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ABSTRACT

Automated diagnostics in medicine leverage advanced algorithms to detect, an-
alyze, and interpret medical conditions from data without human intervention.
Existing systems predominantly focus on disease prediction, frequently neglect-
ing the critical role of comprehensive symptom analysis. While some prior studies
explored the reasoning capabilities of large language models (LLMs), they faced
challenges in effectively integrating structured medical knowledge, limiting their
ability to generate coherent and clinically relevant patient-centric representations.
In this study, we propose SPKGDIAG, a novel framework that combines symp-
tom extraction with patient-centric knowledge graph construction to enhance the
accuracy and efficiency of disease diagnosis. We leverage LLM to automatically
extract both implicit and explicit symptoms from patient-doctor conversations and
construct a patient-centric knowledge graph with semantic embeddings. A multi-
hop neighborhood sampling approach is used to capture common clinical symp-
toms by modeling both local patient-specific patterns and global population-level
insights. Furthermore, we propose to use a specialized Message Passing Neural
Network (MPNN) to process this graph structure for diagnosis prediction, aiming
to balance semantic richness with structural relevance through message aggre-
gation and self-projection mechanisms. We conducted extensive experiments on
four benchmark datasets (MZ-4, MZ-10, Dxy, and Synthetic), achieving improve-
ments of 1.4%, 4.4%, 2.0%, and 7.4% over the best existing methods, including
RL, transform-based, and multi-department systems, respectively. Our model ex-
hibited robust performance compared to recent baselines on a large-scale in-house
dataset. The proposed framework provides an interpretable solution that enhances
symptom-driven automatic diagnosis by integrating efficient natural language pro-
cessing with structured medical reasoning.

1 INTRODUCTION

Automated diagnostics (AD) have gained significant research interest for their streamlined pro-
cesses, ensuring safe implementation in sensitive healthcare settings while maintaining high di-
agnostic accuracy (Kao et al., 2018; Wei et al., 2018; Teixeira et al., 2021). These systems typically
facilitate interaction between a diagnostic agent and a patient, with the agent collecting symptoms
essential for diagnosis. The agent pursues two interdependent objectives: selecting the most infor-
mative symptoms to distinguish diseases and accurately identifying the disease. Generally framed
as a multi-step inference process (Chen et al., 2022), this approach infers implicit symptoms from
explicit ones before delivering a final diagnosis, closely reflecting real-world clinical workflows.

Figure 1 illustrates an automated diagnostic workflow that integrates the collection of explicit and
implicit symptoms. The process begins with a patient’s self-reported explicit symptoms (e.g.,
“cough” and “runny nose” for Ella). Through conversational natural dialogues, the diagnostic agent
elicits additional implicit symptoms (e.g., “fever” and “sore throat”) through conversation-based
natural dialogues, simulating the discovery process described in previous studies (Wei et al., 2018;
Teixeira et al., 2021; Chen et al., 2022; Hou et al., 2023). The set of collected symptoms is then used
to determine the most likely disease (e.g., “flu” for Ella).
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Figure 1: An illustration of the data utilized in the automated diagnostic process.

However, the development of automated diagnosis poses several challenges. The first challenge is
to combine LLM capabilities with structured medical knowledge. Current approaches either rely on
traditional machine learning (ML) approaches with limited inference capabilities (Wei et al., 2018;
Xu et al., 2019) or use reinforcement learning (RL) frameworks that lack interpretability (Peng et al.,
2018; Xia et al., 2020). Furthermore, Transformer-based methods such as DxFormer (Chen et al.,
2023) and Diaformer (Chen et al., 2022) show improved performance but do not effectively leverage
structured medical knowledge. While LLMs excel in natural language processing, they struggle
with the systematic medical reasoning required for accurate diagnosis. Consequently, there is an
urgent need for a model that effectively integrates the capabilities of LLM with structured medical
knowledge, while preserving diagnostic accuracy by leveraging both explicit symptoms from patient
self-reports and implicit symptoms derived through conversational interactions. Another challenge
is to construct a patient-centered knowledge representation. Prior works mainly focus on symptom-
disease mapping without considering the comprehensive patient picture. For example, KR-DS (Xu
et al., 2019) and BSODA (He et al., 2022) incorporate a knowledge graph (KG) model that treats
patients as isolated entities, neglecting the exploration of patient similarities and co-occurrence of
symptoms, which are critical factors for achieving accurate diagnoses.

To address these challenges, we propose SPKGDIAG, a novel framework that combines symptom
extraction with patient-centric knowledge graph construction for automatic diagnosis. We leverage
LLMs to automatically extract both explicit and implicit symptoms from patient-doctor conversa-
tions and construct a patient-centric knowledge graph with semantic embeddings, capturing com-
mon clinical symptoms by modeling both local patient-specific patterns and global population-level
insights through multi-hop neighborhood sampling. We introduce a specialized Message Passing
Neural Network (MPNN) (Gilmer et al., 2017) to process this graph structure for diagnosis predic-
tion, aiming to balance semantic richness with structural relevance through message aggregation and
self-projection mechanisms. Our main contributions are summarized as follows.

• We introduced an integrated framework for automated diagnosis that synergistically com-
bines LLMs for explicit and implicit symptom extraction with structured medical knowl-
edge, addressing the limitations of existing methods, which often lack interpretability and
fail to effectively leverage structured domain knowledge.

• We constructed a patient-centric knowledge graph that embeds symptom semantics and
captures relationships between patients through symptom co-occurrence. Additionally, we
applied an MPNN layer with multi-hop neighborhood sampling to model both individual
patient characteristics and population-level patterns effectively.

• We conducted extensive experiments on four benchmark datasets (MZ-4, MZ-10, Dxy, and
Synthetic) and an in-house dataset, demonstrating that SPKGDIAG outperformed state-
of-the-art methods, with improved accuracy of up to 7.4%. These results highlighted the
potential of the model in automated diagnosis based on interpretable symptoms.

2 RELATED WORK

Existing automated diagnostic techniques fall into four main categories: (1) conventional ML mod-
els, (2) RL-based approaches, (3) non-RL-based methods, and (4) knowledge-enhanced and graph-
based approaches.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Traditional approaches like SVMs (Chang & Lin, 2011) incorporated explicit and implicit symp-
tom features to establish diagnostic baselines but lacked the sequential decision-making capabilities
essential for interactive diagnostics.

RL-based techniques have become increasingly prevalent in modeling diagnostic interactions. For
instance, Wei et al. (2018) used deep Q-learning to detect implicit symptoms during consultations,
while Peng et al. (2018) improved policy learning through reward shaping and symptom vector
reconstruction. However, their reliance on simulated data limited real-world applicability. Hierar-
chical and knowledge-enhanced methods such as Zhong et al. (2022) and KR-DS (Xu et al., 2019)
introduced multi-level decision structures and relation-aware symptom checking. Generative ap-
proaches like GAMP (Xia et al., 2020) further refined reward functions using adversarial learning.
Yu et al. (2021) conducted a thorough study of the development and implementation of reinforce-
ment learning in automated medical diagnosis. More recently, EIRAD (Yan et al., 2024) has ad-
vanced the field by incorporating medical knowledge graphs to guide reasoning, prune irrelevant
nodes, and design reward signals that consider evidence sufficiency and diagnostic accuracy. How-
ever, RL methods still face challenges in data efficiency – a critical limitation in the data-scarce
medical domain.

Non-RL approaches have emerged to address the stability and scalability challenges of RL-based
models. BSODA (He et al., 2022) used knowledge-guided self-attention with information-theoretic
objectives, while PPO-based models (Teixeira et al., 2021) leveraged GPT-2 for effective conversa-
tional modeling. Transformer-based designs have recently obtained cutting-edge outcomes. Dx-
Former (Chen et al., 2023) utilized an encoder-decoder structure to separate symptom compre-
hension and disease prediction, whereas Diaformer (Chen et al., 2022) generated sequences for
Alzheimer’s disease (AD). CoAD (Wang et al., 2023) proposed a collaborative symptom-pathology
generating technique using label expansion and sequence alignment. MTDiag (Hou et al., 2023) sub-
stituted unstable RL training with a multi-task classification framework enhanced with contrastive
learning. These methods demonstrated strong predictive power but often overlooked structured
medical knowledge, limiting clinical interpretability.

Knowledge-enhanced and graph-based methods have recently gained momentum by incorporat-
ing structured medical knowledge into diagnostic models. Zhang et al. (2023) combined Markov
Logic Networks with LLM-extracted knowledge for interpretable, accurate diagnosis. KDPoG (Li
& Ruan, 2024) leveraged heterogeneous GCNs and patient-oriented graphs to enhance symptom
recall and diagnostic precision. Similarly, Tian et al. (2024) proposed a scalable, anti-forgetting
framework that incrementally updated neural parameters in a weighted knowledge graph, enabling
multi-departmental diagnosis. These approaches underscore the growing trend of leveraging struc-
tured knowledge to address the limitations of static or task-specific models in automatic diagnosis.

Unlike existing approaches such as GraphCare (Jiang et al., 2023), which build personalized graphs
from structured EHRs, or multimodal contrastive learning frameworks (Lu et al., 2024) requiring
rich multi-source data, our method is designed for a setting where only unstructured dialogues are
available. Furthermore, compared to knowledge-seed or retrieval-based LLM prompting strategies
(Wu et al., 2024), our proposed SPKGDIAG constructs a patient-centric graph grounded in real
patient symptom patterns, using symptom-overlap edges and semantic similarity, followed by effi-
cient two-hop neighborhood sampling. This design prioritizes interpretability, minimal reliance on
external data, and robustness in low-resource environments.

3 METHODOLOGY

3.1 PRELIMINARY

Given a diagnostic dataset D = {(Ci, yi)}Ni=1, where each conversation Ci represents a dialogue
between a patient and a healthcare provider, including both explicit symptoms (directly reported by
the patient) and implicit symptoms (inferred from the dialogue context); yi ∈ Y is the corresponding
disease label; N is the size of the dataset; the objective is to accurately predict yi based exclusively
on the content of the dialogue. From each conversation Ci, a set of symptoms Si = {sk}|Si|

k=1
is extracted. Each symptom sk is encoded into a high-dimensional semantic embedding using a
pretrained text encoder, resulting in a matrix of symptom embeddings e(i) ∈ R|Si|×d, where d =
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3072 is the dimensionality of the embedding space. A fixed-size patient-level representation is then
obtained by averaging the symptom embeddings:

Ei =
1

|Si|

|Si|∑
k=1

e
(i)
k (1)

While we use mean pooling to generate patient-level symptom embeddings for computational effi-
ciency and vector normalization, this representation serves only as a first-stage input. The MPNN
layer (Section 3.5) enhances this embedding by integrating neighborhood context via message pass-
ing and self-projection, reintroducing local granularity. Moreover, the LLM-based embeddings al-
ready encode symptom semantics, including severity indicators such as intensity adjectives (e.g.,
“mild” vs. “severe”), which are preserved in the vector space.

Our goal is to learn a function F that maps the dialogue Ci (or equivalently, its extracted symptom
representation Ei) and its structural context in a patient-centric knowledge graph G to a predicted
disease label ŷi = F(Ci,G). To this end, we formulate the learning objective as:

F∗ = arg min
F∈H

1

N

N∑
i=1

L (F(Ci,G), yi) (2)

where H denotes the space of candidate functions, and L(·, ·) is the cross-entropy loss between
the predicted and true disease labels. The function F should leverage both the semantic features
captured in the dialogue and the graph-based relationships within G to enable accurate, interpretable,
and structure-aware disease diagnosis.

3.2 OVERALL FRAMEWORK

The proposed SPKGDIAG combines LLMs with KGs reasoning for automated disease diagnosis
(Figure 2). The model first extracts texts that describe symptoms using a GPT-based model to
identify both explicit and implicit symptoms. These extracted symptom-related texts are converted
into high-dimensional semantic vectors using OpenAI’s text embedding model, with patient symp-
tom embeddings combined into unified representations. A patient-centric knowledge graph, where
nodes represent patients and edges connect patients with similar symptoms, is constructed to capture
both individual and population-level clinical patterns. The graph is processed through a Graph Neu-
ral Network (GNN), specifically an MPNN, which allows information flow between neighboring
nodes through multi-hop neighborhood sampling. The resulting node features are normalized and
regularized, then passed through a feedforward neural network with softmax activation for diagnosis
prediction. This work combines conversational understanding from language models with structured
reasoning from graph networks, providing accurate and interpretable automated diagnosis by using
both individual patient information and collective clinical knowledge.

3.3 SYMPTOM EXTRACTOR

SPKGDIAG first employs a symptom extractor using OpenAI’s GPT-4.11 LLM, to automatically
extract clinical symptoms from patient-provider dialogues, capitalizing on its advanced contextual
understanding to process complex, unstructured conversational data. As illustrated in Figure 2, dia-
logue transcripts from multiple patients are input into Symptom Extractor, which identifies the text
segments that describe the targeted symptoms, such as fever, cough, and headache, directly from the
raw dialogue. The extraction process is guided by a medically structured prompt template (Appendix
A.6) that ensures consistency, completeness, and clinical validity. Unlike generic summarization,
this module is designed to identify both explicit and implicit symptoms with semantic granularity,
enabling downstream modeling tasks such as graph construction and diagnosis prediction.

To obtain cross-symptom representations, we use the text-embedding-3-large2 model to
encode symptom-related text segments from multiple patients into high-dimensional vectors, captur-
ing their semantic meaning and enabling the measurement of relatedness between different symptom

1https://openai.com/index/gpt-4-1/
2https://platform.openai.com/docs/models/text-embedding-3-large
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Figure 2: Architecture of the proposed SPKGDIAG framework for automated medical diagnosis.
The model integrates LLMs with a patient-centric KG through a multi-stage pipeline. First, a symp-
tom extractor identifies symptom-related text segments, which are transformed into semantic vec-
tor representations using text embeddings. Next, a patient-centric KG is constructed by connect-
ing patients with similar symptom profiles, as depicted in the dotted region of the lower panel. A
similarity-based 2-hop neighbor sampling strategy generates local subgraphs that capture extended
patient relationships, which are processed by an MPNN layer with batch normalization. Finally, a
softmax classifier produces diagnostic predictions.

texts. For patient i, the set of symptom embeddings is represented as e(i) ∈ R|Si|×d. These symp-
tom embeddings are then fused by computing their mean (Equation 1), resulting in a single vector
Ei ∈ Rd that encapsulates the overall semantic profile of patient i’s symptoms. This representa-
tion provides a unified, vectorized understanding of patient symptom profiles, which is particularly
useful for tasks such as similarity retrieval and disease classification, leveraging the strengths of
embeddings in search, clustering, and classification applications.

3.4 PATIENT-CENTRIC KNOWLEDGE GRAPH CONSTRUCTION

To construct a patient-centric knowledge graph, we leverage patient embeddings and graph topolog-
ical structures to identify meaningful relationships among patient entities. Each node in the graph
represents an individual patient and is enriched with both structural features and semantic informa-
tion, denoted as Ei ∈ Rd and its diagnosis label D, respectively. Edges are established between
patient nodes based on shared clinical symptoms, ensuring that the graph topology reflects clinically
relevant associations such as common complaints, co-occurring presentations, or overlapping dis-
ease manifestations. This symptom-based connectivity facilitates the modeling of both explicit and
latent clinical relationships across the patient population.

Formally, an adjacency matrix A ∈ {0, 1}N×N is defined as follows:

Ai,j = Aj,i =

{
1, if Si ∩ Sj ̸= ∅,
0, otherwise.

(3)

This definition guarantees that the graph is undirected and sparse, capturing only meaningful
symptom-based patient connections. The corresponding graph G = (V, E) comprises a vertex set
V , where each node vi ∈ V represents a patient, and an edge set E , where (vi, vj) ∈ E if and only if
the entry Ai,j in the adjacency matrix A is non-zero.
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The construction process begins by computing a high-dimensional embedding matrix, where each
row corresponds to a patient and captures semantic features derived from their dialogue or clinical
data. To ensure that graph-based computations focus on meaningful clinical neighborhoods, pair-
wise similarities between patients are calculated using cosine similarity, but restricted to the local
structure defined by A. For patients i and j, the cosine similarity is defined as:

sim(i, j) =
Ei ·Ej

∥Ei∥ ∥Ej∥
, only if Ai,j = 1 (4)

However, these comparisons are restricted to local neighborhoods as defined by the adjacency matrix
A, i.e., only for pairs (i, j) where Ai,j = 1, This locality constraint preserves the sparsity and
structural integrity of real-world healthcare data, which often exhibits naturally sparse connectivity
due to varied diagnoses, treatment pathways, and healthcare encounters.

To further enrich the structural and semantic coherence of the graph, a multi-hop neighborhood
sampling strategy is employed. For each patient node, the top-k most similar neighbors are selected
from its immediate (first-hop) connections based on cosine similarity:

Nk(i) = Top-k ({j | Ai,j = 1} , sim(i, j)) (5)

Subsequently, for each of the first-hop neighbors, an additional set of top-k neighbors is sampled to
form a second-hop neighborhood, excluding any nodes in the first-hop to minimize redundancy and
encourage diversity:

N (2)
k (i) =

⋃
j∈Nk(i)

(Nk(j) \ (Nk(i) ∪ {i})) (6)

We construct the final training graph by refining initial symptom-based edges through top-k cosine
similarity sampling of patient embeddings (Equations 4, 5, and 6), filtering weak links. Avoiding
complex, resource-heavy methods, we opt for a sparse, interpretable design that captures relevant
patterns via localized sampling. This hierarchical strategy improves graph quality and clinical rele-
vance, as shown in our ablation (Table 3).

The union of the seed node, its first-hop, and second-hop neighbors constitutes an expanded node
set Vi = {i} ∪ Nk(i) ∪ N (2)

k (i). From this, a sparse subgraph-specific adjacency matrix A(i) ∈
{0, 1}|Vi|×|Vi| is reconstructed by preserving all edge relationships among the sampled nodes. This
multi-hop neighborhood sampling procedure enables the construction of a contextually rich, patient-
centered subgraph for each node. By capturing both local and extended patient similarities, the
resulting graph effectively balances semantic richness and structural relevance.

3.5 PATIENT-CENTRIC MPNN DIAGNOSTIC

The framework employs a layered approach to learning node representations, using a message-
passing neural network (MPNN) that combines message aggregation with a self-projection mech-
anism. This design is motivated by the need to balance semantic preservation with structural inte-
gration. The self-projection mechanism allows each node to retain its own symptom profile, while
additive message aggregation incorporates clinically relevant patterns from neighboring patients.
Together, these components enable each node to iteratively update its representation by integrating
neighbor information while refining its intrinsic features. This approach is particularly effective
in sparse, symptom-based graphs, as demonstrated in our ablation (Table 3, Figure 3), where the
MPNN consistently outperforms GCN and GAT under identical settings. The effectiveness is fur-
ther supported by the use of high-dimensional, LLM-derived embeddings that already encode rich
semantic information.

The message-passing mechanism is realized through a transformation of the node features using
a learnable weight matrix. For each edge in the graph, a message is computed and subsequently
aggregated using an additive scheme. Let x ∈ RN×d denote the input node features, where N is the
number of nodes. Two trainable matrices E,T ∈ Rd×d are employed for message transformation
and self-projection, respectively. The messages mi ∈ Rd are calculated as: mi =

∑
j∈N (i) normij ·

(xjE), where N (i) denotes the set of neighbors of node i, and normi,j = 1√
deg(i) deg(j)

serves

as a symmetric normalization term derived from the degree of nodes, mitigating the impact of node

6
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degree variability. Each node then updates its representation through a non-linear transformation that
combines its self-projected features with the aggregated message. The update rule can be expressed
as:

hi = xi + σ(xiT+mi), (7)
where σ denotes a Leaky ReLU activation function, and hi ∈ Rd is the updated node embedding.
To stabilize training and improve convergence, batch normalization is applied to the updated em-
beddings, followed by dropout regularization to prevent overfitting.

The overall architecture comprises a sequence of such graph convolutional layers, followed by a
feedforward neural network for downstream tasks such as classification. The feedforward module
includes a linear transformation to a hidden space, batch normalization, ReLU activation, and a
final linear projection to the output space of class logits. Mathematically, the transformation can be
described as: z = ReLU(Dropout(BN(hW1)))W2, where W1 ∈ Rd×d and W2 ∈ Rd×c are the
learnable weight matrices of the linear layers, and z ∈ Rc represents the final output logits per node.

This formulation supports both full forward propagation and partial forward propagation at a specific
layer, which is useful for layer-wise analysis or interpretability in graph learning. The architecture
is designed to balance expressivity and generalization, enabling it to effectively capture both local
and global structural patterns in graph-based datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. The proposed approach was tested on four commonly utilized public datasets, such as
MZ-4 (Wei et al., 2018), MZ-10 (Wei et al., 2018), Dxy (Xu et al., 2019), Synthetic (Liao et al.,
2022), and an in-house VNPT dataset. A description of the datasets is provided in Appendix A.1.

Baselines. We evaluated our model against a number of baselines, including ML models (SVM
(Chang & Lin, 2011)), RL-based approaches (PPO (Schulman et al., 2017), DQN (Wei et al.,
2018)), Non RL-based methods (REFUEL (Peng et al., 2018), KR-DS (Xu et al., 2019), GAMP
(Xia et al., 2020), HRL (Zhong et al., 2022) and BSODA (He et al., 2022)), Transformer-based
models (Diaformer (Chen et al., 2022), DxFormer (Chen et al., 2023), CoAD (Wang et al., 2023)
and MTDia (Hou et al., 2023)) and Knowledge-enhanced and graph-based approaches (Zhang
et al. (2023), Tian et al. (2024), KDPoG (Li & Ruan, 2024) and EIRAD (Yan et al., 2024)). Details
of the baselines and implementation settings are in Appendix A.2 and A.3, respectively.

4.2 COMPARISON PERFORMANCE

Overall Performance. Table 1 compares the performance of state-of-the-art diagnostic systems
across four publicly available benchmark datasets using classification accuracy. We include results
from prior studies when available; otherwise, we reproduce them using the official code, provided
it is publicly accessible and executable. Our method outperforms all baselines, showing strong
generalization from narrow (MZ-4, 4 diseases) to broad (Synthetic, 90 diseases) diagnostic tasks.
Traditional machine learning models such as SVM-exp and SVM-exp&imp (Chang & Lin, 2011),
which incorporate explicit and implicit symptoms, perform moderately (0.704 on MZ-4, 0.767 on
Dxy) but struggle on complex datasets such as MZ-10 (0.633), due to limited symptom prediction
and inability to model inter-patient correlations.

Several RL methods, such as DQN, REFUEL (Wei et al., 2018; Peng et al., 2018), HRL (Zhong
et al., 2022), KR-DS (Xu et al., 2019), and GAMP (Xia et al., 2020), aim to simulate multi-round
diagnostic inference through interactions. These models perform well on smaller datasets, achiev-
ing accuracies around 0.720-0.721 on Dxy. However, their performance degrades significantly on
larger, noisier datasets like MZ-10, where DQN, for example, achieves only 0.408 accuracy. Their
dependence on simulation environments and sparse reward signals leads to unstable training and
limited generalization. While non-RL methods typically rely on transformers such as BSODA (He
et al., 2022) that leverage knowledge-guided attention in a scalable non-RL context, achieving 0.802
and 0.747 accuracy on Dxy and Synthetic, respectively. Recent models such as DxFormer (Chen
et al., 2023), Diaformer (Chen et al., 2022), and CoAD (Wang et al., 2023) improve symptom repre-
sentation and disease prediction through deep contextual modeling. CoAD notably achieves 0.850

7
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Table 1: Performance comparison across datasets using the accuracy metric. The best results are
marked in bold, and the second-best results are marked with an underline. Entries marked with “–”
indicate cases where neither comparable reported results nor runnable official code are available
under our experimental setting.

Method MZ-4 MZ-10 Dxy Synthetic

SVM-exp (Chang & Lin, 2011) 0.685 0.547 0.621 0.341
SVM-exp&imp (Chang & Lin, 2011) 0.704 0.624 0.767 0.732
PPO (Schulman et al., 2017) 0.732 – 0.746 0.618
DQN (Wei et al., 2018) 0.690 0.408 0.720 0.356
REFUEL (Peng et al., 2018) 0.716 0.505 0.721 –
KR-DS (Xu et al., 2019) 0.730 0.485 0.740 –
GAMP (Xia et al., 2020) 0.730 0.500 0.769 –
HRL (Zhong et al., 2022) 0.694 0.556 0.695 0.496
BSODA (He et al., 2022) 0.731 – 0.802 –
Diaformer (Chen et al., 2022) 0.742 – 0.829 0.733
DxFormer (Chen et al., 2023) 0.743 0.633 0.817 0.712
CoAD (Wang et al., 2023) 0.750 0.628 0.850 0.727
MTDiag (Hou et al., 2023) 0.759 – 0.854 0.754
Zhang et al. (2023) 0.764 – 0.849 0.729
KDPoG (Li & Ruan, 2024) 0.754 0.568 0.837 –
Tian et al. (2024) 0.761 – 0.752 –
EIRAD (Yan et al., 2024) 0.768 – 0.845 –

SPKGDIAG 0.782 +1.4% 0.677 +4.4% 0.874 +2.0% 0.828 +7.4%

accuracy on Dxy. However, these models primarily focus on individual patients, limiting their abil-
ity to capture population-level symptom structures and broader clinical trends. In addition, MTDiag
(Hou et al., 2023) addresses some of these limitations by integrating multi-task learning and LLM-
based multi-expert reasoning, achieving 0.854 accuracy on Dxy. Nonetheless, it still lacks explicit
mechanisms for modeling patient similarity or leveraging neighborhood structures in clinical data.

In contrast, recent graph-based approaches aim to address these limitations. KDPoG (Li & Ruan,
2024) captures heterogeneous patient connections, achieving 0.837 accuracy on Dxy, while Tian
et al. (2024) employ a weighted heterogeneous knowledge graph for incremental, multi-department
diagnosis, reaching 0.752 on Dxy. EIRAD (Yan et al., 2024) incorporates interpretable reasoning
paths and evidence-aware rewards, achieving strong performance on both MZ-4 (0.768, second-
best) and Dxy (0.845). In comparison, SPKGDIAG consistently outperforms all baselines across
all datasets. These results underscore the strength of integrating patient-centric knowledge graphs
with multi-hop neighborhood sampling, enabling robust, interpretable, and scalable diagnosis by
capturing both individualized symptom profiles and population-level patterns. A case study and
additional analyses are provided in Appendices A.4 and A.5, respectively.

Table 2: Performance comparison on the in-house dataset. The best results are marked in bold.

Method Accuracy F1-score

Logistic Regression (Le et al., 2021) 0.791 0.795
DxFormer (Chen et al., 2023) 0.793 0.796
BiLSTM w/ Tokenizer (Nguyen et al., 2023) 0.873 0.874
SDCANet (Phan et al., 2023) 0.883 0.881

SPKGDIAG 0.899 +1.6% 0.898 +1.7%

Comparison Performance on the In-house Dataset. As shown in Table 2, we compare our pro-
posed method’s performance against several existing approaches on a private VNPT dataset. SPKG-
DIAG consistently outperformed all baseline models, achieving the highest accuracy of 0.899 and
an F1-score of 0.898. These findings highlight the strong predictive performance and robustness
of SPKGDIAG in modeling complex clinical data, thereby underscoring its potential for real-world
healthcare applications.
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4.3 ABLATION STUDY

4.3.1 IMPACT OF MODEL TYPE AND SIMILARITY-BASED k-HOP NEIGHBOR SAMPLING

Table 3: Ablation results on the similarity-based 2-hop sampling across different GNN variants

Method Similarity-based 2-hop Sampling MZ-4 MZ-10 Dxy Synthetic

SPKGDIAGGCN
✗ 0.634 0.460 0.612 0.483
✓ 0.662 0.543 0.728 0.703

SPKGDIAGGAT
✗ 0.697 0.565 0.738 0.519
✓ 0.754 0.604 0.806 0.787

SPKGDIAG
✗ 0.761 0.625 0.835 0.801
✓ 0.782 0.677 0.874 0.823

Table 3 demonstrates that incorporating similarity-based 2-hop neighbor sampling consistently en-
hances diagnostic performance across all SPKGDIAG variants and datasets. Notably, SPKG-
DIAGGCN — which integrates Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) and
SPKGDIAGGAT — which adopts Graph Attention Networks (GAT) (Veličković et al., 2018), both
benefit from this architectural enhancement. For instance, SPKGDIAGGCN improves from 0.634 to
0.662 on MZ-4, and more dramatically from 0.483 to 0.703 on the Synthetic dataset. Similarly, SP-
KGDIAGGAT improves from 0.697 to 0.754 on MZ-4, and from 0.519 to 0.787 on Synthetic. These
improvements are even more striking in the base SPKGDIAG model, which adopts an MPNN archi-
tecture. With 2-hop sampling, it achieves the highest and most consistent gains across all datasets.
Conversely, the absence of similarity-based 2-hop sampling results in notable performance drops,
particularly on the Synthetic dataset. Here, SPKGDIAGGCN drops by over 22% (from 0.703 to
0.483), and SPKGDIAGGAT by more than 26% (from 0.787 to 0.519), indicating that strictly local
aggregation fails to capture sufficient structural context.

Overall, these results clearly demonstrate that similarity-based 2-hop neighbor sampling is a robust
and scalable architectural enhancement. Expanding the receptive field enables GNNs to capture
richer structural and semantic information from the knowledge graph, leading to significantly more
accurate diagnostic predictions across diverse architectures and datasets.

4.3.2 IMPACT OF GRAPH, SELF-PROJECTION, AND MESSAGE AGGREGATION IN SPKGDIAG

Figure 3: Ablation study demonstrating the ef-
fectiveness of SPKGDiag with MPNN’s Self-
Projection mechanism. “Agg. Message” refers to
the aggregated message in MPNN. Here, SPKG-
DIAG denotes our fully implemented model.

Figure 3 presents an ablation study assessing
the contributions of the Self-Projection mech-
anism, message aggregation, and graph struc-
ture in the MPNN-based SPKGDIAG frame-
work. Removing Self-Projection consistently
leads to noticeable drops in accuracy across
all datasets, highlighting its role in maintaining
stable and expressive node representations. For
instance, on MZ-4, accuracy decreases from
0.782 to 0.725 without Self-Projection, com-
pared to 0.732 without message aggregation. A
similar pattern appears on MZ-10, where the
full model achieves 0.672, while the ablated
variants yield 0.658 and 0.668. On the Syn-
thetic dataset, the model reaches 0.828, outper-
forming the ablations at 0.802 and 0.810. On
Dxy, message aggregation has a slightly larger
effect, dropping accuracy from 0.874 to 0.816,
while removing Self-Projection reduces it to
0.864. The most significant performance drop
occurs when the graph structure is removed, in-
dicated as “w/o Graph”, which eliminates both
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the “Patient-centric KG Construction” and “Message Passing” components, while preserving all
other modules, as shown in Figure 2. In this setting, accuracy drops to 0.714 on MZ-4, 0.619 on
MZ-10, 0.821 on Dxy, and 0.708 on Synthetic, consistently the lowest across all variants. These
findings confirm that while Self-Projection and message aggregation support effective node-level
learning, the graph structure is essential for relational reasoning and information propagation. Over-
all, high diagnostic performance in SPKGDIAG relies on the integration of all three components:
graph connectivity, message aggregation, and Self-Projection.

4.3.3 IMPACT OF NEIGHBORHOOD DEPTH IN k-HOP NEIGHBOR SAMPLING

Figure 4 illustrates that 2-hop neighbor sampling consistently yields the highest accuracy across
most datasets, highlighting its effectiveness in capturing clinically meaningful relationships. Specif-
ically, transitioning from 1-hop to 2-hop neighborhoods results in notable performance gains (+2.8%
on MZ-4 and +1.0% on Dxy). This suggests that considering patients with similar but not necessar-
ily identical symptom profiles enhances diagnostic reasoning, which aligns with real-world clinical
practices where physicians factor in related cases to inform differential diagnoses. In contrast, the
consistent performance decline observed with 3-hop sampling (–2.0% on Dxy and –1.4% on MZ-4)
indicates that expanding the neighborhood too far introduces noise from distantly connected and
weakly correlated patients. This highlights a trade-off in neighborhood selection, where broader
context may become less clinically meaningful and potentially misleading. Interestingly, the Syn-
thetic dataset shows minimal variation across hop sizes. This implies that real-world clinical data,
which contain complex comorbidity structures and heterogeneous symptom presentations, benefit
more from multi-hop reasoning than simplified synthetic data is able to reveal.

Figure 4: Ablation results on neighborhood depth in k-hop sampling for the SPKGDIAG model

5 CONCLUSION

In this study, we presented SPKGDIAG, a novel framework that combines large language models
with patient-centered knowledge graphs to improve the accuracy and interpretability of automated
disease diagnosis. Our method used LLM to extract explicit and implicit symptoms from patient-
doctor conversations, allowing a more comprehensive understanding of clinical presentations. By
constructing a symptom-based knowledge graph and using MPNN with similarity-based multi-hop
neighbor sampling, the framework was able to capture both local individual-level and population-
level patient representations. Our framework offers a pragmatic alternative to resource-heavy or
ontology-dependent systems and is particularly suitable for deployment where structured medical
data or multimodal alignment is unavailable. Extensive experimental results across four public
datasets demonstrated that our approach significantly outperformed the state-of-the-art performance,
achieving an improvement in diagnostic accuracy of up to 7.4%. For future work, we plan to incorpo-
rate dynamic graph construction for evolving patient interactions, model temporal and longitudinal
clinical data to capture disease progression, and explore methods for encoding symptom severity
beyond mean pooling. Additionally, we aim to enhance scalability through subgraph caching and
efficient neighborhood retrieval to support deployment in large-scale healthcare systems.

10
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Bengio. Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Huimin Wang, Wai Chung Kwan, Kam-Fai Wong, and Yefeng Zheng. CoAD: Automatic diagnosis
through symptom and disease collaborative generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 6348–6361,
Toronto, Canada, July 2023. Association for Computational Linguistics.

Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao Tou, Ting Chen, Xuan-Jing Huang, Kam-Fai
Wong, and Xiang Dai. Task-oriented dialogue system for automatic diagnosis. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 201–207, 2018.

Jiageng Wu, Xian Wu, and Jie Yang. Guiding clinical reasoning with large language models via
knowledge seeds. arXiv preprint arXiv:2403.06609, 2024.

Yuan Xia, Jingbo Zhou, Zhenhui Shi, Chao Lu, and Haifeng Huang. Generative adversarial regu-
larized mutual information policy gradient framework for automatic diagnosis. In Proceedings of
the AAAI conference on artificial intelligence, volume 34, pp. 1062–1069, 2020.

Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang, Jianheng Tang, and Liang Lin. End-to-end
knowledge-routed relational dialogue system for automatic diagnosis. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 7346–7353, 2019.

Lian Yan, Yi Guan, Haotian Wang, Yi Lin, Yang Yang, Boran Wang, and Jingchi Jiang. Eirad: An
evidence-based dialogue system with highly interpretable reasoning path for automatic diagnosis.
IEEE Journal of Biomedical and Health Informatics, 2024.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Haodi Zhang, Jiahong Li, Yichi Wang, and Yuanfeng Song. Integrating automated knowledge ex-
traction with large language models for explainable medical decision-making. In 2023 IEEE In-
ternational Conference on Bioinformatics and Biomedicine (BIBM), pp. 1710–1717. IEEE, 2023.

Cheng Zhong, Kangenbei Liao, Wei Chen, Qianlong Liu, Baolin Peng, Xuanjing Huang, Jiajie
Peng, and Zhongyu Wei. Hierarchical reinforcement learning for automatic disease diagnosis.
Bioinformatics, 38(16):3995–4001, 2022.

A APPENDIX

A.1 DATASETS

We tested on four commonly utilized public datasets, such as MZ-4, MZ-10, Dxy, Synthetic, and
an in-house VNPT dataset. Table 4 provides a comparison of these datasets in terms of the number
of diseases, symptoms, sizes of training/test sets, as well as the average degree and density of their
symptom-disease graphs. The structure of each symptom-disease graph is quantitatively described
using two key metrics: average degree and density. The average degree reflects the average num-
ber of edges connected to a node and provides insight into how interconnected the diseases and
symptoms are within the graph. In contrast, density measures the proportion of actual edges to the
maximum possible number of edges in the graph. These metrics are formally defined as:
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
Average Degree =

1

|V |
∑
u∈V

deg(u)

Density =
2 · |E|

|V | · (|V | − 1)

(8)

where |V | denotes the number of nodes and |E| the number of undirected edges. A higher density
indicates a more fully connected graph, while a lower density suggests sparsity, which is common
in real-world medical knowledge graphs due to the selective symptom-disease associations.

Table 4: Comparison of datasets based on diseases, symptoms, training, and test samples. “#”
denotes “the number of”. “Avg. Degree” and “Std. Degree” refer to the average and standard
deviation of the degree (i.e., number of connections) per patient in the graph. “Avg. Disease” and
“Std. Disease” represent the average and standard deviation of disease distribution across patients.
An asterisk (∗) indicates the inclusion of both actual symptoms and unrelated words automatically
extracted by OpenAI’s symptom extractor module.

MZ-4 MZ-10 Dxy Synthetic VNPT
Train Test Train Test Train Test Train Test Train Test

# Samples 568 142 3,305 811 423 104 24,000 6,000 184,383 46,096
# Density 0.267 0.270 0.270 0.270 0.333 0.321 0.054 0.053 0.033 0.034
Avg. Degree 151.51 38.07 890.96 218.00 139.95 32.74 1282.89 318.99 3602.71 1565.47
Std. Degree 100.91 24.93 655.71 163.67 90.50 22.05 1094.11 272.18 5303.53 2286.41

Avg. Disease 142.00 35.50 330.50 81.10 84.60 20.80 266.67 66.67 2832.30 827.90
Std. Disease 22.46 6.56 106.52 27.69 7.54 1.79 17.88 7.81 2065.45 604.22

# Diseases 4 10 5 90 10
# Symptoms 66 331 41 266 36,588∗

• MZ dataset (Wei et al., 2018), from the Pediatric Department of Baidu Muzhi3 for the eval-
uation of automatic diagnostic systems, contains 710 user objectives and 66 symptoms for
four categories of disorders (children’s bronchitis, functional dyspepsia, infantile diarrhea
infection, and upper respiratory infection). MZ-10 is a multi-level annotated dataset ex-
panded from MZ-4 to include 10 diseases, encompassing common respiratory, endocrine,
and digestive disorders, as well as a broader set of annotated symptoms.

• Dxy dataset (Xu et al., 2019) is an annotated medical conversation dataset obtained from
Dingxiang Doctor4, a popular Chinese online healthcare service. It contains 527 user objec-
tives and 41 symptoms across 5 categories of disorders (allergic rhinitis, upper respiratory
infection, pneumonia, children’s hand-foot-mouth disease, and pediatric diarrhea).

• Synthetic dataset (Liao et al., 2022) is based on SymCat2, a database of symptom-related
diseases. It has 30,000 user objectives and 90 illnesses.

• VNPT dataset is an in-house, large-scale real-world clinical dataset comprising 230,479
patient records collected from March 2016 to March 2021 at the Medical Center of My
Tho City, Tien Giang Province, Vietnam. It includes patient-reported symptoms and di-
agnoses across 10 common disease categories, with respiratory, endocrine, and circulatory
system disorders being the most prevalent (as detailed in Table 5). The dataset offers a di-
verse and realistic setting for automated medical diagnosis. The symptom set features over
36,000 unique terms, encompassing both actual symptoms and unrelated words automati-
cally extracted by OpenAI’s symptom extractor module, some of which may not directly
correspond to clinical symptom expressions.

Figure 5 presents the class distribution of four datasets containing ten or fewer categories. The MZ-
4, MZ-10, and Dxy datasets display relatively balanced distributions, with each class contributing
a similar proportion of samples. In contrast, the VNPT dataset shows a noticeable level of class
imbalance, as several classes occupy only a very small percentage of the total data. This comparison
highlights that most datasets are well balanced, while VNPT requires special consideration due to
its uneven class representation.

3https://muzhi.baidu.com/
4https://dxy.com/
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Table 5: Distribution of disease categories in the VNPT dataset used for automated diagnosis.

No. Disease Name #Samples

1 Respiratory System Diseases 41,888
2 Endocrine, Nutritional & Metabolic Disorders 38,672
3 Circulatory System Diseases 37,782
4 Musculoskeletal & Connective Tissue Diseases 35,427
5 Eye & Adnexa Diseases 18,443
6 Genitourinary System Diseases (B212) 17,503
7 Neoplasms 16,271
8 Injury, Poisoning & External Causes 13,783
9 Skin & Subcutaneous Tissue Diseases 7,044
10 Pregnancy, Childbirth & Puerperium 3,666

Figure 5: Class distribution visualization across datasets with 10 or fewer categories

To prevent any risk of information leakage, we first split each dataset into training and test sets. We
then construct separate patient-centric graphs for training and testing. The training graph is built
using only the training set, and is used to learn model parameters. For evaluation, a test graph is
independently constructed using only test set patients and their symptoms. No edges or nodes are
shared across splits, ensuring a strict separation between training and inference stages.

A.2 BASELINES

We evaluated our model against a range of baseline approaches, spanning both conventional and
state-of-the-art methods:

• SVM (Chang & Lin, 2011): A non-interactive method that utilizes both explicit and im-
plicit symptoms to build a strong feature-based classifier.

• RL-based methods: PPO (Schulman et al., 2017), DQN (Wei et al., 2018): Standard
RL-based models simulating symptom acquisition and decision-making.

• Non RL-based methods: REFUEL (Peng et al., 2018), KR-DS (Xu et al., 2019), GAMP
(Xia et al., 2020), HRL (Zhong et al., 2022): Enhanced RL variants employing adversarial
training, hierarchical structures, reward shaping, or knowledge graphs. BSODA (He et al.,
2022): A scalable non-RL method using knowledge-guided attention mechanisms.
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• Transformer-based models: Diaformer (Chen et al., 2022), DxFormer (Chen et al.,
2023), CoAD (Wang et al., 2023) decouple or jointly model symptom inquiry and diagno-
sis using sequence modeling and label expansion to improve diagnostic accuracy. MTDiag
(Hou et al., 2023): Replaces RL with multi-task classification and contrastive learning.

• LLM-integrated models: Incorporate LLMs with experiential medical knowledge (Zhang
et al., 2023).

• Graph-based models: KDPoG (Li & Ruan, 2024), Tian et al. Tian et al. (2024), and
EIRAD (Yan et al., 2024) leverage heterogeneous medical graphs for structured reasoning
and knowledge integration.

A.3 IMPLEMENTATION DETAILS

In our implementation, we adopted a configurable MPNN framework developed in Python, leverag-
ing PyTorch for general deep learning operations and PyTorch Geometric (PyG) (Fey & Lenssen,
2019) for efficient graph representation learning. Input symptoms are embedded using OpenAI’s
text-embedding-3-large model. The hidden node feature dimension is set to 100, and the
model operates over a 2-hop neighborhood, sampling 8 neighbors per hop to capture both immediate
and extended patient similarities. Given the sparsity of the constructed graph and its emphasis on lo-
cal structure, we employed a single message-passing layer with element-wise addition for message
aggregation, offering a balance between simplicity and effectiveness in sparse settings. To mitigate
overfitting, we applied a dropout rate of 0.42 after aggregation and used batch normalization to sta-
bilize training and improve convergence. The model was optimized using the Adagrad optimizer
with a learning rate of 6e-4, combined with a cosine annealing learning rate scheduler. Training was
performed with a batch size of 8 over 50 epochs on a workstation equipped with an NVIDIA RTX
A5000 (24 GB) GPU and an AMD EPYC 7302 16-core processor.

We recognize the importance of scalability for real-world deployment. To this end, our method
maintains computational efficiency via several design choices: 1) the graph is sparse by design
(Equation 3), 2) neighborhood sampling is restricted to 2-hop local subgraphs, ensuring memory
efficiency, 3) training operates in mini-batches using PyTorch Geometric’s efficient sparse matrix
operations. This design allows us to scale the model efficiently without materializing the full adja-
cency matrix, while preserving clinical relevance through symptom-based connectivity.

A.4 CASE STUDY AND INTERPRETABILITY ANALYSIS: MPNN
EFFECTIVENESS IN NOISY GRAPH STRUCTURES

This analysis focuses on Test Node 79 (Patient ID: 79) to illustrate the interpretability and perfor-
mance of the SPKGDIAG when applied to a densely connected and noise-prone graph structure.
Patient 79 is drawn from the MZ-4 dataset, which comprises four pediatric disease categories: 0 -
Upper respiratory infection, 1 - Pediatric bronchitis, 2 - Pediatric diarrhea, and 3 - Pediatric dys-
pepsia. Graph edges are defined by the presence of at least one shared symptom between patients,
a construction rule that intentionally amplifies structural noise. In this case, the subject exhibits
a highly mixed symptom profile that overlaps with multiple disease classes. Despite this, our pro-
posed model, SPKGDIAG, successfully classified Patient 79 as Pediatric bronchitis (Label 1), which
aligns with the ground-truth diagnosis. As illustrated in Figure 6, the model navigates a structurally
ambiguous region where strong signals originate from multiple competing classes. The visualiza-
tion highlights the pathway of the strongest signals, demonstrating SPKGDIAG’s robustness and its
ability to learn discriminative patterns from noisy and overlapping feature spaces.

A.4.1 QUANTITATIVE INTERPRETABILITY: SIMILARITY VS. INFLUENCE

Analysis of Cosine Similarity (Structural Proximity)

The first-hop neighbors of Node 79 steadily exhibit high cosine similarity values, reflecting the den-
sity and strong structural coherence introduced by the permissive graph rule. As shown in Table 6,
Node 37 (with Label 2) records the highest cosine similarity score of 0.9027 among these neighbors.
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Figure 6: Graph-based visualization of influence propagation centered on Node 79. Node size and
color intensity represent Message Norm; edge thickness and color indicate connection strength. Blue
nodes are first-hop neighbors, green nodes are second-hop neighbors. Node 79 is centrally located
between symptom clusters corresponding to respiratory diseases (Labels 0 and 1) and gastrointesti-
nal diseases (Labels 2 and 3), receiving strong influence from diverse neighbors such as Node 96
(Label 1), Node 73 (Label 0), and Node 37 (Label 2). This structure illustrates how the SPKGDIAG
leverages local similarity while filtering competing class signals in a complex topology.

Table 6: Cosine similarity scores of source nodes with respect to the target node 79

Source Node Label Cosine Similarity
37 2 0.9027
57 1 0.8968
98 1 0.8929
20 3 0.8861
140 1 0.8758
124 0 0.8729

However, Node 37 belongs to a different class, Pediatric diarrhea, which competes with the true la-
bel of Node 79. This finding highlights a critical limitation: relying solely on local feature similarity
for classification may lead to influence from highly similar yet semantically irrelevant neighbors.

Message Norm Analysis (Model Influence)

The model’s effectiveness is demonstrated by its ability to modulate incoming message weights,
prioritizing diagnostic relevance over structural similarity within the graph. As illustrated in Figure
7 and detailed in Table 7, Node 79 received substantial adversarial input from neighboring nodes
associated with competing classes. These include the Upper Respiratory class (Label 0), notably
Node 73 (0.3506) and Node 124 (0.2569), linked through shared symptoms such as Sputum and
Cough; and Gastrointestinal (GI) classes (Labels 2 and 3), including Node 37 (Label 2, 0.2700)
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Figure 7: Message norms of top neighbor nodes by diagnosis category

and Node 20 (Label 3, 0.2326), with overlapping features like Dyspepsia and Cough. Despite these
strong but non-specific connections, Node 96 (Label 1) – associated with the correct class, Pediatric
bronchitis – produced the highest message norm (0.4185). This occurred even though its cosine
similarity (0.8687) was lower than that of Node 37 (0.9027), underscoring the SPKGDIAG’s ability
to prioritize clinically salient features over superficial symptom-level similarity.

Table 7: Shared symptoms and rationale for links between Node 79 and its neighbors

Neighbor (Label) Shared Symptoms Rationale for Link
Node 96 (L = 1) Sputum, Wheezing, Cough Strong feature overlap, reinforcing the

correct class (Pediatric bronchitis).

Node 73 (L = 0) Sputum, Cough Connection via basic common respira-
tory symptoms, generating a strong ad-
versarial signal (0.3506).

Node 37 (L = 2) Sputum, Wheezing, Dyspepsia Cross-class linkage via respiratory
symptoms (Sputum, Wheezing) and GI
symptoms (Dyspepsia).

Node 20 (L = 3) Cough, Dyspepsia Linkage via the most common respi-
ratory symptom (Cough) and digestive
features, despite being Label 3.

Moreover, second-hop neighbors exhibited minimal message norms (e.g., Node 4: 0.0203; Node
6: 0.0000; Node 136: 0.0239), highlighting their relatively weak contribution compared with high-
relevance first-hop nodes. This further confirms that SPKGDIAG selectively emphasizes localized,
semantically rich interactions over noisy or distant connections. Overall, the model’s behavior re-
flects a structured and clinically coherent reasoning process, successfully down-weighting noisy
adversarial signals while reinforcing features indicative of the correct class.
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A.4.2 MESSAGE INFLUENCE HEATMAP

Figure 8 presents a detailed heatmap of normalized message norms, capturing the strength of com-
munication from source to destination nodes within a network. The intensity of each cell reflects
the magnitude of the message transmitted, with higher values (toward yellow) indicating stronger
influence. The overall pattern reveals a sparse and uneven distribution of communication, where
the majority of node pairs exchange minimal information. Notably, nodes 50 and 54 exhibit promi-
nently high message norms directed toward target node 79, suggesting a concentrated influence on
this particular destination. This indicates that node 79 is selectively integrating information from a
small subset of source nodes, rather than uniformly across the network.

Figure 8: Message influence heatmap of normalized communication strengths between nodes

A.5 FURTHER ANALYSIS

A.5.1 CLASSIFICATION PERFORMANCE METRICS FOR MZ-4, MZ-10, AND DXY DATASETS

To ensure a clinically meaningful evaluation of model performance, we report a comprehensive
set of metrics beyond overall accuracy, including per-class Precision, Recall, F1-score, PR-AUC
(Precision-Recall Area Under the Curve), and Support, along with macro and weighted averages for
each dataset (see Table 8). These metrics capture not only overall accuracy but also how well the
model detects both common and rare conditions. Precision reflects the reliability of positive predic-
tions, Recall captures sensitivity to true cases, and PR-AUC summarizes the balance between them,
particularly under class imbalance. In the MZ-10 dataset, the model performs well on clinically
important but less prevalent classes such as class 5 and class 7, with high Precision (0.973, 0.966),
Recall (0.800, 0.966), F1-score (0.878, 0.966), and PR-AUC (0.925, 0.965), indicating accurate and
sensitive predictions for these high-risk categories. In contrast, lower performance on classes such as
class 3 and class 9 highlights limitations in detecting some rarer conditions. Similar trends are seen
in the Dxy dataset, where class 2 underperforms (F1-score: 0.588, PR-AUC: 0.703) compared to
consistently high scores in classes 0, 3, and 4. These results underscore the importance of detailed,
class-specific evaluation to uncover both the strengths and failure modes of the model, ensuring its
reliability across both common and rare diagnostic categories.
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Table 8: Detailed classification performance metrics for MZ-4, MZ-10 and Dxy dataset

Dataset Class Precision Recall F1-score PR-AUC Support

MZ-4

0 0.846 0.733 0.786 0.781 30
1 0.763 0.853 0.806 0.815 34
2 0.750 0.933 0.832 0.812 45
3 0.818 0.545 0.655 0.633 33

macro avg 0.794 0.766 0.769 0.760 142
weighted avg 0.789 0.782 0.775 0.764 142

MZ-10

0 0.637 0.691 0.663 0.704 94
1 0.752 0.752 0.752 0.755 109
2 0.705 0.692 0.698 0.745 107
3 0.698 0.381 0.493 0.481 97
4 0.521 0.526 0.524 0.551 95
5 0.973 0.800 0.878 0.925 45
6 0.733 0.717 0.725 0.713 46
7 0.966 0.966 0.966 0.965 58
8 0.674 0.835 0.746 0.727 109
9 0.343 0.480 0.400 0.368 50

macro avg 0.700 0.684 0.685 0.693 810
weighted avg 0.690 0.677 0.675 0.685 810

Dxy

0 0.944 0.850 0.895 0.944 20
1 0.594 0.826 0.691 0.726 23
2 0.714 0.500 0.588 0.703 20
3 0.857 0.900 0.878 0.966 20
4 0.944 0.850 0.895 0.971 20

macro avg 0.811 0.785 0.789 0.862 103
weighted avg 0.804 0.786 0.786 0.858 103

A.5.2 CONFUSION MATRIX FOR DIAGNOSTIC PERFORMANCE

We present the normalized confusion matrix for SPKGDIAG’s diagnostic performance on the MZ-4,
MZ-10, and Dxy dataset. Overall, SPKGDIAG successfully identified and differentiated features de-
rived from both explicit and implicit symptoms. On the MZ-4 dataset (Figure 9), the model performs
well on pediatric diarrhea (0.93) and bronchitis (0.82), though pediatric dyspepsia shows some con-
fusion with diarrhea, suggesting these conditions share similar clinical features. The MZ-10 results
(Figure 10) illustrate consistent performance across ten different conditions, with neonatal jaundice
(0.97) and pediatric fever (0.83) achieving the highest accuracy rates, while some respiratory dis-
eases show overlapping predictions due to their comparable symptoms. The Dxy dataset (Figure 11)
confirms the model’s ability to achieve nearly perfect classification, with pediatric diarrhea reaching
complete accuracy (1.00) and hand-foot-mouth disease showing minimal errors (0.95), proving the
system’s effectiveness in distinguishing between different pediatric medical conditions.

A.5.3 T-SNE VISUALIZATION OF PATIENT EMBEDDING REPRESENTATIONS

The t-SNE visualizations of learned patient embeddings across three datasets illustrate the model’s
effectiveness in creating meaningful diagnostic representations within a two-dimensional space. Fig-
ure 12 (MZ-4) shows clearly separated clusters for four pediatric conditions, where pediatric bron-
chitis, upper respiratory infection, and pediatric diarrhea form distinct groups, although some over-
lap between pediatric dyspepsia and diarrhea indicates their similar gastrointestinal symptoms. Fig-
ure 13 (MZ-10) presents more complex clustering arrangements across ten conditions, with certain
diseases such as neonatal jaundice and pediatric constipation forming well-defined, separate clus-
ters, while respiratory conditions appear closer together due to their comparable clinical features.
Figure 14 (Dxy) demonstrates excellent cluster separation across five conditions, with each disease
category occupying different areas of the embedding space, particularly hand-foot-mouth disease
and allergic rhinitis showing complete separation, which confirms the model’s ability to identify
clinically significant diagnostic differences and supports the high classification performance shown
in the confusion matrices.
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Figure 9: Confusion matrix for diagnostic performance on the Muzhi-4 dataset

Figure 10: Confusion matrix for diagnostic performance on the Muzhi-10 dataset
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Figure 11: Confusion matrix for diagnostic performance on the Dxy dataset

Figure 12: t-SNE visualization of the learned embedding representations on the MZ-4 Dataset

Figure 13: t-SNE visualization of the learned embedding representations on the MZ-10 Dataset
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Figure 14: t-SNE visualization of the learned embedding representations on the Dxy Dataset

A.6 PROMPT TEMPLATE

Figure 15 illustrates our prompt template designed to guide a large language model (LLM) in ex-
tracting medically relevant information from dialogue data. The model is directed to function as an
advanced medical information extraction assistant, tasked with identifying symptom-disease pairs
and representing them as structured semantic triples in the format: [Symptom, indicates, Disease],
where “indicates” denotes the relationship between Symptom and Disease.

For its objective and function, the prompt transforms medical data into a set of triplets, enabling
downstream applications such as KG construction and automated diagnosis. This structured format
enhances interpretability, consistency, and integration into graph-based machine learning models
like SPKGDIAG.

To ensure the quality and clinical relevance of extracted data, the prompt enforces several con-
straints, including medical relevance, comprehensive symptom coverage, fixed disease labels, clini-
cal validity, and broad scope. For the output format, only a list of triples is returned, excluding any
additional commentary, explanations, or formatting artifacts.

In its usage context, the prompt facilitates consistent and high-quality extraction of symptom seman-
tics, laying the foundation for constructing patient-centric knowledge graphs that enhance diagnostic
reasoning.
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Figure 15: Prompt template for symptom extraction
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