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Abstract

In LLM alignment and many other ML applications, one often faces the Multi-1

Objective Fine-Tuning (MOFT) problem, i.e. fine-tuning an existing model with2

datasets labeled w.r.t. different objectives simultaneously. To address the chal-3

lenge, we propose the HyperDPO framework, a hypernetwork-based approach4

that extends the Direct Preference Optimization (DPO) technique, originally de-5

veloped for efficient LLM alignment with preference data, to accommodate the6

MOFT settings. By substituting the Bradley-Terry-Luce model in DPO with the7

Plackett-Luce model, our framework is capable of handling a wide range of MOFT8

tasks that involve listwise ranking datasets. Compared with previous approaches,9

HyperDPO enjoys an efficient one-shot training process for profiling the Pareto10

front of auxiliary objectives, and offers flexible post-training control over trade-11

offs. Additionally, we propose a novel Hyper Prompt Tuning design, that conveys12

continuous weight across objectives to transformer-based models without alter-13

ing their architecture. We demonstrate the effectiveness and efficiency of the Hy-14

perDPO framework through its applications to various tasks, including Learning-15

to-Rank (LTR) and LLM alignment, highlighting its viability for large-scale ML16

deployments.17

1 Introduction18

Direct Preference Optimization (DPO) [42] has been introduced as a memory- and computation-19

efficient alternative to the traditional Reinforcement Learning with Human Feedback (RLHF) [11,20

35, 50] in Large Language Model (LLM) alignment. The method fine-tunes a pre-trained LLM21

with additional data that indicates the preference between different proposals w.r.t. customized22

objectives, such as safety, verbosity, coherence, etc. [61]. The idea of DPO is to reparametrize the23

reward function in RLHF and guide the training process in a supervised learning manner with the24

preference data.25

LLM alignment also intersects with the Multi-Objective Optimization (MOO) problem, which in-26

volves fine-tuning a model w.r.t. multiple objectives simultaneously [21, 43, 61, 65]. In many MOO27

scenarios within machine learning, a pre-existing model optimized for one or more main objectives28

is further aligned to a set of auxiliary objectives without significantly detracting the model’s perfor-29

mance on the main objectives in order to achieve certain desirable properties [34, 45]. This specific30

scenario is termed the Multi-Objective Fine-Tuning (MOFT) problem. As auxiliary objectives may31

conflict with each other, the notion of alignment is generalized to achieving the Pareto optimality in32

the MOFT setting, where the goal is to profile the Pareto front, representing a spectrum of trade-off33

solutions where no single auxiliary objective can be improved without compromising another. For34

more related works in LLM Alignment and MOO, we refer to Appendix A.35
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In this work, we address the task of multi-objective fine-tuning in a broad context through our36

proposed HyperDPO framework. This hypernetwork-based multi-objective fine-tuning framework37

is designed to (1) generalize DPO to the MOFT setting, (2) profile the Pareto front of the auxiliary38

objectives while maintaining the model performance on the main objectives, and (3) offer as flexible39

post-training controls over the trade-offs as possible.40

1.1 Contributions41

The main contributions of this work are as follows:42

• We propose the HyperDPO method, a hypernetwork-based multi-objective fine-tuning frame-43

work that generalizes DPO to the multi-objective setting, profiles the Pareto front through one-44

shot training, and offers flexible post-training control over trade-offs.45

• The HyperDPO framework is tested across diverse tasks, including Learning-to-Rank (LTR)46

and LLM alignment tasks, demonstrating its state-of-the-art performance to achieve compre-47

hensive Pareto fronts against existing baselines and its efficiency across a wide range of high-48

dimensional, multi-objective, large-scale applications.49

• For LLM applications, we develop a novel Hyper Prompt Tuning design that translates the con-50

tinuous preference weight into a mask applied to the prefix embedding, effectively conveying51

weights across auxiliary objectives to the LLM without altering its underlying architecture.52

• We further investigate the potential of the temperature hypernetwork for enhancing the flexibil-53

ity of post-training control over the trade-offs, promising broader application of the HyperDPO54

framework to more complex multi-objective fine-tuning scenarios.55

2 Preliminaries56

In this section, we briefly introduce the proximal and direct preference optimization frameworks for57

fine-tuning LLMs with preference data, the MOO problem in machine learning settings, and related58

definitions.59

2.1 Proximal and Direct Preference Optimization60

Suppose we have a base LLM pbasepy|xq, with x and y being the content and the proposal, respec-61

tively, and pbasepy|xq the probability of generating response y given x. The goal of DPO is to62

fine-tune the model pbasepy|xq with the preference data DDPO “ tpxpkq, y
pkq
1 ą y

pkq
2 qukPrNs, where63

y
pkq
1 ą y

pkq
2 denotes ypkq

1 is more preferred than y
pkq
2 in the context of xpkq.64

Proximal Preference Optimization. In RLHF [11] or Proximal Preference Optimization65

(PPO) [46], one first models the preference data by the Bradley-Terry-Luce (BTL) model [4]:66

Ppy1 ą y2|xq “
expprpy1|xqq

expprpy1|xqq ` expprpy2|xqq
“ σ prpy1|xq ´ rpy2|xqq , (1)

where rpy|xq is the reward function and σp¨q is the sigmoid function. PPO is carried out in the67

following two steps:68

Step 1. Parametrize rpy|xq by a neural network rϕpy|xq, where the parameters ϕ are trained by69

maximizing the log-likelihood of the preference data:70

´Lprϕ;DDPOq “ Epx,y1ąy2q rlog σprϕpy1|xq ´ rϕpy2|xqqs ; (2)

Step 2. Fine-tune the base model pbasepy|xq by maximizing the expected reward with respect to71

the preference data while maintaining the KL-divergence between the refined model and the base72

model:73

´Lppθ; pbase, rϕ, βq “ E rrϕpy|xqs ´ βDKLppθ||pbaseq “ E
”

rϕpy|xq ´ β log pθpy|xq

pbasepy|xq

ı

, (3)

where β ą 0 is called the temperature parameter that controls the scale of the fine-tuning.74
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Direct Preference Optimization. The observation that motivates DPO [42] is that the reward75

function rϕpx, yq in (3) can be solved explicitly by letting rθpy|xq “ β log pθpy|xq

pbasepy|xq
, and therefore,76

the training process can be simplified to a one-shot logistic regression problem:77

´Lppθ; pbase, β,DDPOq “ Epx,y1ąy2q

”

log σ
´

β log pθpy1|xq

pbasepy1|xq
´ β log pθpy2|xq

pbasepy2|xq

¯ı

. (4)

For completeness, we provide the proofs of the claim above in Appendix B.2.78

2.2 Multi-Objective Optimization79

In contrast to its single-objective counterpart, MOO considers the optimization problem with mul-80

tiple objectives minθPΘ Lpθq “ pL1pθq,L2pθq, . . . ,Lmpθqq, where Θ is the feasible region. The81

goal is to profile the Pareto front, which is defined as follows:82

P “ tθ P Θ : Eθ1 P Θ s.t. @i P rms,Lipθ
1q ď Lipθq and Dj P rms,Ljpθ1q ă Ljpθqu,

intuitively translating to the set of trade-off solutions that cannot be improved in one without worsen-83

ing another. This concept is motivated by the possible conflicts between the objectives, and one may84

observe the details of the trade-offs from the Pareto front and make informed decisions accordingly.85

For many machine learning applications, the MOO problem can be formulated as follows: given86

a dataset in the form of DMOO “ tDj
MOOujPrms “ ttypkq, zj,pkqukPrNsujPrms, where ypkq is the87

feature vector and zj,pkq is the j-th label of the k-th data point, the goal is to learn a model fθpyq88

that optimizes the following objectives:89

min
θPΘ

Lpfθ;DMOOq :“ pL1pfθ;D1
MOOq,L2pfθ;D2

MOOq, . . . ,Lmpfθ;Dm
MOOqq, (5)

where Ljpfθ;Dj
MOOq is the loss function for the model fθ with respect to the j-th objective, and the90

feasible region Θ is over all possible model parameters.91

3 Methodology92

In this section, we first introduce the multi-objective fine-tuning problem and its relation to the93

LLM alignment problem. Then, we present the HyperDPO framework, a hypernetwork-based multi-94

objective fine-tuning framework that generalizes the DPO framework to the MOFT setting and pro-95

files the Pareto front of the auxiliary objectives.96

3.1 Multi-Objective Fine-Tuning97

The MOFT problem is a generalization of the LLM alignment problem to the multi-objective setting,98

where the goal is to fine-tune an existing base model pbasepy|xq with respect to multiple auxiliary99

objectives simultaneously while maintaining the model performance on the main objective(s) that100

the base model is optimized for.101

In this work, we formulate the MOFT problem as follows: given a set of item groups, each of which102

contains a list of items and corresponding labels with respect to m different objectives. The dataset103

is in the form of104

DMOFT “ tDj
MOFTujPrms “

"

!

xpkq, py
pkq
i qiPrnpkqs, pz

j,pkq
i qiPrnpkqs

)

kPrNs

*

jPrms

, (6)

where npkq is the number of items, xpkq P RD denotes the context and y
pkq
i P Rd denotes the feature105

vector of the i-th item, and z
j,pkq
i P Rnpkq

denotes the j-th label of the i-th item, in the k-th item106

group, which often indicates the preference tendency of each item with respect to the j-th aspect.107

For the relationship between the MOFT taks and the Learning-to-Rank (LTR) task, the LLM align-108

ment task, and the MOO problem, we refer to Appendix B.1.109

3.2 From Preference to Ranking110

Recall that the DPO framework is obtained by reparametrizing the reward function in the PPO frame-111

work (3) by the ratio of the model probabilities as in (4), one may generalize the DPO framework112

from preference to ranking datasets, by switching from the BTL model to the Plackett-Luce (PL)113

model (cf. (1) and (7)) [28].114
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Plackett-Luce Model. PL model [37] is one of the most popular ways to model the ranking115

data [6]. In the PL model, the probability of ranking of the j-th aspect is defined as:116

Pjpyπ1
ą yπ2

ą ¨ ¨ ¨ ą yπn
|xq :“

n
ź

i“1

exppspyπi
|xqq

řn
k“i exppspyπk

|xqq
, (7)

where spyq is the score function. The model is trained by aligning the j-th label with the top-one117

probability of the PL model Pjpyi ą yi1 , @i1 ‰ i|xq “
exppspyi|xqq

řn
i1“1

exppspyi1 |xqq
, i.e. the ListNet loss [6]:118

´LListNetpsθ;Dj
LTRq “ E

«

n
ÿ

i“1

tpzji q log

ˆ

exppsθpyi|xqq
řn

i1“1 exppsθpyi1 |xqq

˙

ff

, (8)

where the expectation is taken over the data distribution of DLTR, and tp¨q is an appropriate normal-119

ization of the label vector z s.t.
řn

i“1 tpziq “ 1. Common choices include the softmax function120

for dense labels and L1 normalization for sparse labels, corresponding to different modeling of the121

ranking data.122

The log-likelihood log pθpy|xq is related to the score function sθpy|xq by the softmax function,123

mimicking the BTL model (1) in which log pθpy|xq is related to the reward function rθpy|xq by the124

sigmoid function. Therefore, given the ranking dataset DMOFT (6), the loss function (4) of the j-th125

aspect can be modified to, incorporating the ListNet loss (8):126

LListNetpsθ; sbase, βj ,Dj
LTRq “ E

«

n
ÿ

i“1

tpzji q log

ˆ

exp pβjpsθpyi|xq ´ sbasepyi|xqqq
řn

i1“1 exp pβjpsθpyi1 |xq ´ sbasepyi1 |xqqq

˙

ff

.

(9)
The proof of this claim is provided in Appendix B.2. One should notice that when tp¨q is the L1127

normalization, the ListNet loss (8) applied to the preference dataset DDPO in the form of binary128

labels is equivalent to the DPO loss (4).129

3.3 Hypernetwork-based MOFT130

With the introduction of the ListNet loss (8), we may rewrite the MOFT problem (13) in a more131

detailed form:132

min
θPΘ

LListNetpsθ; sbase,β,DMOFTq “ pLListNetpsθ; sbase, βj ,Dj
MOFTqqjPrms. (10)

We assume the temperature parameter β “ pβ1, β2, . . . , βmq P Rm
` that controls the trade-off be-133

tween the main objective and each auxiliary objective is fixed for now.134

The most straightforward way to solve this MOO problem is to train the model sθ with a linear135

combination of the preference data [65]:136

LListNet,wpsθ; sbase,β,DMOFTq :“ wJLListNetpsθ; sbase,β,DMOFTq, (11)

where w “ pw1, w2, . . . , wmqJ P ∆m is the weight vector over objectives, and with ∆m being137

the m-dimensional simplex. As w iterates over ∆m, the model sθ will be optimized over a specific138

trade-off between the main objective and the auxiliary objectives and possibly land on the Pareto139

front. This approach is known as the weighted sum or linear scalarization method in MOO literature140

and is able to obtain the complete Pareto front when it is convex [19].141

An efficient way to profile the Pareto front of this MOFT problem is to use hypernetworks [34, 45].142

The idea of hypernetworks is to design and train neural networks sθ that not only take in the data but143

also depend on the weight vector w. Intuitively, it formulates the MOO problem as a meta-learning144

problem, where the model sθp¨,w|xq is trained to optimize the objectives over a distribution of145

weight vectors. In practice, in order to foster the exploration of the Pareto front, one may also146

incorporate artificial penalization terms to the loss function, such as the cosine similarity between147

the loss vector Lpsθ; sbase,β,DMOFTq of the model and the weight vector [45]:148

Gwpsθ; sbase,βq :“ ´ cos= pw,LListNetpsθp¨,w|xq; sbase,β,DMOFTqq .

This penalization term intuitively confines the loss vector LListNet to converging along the direction149

of the weight vector w, which empowers the model to profile possibly concave Pareto fronts [25].150

The loss function of the hypernetwork is thus defined as:151

LHypernetpsθ; sbase,β,DMOFT,α, λq

:“Ew„Dirpαq rLListNet,wpsθp¨,w|xq; sbase,β,DMOFTq ` λGwpsθp¨,w|xq; sbase,βqs ,
(12)
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where α is the concentration parameter of the Dirichlet distribution over ∆m, and λ is the penaliza-152

tion coefficient.153

Due to the linearity of the DPO framework, one can show the linear transformation property in154

Proposition B.1. Powered by this property, our framework also offers post-training control over the155

trade-offs in the MOFT problem. As illustrated in Figure 4, one can adjust the trade-offs between156

the auxiliary objectives by adjusting the weight vector w, and those between the fidelity to the base157

model and its performance on the fine-tuning datasets of the new model by scaling the temperature158

parameter β with (17). Furthermore, this property will serve as the foundation for the design of the159

temperature hypernetwork, which will be discussed in Appendix D.160

The whole HyperDPO framework is summarized in Algorithm 1, Appendix C.1.161

4 Experiments162

In this section, we provide the detailed experiment design and results of the HyperDPO framework163

for different applications, including the learning-to-rank task and the LLM alignment task. We also164

analyze the results and compare them with state-of-the-art methods.165

Baselines. We compare the HyperDPO framework with the following state-of-the-art baselines:166

• DPO Linear Scalarization (DPO-LS): We first sample several weight vectors w over the simplex167

∆m and train the model sθp¨,w|xq with the weighted sum loss (10). Notably, when w are unit168

vectors, it returns the result of the single-objective fine-tuning for reference.169

• DPO Soup [43]: The DPO Soup method first trains DPO models for each auxiliary objective and170

then combines the models by a weighted sum.171

• MO-DPO [65]: The MO-DPO method first chooses a weight vector w and then adds a margin172

reward term depending on w to the DPO loss to ensure multi-objective optimization.173

For each baseline, we will use the same number of weight vectors w for a fair comparison. For174

details and further discussion of these baselines, we refer to Appendix C.1.175

Hypervolume Metric. We adopt the hypervolume (HV) indicator [66] for evaluating the perfor-176

mance of MOO methods. Assuming the higher evaluation metrics indicate better performance, the177

hypervolume of the approximation P̂ to the real Pareto front P is defined as the volume of the178

dominated region of P̂ w.r.t. a reference point r, e.g. when applied to minimization problems, the179

hypervolume is defined as follows: HVpP̂, rq “
ş

xăr
1DpPP̂,pĺxdx. Higher hypervolume values180

indicate higher quality of the Pareto front.181

4.1 Learning-to-Rank Task182

We first test the HyperDPO framework on the learning-to-rank task. In this task, xpkq in DMOFT183

denotes a query, and y
pkq
i denotes the feature vector of the i-th document, and z

j,pkq
i denotes the184

score of the i-th document with respect to the j-th aspect. The goal is to provide a ranking π of the185

documents with respect to the scores zj,pkq
i for each query xpkq, for which the following Normalized186

Discounted Cumulative Gain (NDCG) (19) is used to evaluate its performance.187

As the common practice in the LTR tasks, the information of the query x has often been incorporated188

into the feature vectors yi in the upstream data processing. The hypernetwork sθp¨,wq is designed189

as a 2-layer transformer architecture of hidden dimension 64 with the weight vector w concatenated190

to the input of the first layer. We adopt the MSLR-WEB10K dataset [38] for the LTR task, with191

the main objective being the relevance label and the auxiliary objectives being (I) Query-URL Click192

Count, (II) URL Click Count, (III) URL Dwell Time, (IV) Quality Score 1, (V) Quality Score 2,193

with the relevance label, as 5 different auxiliary objectives (m “ 5) for fine-tuning. For details of194

the experiment settings, we refer to Appendix C.2.195

Experiment Results. We first apply the HyperDPO framework to the case where we only have 2196

auxiliary objectives (m “ 2) for better visualization. The results are shown in Figure 1, in which197
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Figure 1: Comparison of Pareto fronts obtained by the HyperDPO framework and the baselines on
the MSLR-WEB10K dataset with 2 auxiliary objectives. Two axes denote the NDCG@10 of the
two auxiliary objectives (the higher, the better). The inset plot shows the average NDCG@10 of the
main objective, with the error bar denoting the standard deviation across the 11 sampled points.

Method Aux. HV Avg. Main Score (˘Std) Training Time (s) # Parameters

DPO-LS 1.648 ˆ10´3 0.3553 (˘ 0.0290) 14649.15 551,232
DPO Soup 1.468 ˆ10´3 0.3823 (˘ 0.0317) 6061.69 250,615
MO-DPO 1.263 ˆ10´3 0.3595 (˘ 0.0242) 27059.70 801,792

HyperDPO 2.039 ˆ10´3 0.4320 (˘0.0277) 4043.47 50,432
Table 1: Hypervolume metric and training time1of HyperDPO and the baselines on the MSLR-
WEB10K dataset with 5 auxiliary objectives. The reference point is set to p0, 0q, and 11 points are
produced for the hypervolume calculation. The main score refers to the NDCG@10 of the main
objective.

Figure 1a presents the Pareto front of two sparse labels (tpzq “ z{}z}1 in (8)) with a relatively198

easy-to-learn convex Pareto front, while Figure 1b presents the Pareto front of two dense labels199

(tpzq “ softmaxpzq in (8)) with a more ill-posed Pareto front. HyperDPO obtains comprehensive200

and competitive Pareto fronts that dominate those of the baselines in both pairs of objectives. No-201

tably, HyperDPO is able to obtain a smooth Pareto front in Figure 1b while the baselines fail to do so.202

With a common temperature parameter β used across all methods, the inset plots demonstrate that203

the superior performance of the HyperDPO framework is not at the cost of the main objective, as204

the NDCG@10 of the main objective is comparable or even slightly better to some of the baselines.205

We also test the HyperDPO framework on a more complicated case where we have 5 auxiliary ob-206

jectives (m “ 5). The results in Table 1 demonstrate our HyperDPO framework is able to achieve a207

higher hypervolume metric with significantly less training time and number of parameters compared208

to the baselines and comparably good preservation of the performance on the main objective. While209

the computational cost of traditional methods, such as DPO-LS and MO-DPO, grows exponentially210

with the number of objectives, HyperDPO models are able to maintain a linear growth with almost211

intact performance, indicating the efficiency and capability of the HyperDPO framework in handling212

high-dimensional MOFT problems in the LTR task.213

Ablation Studies. We provide the ablation studies of the HyperDPO framework on the LTR task214

in Appendix C.3. Specifically, we evaluate the sensitivity of the HyperDPO framework to the con-215

centration parameter α (cf. Appendix C.3.1) and the depth (capacity) of the hypernetwork (cf. Ap-216

pendix C.3.2). Furthermore, we will introduce, discuss the suitability, and compare the performance217

of two different NN parametrizations of the hypernetwork sθp¨,w|xq in Appendix C.3.3, namely218

(a) Hypernetwork from scratch and (b) Augmentation hypernetwork, which exhibit different trade-219

1The training time refers to the duration of all training jobs required for computing the 11-point Pareto front,
and HyperDPO is allowed for more training epochs before its convergence.
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Figure 2: Illustration of the Hypernetwork Implementation in the HyperDPO Framework for the
LLM Alignment Task. The proposed Hyper Prompt Tuning method, highlighted within the dashed
box on the right, transforms the preference weight vector w into a weight mask and passes it to the
LLM via prompt tuning. k denotes the number of virtual tokens for prompt tuning, and r is the rank
of the weight mask.

offs between the performance and the computational cost and thus may serve different purposes in220

practice.221

As discussed in Section B.3, besides the weight vector w, the HyperDPO framework also offers222

post-training control over the temperature parameter β via the linear transformation property (Propo-223

sition B.1). We provide examples of the post-training control in Appendix D.1. However, the linear224

transformation property only offers proportional scaling of the temperature parameter β, motivating225

the design and development of the more sophisticated Temperature Hypernetwork. The details of226

our approach and some preliminary results are presented in Appendix D.227

4.2 LLM Alignment Task228

We then apply the HyperDPO framework to the LLM alignment task. In this task, xpkq in DMOFT229

denotes a prompt, and y
pkq
i denotes the response generated by the LLM, and z

j,pkq
i denotes the score230

of the i-th response with respect to the j-th aspect. The goal is to align the LLM to generate re-231

sponses that satisfy the auxiliary objectives (e.g. verboseness, harmlessness, etc.) while maintaining232

its performance on general tasks (e.g. fluency, relevance, etc.).233

The PKU-SafeRLHF dataset [21] is adopted for experiments, with each entry containing a prompt234

and a pair of responses annotated with preferences with respect to both harmlessness and helpfulness.235

The goal is to fine-tune the model to generate responses that are both harmless and helpful as a multi-236

objective optimization problem. We perform fine-tuning to the GPT-2 model [40] and the Alpaca-237

7B-Reproduced model [12] via Parameter-Efficient Fine-Tining (PEFT) with α “ 8 and r “ 4 in the238

low-rank adaptions (LoRA) to the modules within the model. For HyperDPO, we adopt the Hyper239

Prompt Tuning technique with k “ 8 and r “ 4. To ensure a fair comparison, baseline methods will240

also be augmented with the prompt tuning of k “ 8 on top of LoRA. For details of the experiment241

settings, we refer to Appendix C.2.242

Hypernetwork Implementation. We incorporate the information of the weight vector w into the243

LLM via a novel design, called Hyper Prompt Tuning (HPT) and shown in Figure 2. Inspired244

by Prompt Tuning [24], HPT augments the input embedding obtained post token embedding and245

positional encoding with a trainable prefix embedding block that is controlled by the weight vector246

w. Specifically, HPT follows the following steps:247

Step 1. HPT takes in a weight vector w P ∆m that indicates our preference across additional objec-248

tives and, through two simple trainable MLPs, produces two matrices, the matrix product of249

which forms the weight mask;250
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Figure 3: Comparison of Pareto fronts obtained by the HyperDPO framework and the baselines on
the PKU-SafeRLHF dataset2. Two axes denote the expected cross entropy error of the two auxiliary
objectives (the lower, the better). The inset plot shows the interquartile range (IQR) of the deviation
of the log-likelihood of the response from the reference model across the test dataset.

Step 2. The weight mask is multiplied entrywise with a trainable prefix embedding block with k251

virtual tokens;252

Step 3. The prefix embedding block is then concatenated to the input embedding as a prefix and fed253

into the transformer blocks of the LLM.254

In contrast to Multi-Task Prompt Tuning [58], which can only handle a finite number of tasks, one255

can pass a wide spectrum of preference information by HPT into the LLM, offering flexibility and256

versatility for our hypernetwork implementation.257

Experiment Results. For all experiments, we have chosen a common temperature β “ 0.1 to258

balance the trade-offs between the main and auxiliary objectives. HyperDPO achieves smooth and259

comprehensive Pareto fronts (cf. Figure 3) with higher hypervolume metrics and less training time260

(cf. Table 2) for both LLM architectures compared to the baselines, demonstrating the effectiveness261

of the HyperDPO framework in the large-scale LLM alignment tasks. Notably, as HyperDPO tackles262

a “meta-learning” problem that is intrinsically more challenging and thus demands more expressive263

power, the HyperDPO framework is less prone to overfitting and more robust to the choice of the264

hyperparameters compared to the baselines. Several ablation studies are provided in Appendix C.3.265

5 Discussion266

In this work, we propose the HyperDPO framework for multi-objective fine-tuning, which is in-267

spired by the DPO framework and the hypernetwork-based MOO to profile the Pareto front of a268

wide range of multi-objective fine-tuning (MOFT) problems. Our method presented superior perfor-269

mance in both the learning-to-rank and the large-scale LLM alignment tasks with multiple auxiliary270

objectives compared to the state-of-the-art methods, demonstrating the effectiveness and efficiency271

of the HyperDPO framework in handling high-dimensional MOFT problems. Our newly proposed272

Hyper Prompt Tuning technique also provides a novel way to incorporate preference information273

into the LLM, offering flexibility for both the hypernetwork implementation and further research in274

the LLM alignment task. We also explored the possibility of temperature hypernetwork in supple-275

mentary materials and presented preliminary results, opening up new directions for future research.276

Our work has proven the potential of the HyperDPO framework, and we expect it to be further277

explored in various MOFT problems in the future.278

2Due to the possible conflict between the prompt tuning and the MO-DPO method, we were unable to repro-
duce competitive results for the method, and Figure 5 offers the best result that we achieved by hyperparameter
optimization (cf. discussions in Appendix C.1).
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A Related Works465

LLM Alignment. LLM alignment has been a popular topic in the machine learning community.466

Reinforcement Learning from Human Feedback (RLHF) has been a groundbreaking technique for467

alignment [2, 11, 35, 46], which serves as a foundation for training models like GPT-4 [1], and468

several advances have been made in this direction [3, 14, 23]. To reduce computational complexity,469

Direct Preference Optimization (DPO) [42] has been proposed as an alternative to RLHF, and further470

developed in [16, 28, 36, 41, 49, 53, 60, 63, 65]. We refer readers to [48, 59] for comprehensive471

reviews on LLM alignment.472

Multi-Objective Optimization. Multi-Objective Optimization (MOO) has been actively studied473

in control systems [15] and economics [54]. The main focus of the related research is the de-474

velopment of algorithms to profile Pareto fronts efficiently so as to understand the trade-offs be-475

tween objectives. Traditional methods include the evolutionary algorithms [64] and Bayesian op-476

timization [22]. Recently, gradient-based MOO methods have been studied in the machine learn-477

ing settings [25, 27, 30, 44, 47]. Hypernetwork-based methods are also explored by a series of478

works [10, 17, 26, 34, 45].479

Learning-to-Rank (LTR). Learning to Rank (LTR) [29] tasks differ from traditional supervised480

learning in that they do not associate each sample with a simple label; instead, an optimal order of481

items within a group to maximize metrics, e.g. Normalized Discount Cumulative Gain (NDCG) [20,482

57]. Typically, LTR models score documents and rank them thereby. To bridge LTR with supervised483

learning, various differentiable losses have been proposed as the proxy to these metrics [5, 6, 39, 51,484

55]. In the context of Multi-Objective LTR, existing work includes label aggregation [7, 13], loss485

aggregation [18, 31, 32, 52], and hypernetwork [9].486

B Missing Remarks and Proofs487

In this section, we provide the remarks and proofs of the propositions and theorems mentioned in488

the main text.489

B.1 Remarks on the Multi-Objective Fine-Tuning Task490

Relation to the Learning-to-Rank Task. Datasets in this particular form are closely related to491

the Learning-to-Rank (LTR) problem, as one may immediately derive a ranking of the items in each492

group by sorting with respect to the labels z
j,pkq
i . In general, the dataset (6) may contain not only493

`

n
2

˘

pairwise preference data but also the comparative intensity of the preferences, necessitating494

generalized models to handle the MOFT task. The LTR task will be discussed in more detail in495

Section 4.1 as we present the application of the HyperDPO framework to it.496

Relation to the LLM Alignment. The preference dataset DDPO in LLM alignment can be viewed497

as a special case of the MOFT problem, where the number of auxiliary objectives m “ 1, the number498

of items (proposals) in each group n “ 2, and the label z1,pkq
i is binary, being 1 if the i-th item is499

preferred over the other, and 0 otherwise. We also refer to Liu et al. [28], Song et al. [49] for more500

discussions on LLM alignment with listwise data.501

Relation to the MOO task. MOFT is a generalization of the MOO problem (5) to the fine-tuning502

setting, where the model fθpyq is the new model pθpy|xq, and the dataset DMOO is the preference503

dataset DMOFT (6). The MOFT problem can be formulated in the MOO language as follows:504

min
θPΘ

Lppθ; pbase,β,DMOFTq “ pLjppθ; pbase, βj ,Dj
MOFTqqjPrms, (13)

in which the specific choices of the loss functions should be carefully designed to reflect the prefer-505

ences in the dataset DMOFT.506
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B.2 Proofs of Reparametrization-Related Arguments507

Proof of (4). Recall that in the second step of PPO, we consider the loss function (3) as follows:508

´Lppθ; pbase, rϕ, βq “ Epx,yq

„

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

ȷ

“

ż
ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

˙

pθpy|xqdy,

we calculate the functional derivative of the loss w.r.t. the density function pθpy|xq:509

δLppθ; pbase, rϕ, βq

δpθpy|xq
“ lim

ϵÑ0

Lppθ ` ϵδpθ; pbase, rϕ, βq ´ Lppθ; pbase, rϕ, βq

ϵ

“ lim
ϵÑ0

1

ϵ

„
ż

ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq
´ β

ϵδpθpy|xq

pθpy|xq

˙

ppθpy|xq ` ϵδpθpy|xqqdy

´

ż
ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

˙

pθpy|xqdy

ȷ

“

ż
ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq
´ β

˙

δpθpy|xqdy.

Let the functional derivative vanish, we obtain510

rϕpy|xq “ β log
pθpy|xq

pbasepy|xq
` β,

i.e.511

pθpy|xq 9 pbasepy|xq exp

ˆ

rϕpy|xq

β

˙

.

Since the likelihood Ppy1 ą y2|xq (1) in the BTL model only depends on the difference of the512

reward functions, rϕpy|xq admits an arbitrary constant shift, and thus we assume rϕpy|xq to be513

normalized in a way such that514

E
„

pbasepy|xq exp

ˆ

rϕpy|xq

β

˙ȷ

“ 1,

which leads to the reparametrization rθpy|xq “ β log pθpy|xq

pbasepy|xq
, plugging which into the PPO515

loss (3) yields the DPO loss (4).516

Proof of (9). As in the derivation of the DPO loss (4) under the BTL model, we first consider the517

PPO algorithm for the PL model:518

Step 1. Find the optimal score function sϕpy|xq that minimizes the loss function:519

´LListNetpsθ;Dj
LTRq “ E

«

n
ÿ

i“1

tpzji q log

ˆ

exppsϕpyi|xqq
řn

i1“1 exppsϕpyi1 |xqq

˙

ff

; (14)

Step 2. Fine-tune the base model sbase with the optimal score function sϕ by maximizing the ex-520

pected score value while penalizing the KL divergence between the new model and the base521

model:522

´Lppθ; pbase, rϕ, βq “ E rsϕpy|xqs´βDKLppθ||pbaseq “ E
„

sϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

ȷ

.

(15)

For the optimization problem in the second step (15), following the same procedure as in the proof523

of (4), we solve the optimal pθ by letting the functional derivative of the loss w.r.t. the density524

function pθpy|xq vanish and obtain525

pθpy|xq 9 pbasepy|xq exp

ˆ

sϕpy|xq

β

˙

. (16)
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Figure 4: Conceptual Illustration of Available Post-Training Controls in the HyperDPO Framework
with 2 auxiliary objectives.

By the assumption of the PL model and the ListNet loss, we have pθpy|xq modeled as the top-1526

probability of the PL model and thus related to the score function sθpy|xq via527

pθpy|xq “
exppsθpy|xqq

řn
i1“1 exppsθpyi1 |xqq

.

Let pbasepy|xq “
exppsbasepy|xqq

řn
i1“1

exppsbasepyi1 |xqq
, (16) can be rewritten as528

exppsθpy|xqq 9 exp psbasepy|xq ` βsϕpy|xqq ,

i.e.529

sθpy|xq “ sbasepy|xq ` βsϕpy|xq ` C,

where C is a constant shift. By noticing that the softmax function in (14) is invariant to the constant530

shift of the score function sϕpy|xq, we may choose certain normalization such that531

sθpy|xq “ sbasepy|xq ` βsϕpy|xq

holds, plugging which into the loss (14) yields the reparametrized ListNet loss (9).532

B.3 Linear Transformation Property533

Due to the linearity of the DPO framework, one can show the following linear transformation prop-534

erty:535

Proposition B.1 (Linear Transformation Property). For any β P Rm
` and w P ∆m, we denote536

the hypernetwork trained by the hypernetwork loss (12) with temperature β as sθ,βpy,w|xq. Then537

sθ,βpy,w|xq should satisfy the linear transformation that for any c ą 0, we have538

sθ,cβpy,w|xq “

ˆ

1 ´
1

c

˙

sbasepy|xq `
1

c
sθ,βpy,w|xq, (17)

up to a constant shift that does not depend on y.539

Proof of Proposition B.1. By the definition of the hypernetwork sθ,βpy,w|xq, we have540

sθ,cβpy,w|xq

“ argmin
sθpy,w|xq

E

«

n
ÿ

i“1

tpziq log

˜

exp
`

cβjpsθpyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

cβjpsθpyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸ff

“ argmin
sθpy,w|xq

E

«

n
ÿ

i“1

tpziq log

˜

exp
`

βjpcsθpyi,w|xq ` p1 ´ cqsbasepyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

βjpcsθpyi1 ,w|xq ` p1 ´ cqsbasepyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸ff

,
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which, compared with the definition of sθ,βpy,w|xq541

sθ,βpy,w|xq “ argmin
sθpy,w|xq

E

«

n
ÿ

i“1

tpziq log

˜

exp
`

βjpsθpyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

βjpsθpyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸ff

,

implies that542

sθ,βpy,w|xq “ csθ,cβpy,w|xq ` p1 ´ cqsbasepy,w|xq,

rearranging which yields543

sθ,cβpy,w|xq “
1

c
sθ,βpy,w|xq ´

1 ´ c

c
sbasepy,w|xq.

and the linear transformation property is proved.544

C Additional Experiment Details545

In this section, we present additional details of the experiments conducted in the main text, including546

further descriptions of the baseline implementations, and the ablation studies of the HyperDPO547

framework.548

C.1 Baseline Implementations549

In the following, we will introduce and discuss the baseline methods used in the experiments in550

detail.551

• DPO Linear Scalarization (DPO-LS): Given the base model sbase, for each weight vector w P552

Rm, the DPO-LS method trains the new model sθ with the loss function LListNet,w (11) and553

obtain sθ,w defined as554

sθ,w “ argmin
sθ

LListNet,wpsθ; sbase,β,DMOFTq

“ argmin
sθ

wJLListNetpsθ; sbase,β,DMOFTq.

This model is a naive generalization from the weighted sum method in the MOO literature to the555

MOFT problem, and the main drawback is that it needs as many training jobs and models as the556

number of sampled weight vectors, which is computationally expensive.557

• DPO Soup [43]: The DPO Soup model first trains m models sθ,ei
for each unit vector ei in the558

m-dimensional space, i.e. m DPO models w.r.t. the m auxiliary objectives, respectively, and559

then linearly combines the m models to obtain the final model with the weight vector w in the560

parameter space. The DPO Soup method offers a more efficient way to combine the models561

trained with different auxiliary objectives, but it still requires m training jobs and models for each562

auxiliary objective, and the performance of this model is largely dependent on the landscape of563

the parameter space of the neural network architecture. As depicted in Figure 1, the Pareto front564

obtained by the DPO Soup method may present unexpected curves, and Figure 3 shows that the565

DPO Soup method may even exhibit mode collapse for certain combinations.566

• MO-DPO [65]: The MO-DPO method also starts with the training of m models sθ,ei
for each567

unit vector ei in the m-dimensional space, and then instead of linearly combining the parameters,568

MO-DPO conducts a new training job for each weight vector w P Rm with the following loss569

function:570

LMO-DPOpsθ; sbase,β,DMOFTq “ E

»

–

n
ÿ

i“1

tpzji q log

¨

˝

exp
´

βjr
MO-DPO
θ,w

¯

řn
i1“1 exp

´

βjrMO-DPO
θ,w

¯

˛

‚

fi

fl ,

where, for an arbitrary i P rms, rMO-DPO
θ,w is defined as571

rMO-DPO
θ,w :“

1

wi

˜

sθpy|xq ´ sbasepy|xq ´
ÿ

i1‰i

wi1
`

sθ,e1
i
py|xq ´ sbasepy|xq

˘

¸

. (18)
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Figure 5: Comparison of Pareto fronts obtained by HyperDPO and the baselines on the PKU-
SafeRLHF dataset with the GPT-2 model, including the MO-DPO method. The results for MO-DPO
may not represent its best performance due to the possible conflict between the prompt tuning and
the MO-DPO method.

As MO-DPO requires m training jobs and one addition training job for each weight vector, it572

may require more training time and computational resources compared to the DPO-LS and DPO573

Soup methods. For the LLM alignment task, we observe MO-DPO suffers from unstable training574

caused by the 1{wi vector in the expression (18) especially when wi is close to zero, and exhibit575

less competitive performance. We suspect that the conflict between the prompt tuning and the576

MO-DPO method may lead to the suboptimal performance of MO-DPO in the LLM alignment577

task.578

C.2 Experiment Settings579

The HyperDPO framework is designed to address the limitations of the existing methods and provide580

a more efficient and effective way to profile the Pareto front of the MOFT problems, as summarized581

in Algorithm 1.582

Algorithm 1: HyperDPO Framework
Data: Base model sbasepy|xq, dataset DMOFT, temperature β, concentration parameter α,

penalization coefficient λ (Training); scale c, weight vector w (Post-Training Control).
Result: Hypernetwork sθ,¨βp¨, ¨|xq (Training); sθ,cβpy,w|xq (Post-Training Control).

// Training
1 for e “ 1 to Nsteps do
2 Sample w1 „ Dirpαq;
3 θ Ð θ´η∇θ rLListNet,wpsθp¨,w1|xq; sbase,β,DMOFTq ` λGwpsθp¨,w1|xq; sbase,βqs;

4 end
// Post-Training Control

5 sθ,cβpy,w|xq Ð p1 ´ 1{cq sbasepy|xq ` sθ,βpy,w|xq{c.

C.2.1 Learning-to-Rank (LTR) Task.583

Normalized Discounted Cumulative Gain (NDCG). The NDCG is a widely used metric in the584

LTR tasks, which measures the quality of the ranking of the items in the group. The NDCG is585

defined as586

NDCGj@kpπq “ Epx,y,zjq

»

–

DCG@kpπ, zjq

max
π1

DCG@kpπ1, zjq

fi

fl , where DCG@kpπ, zjq “

k
ÿ

i“1

zjπi

log2pi ` 1q
.

(19)
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Method GPT-2 Alpaca-7B-Reproduced
HV Training Time (s) HV Training Time (s)

DPO-LS 0.17668 15148.53 0.16873 94156.12
DPO Soup 0.18401 2755.51 0.14270 17138.74

HyperDPO 0.19424 1396.81 0.16885 8520.17
Table 2: Hypervolume metric and training time of HyperDPO and the baselines on the PKU-
SafeRLHF dataset. The reference point for the hypervolume metric is set to p1.1, 1.1q, and 11
points are produced for the hypervolume calculation.

NN architecture. As the common practice in the LTR tasks, the information of the query x has587

often been incorporated into the feature vectors yi by concatenation or other methods in the upstream588

data processing. We use a 2-layer transformer architecture of hidden dimension 128 for the base589

model sbasepyq, and the hypernetwork sθp¨,wq is designed as a 2-layer transformer architecture of590

hidden dimension 64 with the weight vector w concatenated to the input of the first layer.591

Dataset. We adopt the Microsoft Learning-to-Rank Web Search (MSLR-WEB10K) dataset [38]592

for the LTR task. The MSLR-WEB10K dataset consists of 10,000 groups (N “ 104), each con-593

taining a list of webpages retrieved by the search engine in response to the query xpkq and the594

corresponding features extracted from the webpage. Following the practice of [32], we treat the first595

131 features as the feature vector (ypkq
i P R131). We also identify the relevance label P r0 : 4s as the596

main objective used to train the base model, and the last 5 features, viz. (I) Query-URL Click Count,597

(II) URL Click Count, (III) URL Dwell Time, (IV) Quality Score 1, (V) Quality Score 2, with the598

relevance label, as 5 different auxiliary objectives (m “ 5) for fine-tuning. The dataset is split into599

training (60%), validation (20%), and test (20%) datasets, and all results shown below are on the600

test split.601

C.2.2 LLM Alignment Task.602

Dataset. The PKU-SafeRLHF dataset3 [21] is adopted for experiments, which consists of 83.4k603

entries, each containing a prompt and a pair of responses annotated with preferences with respect to604

both harmlessness and helpfulness. The goal is to fine-tune the model to generate responses that are605

both harmless and helpful as a multi-objective optimization problem.606

Training Settings. We perform fine-tuning to the GPT-2 model4 [40] and the Alpaca-7B-607

Reproduced model5 [12], following the practice of [65] via Parameter-Efficient Fine-Tining (PEFT)608

with α “ 8 and r “ 4 in the low-rank adaptions (LoRA) to the modules within the model. For609

HyperDPO, we adopt the Hyper Prompt Tuning technique with k “ 8 and r “ 4. To ensure a fair610

comparison, baseline methods will also be augmented with the prompt tuning of k “ 8 on top of611

LoRA. The HyperDPO framework is built upon the TRL package [56], and the implementation of612

the HPT is compatible with the PEFT package [33], which allows for easy integration with existing613

LLMs. All the experiments are conducted on a cluster with 8ˆ NVIDIA A100 GPUs.614

C.3 Ablation Studies615

In this section, we provide the ablation studies of the HyperDPO framework, including the sensitivity616

of the concentration parameter α in the Dirichlet distribution, the depth of the hypernetwork, and617

the performance of two different NN parametrizations of the hypernetwork sθ,w,βp¨, ¨|xq, namely618

(a) Hypernetwork from scratch and (b) Augmentation hypernetwork.619

C.3.1 Concentration Parameter α620

The concentration parameter α controls the span of the Dirichlet distribution from which the weight621

vector w is sampled and is the key parameter affecting the performance of the HyperDPO framework622

3https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF
4https://huggingface.co/openai-community/gpt2
5https://huggingface.co/PKU-Alignment/alpaca-7b-reproduced
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Figure 6: Ablation study on the impact of concentration parameter α on the Pareto fronts obtained
by the HyperDPO framework on the MSLR-WEB10K dataset (Objective I vs Objective II) with
different settings of α. The hypervolume metric is shown in the table beside each figure.
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(b) Alpaca-7B-Reproduced

Figure 7: Ablation study on the impact of the concentration parameter α on the Pareto fronts ob-
tained by the HyperDPO framework on the PKU-SafeRLHF dataset.

that should be carefully selected and validated. By the basic properties of the Dirichlet distribution,623

suppose w „ Dirpαq, then we have624

Erws “
α

}α}1
:“ α, varpwq “

diagpαq ´ ααJ

}α}1 ` 1
.

In general, the smaller the α, the more likely the weight vector w is close to the boundary of625

the simplex, and the larger the α, the more likely the weight vector w is concentrated around the626

expectation α.627

As the HyperDPO framework is generally robust to the choice of the concentration parameter α,628

we conduct ablation studies to investigate the impact of the concentration parameter α on the per-629

formance of the HyperDPO framework in different settings. We first conduct experiments on the630

MSLR-WEB10K dataset with 2 auxiliary objectives (Query-URL Click Count vs URL Click Count)631

to investigate the impact of the concentration parameter α on the performance of the HyperDPO632

framework. The results are shown in Figure 6. The experiment settings and plotting details are the633

same as in the main text.634

As shown in Figure 6a, as the concentration parameter α decreases, HyperDPO obtains a visually635

more comprehensive Pareto front thanks to more samples close to the boundary of the simplex.636

However, it is at the cost of a slightly undertrained model across the simplex, indicated by a lower637

hypervolume metric. It turns out that the choice of α faces a trade-off between the diversity of the638

samples and the overall quality of the training, given a fixed training budget. Similar trade-offs are639

observed in Figure 6b and 6c when only one dimension of the concentration parameter α is varied.640

We also conducted experiments on the PKU-SafeRLHF dataset to investigate the impact of the641

concentration parameter α on the performance of the HyperDPO framework on the LLM alignment642

task. The results are shown in Figure 7. A similar pattern is observed in this large-scale task,643

where a smaller choice of the concentration parameter α leads to a more comprehensive Pareto644

front. However, it does not necessarily lead to a worse hypervolume metric, suggesting that the645

performance of HyperDPO here is less hindered by the expressive power of the model, which has646

already been abundant in the LLM, but rather by the diversity of the samples.647

C.3.2 Depth of the Hypernetwork648

The depth of the hypernetwork structure is also crucial for the performance of the HyperDPO frame-649

work, as it determines the complexity of the hypernetwork structure and the expressiveness of the650

hypernetwork. We also use the MSLR-WEB10K dataset with 2 auxiliary objectives (Query-URL651

Click Count vs URL Click Count) to investigate the impact of the depth of the hypernetwork struc-652

ture on the performance of the HyperDPO framework. The results are shown in Figure 9a, where653

the depth, referring to the number of transformer layers in the hypernetwork, is varied from 1 to 5.654

As shown in the figure, the performance of the HyperDPO framework is first significantly improved655

and gradually saturated with the increase of the depth of the hypernetwork structure. Besides, while656
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Figure 8: Illustration of two different parametrizations of the hypernetwork sθp¨,w|xq in the Hyper-
DPO framework. Dashed lines denote that backpropagation is not applied.

the hypervolume metric improves, the coverage of the Pareto front does not change significantly657

with the increase in the depth of the hypernetwork structure. This suggests that the concentration658

parameter α may have a more significant impact on the diversity of the samples than the depth of659

the hypernetwork structure.660

C.3.3 Hypernetwork Parametrization661

In general, one could adopt one of the two different parametrizations of the hypernetwork sθp¨,w|xq662

in the HyperDPO framework.663

• Hypernetwork from Scratch: The hypernetwork sθp¨,w|xq is a completely separate neural net-664

work from the base model sbasepy|xq. Depending on the specific design of the hypernetwork665

for additional inputs w, the hypernetwork may or may not share the same architecture as the666

base model. The main advantage of this design is that it requires less memory and computation667

resources [42], and thus is more suitable for large-scale applications, e.g. LLMs.668

• Augmentation Hypernetwork: As several works [8, 62] argue that DPO is prone to overfitting, one669

may curb the complexity of the hypernetwork for the score function sθp¨,w|xq by only adding a670

first-order correction term to the base model sbasepy|xq as:671

sθpy,w|xq “ sbasepy|xq ` ∆sθpy,w|xq,

where the parameters in the base model are fixed, and the hypernetwork structure is only applied672

to the correction term ∆sθp¨,w|xq. This design allows limited modification and reversibility to673

the base model and is thus suitable for applications where the fine-tuning is limited in budget,674

frequent, or expected to be minor.675

The two parametrizations are illustrated in Figure 8a and 8b, respectively.676

Both parametrizations can be seamlessly applied to the HyperDPO framework and easily switch677

between each other. In all the experiments presented in the main text, we have adopted the hy-678

pernetwork from scratch design for the HyperDPO framework. Figure 9b shows the results of the679

HyperDPO framework with the augmentation hypernetwork design on the same task as the previ-680

ous ablation studies. Compared with Figure 9a, the augmentation hypernetwork achieves a roughly681

better performance than the hypernetwork from scratch design with the same depth, coinciding with682

the intuition that the augmentation hypernetwork benefited from the information provided by the683

base model and instead of learning the entire score function sθp¨,w|xq from scratch, it only needs684

to learn the correction term ∆sθp¨,w|xq. When the depth of the hypernetwork structure is increased,685

the performance of the augmentation hypernetwork is also improved, sharing the same trend as the686

hypernetwork from scratch design.687

D Towards Generalization to Temperature Hypernetwork688

In this section, we consider further generalization of the hypernetwork structure to the temperature689

parameter β. Generally speaking, the model should exhibit different Pareto fronts for different tem-690

perature parameters β P Rm
` . By incorporating the temperature parameter β into the hypernetwork,691
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Figure 9: Ablation studies on the impact of the depth of the hypernetwork and the hypernetwork
parametrizations on the Pareto fronts obtained by the HyperDPO framework on the MSLR-WEB10K
dataset (Objective I vs Objective II).
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Figure 10: Examples of post-training control over temperature β on the MSLR-WEB10K dataset
with 2 auxiliary objectives. Two axes denote the NDCG@10 of the two auxiliary objectives (the
higher, the better). The colorbar denotes the NDCG@10 of the main objective.

we aim to output one score for each document y, denoted by sθpy,w,β|xq, which reflects not692

only our preference w between different auxiliary objectives but also the trade-off between the main693

objective and the auxiliary objectives controlled by the vector β.694

D.1 Current Post-Training Control over Temperature β695

Before we proceed to the training of the temperature hypernetwork, we would first present the cur-696

rent available post-training control over the temperature β in the HyperDPO framework without the697

temperature hypernetwork. As discussed in Appendix B.3 after Proposition B.1, the linear trans-698

formation property of the hypernetwork implies that the model can be scaled proportionally by a699

constant factor c by a simple linear transformation of the output scores.700

Figure 10 gives examples of the post-training control over the temperature β on the MSLR-WEB10K701

dataset with 2 auxiliary objectives. As the temperature β increases, the Pareto front shifts towards702

the direction where the main objective is more emphasized, which is consistent with our expectations.703

In Figure 10b, the two auxiliary objectives are in balance, and thus, the shifts of the Pareto fronts704

resemble that depicted in Figure 4. However, in Figure 10a, the unexpected shifting pattern is705

observed, which may reflect the complex interactions between the main and auxiliary objectives.706
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Motivated by the observation of complicated trade-offs between the main and auxiliary objectives,707

one may consider using different temperature β for different objectives and also a disproportionate708

post-training scaling of the temperature parameter β to achieve more flexible control over the Pareto709

front. To this end, we propose to design the temperature hypernetwork to achieve this goal by710

incorporating the temperature parameter β into the hypernetwork structure in a similar manner as711

the weight vector w.712

D.2 Temperature Hypernetwork Parametrization713

Proposition B.1 implies that the temperature β P Rm
` actually has m ´ 1 degrees of freedom, and714

thus we propose to use the following reparametrization by projecting β to its L1-normalization715

β :“ β{}β}1 P ∆m, i.e.716

sθpy,w,β|xq “

ˆ

1 ´
1

}β}1

˙

sbasepxq `
1

}β}1
sθ,w,βpxq. (20)

The training is then conducted by randomly sampling β P Rm
` over a certain distribution Dpβq717

valued in Rm
` , and the loss can be written as718

LTempHypernetpsθ; sbase,DMOFT,α, λq

:“Eβ„Dpβq

“

Ew„Dirpαq rLListNet,wpsθp¨,w,β|xq; sbase,DMOFTq ` λGwpsθp¨,w,β|xq; sbaseqs
‰

.
(21)

The algorithm for the HyperDPO framework with the temperature hypernetwork is provided in719

Algorithm 2.720

Algorithm 2: HyperDPO Framework with Temperature Hypernetwork
Data: Base model sbasepy|xq, dataset DMOFT, concentration parameter α, penalization

coefficient λ (Training); temperature β, weight vector w (Post-Training Control).
Result: Hypernetwork sθp¨, ¨, ¨|xq (Training); sθpy,w,β|xq (Post-Training Control).

// Training
1 for e “ 1 to Nsteps do
2 Sample w1 „ Dirpαq, β1 „ Dpβq;
3 θ Ð

θ ´ η∇θ rLListNet,wpsθp¨,w1,β1|xq; sbase,DMOFTq ` λGwpsθp¨,w1,β1|xq; sbaseqs;
4 end

// Post-Training Control
5 sθpy,w,β|xq Ð p1 ´ 1{cq sbasepy|xq ` sθ,βpy,w|xq{c.

In general, the distribution Dpβq should be chosen to cover a reasonable range of temperature pa-721

rameters β to ensure the problem is tractable, as our experiments reveal that the temperature hy-722

pernetwork may require highly expressive neural networks to capture the complex trade-offs both723

between the main and auxiliary objectives and across the auxiliary objectives.724

D.3 Preliminary Results725

All experiments presented in this section are conducted on the MSLR-WEB10K dataset with 2 aux-726

iliary objectives (Quality Score vs Quality Score 2) to investigate the performance of the HyperDPO727

framework with the temperature hypernetwork, as it provides better visualization and comparisons728

of the Pareto fronts with different temperature parameters β. In particular, we adopt the augmenta-729

tion hypernetwork design for the temperature hypernetwork for better expressive power and stability.730

We provide the preliminary results of the HyperDPO framework with the temperature hypernetwork731

on the LTR task in Figure 11. The depth of the temperature hypernetwork is chosen to be 5, and the732

distribution Dpβq is set to be Unifpr0.67, 1.5s2q. The results demonstrate the temperature hypernet-733

work is capable of capturing the trade-off between the main objective and the auxiliary objectives734

for all kinds of temperature configurations β, and the Pareto fronts exhibit expected behaviors with735

different β. These results suggest that the temperature hypernetwork is a promising direction for the736

HyperDPO framework to achieve more flexible control over the Pareto front.737
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Figure 11: Preliminary results of the HyperDPO framework with the temperature hypernetwork on
the MSLR-WEB10K dataset (Objective IV vs Objective V). The colorbar denotes the NDCG@10
of the main objective.
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Figure 12: Ablation study of the impact of the depth of the temperature hypernetwork on the Pareto
fronts obtained by the HyperDPO framework on the MSLR-WEB10K dataset (Objective IV vs
Objective V). The colorbar denotes the NDCG@10 of the main objective.

Given the choices of the temperature parameters, the Pareto fronts in both Figure 10a and 10b should738

merge into one single point, which refers to the solution of the single-objective fine-tuning task with739
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Figure 13: Ablation study of the impact of the distribution Dpβq on the Pareto fronts obtained
by the HyperDPO framework with the temperature hypernetwork on the MSLR-WEB10K dataset
(Objective IV vs Objective V). The colorbar denotes the NDCG@10 of the main objective.

certain temperature parameter β. Although the results are roughly in accordance with the theoretical740

expectations, there are still small gaps that may be accounted for by the limit of the expressive power741

of the hypernetwork structure and insufficient exploration over the weight vector w.742

To explain this, we present ablation studies to investigate the effect of the expressiveness of the hy-743

pernetwork structure on the performance of the HyperDPO framework with the temperature hyper-744

network. We applied hypernetworks with 2 to 5 layers of transformer architecture to the temperature745

hypernetwork, and the results show that the performance, indicated by the expected behaviors of the746

Pareto front, is drastically improved with the increase of the number of layers of the hypernetwork.747

While swallower hypernetworks yield Pareto fronts with less expected behaviors and more noise, e.g.748

the concavity of the Pareto fronts in Figure 12b partially indicates the insufficiency of the training749

of the temperature hypernetwork, the temperature hypernetwork with 5 layers of transformer archi-750

tecture in Figure 12d exhibits improved scores and more expected behaviors according to different751

temperature configurations. This suggests and confirms the intuition that temperature hypernetworks752

require more expressive structures to capture the complex trade-offs between the main and auxiliary753

objectives.754

The choice of the distribution Dpβq also affects the performance of the temperature hypernetwork.755

Figure 13 shows the ablation study of the impact of the distribution Dpβq on the Pareto fronts ob-756

tained by the HyperDPO framework with the temperature hypernetwork on the MSLR-WEB10K757

dataset. The results suggest that the distribution Dpβq should cover a larger range than those inter-758

ested in the temperature hypernetwork to ensure sufficient training.759
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Given the preliminary results and ablation studies, we conclude that despite requiring more expres-760

sive structures and more training resources, the temperature hypernetwork is a feasible and promis-761

ing direction for the HyperDPO framework to achieve more flexible control over the Pareto front762

and we expect to further investigate the temperature hypernetwork in future work.763
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