imports, class and structure definitions,
and function implementations—we prompt the LLM to extract and summarize key elements such
as the purpose, functionality, logic overview, and key features, along with the names of relevant
libraries, functions, classes, structures, and variables. Optional contextual notes are also included
to account for uncommon assumptions or dependencies in the source code. This summary serves
as an intermediate representation of the original code, ensuring that the LLM does not access the
original human-written implementation during the following code generation step. Full prompts and
summary examples are provided in Appendix B.

AI Code Generation. Given the summary of each human-written code sample, CodeMirage employs
multiple production-level LLMs to generate corresponding AI-written code based on the provided
description. To align the structural characteristics of the generated code with the original human-
written version, we additionally supply the LLMs with metadata such as the line count and total
character length. Due to the inherent uncertainty of LLMs, generated code may occasionally deviate
from the desired format or content. To further ensure quality, we implement a rule-based inspector
that verifies: (1) consistency with the original human-written code’s line count and character length,
and (2) adequate token-level divergence from the original, enforced by requiring a BLEU [60] score
below 0.5 to avoid recitation. Regeneration is forced if any check fails, and samples are discarded
after multiple failed attempts. Detailed prompts and generation examples are provided in Appendix C.

AI Code Paraphrasing. Paraphrasing [41, 68] is a widely adopted strategy for evaluating the
robustness of AI-generated text detectors under adversarial and real-world conditions. However, in
the domain of AI-generated code detection, most existing benchmarks [75, 59, 14, 62, 58, 87] do not
incorporate such adversarial testing. Although some text detection studies [48, 27] have included
paraphrased code in their evaluations, they rely on generic prompts and a limited number of code
samples, constraining both the effectiveness and generality of their paraphrasing evaluation on code.
In CodeMirage, we introduce a systematic, domain-specific paraphrasing for code, covering six
transformation types: renaming, formatting adjustments, logic rewriting and replacement, expression
variation, literal transformations, and redundancy insertion. Detailed rules, prompt designs, and
representative examples are provided in Appendix D.

3.2 Benchmark Statistics

CodeMirage spans ten programming languages, each containing 1,000 human-written code samples
and 10,000 AI-generated counterparts. For every language, we obtain 1,000 outputs from each of ten
production-level LLMs, yielding a 1:10 mapping between every human sample and its LLM-generated
variants. Within every 1,000-sample shard (human or AI), We allocate 700 examples for training and
300 for testing.

We present four structural and semantic metrics of the dataset in Figure 2: lines of code (a), character
length (b), AST depth (c), and CodeBLEU [65] score (d). The first three metrics reflect the overall
structural characteristics of the code and show close resemblance between human-written and AI-
generated samples. This similarity implies that naive statistical classifiers would struggle to detect
AI-generated code using basic code features.

5

Figure 2 (d) reports the CodeBLEU score, a composite metric calculated as:
CodeBLEU = α ·BLEU + β ·BLEUweighted + γ ·MatchAST + δ ·MatchDF , (1)

where each component is equally weighted with α = β = γ = δ = 0.25 by default. The median
CodeBLEU score for AI-generated code is approximately 0.3, consistent with prior observations in
text-to-code generation [16, 17, 18]. Paraphrased code yields slightly lower scores due to deliberate
perturbations in both code format and structure.

To further analyze CodeMirage’s code quality, we decompose the CodeBLEU score into its four
subcomponents in Figure 2 (e)–(h). Both AI-generated and AI-paraphrased code show relatively low
BLEU [60] and weighted BLEU [65] scores, indicating limited n-gram overlap with their human
counterparts. While the syntactic AST match and semantic data-flow [25] match scores of AI code
exceed 0.5 on average, suggesting that despite token-level divergence, both AI-generated and AI-
paraphrased code maintains a fair level of syntactic and semantic consistency with human-written
code. More detailed benchmark statistics are presented in Appendix E.

3.3 Baseline Detectors

We select ten state-of-the-art detectors spanning four categories. Zero-shot detectors: LogRank [22],
Entropy [22, 42], and Binoculars [28], which rely on token-rank or entropy-related features without
training. Embedding-based detectors: following existing studies [75], we extract representations
with the CodeXEmbed-2B model [46] from either raw source code or its abstract-syntax tree (AST) and
train a lightweight random forest [6] classifier. Fine-tuned detectors: we include GPTSniffer [53, 52],
a variant built on the latest CodeT5+ backbone [84], and a RoBERTa detector [47], with each
fine-tuned on our training corpus. Pretrained-LLM with downstream detector: Raidar [48] and
BiScope [27], extracting features via rewriting [48] and bi-directional cross entropy [27]. More details
of the baseline detectors are presented in Appendix F.

3.4 Evaluation Metrics

To thoroughly assess the performance of the baseline detectors in different scenarios, we employ three
evaluation metrics in our experiments, including the F1 score, TPR@FPR=10%, and TPR@FPR=1%.
The F1 score balances precision and recall, providing an overall measure of detection accuracy
without favoring AI-generated or human-written code samples. For each detector, we first identify the
optimal decision threshold and then report its corresponding F1 score. The metric TPR@FPR=10%
reports the true positive rate (TPR) when the false positive rate (FPR) is limited to 10%, representing
scenarios that can tolerate a moderate number of false alarms. Conversely, TPR@FPR=1% measures
the TPR at an FPR of only 1%, which is essential for applications where even a small fraction of false
positives is unacceptable.

3.5 Evaluation Configurations

In CodeMirage, we include four evaluation configurations to thoroughly assess baseline detectors
under various real-world scenarios, including the in-distribution configuration and three out-of-
distribution configurations (paraphrase configuration, cross-model configuration, and cross-model
paraphrase configuration). We omit the cross language configuration because programming language
can be easily identified; thus, detectors can be trained separately for each language.

In-Distribution Configuration. This configuration evaluates the in-distribution stability of each
detector in multiple LLMs and programming languages. For each language, we pair the human-written
training set with the training samples produced by a single LLM, train the detector on this combined
data, and determine the optimal decision threshold. We then test the detector on the human-written
test set together with the test samples generated by the same LLM.

Paraphrase Configuration. This setting evaluates each detector’s out-of-distribution performance
when the AI-generated code is adversarially paraphrased. Specifically, we train the detector and
select its optimal threshold same as in the in-distribution configuration, but we test on paraphrased
code produced by the same LLM that generated the original samples.

Cross-Model Configuration. This setting evaluates detector’s robustness against unseen LLMs. For
each programming language, we train the detector and choose its optimal threshold on a training set

6

In-Distribution
Paraphrase

Cross-Model
Cross-Model Paraphrase

F1
 S

co
re

0.4

0.6

0.8

1.0

Detection Method
LogRank Entropy Binoculars Embed-Code Embed-AST GPTSniffer CodeT5+ RoBERTa Raidar BiScope

Figure 3: Comparison Between Evaluation Configurations and Detectors. The bar chart presents
the average F1 scores of baseline detectors across all the programming languages and LLMs.

consisting of human-written samples and AI-generated samples from a single LLM. We then test
the detector on human test samples paired with AI-generated samples from all other LLMs. The
detector’s scores on these unseen-model test sets are averaged to yield the overall cross-model result.

Cross-Model Paraphrase Configuration. This scenario mirrors real-world conditions in which
code samples are both generated by unseen LLMs and subsequently paraphrased. We adopt the
testing procedure of the cross-model configuration, but pair human test samples with paraphrased
test samples produced by the other LLMs. The detector’s average score over all such paraphrased,
unseen-model test sets is reported as the cross-model paraphrase result.

4 Evaluation Results and Insights

We conduct an extensive evaluation using CodeMirage in various scenarios and summarize the
observations into nine findings. We present representative processed results in the main text and
include the full experimental results in Appendix H.

4.1 Comparison Between Evaluation Configurations and Detectors

We first evaluate the performance of the various detectors under four distinct configurations 3.5.
The results are presented in Figure 3, where the x-axis lists the detectors and the y-axis represents
the F1 score. Each bar corresponds to a specific evaluation configuration. Notably, to ensure a fair
and unbiased comparison, each bar reflects the average F score obtained across ten programming
languages and ten LLMs, with error bars indicating one standard deviation.

Finding 1: In-distribution testing consistently outperforms all out-of-distribution scenarios.

This is intuitive and reasonable given the shared distribution between training and test sets. Under
out-of-distribution settings, cross-model testing yields a larger performance drop than paraphrasing
in most cases, since paraphrasing leverages the same LLM and thus incurs a smaller distribution shift
than code generation by a different LLM. However, some corner cases, e.g., LogRank and Binoculars,
deviate from this trend. As zero-shot methods, they are particularly sensitive to token-level features,
and paraphrasing induces greater token variance than cross-model evaluation.

Furthermore, different detection methods exhibit varying performance. According to subsection 3.3,
these methods fall into four categories.

Finding 2: Fine-tuning-based methods outperforms other types.

Fine-tuned detectors, e.g., GPTSniffer and CodeT5+, lead the pack. Zero-shot approaches, e.g.,
LogRank and Entropy, perform poorest, which makes sense given their limited feature extraction
when confronted with the complexity of code. Embedding-based detectors, e.g., Embed-Code
and Embed-AST, sit in the middle but impressively maintain stable accuracy even under out-of-
distribution evaluation, thanks to their reliance on code representations that generalize across LLMs.
Pretrained LLMs paired with downstream classifiers, e.g., Raidar and BiScope, match embedding
methods in-distribution but suffer a larger drop on out-of-distribution tests, reflecting subtle shifts in
the features they extract across different models and paraphrased inputs.

7

In-Distribution Paraphrase Cross-Model Cross-Model Paraphrase

F1
 S

co
re

0.5

0.6

0.7

0.8

0.9

Programming Language
C C++ C# Go HTML Java JavaScript PHP Python Ruby

Figure 4: Comparison Between Different Programming Languages. The bar chart presents the
average F1 scores of baseline detectors on different programming languages across LLMs.

Finding 3: Fine-tuning approaches using backbone LLMs pre-trained on larger code corpora
achieve superior performance.

Performance varies across fine-tuning methods. For example, CodeT5+ slightly outperforms GPT-
Sniffer, and both surpass RoBERTa. This gap reflects their pre-training corpora: GPTSniffer’s
CodeBERT backbone is trained on six programming languages, whereas CodeT5+’s backbone covers
nine. In contrast, RoBERTa is pretrained solely on natural-language text. Consequently, backbones
exposed to more and broader code samples exhibit superior coding proficiency, and hence better
detection capability.

Finding 4: Fine-tuning–based detectors are prone to overfitting.

We also observe that fine-tuning–based methods (e.g., GPTSniffer and CodeT5+) exhibit a larger
performance drop from in-distribution to cross-model evaluations than other approaches. This is
likely due to their overfitting tendencies and should be taken into account in real-world deployments.

Finding 5: ASTs provide a superior feature representation compared to raw source code.

Two embedding–based detectors demonstrate comparable performance, with Embed-AST marginally
outperforming Embed-Code. This suggests that AST-based embeddings capture the program’s
syntactic hierarchy and semantic relationships, e.g., control flow and data dependencies, more
effectively than raw code, making them more robust to superficial variations like naming or formatting.

4.2 Comparison Between Different Programming Languages

We evaluate detection performance across ten programming languages using CodeMirage. The
results are shown in Figure 5, where the x-axis lists the languages and the y-axis denotes the F1 score.
To minimize bias, each bar aggregates results from experiments with all ten LLMs and ten detectors.
Its height indicates the average F1 score, and the error bars represent one standard deviation.

Finding 6: Detection is Consistent across Programming Languages, with Common Languages
Performing Slightly Better.

We observe only slight performance differences among languages, with similar patterns across
evaluation configurations. Notably, less common languages exhibit marginally lower performance.
For example, C++ achieves higher F1 scores than Go or Ruby. This discrepancy arises because
several detection methods, e.g., Biscope [27] and Raidar [48], rely on pre-trained LLMs for feature
extraction. These models are pre-trained on large online corpora containing more examples of
common languages (e.g., C++) than atypical ones (e.g., Go), resulting in stronger representations for
the former. Hence detection performances are better detection on those common languages.

4.3 Comparison Between Different LLMs

We evaluate the detection performance of code generated by different LLMs, with results shown in
Figure 5. The x-axis represents the generative models, while the y-axis indicates the F1 score. Each
bar color corresponds to one of four evaluation settings.

8

In-Distribution Paraphrase Cross-Model Cross-Model Paraphrase

F1
 S

co
re

0.6

0.7

0.8

0.9

Generative Model

Claude
3.5 Haiku

DeepSeek
R1

DeepSeek
V3

Gemini
2.0 Flash

Gemini 2.0
Flash Thinking

Gemini
2.0 Pro

GPT
4o mini

GPT
o3 mini

Llama
3.3 70B

Qwen 2.5
Coder 32B

Figure 5: Comparison Between Different LLMs. The bar chart shows the average F1 scores of
baseline detectors on different LLMs across programming languages.

Finding 7: Detection performance is generally similar across LLMs, with GPT and Llama
showing slightly higher scores.

Among all models, GPT-4o mini achieves the highest F1 scores, particularly under the In-Distribution
and Paraphrase settings, suggesting that its code style is more consistent or distinctive, making
detection easier. Claude 3.5 Haiku and Llama 3.3 70B also demonstrate strong performance, especially
under In-Distribution, likely due to their more recognizable or less variable code patterns. In contrast,
Cross-Model Paraphrase consistently yields the lowest F1 scores (around 0.65–0.7), highlighting it as
the most challenging scenario for detection. Models such as Gemini 2.0 Pro and Qwen 2.5 Coder 32B
exhibit lower detectability across settings, especially under paraphrased or cross-model conditions,
indicating that their outputs may be more diverse or stylistically more similar to human’s, thereby
reducing their distinctiveness.

Finding 8: Reasoning models exhibit a larger performance drop after paraphrasing.

We observe that for non-reasoning models (DeepSeek V3, GPT4o mini, Llama 3.3 70B, and Qwen 2.5
Coder 32B), paraphrasing has minimal impact on performance. In contrast, reasoning models (e.g.,
GPT o3 mini) suffer a more pronounced decline. This likely stems from their stronger comprehension
abilities: they better interpret paraphrased inputs and adjust outputs to match human-style reasoning,
making any deviations more evident after paraphrasing.

4.4 Comparison Between Different Evaluation Metrics

In previous experiments, we mainly use F1 score, which is a threshold-dependent measure that
balances precision and recall, but F1 can be misleading in real-world detection tasks. As it gives
equal weight to false positives and false negatives and depends on a single decision threshold, it
often fails to reflect performance in imbalanced settings or under strict false-alarm constraints. By
contrast, reporting the true positive rate at low false-positive rates directly measures how many
genuine positives the model catches when false alarms must be kept to a minimum [7]. Therefore, we
introduce two additional metrics, i.e., TPR@FPR=10% and 1%, to better assess detector practicality.

Finding 9: There is a significant gap between laboratory evaluations and practical use.

Results in Appendix G indicates that despite decent F1 scores, all detectors suffer a dramatic drop in
true-positive rate once the false-positive rate is constrained, showing that they fail to catch enough
positives under realistic, low-alarm requirements and are therefore impractical.

5 Conclusion

In this paper, we introduce CodeMirage, a comprehensive and large-scale benchmark for AI-generated
code detection, consisting of 10 widely used programming languages and approximately 210,000
samples in total. The dataset includes human-written code, as well as AI-generated and paraphrased
variants created using 10 state-of-the-art production-level LLMs, including three recent reasoning
models, with quality control to ensure reliability. We evaluate 10 representative detectors spanning
four methodological categories and provide extensive analysis from multiple perspectives, revealing
key strengths and limitations of each approach. We believe the breadth and depth of CodeMirage
offer a strong foundation for advancing the development of more robust and generalizable detectors.

9

Acknowledgments and Disclosure of Funding

We are grateful to the Center for AI Safety for providing computational resources. This work was
funded in part by the National Science Foundation (NSF) Awards SHF-1901242, SHF-1910300,
Proto-OKN 2333736, IIS-2416835, ONR N00014-23-1-2081, and Amazon. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[2] Arslan Akram. An empirical study of ai generated text detection tools. arXiv preprint arXiv:2310.01423,
2023.

[3] Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, 2024.

[4] Anthropic. Claude 3.7 Sonnet and Claude Code, 2025.

[5] Owura Asare, Meiyappan Nagappan, and Nirmal Asokan. Is github’s copilot as bad as humans at
introducing vulnerabilities in code? Empirical Software Engineering, 28(6):129, 2023.

[6] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[7] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramer. Membership
inference attacks from first principles. In 2022 IEEE symposium on security and privacy (SP), pages
1897–1914. IEEE, 2022.

[8] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong Chen,
Rory Mitchell, Ignacio Cano, Tianyi Zhou, Mu Li, Junyuan Xie, Min Lin, Yifeng Geng, Yutian Li, Jiaming
Yuan, and David Cortes. xgboost: Extreme Gradient Boosting, 2025. R package version 3.0.1.1.

[9] CodeParrot. Github code clean dataset, 2022.

[10] CodeParrot. Github code dataset, 2022.

[11] Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. Vulnerabilities in ai code
generators: Exploring targeted data poisoning attacks. In IEEE/ACM International Conference on Program
Comprehension (ICPC), pages 280–292, 2024.

[12] Cursor. Cursor: The AI Code Editor, 2023.

[13] Nassim Dehouche. Plagiarism in the age of massive generative pre-trained transformers (gpt-3). Ethics in
Science and Environmental Politics, 21:17–23, 2021.

[14] Basak Demirok and Mucahid Kutlu. Aigcodeset: A new annotated dataset for ai generated code detection.
arXiv preprint arXiv:2412.16594, 2024.

[15] Brian Dolhansky, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes, Menglin Wang, and Cristian Canton
Ferrer. The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397, 2020.

[16] Yihong Dong, Ge Li, and Zhi Jin. Codep: grammatical seq2seq model for general-purpose code generation.
In ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), pages 188–198,
2023.

[17] Jessica López Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, and El Hassane Ettifouri.
Jacotext: a pretrained model for java code-text generation. arXiv preprint arXiv:2303.12869, 2023.

[18] Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. Out of the bleu: how should
we assess quality of the code generation models? Journal of Systems and Software, 203:111741, 2023.

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and natural
languages. https://arxiv.org/abs/2002.08155, 2020.

[20] Friedman, Nat. Introducing GitHub Copilot: your AI pair programmer, 2022.

10

[21] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang, and Michael R Lyu. What
makes good in-context demonstrations for code intelligence tasks with llms? In IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 761–773, 2023.

[22] Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and visualization
of generated text. In Annual Meeting of the Association for Computational Linguistics (ACL), 2019.

[23] Soumya Suvra Ghosal, Souradip Chakraborty, Jonas Geiping, Furong Huang, Dinesh Manocha, and Amrit
Bedi. A survey on the possibilities & impossibilities of ai-generated text detection. Transactions on
Machine Learning Research (TMLR), 2023.

[24] David Güera and Edward J Delp. Deepfake video detection using recurrent neural networks. In IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS), pages 1–6, 2018.

[25] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with data flow. In
International Conference on Learning Representations (ICLR), 2021.

[26] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

[27] Hanxi Guo, Siyuan Cheng, Xiaolong Jin, Zhuo Zhang, Kaiyuan Zhang, Guanhong Tao, Guangyu Shen,
and Xiangyu Zhang. Biscope: Ai-generated text detection by checking memorization of preceding tokens.
Advances in Neural Information Processing Systems (NeurIPS), 37:104065–104090, 2024.

[28] Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah
Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot detection of
machine-generated text. In International Conference on Machine Learning (ICML), 2024.

[29] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems (NeurIPS), 33:6840–6851, 2020.

[30] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen
Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186, 2024.

[31] James Hutson. Rethinking plagiarism in the era of generative ai. Journal of Intelligent Communication,
3(2):20–31, 2024.

[32] Oseremen Joy Idialu, Noble Saji Mathews, Rungroj Maipradit, Joanne M Atlee, and Mei Nagappan.
Whodunit: Classifying code as human authored or gpt-4 generated-a case study on codechef problems. In
International Conference on Mining Software Repositories (MSR), pages 394–406, 2024.

[33] Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection of
generated text is easiest when humans are fooled. In Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1808–1822, 2020.

[34] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In International
Conference on Learning Representations (ICLR), 2024.

[35] Patrick Kane. Access the latest 2.0 experimental models in the gemini app., 2025.

[36] Sabrina Kaniewski, Dieter Holstein, Fabian Schmidt, and Tobias Heer. Vulnerability handling of ai-
generated code-existing solutions and open challenges. In Conference on AI, Science, Engineering, and
Technology (AIxSET), pages 145–148, 2024.

[37] Koray Kavukcuoglu. Gemini 2.0 is now available to everyone, 2025.

[38] Mustafa Ali Khalaf. Does attitude towards plagiarism predict aigiarism using chatgpt? AI and Ethics,
5(1):677–688, 2025.

[39] Mohammad Khalil and Erkan Er. Will chatgpt g et you caught? rethinking of plagiarism detection. In
International Conference on Human-Computer Interaction, pages 475–487, 2023.

[40] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara. How secure is code
generated by chatgpt? In IEEE international conference on systems, man, and cybernetics (SMC), pages
2445–2451. IEEE, 2023.

11

[41] Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John Wieting, and Mohit Iyyer. Paraphrasing evades
detectors of ai-generated text, but retrieval is an effective defense. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[42] Thomas Lavergne, Tanguy Urvoy, and François Yvon. Detecting fake content with relative entropy scoring.
In Proceedings of the International Conference on Uncovering Plagiarism, Authorship and Social Software
Misuse (PAN), volume 377, pages 27–31, 2008.

[43] Zongjie Li, Chaozheng Wang, Shuai Wang, and Cuiyun Gao. Protecting intellectual property of large
language model-based code generation apis via watermarks. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 2336–2350, 2023.

[44] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

[45] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatgpt
really correct? rigorous evaluation of large language models for code generation. Advances in Neural
Information Processing Systems (NeurIPS), 36:21558–21572, 2023.

[46] Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Codex-
embed: A generalist embedding model family for multiligual and multi-task code retrieval. arXiv preprint
arXiv:2411.12644, 2024.

[47] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[48] Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via rewriting.
In International Conference on Learning Representations (ICLR), 2024.

[49] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli, Simone Scalabrino, Rocco
Oliveto, and Gabriele Bavota. On the robustness of code generation techniques: An empirical study on
github copilot. In International Conference on Software Engineering (ICSE), pages 2149–2160, 2023.

[50] Meta. Llama 3.3: Model cards & prompt formats, 2024.

[51] Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. Detectgpt:
Zero-shot machine-generated text detection using probability curvature. In International Conference on
Machine Learning (ICML), pages 24950–24962. PMLR, 2023.

[52] Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Massimiliano
Di Penta. Is this snippet written by chatgpt? an empirical study with a codebert-based classifier. arXiv
preprint arXiv:2307.09381, 2023.

[53] Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio, Riccardo Rubei, Davide Di Ruscio, and Massimiliano
Di Penta. Gptsniffer: A codebert-based classifier to detect source code written by chatgpt. Journal of
Systems and Software, 214:112059, 2024.

[54] Sanghak Oh, Kiho Lee, Seonhye Park, Doowon Kim, and Hyoungshick Kim. Poisoned chatgpt finds work
for idle hands: Exploring developers’ coding practices with insecure suggestions from poisoned ai models.
In IEEE Symposium on Security and Privacy (S&P), pages 1141–1159, 2024.

[55] OpenAI. Introducing ChatGPT, 2022.

[56] OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024.

[57] OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning, 2025.

[58] Daniil Orel, Dilshod Azizov, and Preslav Nakov. Codet-m4: Detecting machine-generated code in
multi-lingual, multi-generator and multi-domain settings. arXiv preprint arXiv:2503.13733, 2025.

[59] Wei Hung Pan, Ming Jie Chok, Jonathan Leong Shan Wong, Yung Xin Shin, Yeong Shian Poon, Zhou Yang,
Chun Yong Chong, David Lo, and Mei Kuan Lim. Assessing ai detectors in identifying ai-generated code:
Implications for education. In International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), pages 1–11, 2024.

[60] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic evaluation
of machine translation. In Annual Meeting of the Association for Computational Linguistics (ACL), pages
311–318, 2002.

12

[61] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github copilot’s code contributions. In IEEE Symposium on
Security and Privacy (S&P), pages 754–768, 2022.

[62] Hung Pham, Huyen Ha, Van Tong, Dung Hoang, Duc Tran, and Tuyen Ngoc Le. Magecode: Machine-
generated code detection method using large language models. IEEE Access, 2024.

[63] Sundar Pichai, Demis Hassabis, and Koray Kavukcuoglu. Introducing gemini 2.0: our new ai model for
the agentic era, 2024.

[64] Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceedings of the
first instructional conference on machine learning, volume 242, pages 29–48. Citeseer, 2003.

[65] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297, 2020.

[66] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386, 1958.

[67] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, and Matthias
Nießner. Faceforensics: A large-scale video dataset for forgery detection in human faces. arXiv preprint
arXiv:1803.09179, 2018.

[68] Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi. Can
ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

[69] Timur Sağlam, Sebastian Hahner, Larissa Schmid, and Erik Burger. Automated detection of ai-obfuscated
plagiarism in modeling assignments. In International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET), pages 297–308, 2024.

[70] Yuling Shi, Hongyu Zhang, Chengcheng Wan, and Xiaodong Gu. Between lines of code: Unraveling the
distinct patterns of machine and human programmers. In International Conference on Software Engineering
(ICSE), pages 51–62, 2025.

[71] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning (ICML), pages
2256–2265. pmlr, 2015.

[72] Stack Overflow. 2024 Stack Overflow Developer Survey, 2024.

[73] Trevor Stalnaker, Nathan Wintersgill, Oscar Chaparro, Laura A Heymann, Massimiliano Di Penta, Daniel M
German, and Denys Poshyvanyk. Developer perspectives on licensing and copyright issues arising from
generative ai for coding. arXiv preprint arXiv:2411.10877, 2024.

[74] Aiste Steponenaite and Basel Barakat. Plagiarism in ai empowered world. In International Conference on
Human-Computer Interaction, pages 434–442, 2023.

[75] Hyunjae Suh, Mahan Tafreshipour, Jiawei Li, Adithya Bhattiprolu, and Iftekhar Ahmed. An empirical
study on automatically detecting ai-generated source code: How far are we? In International Conference
on Software Engineering (ICSE), 2025.

[76] Florian Tambon, Arghavan Moradi-Dakhel, Amin Nikanjam, Foutse Khomh, Michel C Desmarais, and
Giuliano Antoniol. Bugs in large language models generated code: An empirical study. Empirical Software
Engineering, 30(3):1–48, 2025.

[77] Norbert Tihanyi, Tamas Bisztray, Mohamed Amine Ferrag, Ridhi Jain, and Lucas C Cordeiro. How secure
is ai-generated code: a large-scale comparison of large language models. Empirical Software Engineering,
30(2):1–42, 2025.

[78] Rebeka Tóth, Tamas Bisztray, and László Erdődi. Llms in web development: Evaluating llm-generated php
code unveiling vulnerabilities and limitations. In International Conference on Computer Safety, Reliability,
and Security, pages 425–437, 2024.

[79] Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and Dongwon Lee. Turingbench: A benchmark environ-
ment for turing test in the age of neural text generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2001–2016, 2021.

13

[80] Jaideep Vaidya and Hafiz Asif. A critical look at ai-generate software: Coding with the new ai tools is both
irresistible and dangerous. IEEE Spectrum, 60(7):34–39, 2023.

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems
(NeurIPS), 30, 2017.

[82] Jiexin Wang, Xitong Luo, Liuwen Cao, Hongkui He, Hailin Huang, Jiayuan Xie, Adam Jatowt, and Yi Cai.
Is your ai-generated code really safe? evaluating large language models on secure code generation with
codeseceval. arXiv preprint arXiv:2407.02395, 2024.

[83] Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software developers as
generalist agents. In International Conference on Learning Representations (ICLR), 2025.

[84] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi. Codet5+: Open code large
language models for code understanding and generation. In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1069–1088, 2023.

[85] Yunkai Xiao, Soumyadeep Chatterjee, and Edward Gehringer. A new era of plagiarism the danger of
cheating using ai. In International Conference on Information Technology Based Higher Education and
Training (ITHET), pages 1–6, 2022.

[86] Jialiang Xu, Shenglan Li, Zhaozhuo Xu, and Denghui Zhang. Do llms know to respect copyright notice?
In Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 20604–20619,
2024.

[87] Jinwei Xu, He Zhang, Yanjin Yang, Zeru Cheng, Jun Lyu, Bohan Liu, Xin Zhou, Lanxin Yang, Alberto
Bacchelli, Yin Kia Chiam, et al. Investigating efficacy of perplexity in detecting llm-generated code. arXiv
preprint arXiv:2412.16525, 2024.

[88] Weiwei Xu, Kai Gao, Hao He, and Minghui Zhou. Licoeval: Evaluating llms on license compliance in
code generation. arXiv preprint arXiv:2408.02487, 2024.

[89] Xiaodan Xu, Chao Ni, Xinrong Guo, Shaoxuan Liu, Xiaoya Wang, Kui Liu, and Xiaohu Yang. Distin-
guishing llm-generated from human-written code by contrastive learning. ACM Transactions on Software
Engineering and Methodology, 34(4):1–31, 2025.

[90] Zhenyu Xu and Victor S Sheng. Detecting ai-generated code assignments using perplexity of large language
models. In AAAI Conference on Artificial Intelligence (AAAI), volume 38, pages 23155–23162, 2024.

[91] Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and Yuan Hong. An llm-
assisted easy-to-trigger backdoor attack on code completion models: Injecting disguised vulnerabilities
against strong detection. In USENIX Security Symposium (USENIX Security), pages 1795–1812, 2024.

[92] Xianjun Yang, Kexun Zhang, Haifeng Chen, Linda Petzold, William Yang Wang, and Wei Cheng. Zero-shot
detection of machine-generated codes. arXiv preprint arXiv:2310.05103, 2023.

[93] Tong Ye, Yangkai Du, Tengfei Ma, Lingfei Wu, Xuhong Zhang, Shouling Ji, and Wenhai Wang. Uncovering
llm-generated code: A zero-shot synthetic code detector via code rewriting. In AAAI Conference on
Artificial Intelligence (AAAI), volume 39, pages 968–976, 2025.

[94] Zhiyuan Yu, Yuhao Wu, Ning Zhang, Chenguang Wang, Yevgeniy Vorobeychik, and Chaowei Xiao.
Codeipprompt: intellectual property infringement assessment of code language models. In International
Conference on Machine Learning (ICML), pages 40373–40389, 2023.

[95] Binqi Zeng, Quan Zhang, Chijin Zhou, Gwihwan Go, Yu Jiang, and Heyuan Shi. Inducing vulnerable code
generation in llm coding assistants. arXiv preprint arXiv:2504.15867, 2025.

[96] Ying Zhang, Wenjia Song, Zhengjie Ji, Na Meng, et al. How well does llm generate security tests? arXiv
preprint arXiv:2310.00710, 2023.

[97] Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie
Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image. Advances
in Neural Information Processing Systems (NeurIPS), 36:77771–77782, 2023.

[98] Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. Wilddeepfake: A challenging
real-world dataset for deepfake detection. In Proceedings of the 28th ACM international conference on
multimedia, pages 2382–2390, 2020.

14

To further support and validate our CodeMirage benchmark, we provide the following supplementary
materials:

• Appendix A: Detailed descriptions of the production-level LLMs used in CodeMirage and
their corresponding generation settings.

• Appendix B: Prompts used in the code summarization phase and representative examples.
• Appendix C: Prompts used in the code generation phase and representative examples.
• Appendix D: Domain-specific transformation rules, prompts, used in the code paraphrasing

phase with representative examples.
• Appendix E: Comprehensive statistics and distributions of the CodeMirage dataset.
• Appendix F: Detailed descriptions of the baseline detectors included in our evaluation.
• Appendix G: Supplementary results based on TPR@FPR metrics.
• Appendix H: Extended and detailed experimental results across all evaluation settings.
• Appendix I: Additional discussion on the limitations and future improvement directions.

A Details of Generative Models and Generation Settings

Table 2: Detailed configurations of the production-level LLMs used in CodeMirage.
LLM Name API / Model Path Hyper-Parameter

Claude-3.5-Haiku [3] Anthropic/claude-3-5-haiku-20241022 temperature = 1.0
GPT-4o-mini [56] OpenAI/gpt-4o-mini-2024-07-18 temperature = 1.0

GPT-o3-mini [57] OpenAI/o3-mini-2025-01-31 temperature = 1.0
reasoning_effort = medium

Gemini-2.0-Flash [63] Google/gemini-2.0-flash temperature = 1.0
Gemini-2.0-Flash-Thinking [35] Google/gemini-2.0-flash-thinking-exp-01-21 temperature = 1.0
Gemini-2.0-Pro [37] Google/gemini-2.0-pro-exp-02-05 temperature = 1.0
DeepSeek-V3 [44] deepseek-ai/DeepSeek-V3 temperature = 1.0
DeepSeek-R1 [26] deepseek-ai/DeepSeek-R1 temperature = 1.0
Llama-3.3-70B [50] meta-llama/Llama-3.3-70B-Instruct temperature = 0.6
Qwen-2.5-Coder-32B [30] Qwen/Qwen2.5-Coder-32B-Instruct temperature = 0.7

In CodeMirage, we adopt ten widely used production-level LLMs from six leading AI compa-
nies, including three reasoning models. Detailed configurations and generation settings for these
models are presented in Table 2. For key generation hyper-parameters such as temperature and
reasoning_effort, we use either default values or officially recommended settings to reflect
realistic usage. Importantly, we avoid setting temperature to zero, as doing so would produce
overly deterministic outputs that are easier to detect. Instead, we adopt general-purpose settings for
high-quality while more diverse and less predictable code generation.

B Additional Details of AI Code Summarization

To generate high-quality and representative summaries that comprehensively describe the charac-
teristics of a code sample while preventing the leakage of concrete code, we design a structured
summarization prompt covering eight key aspects. We then prompt the LLMs to act as summarizers,
generating summaries based on the input code file using this carefully crafted prompt. The full
summarization prompt used in CodeMirage is as follows:

� Summarization Prompt

Analyze the provided code snippet and generate a concise and informative description of its functionality,
purpose, and design. Avoid directly including or mirroring the given code. Focus on abstracting the logic,
functionality, and intent.

Follow the output format:

1. Purpose: A high-level summary of what the code is intended to achieve.

15

2. Functionality: Describe the main tasks performed by the code, including inputs, outputs, and their
roles, without referencing exact code or variable names.

3. Logic Overview: Explain the key logic, algorithms, or patterns conceptually, avoiding specific code
structures or syntax.

4. Key Features: Highlight unique approaches or techniques without mentioning explicit implementation
details.

5. Key Libraries: Include the key libraries used in the code snippet.

6. Key Functions: Include the key function names used in the code snippet.

7. Key Class, Structure, Variable: Include the key class, structure, and variable names used in the code
snippet.

8. Contextual Notes (optional): Any assumptions, dependencies, or inferred background information.

Below, we present a concrete Python code example with the summary generated by GPT-o3-mini [57],
illustrating the consistency and descriptive quality of the summarization process in CodeMirage.

D Python Summary Example

Human-Written Code
import logging
import voluptuous as vol
from homeassistant.components.binary_sensor import

(BinarySensorDevice , PLATFORM_SCHEMA , SENSOR_CLASSES_SCHEMA)
from homeassistant.components import enocean
from homeassistant.const import (CONF_NAME , CONF_ID , CONF_SENSOR_CLASS)
import homeassistant.helpers.config_validation as cv

_LOGGER = logging.getLogger(__name__)
DEPENDENCIES = [’enocean ’]
DEFAULT_NAME = ’EnOcean binary sensor ’

PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend ({
...

})

def setup_platform(hass , config , add_devices , discovery_info=None):
...

class EnOceanBinarySensor(enocean.EnOceanDevice , BinarySensorDevice):
def __init__(self , dev_id , devname , sensor_class):

...
@property
def name(self):

...
@property
def sensor_class(self):

...
def value_changed(self , value , value2):

...
...

GPT-o3-mini Generated Summary
1. Purpose: The code integrates binary sensors that communicate using an EnOcean protocol into a larger home automation framework.

It enables sensor events to be received, processed, and dispatched within the automation system.

2. Functionality: The implementation defines a platform component for binary sensors. It validates configuration inputs, creates ...

3. Logic Overview: The code establishes a configuration schema to ensure correct setup parameters. It then creates a ...

4. Key Features: Validates configuration using a dedicated schema to ensure data consistency. Leverages inheritance to ...

5. Key Libraries: Logging, Voluptuous for configuration validation, ...

6. Key Functions: ... An event handler method that processes changes in sensor values and triggers events ...

7. Key Class, Structure, Variable: A sensor class that ... , Variables for device identification, sensor naming, ...

8. Contextual Notes: The design assumes integration within a home automation ecosystem where components communicate via ...

For more examples and summaries across different programming languages and generative models,
please refer to our CodeMirage dataset.

16

C Additional Details of AI Code Generation

After generating a comprehensive yet concise summary of the human-written code, we prompt LLMs
to produce corresponding AI-generated versions. To preserve structural consistency, we explicitly
include the statistical properties (e.g., line of code and character length) of the original code in the
prompt. The complete code generation prompt used in CodeMirage is presented below:

� Code Generation Prompt

Generate a {Language} code snippet with around {Line_of_Code} lines and {Char_Length} character
length following the description. Only output the code, no any other information.

{Summary}

The generated code is then passed through a rule-based inspector, as described in subsection 3.1, to
filter out overly short, overly long, or null outputs. Below, we show a Python code example generated
by GPT-o3-mini [57], based on the summary presented in Appendix B:

D AI-Generated Python Example

GPT-o3-mini Code Generation
import logging
import voluptuous as vol
from homeassistant.const import CONF_NAME , CONF_DEVICE_ID
...
DOMAIN = "enocean_binary_sensor"
CONF_SENSOR_TYPE = "sensor_type"
...
class EventBus:

def fire(self , event_type , event_data):
...

class EnOceanDevice:
def __init__(self , device_id):

...
def send_message(self , message):

...
...
class BinarySensorDevice:

...
class EnOceanBinarySensor(EnOceanDevice , BinarySensorDevice):

...
...
if __name__ == "__main__":

logging.basicConfig(level=logging.DEBUG)
hass = Hass()
config = {

CONF_DEVICE_ID: "enocean_001",
...

}
setup_platform(hass , config)

We observe that though the detailed implementation of the AI-generated code differs from the
human-written version, it employs the same key libraries and similar variables to achieve comparable
functionality, illustrating the quality of the AI-generated code. More examples are presented in
CodeMirage dataset.

D Additional Details of AI Code Paraphrasing

We further evaluate the robustness of detectors under adversarial paraphrasing, a prevalent and
practical challenge in real-world applications. Our adversarial setup is grounded in prompt-based
paraphrasing, which represents one of the most accessible and commonly used evasion strategies
in practice. Unlike prior works on natural language paraphrasing [41, 68], which rely on generic
and concise prompts, we propose a code-specific paraphrasing prompt tailored to the programming
domain. This prompt incorporates seven transformation strategies specifically designed for source
code. The full prompt is provided below:

17

� Paraphrasing Prompt

Transform the given code to bypass AI-generated code detectors by mimicking human coding styles. Make
structural, stylistic, and naming changes while preserving exact functionality. Apply the following:

1. Rename variables, functions, and classes with meaningful, human-like names.

2. Adjust formatting (indentation, spacing, line breaks) and reorganize imports logically.

3. Rewrite logic with equivalent constructs (e.g., refactor loops, conditionals).

4. Replace common standard library functions with alternatives or custom helpers.

5. Vary expressions (e.g., ‘a + b’ → ‘sum([a, b])’) and simplify inline logic into reusable functions.

6. Transform literals (e.g., single vs. double quotes, ‘10’ → ‘0xA’) and reorder independent code blocks.

7. Add subtle redundancies (e.g., intermediate variables) to resemble human-written code.

Keep the line of code and character length similar to the original code and only output the transformed
code. No any other additional text and information.

We then apply the paraphrasing prompt to the AI-generated code sample and obtain its paraphrased
version. Below, we present the paraphrased code example produced by GPT-o3-mini [57], based on
the AI-generated example provided in Appendix C.

D AI-Paraphrased Python Example

GPT-o3-mini Paraphrased Code
import logging
import voluptuous as schema_validator

from homeassistant.const import CONF_NAME , CONF_DEVICE_ID
import homeassistant.helpers.config_validation as config_val

logger = logging.getLogger(__name__)
SENSOR_DOMAIN = ’enocean_binary_sensor ’
KEY_SENSOR_KIND = ’sensor_type ’
...
SensorConfigSchema = schema_validator.Schema ({

...
})

class SimulatedEventBus:
def trigger(self , event_category , particulars):

...
...

class BaseEnOceanDevice:
def __init__(self , dev_identifier):

...
def dispatch_message(self , msg_payload):

...
class BasicBinarySensor:

...
class EnOceanSensorClient(BaseEnOceanDevice , BasicBinarySensor):

...
...
if __name__ == ’__main__ ’:

logging.basicConfig(level=logging.DEBUG)
simulated_hass = SimulatedHomeAssistant ()
input_configuration = {

...
}
initialize_platform(simulated_hass , input_configuration)

Compared to the original AI-generated code, the paraphrased version uses different aliases for
imported libraries, introduces redundant classes and variables, and modifies function and class names
with different implementations, while preserving the overall program functionality. Additional
examples can be found in the full CodeMirage dataset.

18

Table 3: CodeMirage’s data quantity statistics across different LLMs and programming languages.
LLM Paraphrase Python Java JavaScript C++ C C# Go Ruby PHP HTML

Human ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Claude-3.5-Haiku ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

DeepSeek-R1 ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 999 1,000 999 1,000 1,000 1,000 1,000

DeepSeek-V3 ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Gemini-2.0-Flash ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Gemini-2.0-Flash-Thinking ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Gemini-2.0-Pro ✗ 1,000 1,000 1,000 1,000 1,000 998 1,000 1,000 998 999
✓ 1,000 1,000 1,000 1,000 1,000 998 1,000 1,000 998 999

GPT-4o-mini ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Llama-3.3-70B ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

GPT-o3-mini ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Qwen-2.5-Coder-32B ✗ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
✓ 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

E Additional Statistics of CodeMirage’s Dataset

In subsection 3.2, we present the detailed data quality statistics of the CodeMirage dataset across
eight metrics. In this section, we further provide data quantity statistics, as shown in Table 3. For both
human-written code and most AI-generated code, we collect or craft 1,000 samples per programming
language (700 for training and 300 for test). However, some LLMs do not achieve this target for
specific languages — e.g., Gemini-2.0-Pro [37] on C# — due to generation refusals caused by
the model’s output filtering policies. Despite these occasional omissions, the overall quality of
CodeMirage’s dataset remain unaffected.

F Additional Details of Baseline Detectors

In this section, we provide additional introduction and implementation details for each of the ten
baseline detectors evaluated in CodeMirage.

LogRank [22] & Entropy [42]. These two baseline detectors represent classic zero-shot detection
approaches that rely on pretrained LLMs. The underlying intuition is that LLMs are more familiar
with AI-generated text or code, resulting in lower token-level log-rank or entropy values compared
to human-written content. Both methods compute the average token-level statistic (log-rank or
entropy) over the input, which is then used as the detection score. In CodeMirage, we imple-
ment these detectors using the state-of-the-art open-source pretrained model Llama-3.2-3B-Instruct
(meta-llama/Llama-3.2-3B-Instruct) as the scoring backbone.

Binoculars [28]. Binoculars is a state-of-the-art zero-shot detector based on the insight that AI-
generated text or code tends to receive more consistent scores across different LLMs than human-
written content. To exploit this property, the method feeds the input simultaneously into two distinct
LLMs and computes a novel cross-perplexity metric as the detection score. In CodeMirage, we adopt
the official implementation1 of Binoculars to ensure reproducibility and optimized performance.

Embed-Code [75] & Embed-AST [75]. These two embedding-based methods leverage pretrained
code embedding models to extract semantic representations of entire code files. Embed-Code encodes
the raw source code directly, while Embed-AST first parses the code into its abstract syntax tree
(AST) using tree-sitter2, and then encodes the AST. The embeddings are then passed to a supervised

1https://github.com/ahans30/Binoculars
2https://github.com/tree-sitter/tree-sitter

19

https://github.com/ahans30/Binoculars
https://github.com/tree-sitter/tree-sitter

M
et

ric
 S

co
re

0

0.5

1.0

Detection Method
LogRank

Entropy

Binoculars

Embed-Code

Embed-AST

GPTSniffe
r

CodeT5+

RoBERTa
Raidar

BiScope

M
et

ric
 S

co
re

0

0.5

1.0

Detection Method
LogRank

Entropy

Binoculars

Embed-Code

Embed-AST

GPTSniffe
r

CodeT5+

RoBERTa
Raidar

BiScope

M
et

ric
 S

co
re

0

0.5

1.0

Detection Method
LogRank

Entropy

Binoculars

Embed-Code

Embed-AST

GPTSniffe
r

CodeT5+

RoBERTa
Raidar

BiScope

M
et

ric
 S

co
re

0

0.5

1.0

Detection Method
LogRank

Entropy

Binoculars

Embed-Code

Embed-AST

GPTSniffe
r

CodeT5+

RoBERTa
Raidar

BiScope

(a) In-Distribution (b) Paraphrase

(c) Cross-Model (d) Cross-Model Paraphrase

F1 Score TPR@FPR=10% TPR@FPR=1%

Figure 6: Comparison Between Different Evaluation Metrics. The bar charts illustrate the average
F1 scores of baseline detectors on different LLMs across programming languages.

classifier for detection. In CodeMirage, we employ the latest CodeXEmbed-2B [46] model as the
embedding model and use a Random Forest [6] classifier as the downstream detector.

GPTSniffer [52, 53]. GPTSniffer is a state-of-the-art fine-tuning-based detector that leverages the
code-related capability of CodeBERT [19]. It is fine-tuned on a labeled dataset consisting of both
human-written and AI-generated code samples, and evaluated on unseen test data. In CodeMirage,
we adopt training hyperparameters consistent with prior work [58]: 5 training epochs, a learning rate
of 3e-4, weight decay of 1e-3, and a warmup ratio of 0.1. We train GPTSniffer on CodeMirage’s
training set and evaluate on CodeMirage’s test set.

CodeT5+ [84] & RoBERTa [47]. These two fine-tuning-based detectors follow the same training
pipeline as GPTSniffer, but utilize different backbone models: the latest CodeT5+ [84] and the classic
RoBERTa [47]. In CodeMirage, we use the same training hyperparameters and evaluation settings as
those employed for GPTSniffer to ensure a fair comparison.

Raidar [48]. Raidar is based on the observation that LLMs tend to modify a greater proportion of
human-written content compared to AI-generated content. It hence uses multiple prompts to instruct
an LLM to rewrite the input and then computes a set of numerical features (e.g., Bag-of-Words edit
distance and Levenshtein score). These features are used to train a downstream classifier as the
final detector. In CodeMirage, we adopt the latest GPT-4.1-nano3 as the rewriting model, which is
stronger than the original GPT-3.5-Turbo used in Raidar. We also follow the official implementation4

to extract features and train the detection model.

BiScope [27]. BiScope is a state-of-the-art detector that leverages a pre-trained LLM to extract
bi-directional entropy features, which are then used to train a lightweight downstream classifier.
The bi-directional entropy is designed to capture both next-token prediction (forward entropy) and
previous-token memorization (backward entropy) from the model’s output logits. In CodeMirage,
we use Llama-3.2-3B-Instruct (meta-llama/Llama-3.2-3B-Instruct) as the feature extractor
for BiScope, consistent with the scoring model used in LogRank and Entropy. A Random Forest [6]
classifier is employed as the downstream detector.

G Evaluation Results of Additional Metrics

The results appear in Figure 6, where the x-axis lists the detection methods and the y-axis shows their
metric values. As before, each bar reflects the mean performance across ten programming languages
and ten LLMs, with error bars indicating one standard deviation. The figure is divided into four

3https://platform.openai.com/docs/models/gpt-4.1-nano
4https://github.com/cvlab-columbia/raidarllmdetect

20

https://platform.openai.com/docs/models/gpt-4.1-nano
https://github.com/cvlab-columbia/raidarllmdetect

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.7
0.8
0.9
1.0

(a) C (b) C++ (c) C# (d) Go (e) HTML

(f) Java (g) JavaScript (h) PHP (i) Python (j) Ruby

CodeT5+ GPTSniffer RoBERTa Raidar BiScope LogRank Entropy Binoculars Embed-Code Embed-AST

Figure 7: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the in-distribution configuration.

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

(a) C (b) C++ (c) C# (d) Go (e) HTML

(f) Java (g) JavaScript (h) PHP (i) Python (j) Ruby

CodeT5+ GPTSniffer RoBERTa Raidar BiScope LogRank Entropy Binoculars Embed-Code Embed-AST

Figure 8: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the paraphrase configuration.

panels, each corresponding to a different evaluation configuration. Despite decent F1 scores across
the board, all detectors suffer a dramatic drop in true-positive rate once the false-positive rate is
constrained (e.g., TPR@FPR=1% is generally lower than 0.3), showing that they fail to catch enough
positives under realistic, low-alarm requirements and are therefore impractical.

H Additional Evaluation Results

In this section, we present the complete F1 scores of all baseline detectors evaluated across different
LLMs and programming languages. Specifically, Figure 7 shows the results under the in-distribution
configuration, while Figure 8 reports the scores under the paraphrase configuration. Figure 9
illustrates the results under the cross-model configuration, and Figure 10 presents the scores under
the cross-model paraphrase configuration.

These comprehensive results are consistent with the trends discussed in section 4, further validating
the key findings derived from the CodeMirage evaluation.

21

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

(a) C (b) C++ (c) C# (d) Go (e) HTML

(f) Java (g) JavaScript (h) PHP (i) Python (j) Ruby

CodeT5+ GPTSniffer RoBERTa Raidar BiScope LogRank Entropy Binoculars Embed-Code Embed-AST

Figure 9: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the cross-model configuration.

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

 3.5
Haiku

DS
R1

DS
V3

G2.0
Flash

G2.0
Flash-T

G2.0
Pro

4o
mini

o3
mini

Llama 3.3
70B

Qwen2.5
Coder

0.2
0.4
0.6
0.8
1.0

(a) C (b) C++ (c) C# (d) Go (e) HTML

(f) Java (g) JavaScript (h) PHP (i) Python (j) Ruby

CodeT5+ GPTSniffer RoBERTa Raidar BiScope LogRank Entropy Binoculars Embed-Code Embed-AST

Figure 10: Complete F1 scores of all baseline detectors across various LLMs and programming
languages under the cross-model paraphrase configuration.

I Limitations and Future Work

While CodeMirage represents a significant step toward a more comprehensive evaluation of AI-
generated code detectors, several limitations remain and could be addressed in future work.

First, though CodeMirage includes a broad set of programming languages, LLMs, and detectors,
it does not exhaustively cover all possibilities. Additional languages, particularly those less com-
monly used in mainstream software development but still important in specific domains, remain
unexplored. Similarly, many emerging LLMs and detection techniques are not included in the current
benchmark. Future work could expand CodeMirage to incorporate these newly emerged models and
underrepresented languages, enabling broader and more inclusive evaluations.

Second, CodeMirage focuses exclusively on prompt-based paraphrasing attacks in its adversarial
setting, given their practicality and prevalence in real-world coding. However, a wider spectrum of
adversarial techniques, especially those designed for the natural language domain, could be explored.
Future efforts could adapt adversarial strategies against natural language detection to the code domain
or propose novel code-specific attack paradigms to more rigorously evaluate detector robustness.

22

Third, CodeMirage centers on document-level detection where AI-generated code files are fully
generated by LLMs. In practice, however, AI coding assistants often generate partial code completions
embedded in human-written code. Evaluating detection methods under mixed-authored code with
different granularities could be an important direction for future benchmarks and detection methods.

Despite these limitations, CodeMirage advances the field by offering a more comprehensive and
realistic evaluation benchmark compared to prior work [75, 59, 14, 62, 58, 87]. We believe the insights
obtained and evaluation platform established by CodeMirage will serve as a strong foundation for
developing more robust and generalizable AI-generated code detectors.

23

	Introduction
	Background and Related Work
	Taxonomy of AI-Generated Code Detection Methods
	Existing AI-generated Code Datasets and Benchmarks

	CodeMirage Framework
	Benchmark Construction
	Benchmark Statistics
	Baseline Detectors
	Evaluation Metrics
	Evaluation Configurations

	Evaluation Results and Insights
	Comparison Between Evaluation Configurations and Detectors
	Comparison Between Different Programming Languages
	Comparison Between Different LLMs
	Comparison Between Different Evaluation Metrics

	Conclusion
	Details of Generative Models and Generation Settings
	Additional Details of AI Code Summarization
	Additional Details of AI Code Generation
	Additional Details of AI Code Paraphrasing
	Additional Statistics of CodeMirage's Dataset
	Additional Details of Baseline Detectors
	Evaluation Results of Additional Metrics
	Additional Evaluation Results
	Limitations and Future Work

