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Abstract

In this paper, we evaluate the ability of Large001
Language Models (LLMs) to assess the verac-002
ity of claims in “news reports” generated by003
themselves or other LLMs. Our goal is to deter-004
mine whether LLMs can effectively fact-check005
their own content, using methods similar to006
those used to verify claims made by humans.007
Our findings indicate that LLMs are more ef-008
fective at assessing claims in national or inter-009
national news stories than in local news stories,010
better at evaluating static information than dy-011
namic information, and better at verifying true012
claims compared to false ones. We hypothe-013
size that this disparity arises because the for-014
mer types of claims are better represented in015
the training data. Additionally, we find that016
incorporating retrieved results from a search017
engine in a Retrieval-Augmented Generation018
(RAG) setting significantly reduces the num-019
ber of claims an LLM cannot assess. However,020
this approach also increases the occurrence of021
incorrect assessments, partly due to irrelevant022
or low-quality search results. This diagnostic023
study highlights the need for future research on024
fact-checking machine-generated reports to pri-025
oritize improving the precision and relevance026
of retrieved information to better support fact-027
checking efforts. Furthermore, claims about028
dynamic events and local news may require029
human-in-the-loop fact-checking systems to en-030
sure accuracy and reliability.031

1 Introduction032

Large Language Models (LLMs) have revolution-033

ized the field of Natural Language Processing034

(NLP), effortlessly performing tasks that were tra-035

ditionally considered highly challenging. Their036

performance is particularly impressive in generat-037

ing natural language text. Models like GPT-4 can038

generate coherent, fluent summaries, accurately039

translate text between languages (especially those040

with a strong online presence and ample training041

data), and refine human writing to enhance flu- 042

ency and appropriateness in tone and style for spe- 043

cific purposes. This technology has the potential 044

to significantly increase productivity across many 045

industries, offering endless applications. However, 046

with this potential also come risks if they are not 047

used properly. One of the main risks is that they 048

can be easily used to generate convincing and yet 049

factually incorrect text, either intentionally or unin- 050

tentionally. For example, with a simple prompt like 051

“Generate a news report about volcano eruption in 052

Massachusetts, USA”, GPT-4 can generate a news 053

report starting with this first paragraph: 054

“Massachusetts, USA – May 29, 2024 – 055

In an unprecedented and shocking event, 056

a volcanic eruption has occurred in the 057

state of Massachusetts, an area not typ- 058

ically associated with volcanic activity. 059

The eruption took place early this morn- 060

ing in the central part of the state, near 061

the town of Worcester, sending residents 062

and scientists alike into a state of disbe- 063

lief and concern.” 064

Although there has never been a volcanic erup- 065

tion in reality, the news report is coherent and fluent. 066

Coupled with modern media platforms, such LLM- 067

generated content can quickly spread and reach a 068

large audience. An example is the emergence of AI 069

“news” farms that produce news reports with LLMs 070

to generate advertising revenue with little concern 071

for their impact on society (Puccetti et al., 2024). 072

The machine-generated reports can cause confu- 073

sion and chaos and disrupt the proper functioning 074

of the society. In fact, studies show that false news 075

tends to spread “farther, faster, deeper” than true 076

news, as it often contains novel content that people 077

are more likely to share (Vosoughi et al., 2018). 078

In this study, we present experimental results 079

to answer the questions of whether LLMs are ca- 080

pable of telling if the news stories they generate 081
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are truthful and how well they can catch factually082

incorrect claims in those news stories. We gener-083

ated 92 news stories with a simple prompt such084

as “Write a story about Kobe Bryant rejoining the085

Lakers” with two LLMs, GPT-4o (OpenAI et al.,086

2024) and GLM (Du et al., 2022), all stories with087

some incorrect claims. These false stories vary by088

how untruthful they are. Some stories report events089

that are simply impossible, such as a story about090

Kobe Byrant rejoining the Lakers, as the former091

Lakers star has passed away. Some stories report092

events that are not out of the realm of possibilities093

but are highly unlikely, such as a volcano eruption094

in Massachusetts, as the area is not known for vol-095

canic activities. Other stories are about events that096

have actually happened or are scheduled to happen,097

but with the wrong time, location, or participants.098

We performed our experiments in two settings.099

In the first setting, we simply provided the full story100

to GPT-4o and GLM as input and asked if they are101

truthful. In the second setting, we manually decom-102

pose each story into individual checkable atomic103

claims. A checkable claim can be either an event104

with specific participants, location, or time, or they105

can be a state (e.g., Massachusetts borders New106

Hampshire) or recurring event that holds for an ex-107

tended period of time such that the exact time is ir-108

relevant. We perform manual “decontexutalization”109

(Choi et al., 2021) on these checkable claims so that110

they can be verified outside of the context of their111

document. For this setting, we also experimented112

with using these checkable claims as queries, pro-113

viding the results retrieved via the Google Search114

Serper Api 1 to GPT-4 to assist in evaluating the ve-115

racity of the claims within a Retrieval-Augmented116

Generation (RAG) framework (Lewis et al., 2020).117

The results of our experiments show that GPT-118

4o and GLM are very good at detecting stories119

that contain incorrect claims (and all of them do)120

when they involve well-known entities (e.g., Kobe121

Bryant rejoining the Lakers), but they are quite un-122

certain about recent events that are unlikely. At123

the level of atomic claims, a significant proportion124

of them are incorrectly assessed: either a factually125

correct claim is judged to be wrong or a factually126

wrong claim is identified as being correct. For an127

even larger proportion of atomic claims, the LLMs128

simply cannot decide. When provided with results129

retrieved via the Google Search Serper Api, the130

number of non-assessments decreases significantly,131

1https://serper.dev/

accompanied by an increase in both correct and 132

incorrect assessments. Interestingly, even when 133

the Google Search Serper Api returns no results 134

for a claim, GPT-4 still attempts to provide an as- 135

sessment instead of declining to answer. It appears 136

that simply knowing no results were retrieved is 137

enough to prompt GPT-4 to make a guess. Even 138

with RAG, there is still a significant proportion 139

of claims that the LLM cannot provide an assess- 140

ment. This means that any solution to fact-checking 141

machine-generated news reports needs to include 142

functionalities on checking claims about new event 143

occurrences that are not checkable against existing 144

knowledge sources. While there has been recent 145

research that shows the promise of using exter- 146

nal resources or tools to improve the factuality of 147

LLMs (Gou et al., 2023), such an approach is not 148

applicable to fact-checking machine-generate news 149

stories and novel human-in-the-loop methods may 150

need to be developed to check such claims. 151

The rest of the paper is organized as follows. In 152

Section 2, we discuss related work. In Section 3, 153

we present our method for generating news sto- 154

ries, extract “atomic” claims, using LLMs to assess 155

the veracity of these stories and claims, and manu- 156

ally verifying the assessments performed by LLMs 157

themselves. We present experimental results in 158

Section 4, and discuss these results in Section 5. 159

We conclude in Section 6. 160

2 Related Work 161

Fact-checking human or machine-generated 162

content. There is an active NLP research com- 163

munity focused on developing automatic methods 164

to fact-check false claims, such as those made by 165

politicians (Nakov et al., 2021; Deng et al., 2024; 166

Yuan and Vlachos, 2024; Schlichtkrull et al., 2024). 167

There is also more recent work on fact-checking 168

machine-generated content (Min et al., 2023; Wang 169

et al., 2024; Fadeeva et al., 2024). Previous work 170

on fact-checking false claims made by either hu- 171

mans or machines typically assume there is an in- 172

formation source, usually a published source on the 173

Internet, against which the claims can be checked. 174

However, events reported in machine-generated 175

news stories that we are interested in, such as the 176

volcano eruption example, are often assumed to 177

be new occurrences that cannot be cross-verified 178

against any existing public sources, although they 179

may still contain claims about the real world that 180

can be fact-checked. This poses novel challenges 181
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that are not present in people biographies used in182

previous studies (Min et al., 2023; Fadeeva et al.,183

2024).184

3 Method185

Our experiment on fact-checking LLM-generated186

news stories consists of four steps. First, we use187

two LLMs to generate a set of news stories with188

varying levels of factual inaccuracy. Next, from189

these stories, we manually extract verifiable atomic190

claims and decontextualize them, creating stan-191

dalone claims that can be verified independently of192

the original story. In the third step, we prompt each193

LLM to evaluate the veracity of news stories gener-194

ated by itself or the other LLM, as well as to assess195

the individual atomic claims. Finally, we conduct a196

human evaluation to determine the accuracy of the197

LLMs’ veracity assessments.198

3.1 News Report Generation with LLMs199

To evaluate the claim verification capabilities of200

GPT and GLM, we first prompt both models to gen-201

erate a set of 92 news articles, including 47 news202

artiles generated by GPT-4o and 44 articles gen-203

erated by GLM. Each prompt is designed around204

scenario-based inputs that intentionally contain fac-205

tual inconsistencies. The following is an example206

prompt that contains a time error, as the time of207

2024 Australian Open women’s final is January 27,208

not January 20:209

"Generate a news report about Aryna210

Sabalenka winning the 2024 Australian211

Open Women’s final, held at Rod Laver212

Arena on January 20, as Aryna Sa-213

balenka beat Zheng Qinwen (6-3, 6-2)."214

All these inconsistencies are designed around215

four critical aspects of a scenario: the event itself,216

along with its time, location, and participants. To217

rigorously test the models’ understanding of both218

nationally recognized and locally relevant informa-219

tion, we control the scope of the generated content220

by introducing both local and national news cate-221

gories. The distinction between these categories222

serves as a critical factor in our evaluation, allowing223

us to evaluate how effectively each model handles224

claims involving specific local information versus225

those based on widely known national knowledge.226

This is motivated by prior research suggesting that227

LLMs may have greater exposure to widely dis-228

cussed national or international events, given the229

nature of the large, diverse datasets they are trained 230

on (Kandpal et al., 2023). When generating the 231

news stories, we ensure that the same general tem- 232

plate is used for all prompts, varying only the sce- 233

narios for each different story. By using consis- 234

tent prompts, we ensure that differences in model 235

performance can be attributed to the model’s capa- 236

bilities rather than variability in the inputs. This 237

approach allows us to build a diverse and repre- 238

sentative dataset that rigorously tests each LLM’s 239

ability to identify and evaluate issues across differ- 240

ent aspects of the generated content. 241

3.2 Manual claim Extraction 242

After generating the news reports, we manually 243

extracted all checkable claims from the GPT- 244

generated content. Each claim is a clear, verifi- 245

able statement with specific details such as time, 246

location, participants, or events. We adhered to 247

criteria that required each checkable claim to con- 248

tain precise, unambiguous information—such as 249

exact dates, locations, or identifiable participants. 250

Vague or generic statements, like “Sabalenka had 251

a great match” were excluded, as they lack objec- 252

tive, verifiable details. This approach ensured that 253

only claims containing concrete, factual informa- 254

tion were selected for manual extraction. We man- 255

ually decontextualize claims by resolving pronomi- 256

nal and other anaphoric expressions, and by supple- 257

menting events with time, location, and participant 258

details when they are clear from the context, ensur- 259

ing that each claim is independently verifiable. 260

The following are example claims illustrating 261

various types of factual inaccuracies: 262

• Time error: “Aryna Sabalenka triumphed 263

over Zheng Qinwen to win the 2024 Aus- 264

tralian Open Women’s final at Rod Laver 265

Arena on January 20, 2024.” 266

• Location error: “Aryna Sabalenka played 267

against Zheng Qinwen in the 2024 Australian 268

Open Women’s final at Margaret Court Arena 269

on January 27.” 270

• Event error: “In the third set of the 271

2024 Australian Open Women’s Final 272

at Rod Laver Arena on January 27, 273

Zheng Qinwen broke Aryna Sabalenka’s serve 274

at 5-5 and won the set 7-5 to clinch the 275

championship.” 276

• Participant and location error: 277

“Naomi Osaka and Iga Swiatek are bat- 278

tling for the prestigious Grand Slam title at 279
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the 2024 Australian Open Women’s Final280

at the Margaret Court Arena on January 27,281

2024.”282

Each article typically yields between 10-20283

checkable decontextualized claims, depending on284

its length and complexity. This process ensures285

that the claims include all the necessary contextual286

information required for verification, maintaining287

the integrity and relevance of the claims within288

the broader context of the news reports. From the289

92 articles we have extracted 1,337 total atomic290

claims, including 697 claims from the 47 news re-291

ports generated by GPT-4o, and 640 claims from292

the 44 reports generated by GLM.293

3.3 Claim verification with LLMs294

Both GPT-4o and GLM models are tasked with295

verifying the veracity of each entire article as well296

as each atomic claim. To assess claim veracity, we297

prompted GPT-4o and GLM to evaluate the accu-298

racy of all 92 news articles and their corresponding299

atomic claims. The following are the prompts we300

use for the evaluation:301

• Article-level prompt: “Today is August 1st,302

2024. You are a helpful assistant that performs303

the below tasks: verify if the following news304

is accurate or false. Respond as concisely as305

possible.”306

• Claim-level prompt: “Today is August 1st,307

2024. You are a helpful assistant that performs308

the below tasks: verify if the following claim309

extracted from a news report is accurate or310

false. Respond as concisely as possible.”311

The models are first prompted to assess the ve-312

racity of each entire article and provide a rationale313

for their evaluations. They are then prompted to314

evaluate the veracity of each atomic claim extracted315

from the articles, along with a rationale for each316

assessment. Three different prompting approaches317

are used in this pipeline.318

3.3.1 Deterministic Prompting (Temperature319

0.0)320

We prompt the models to provide a singular, deter-321

ministic evaluation for each article or claim. Set-322

ting temperature to 0 minimizes randomness and323

allows us to observe the models’ baseline claim ver-324

ification performance under controlled conditions.325

3.3.2 Self-consistency Prompting 326

(Temperature 1.0) 327

We use a higher temperature setting (1.0) to in- 328

troduce variability in the responses of the models. 329

Models are prompted multiple times (5 times per 330

article / claim in our experiment), and a majority 331

voting mechanism is used to determine the final as- 332

sessment. This setting simulates the potential vari- 333

ability in model reasoning and robustness across 334

multiple prompts. 335

In each instance, the model outputs a determina- 336

tion (correct or false) along with a rationale for its 337

assessment. These rationales are crucial for error 338

analysis, offering insights into whether the model’s 339

reasoning aligns with the factual basis of the claim. 340

3.3.3 RAG Prompting 341

. We queried the Google Search Serper Api with 342

manually extracted atomic claims and incorporated 343

the retrieved results into the prompt for GPT-4 344

when evaluating the veracity of claims within a 345

Retrieval-Augmented Generation (RAG) frame- 346

work. The goal of this experiment was to assess 347

whether providing search results improves the eval- 348

uation accuracy of LLMs. Due to cost constraints 349

and the length limitation of the search engine, we 350

did not perform this experiment with the entire 351

article. Instead, we focused on atomic claims ex- 352

tracted from news reports generated by GPT-4 it- 353

self, assuming the results would generalize to other 354

settings. 355

3.4 Comparing model verification with 356

human judgments 357

To validate the models’ evaluations, we manu- 358

ally verify each claim by conducting targeted web 359

searches and cross-referencing the findings with 360

our existing information. We use independent on- 361

line sources, including reputable news databases, 362

fact-checking websites, and government records. 363

The human judgments serve as the gold standard 364

for evaluating model assessments, enabling us to 365

quantify both false positives and false negatives 366

in the models’ evaluations. Additionally, we per- 367

formed error analysis to understand whether the 368

type of news (local vs. national) had a measurable 369

impact on the model’s performance. Special atten- 370

tion was paid to cases where the models provided 371

no assessment, incorrect reasoning, or inaccurate 372

evaluations. 373
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4 Experiments374

We conduct a comprehensive set of experiments375

to evaluate the performance of GPT-4o and GLM376

models in verifying claims within generated news377

articles. Both models are assessed in the contexts378

of local and national news generation, with claim379

verification performed across all relevant dimen-380

sions. For the claim verification task, we classify381

the assessment results into five possible categories,382

as outlined below:383

• Correct Assessment (CA): The model cor-384

rectly identifies the veracity of the claim with-385

out providing a rationale.386

• Correct Assessment and Correct Reasoning387

(CA/CR): The model correctly identifies the388

veracity of the claim and provides a correct389

justification for its assessment.390

• Correct Assessment and Wrong Reasoning391

(CA/WR): The model correctly classifies the392

claim but with flawed reasoning.393

• Wrong Assessment (WA): The model incor-394

rectly classifies the veracity of the claim.395

• No Assessment (NA): The model fails to pro-396

vide any assessment.397

Generator GPT-4o GLM

Evaluator GPT-4o GPT-4-turbo GLM-4 GPT-4o GPT-4-turbo GLM-4

CA 1 1 0 1 0 0
CA/CR 30 26 37 31 31 31
CA/WR 5 2 1 5 6 2
WA 9 8 8 2 2 10
NA 2 10 1 6 6 2

Total 47 47 47 45 45 45

Table 1: Count of LLM-generated articles for each as-
sessment category

4.1 Entire news articles398

Table 1 presents the performance data of GPT-4399

(gpt-4o-20240806 and gpt-4-turbo-20240409) and400

GLM-4 (GLM-4-0520) in evaluating entire arti-401

cles. Both models were prompted to generate402

news reports, followed by self-evaluation and cross-403

evaluation of the generated articles.404

GPT-4 and GLM-4 demonstrate comparable per-405

formance in the number of correct and incorrect as-406

sessments they produce. In contrast, GPT-4 Turbo407

is more likely to refrain from making assessments,408

reflecting a more cautious approach compared to409

GPT-4o and GLM-4. This suggests that GPT-4-410

turbo prioritizes minimizing errors, even if it results411

in fewer overall judgments.412

4.2 Individual atomic claims 413

In evaluating LLMs in verifying atomic claims, we 414

conducted experiments with GPT-4o and GLM- 415

4 to ensure our findings are generalizable across 416

LLMs. The performance of GPT and GLM models 417

was assessed across different temperature settings 418

to better assess their strengths and limitations in 419

claim verification tasks. Both models were tasked 420

with verifying the veracity of claims extracted from 421

LLM-generated news articles, with their evalua- 422

tions measured using the identical 5-dimensional 423

protocol we use for entire articles. 424

The assessment results are presented in Table 2 425

and we can make severval key observations. First, 426

GPT-4o consistently provides more correct assess- 427

ments (including those with and without correct 428

reasoning) than GLM, regardless of whether it is 429

evaluating claims from articles it generated or those 430

generated by GLM. This trend holds across all tem- 431

perature settings. Interestingly, both GPT-4o and 432

GLM produce more incorrect assessments (WA) 433

when evaluating claims from articles they gener- 434

ated themselves. The most notable finding is the 435

high number of cases with no assessment (NA), 436

with GLM showing a significantly higher number 437

(about 20%) of no assessments than GPT-4. 438

4.2.1 Claims in National vs Local news stories 439

We also attempted to evaluate the ability of LLMs 440

to assess claims in national and local news stories. 441

The following are example claims from national 442

and local news stories we generated with LLMs: 443

• Claims in local news: The free rave hosted 444

by Watertown, MA on July 15, 2024 will be 445

held at Arsenal Park. 446

• Claims in national or international news: 447

The 2024 Paris Olympics opening ceremony 448

is set to take place on July 26. 449

Table 3 presents a comparative error analysis 450

of GPT and GLM models when evaluating claims 451

from national and local news sources, across dif- 452

ferent temperature settings. Errors in assessments 453

include cases where the model provides the cor- 454

rect assessment with wrong reasoning (CA/WR), 455

wrong assessment (WA), or no assessment (NA). 456

As we can see from the table, while GPT slightly 457

outperforms GLM as indicated by the generally 458

lower number of errors, the error rate is relatively 459

consistent across temperatures. 460

The most notable finding is the substantial dif- 461

ference in error rates between the models’ assess- 462
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Generator GPT-4o GLM

Evaluator GPT/0 GPT/1 GLM/0 GLM/1 GPT/0 GPT/1 GLM/0 GLM/1
CA (%) 38(5.45) 44(6.31) 1(0.14) 0(0.00) 15(2.34) 14(2.19) 3(0.47) 5(0.78)
CA/CR(%) 306(43.90) 291(41.75) 271(38.88) 276(39.60) 349(54.53) 353(55.16) 312(48.75) 306(47.81)
CA/WR(%) 5(0.72) 10(1.43) 13(1.87) 15(2.15) 42(6.56) 31(4.84) 24(3.75) 24(3.75)
WA(%) 33(4.73) 42(6.03) 12(1.72) 14(2.00) 9(1.40) 12(1.88) 15(2.34) 29(4.53)
NA(%) 315(45.19) 310(44.48) 400(57.39) 392(56.24) 225 (35.16) 230(35.94) 286(44.69) 276(43.13)

Total 697 697 697 697 640 640 640 640

Table 2: Count and percentage of individual atomic claims for each assessment category across models at different
temperature settings. GPT/0 and GPT/1 indicate GPT at temperature 0 and 1 respectively. Similarly, GLM/0 and
GLM/1 indicate GLM at temperature 0 and 1.

Generator GPT-4o GLM

Evaluator Subt. GPT/0 GPT/1 GLM/0 GLM/1 Subt. GPT/0 GPT/1 GLM/0 GLM/1

National(%) 496 193(38.91) 208(41.94) 252(50.81) 247(49.80) 462 143(30.95) 141(30.52) 194(41.99) 197(42.64)
Local(%) 201 160(79.60) 154(76.62) 173(86.07) 174(86.57) 178 133(74.72) 132(74.16) 131(73.60) 132(74.16)

Total 697 353(50.65) 362(51.94) 425(60.98) 421(60.40) 640 276(43.13) 273(42.66) 325(50.78) 329(51.41)

Table 3: Errors from evaluating claims in national or local news. Each cell represents the percentage of claims that
are incorrectly assessed for that category (national vs local), with the last row representing the number of errors /
the total claims for that generator.

ments of claims from national and local news, with463

significantly higher error rates for local news. One464

possible explanation is that claims in national news465

often pertain to major events or widely recognized466

topics that are well-documented across diverse on-467

line sources, making these claims more likely to468

appear in the models’ training data and thus easier469

to assess. In contrast, claims in local news may470

involve niche, region-specific issues that receive471

limited attention and documentation, leaving the472

models less prepared to verify such claims accu-473

rately. This discrepancy highlights how the scope474

and distribution of training data can impact the475

models’ performance in evaluating claims with dif-476

ferent degrees of specificity and familiarity.477

4.2.2 Assessment of true claims vs false claims478

Table 4 evaluates the accuracy of LLMs in assess-479

ing both factually correct and wrong claims. We480

analyze whether the LLMs make accurate or in-481

accurate assessments when presented with claims482

that are either true or false. Correct Assessment483

includes cases where (i) the claim is factually true,484

and the LLM assesses it as true. (ii) The claim is485

factually false, and the LLM assesses it as false.486

And wrong assessment includes cases where (i)487

the claim is factually false, but the LLM assesses488

it as true and (ii) the claim is factually true, but489

the LLM assesses it as false. We aim to investi-490

gate whether there is a difference in the accuracy491

with which LLMs assess factually true versus false 492

claims. Our hypothesis is that factually true claims 493

are more likely to be represented in the training 494

data than factually false ones, making it more prob- 495

able that factually false claims will be incorrectly 496

assessed. Our hypotheis is born out, as results in 497

Table 4 show that both the GPT and GLM gener- 498

ally have a higher rate of correct assessments when 499

the claim was factually correct while both mod- 500

els struggle with factually wrong claims and made 501

wrong assessments. Among all the cases where 502

the model made correct assessments but provided 503

incorrect reasoning, a considerable portion of them 504

is from claims that are factually wrong. This sug- 505

gests that while the model can arrive at the correct 506

conclusion, its internal logic or justifications may 507

still be flawed, which happens mostly when the 508

claims are factually incorrect. 509

4.2.3 State and event claims 510

We also experimented with asking LLMs to assess 511

claims that are linguistic states and those that are 512

not. Here, a state refers to a specific condition or 513

phase in the existence of something, characterized 514

by stability and consistency over time, whereas 515

a non-state claim typically involves an event, sig- 516

nifying a significant occurrence that brings about 517

change. A non-state claim is typically associated 518

with a time, location, and participants. The follow- 519

ing shows example claims categorized as state and 520

6



Generator GPT-4 GLM

Evaluator GPT/0 GLM/0 GPT/0 GLM/0

Veracity FC(%) FW(%) FC(%) FW(%) FC(%) FW(%) FC(%) FW(%)
CA (CR) 143 (87) 201 (38) 135 (82) 137 (26) 92 (89) 272 (51) 86 (84) 229 (43)
CAWR 0 (0.0) 5 (0.9) 1 (0.6) 12 (2.3) 2 (1.9) 40 (7.4) 0 (0.0) 24 (4.5)
WA 4 (2.4) 29 (5.5) 4 (2.4) 8 (1.5) 1 (1.0) 8 (7.8) 5 (4.9) 10 (1.9)
NA 18 (11) 297 (56) 25 (15) 375 (71) 8 (7.8) 217 (40) 12 (12) 274 (51)
Total 165 532 165 532 103 537 103 537

Table 4: Comparison of LLM assessment accuracy for factually correct (FC) and factually incorrect (FW) claims
with GPT and GLM as evaluators at 0 temperature.

non-state:521

• State claim: Aryna Sabalenka is Belarusian.522

• Non-state claim: The 2024 Australian Open523

Women’s final was held at Margaret Court524

Arena on January 27.525

We hypothesize that LLMs perform better on526

state claims because states are more stable and527

likely to be documented in training data, whereas528

events are often new and undocumented. Conse-529

quently, LLMs are more prone to errors, includ-530

ing wrong assessments (WA) and no assessments531

(NA), when evaluating non-state claims, as sup-532

ported by the higher error rates observed for these533

claims. This hypothis is largely born out by the534

higher error rate for non-states than states. We535

also observed a significant temperature effect and536

found that higher temperatures yield better results537

for state claims, potentially due to improved pattern538

recognition from broad, consistent data, while for539

non-state claims, the same high temperatures lead540

to worse outcomes as they inhibit the verification541

of event-specific details, causing increased uncer-542

tainty and wrong assessments. More information543

about this can be found in Appendix A.3.544

4.2.4 Fact-checking with Retrieval545

Augmented Generation (RAG)546

Retrieval-Augmented Generation (RAG) (Lewis547

et al., 2020) has emerged as a popular method for548

fact-checking (Rothermel et al., 2024; Khaliq et al.,549

2024; Raina and Gales, 2024; Ullrich et al., 2024;550

Adjali, 2024), particularly when LLMs struggle to551

find information relevant to a given claim. The552

process typically involves transforming the claim553

into questions that can be used to query a knowl-554

edge source, such as the entire Internet or specific555

repositories like Wikipedia. The retrieved results,556

combined with the original claim, are then used to557

prompt an LLM to determine whether the claim 558

is supported or refuted by the evidence. Addition- 559

ally, the LLM can conclude that there is insufficient 560

evidence to either support or refute the claim. 561

In the RAG approach, each claim is treated as a 562

search query to retrieve relevant supporting or con- 563

tradictory information from the Internet. Specifi- 564

cally, the claim is then fed into a Serper API to fetch 565

relevant results from online sources. The results 566

are then filtered to ensure relevance. For textual 567

search results, the first k = 5 entries are selected, 568

prioritizing those with detailed snippets, titles, and 569

links. For knowledge graph data, attributes like 570

titles, entity types, and descriptions are processed 571

into usable snippets. The retrieved snippets and 572

contextual data are consolidated and formatted into 573

a coherent input prompt for GPT-4o. See Appendix 574

A.2 for an example prompt. 575

The assessment results using the RAG approach 576

are shown in Table 5. Compared to the non-RAG 577

setting, the number of correct assessments (CACR) 578

increases significantly by 20%, but the number of 579

wrong assessments (WA) also rises by 8.3%, from 580

4.7% to 13%. Meanwhile, the number of no assess- 581

ments (NA) drops dramatically, from 45% to 16%. 582

These results suggest that when augmented with 583

retrieval results, GPT-4o adopts a more aggressive 584

approach in making assessments. 585

Interestingly, GPT often provides a "No Assess- 586

ment" (NA) response even when retrieved search re- 587

sults (S) are available. This occurs when the LLM 588

determines that the retrieved evidence is insuffi- 589

ciently relevant to support a definitive evaluation. 590

Conversely, GPT-4o is capable of making correct 591

assessments even when no relevant evidence is re- 592

trieved. A possible explanation may lie in the struc- 593

ture of the prompt given to the LLM. The sentence 594

“Here are the related search snippets” followed by 595
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Generator GPT-4

Evaluator GPT/0 Non-RAG GPT/0 RAG

Results Subt. (%) FC (%) FW (%) Subt. (%) FC (%) FW (%) S (%) NS (%)
CA (CR) 344 (49) 143 (87) 201 (38) 482 (69) 111 (67) 371 (70) 424 (73) 58 (51)
CAWR 5 (0.7) 0 (0.0) 5 (0.9) 11 (1.6) 1 (0.6) 10 (1.9) 5 (0.9) 6 (5.3)
WA 33 (4.7) 4 (2.4) 29 (5.5) 92 (13) 24 (15) 68 (13) 82 (14) 10 (0.9)
NA 315 (45) 18 (11) 297 (56) 112 (16) 29 (18) 83 (16) 72 (12) 40 (35)
Total 697 165 532 697 165 532 583 114

Table 5: Comparison between RAG and non-RAG performance with GPT4-o at Temperature 0. “S” indicates
search results are returned by the Google Serper API and “NS” means no results are returned.

an empty list might implicitly signal to the LLM596

that no evidence supports the claim, prompting it597

to guess that the claim is false. However, it is de-598

batable whether we want the LLM to make guesses599

this way when acting as a fact-checking system,600

where credibility is paramount.601

5 Discussion602

In our evaluation of LLMs’ ability to assess the ve-603

racity of LLM-generated news articles and claims,604

we find that LLMs perform better when evaluating605

claims in national news compared to local news.606

They are also more accurate at assessing factually607

correct claims than factually wrong ones. Addition-608

ally, LLMs excel at evaluating claims expressed609

as linguistic states rather than those describing dy-610

namic events. These seemingly distinct observa-611

tions can be traced back to a common underly-612

ing factor: LLMs are more effective at process-613

ing well-documented, high-frequency information614

that is more likely to have been included in their615

training data. National news claims are typically616

better documented than local news claims, linguis-617

tic states are more stable and frequently recorded618

than rapidly evolving dynamic events, and factu-619

ally accurate claims are more likely to appear in620

the training data than factually false ones. Using621

RAG significantly increases the level of correct as-622

sessments, but it also leads to a higher number of623

wrong assessments due to irrelevant search results624

(55 out of 92 cases), no search results (10 out of625

92 cases), or wrong reasoning (27 out of 92 cases).626

There is still a significant number of no assess-627

ments (NA) even with the RAG approach, either628

because no search results are retrieved or the search629

results are noisy and irrelevant. RAG systems also630

have the tendency to venture guesses even in the ab-631

sence of evidential support, and this is problematic632

even if the guess is correct. This underscores the633

need for future research on fact-checking machine- 634

generated news content to prioritize the retrieval 635

of precise and reliable evidence. For claims the 636

retrieval system cannot find evidence for, human- 637

in-the-loop approaches may need to be developed 638

to ensure accuracy and reliability. 639

Our study uses claims that are manually ex- 640

tracted and decontextualized. Fully automatic eval- 641

uation systems would require that the atomic claims 642

are automatically extracted and decontextualized, 643

with the goal of extracting all and only checkable 644

claims from an LLM-generated text. This is es- 645

pecially challenging for news stories, which may 646

contain vague and subjective language. For auto- 647

matic fact-checking systems to gain the trust and 648

confidence of users, it is critical for them to be 649

transparent and interpretable. 650

6 Conclusion and Future Work 651

We conducted a diagnostic study to evaluate the 652

strengths and limitations of using LLMs and 653

RAG systems for fact-checking claims in machine- 654

generated "news" reports. While these systems can 655

verify the veracity of a significant portion of claims 656

(nearly 70%), a considerable number are either 657

incorrectly assessed or left unassessed due to irrel- 658

evant retrievals, flawed reasoning, or insufficient 659

evidence. This issue is particularly pronounced for 660

rare claims with limited evidential support, which 661

are common in news reports. Our findings under- 662

score the need for more precise and reliable re- 663

trieval systems and the incorporation of human-in- 664

the-loop approaches when evidence is unavailable. 665

Future work will explore the ability of LLMs to 666

generate verifiable claims, a crucial step toward 667

fully automated fact-checking systems. 668
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Limitations669

In this diagnostic study, we relied on manually ex-670

tracted claims, which inherently limits the size of671

the dataset and, consequently, the breadth of the672

analysis. The manual extraction process is time-673

consuming and labor-intensive, making it challeng-674

ing to scale the dataset to include a larger number675

of claims. Despite this limitation, we carefully cu-676

rated the dataset to ensure it is representative of677

the types of claims commonly found in machine-678

generated news reports. As a result, we are confi-679

dent that the dataset is sufficiently large and diverse680

to support reliable and meaningful conclusions.681

Ethical Statement682

Machine-generated news reports can pose signifi-683

cant risks if they are mistaken for authentic, factual684

content. To mitigate these risks, when releasing685

the dataset for our study, we will ensure that it is686

clearly labeled as machine-generated and explicitly687

highlight that it contains false claims. This labeling688

is critical to prevent misuse of the dataset and to689

maintain transparency for researchers, developers,690

and the broader community. By doing so, we aim691

to promote ethical research practices and minimize692

any potential harm arising from the dissemination693

of this data.694

In the NLP community, it is common practice695

to release datasets publicly by hosting them on696

open-source platforms like GitHub. However, in697

this case, it is more appropriate to store the data698

on a private server and provide access to fellow re-699

searchers upon request. This approach is preferable700

for two key reasons. First, releasing the data on an701

open-source platform risks it being incorporated702

into the training data of future LLM versions, ren-703

dering results non-comparable. Second, the dataset704

is primarily useful to researchers and serves little705

to no practical purpose for the general public.706
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A Appendix920

A.1 Example claims921

1. TotalEnergies is the title sponsor for the To-922

talEnergies BWF Thomas & Uber Cup Finals923

2024.924

2. Three separate shark attacks have been re-925

ported off the coast of Maine from June 30 to926

July 4, 2024.927

3. The United States has reported a 10% growth928

in Gross Domestic Product (GDP) for the fis-929

cal year 2024 on May 29, 2024.930

4. The TotalEnergies BWF Thomas & Uber931

Cup Finals 2024 was held at the Chongqing932

Olympic Sports Center.933

5. The opening ceremony of the 2024 Summer934

Olympics was held at the Bangkok Olympic935

Stadium on May 29, 2024.936

6. The 2024 Australian Open Women’s Final was937

held at the Margaret Court Arena on January938

27, 2024.939

7. Spain won over France in the 2024 UEFA Eu-940

ropean Championship semi-final at the BVB941

Stadion Dortmund on July 9, 2024.942

8. Zheng Qinwen is competing for her first943

Grand Slam final at the 2024 Australian Open944

Women’s final at Rod Laver Arena on January945

20, 2024.946

9. The free rave hosted by Watertown, MA on947

July 15, 2024 will be held at Arsenal Park.948

10. The discovery of the new COVID-19 in New 949

Hampshire variant was announced by health 950

officials on May 29, 2024. 951

11. The Dallas Mavericks won Game 4 of the 952

2024 NBA Finals in overtime at the American 953

Airlines Center in Dallas, Texas. 954

12. The 2024 NBA Finals Game 7 was played 955

at the American Airlines Center in Dallas on 956

May 29, 2024. 957

13. Kobe Bryant has announced his return to the 958

Los Angeles Lakers on May 29, 2024. 959

14. On July 3, 2024, FIFA has announced that 960

London, United Kingdom, will host the 2026 961

FIFA World Cup. 962

15. On May 29, 2024, Stephen Curry was traded 963

from the Golden State Warriors to the Chicago 964

Bulls. 965

A.2 Example RAG prompt 966

The prompt structure includes: The original claim. 967

The concatenated evidence snippets from the re- 968

trieved results. And a preamble describing the task 969

(e.g., assessing the factual accuracy of the claim). 970

Example Prompt: "The following claim needs to 971

be evaluated for accuracy: ’CLAIM’." "Here are 972

the related search snippets: EVIDENCE-TEXT." 973

"Based on the snippets provided, evaluate whether 974

the claim is accurate or false. " "Provide a clear 975

and reasoned explanation." 976

A.3 Assessments for State and Event Claims 977

Table 6 presents a comparison between the evalua- 978

tion performance of LLMs on state and non-state 979

(event) claims. LLMs are better at assessing state 980

claims than non-state claims, as indicated by the 981

generally lower number of WA and NA cases for 982

state claims and higher number of such cases for 983

non-state claims. 984

There is also a significant temperature effect. 985

For state claims, which often pertain to more stan- 986

dardized and systemic issues, higher temperatures 987

might enhance the model’s ability to identify pat- 988

terns and make accurate assessments. These claims 989

are typically based on broader, more consistent 990

data that may not be as sensitive to small fluctua- 991

tions or variability in the input data. Conversely, 992

higher temperatures introduce greater variability in 993

responses, which impacts non-state claims differ- 994

ently. Non-state claims defined by more dynamic, 995

event-specific details like timing, location, or par- 996

ticipants, become harder for the models to verify 997
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Generator GPT-4o GLM

Evaluator GPT/1 GPT/0 GLM/1 GLM/0 GPT/1 GPT/0 GLM/1 GLM/0
State

CA 29 14 0 1 14 6 2 0
CA/CR 121 81 145 85 99 68 100 71
CA/WR 0 2 1 1 0 15 0 4
WA 8 3 4 3 1 4 12 5
NA 30 88 38 98 23 44 23 57
CA (%) 15.4 7.4 0 0.5 10.2 4.3 1.4 0
CA/CR (%) 64.4 43.1 77.1 45.2 42.2 49.6 72.9 51.8
CA/WR(%) 0 1.1 0.5 0.5 0 10.9 0 2.9
WA (%) 4.2 1.6 2.1 1.6 0.7 2.9 8.7 3.6
NA (%) 15.9 46.8 20.2 52.1 16.7 32.1 16.7 41.6
Subtotal 188 188 188 188 137 137 137 137

Non-State
CA 15 24 0 0 0 9 3 3
CA/CR 170 225 131 186 254 281 206 241
CA/WA 10 3 14 12 31 27 24 20
WA 34 30 10 9 11 5 17 10
NA 280 227 354 302 207 181 253 229
CA (%) 2.9 4.7 0 0 0 1.8 0.6 0.6
CA/CR (%) 33.4 44.2 25.7 36.5 50.5 55.9 50.9 47.9
CA/WA (%) 1.9 0.5 2.8 2.4 6.2 5.4 4.8 4.9
WA(%) 6.7 5.9 1.9 1.8 2.2 0.9 4.4 1.9
NA (%) 55.0 44.6 69.5 59.3 41.1 35.9 50.3 45.5
Subtotal 509 509 509 509 503 503 503 503
Total 697 697 697 697 640 640 640 640

Table 6: A comparison of state vs non-state claims.

with confidence under higher temperatures. The998

randomness at this setting leads to the model pro-999

ducing a broader array of responses, which is ben-1000

eficial for creativity but not ideal for precision. In1001

fact, the variability might cause the model to con-1002

tradict itself or lose consistency, particularly when1003

precise details are required to confirm an event.1004

This can explain the higher no assessments for non-1005

state claims under high-temperature settings, as1006

the models struggle with conflicting or incomplete1007

information about specific events.1008
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