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ABSTRACT

In LLM alignment and many other ML applications, one often faces the Multi-
Objective Fine-Tuning (MOFT) problem, i.e. fine-tuning an existing model with
datasets labeled w.r.t. different objectives simultaneously. To address the chal-
lenge, we propose the HyperDPO framework, a conditioned one-shot fine-tuning
approach that extends the Direct Preference Optimization (DPO) technique, orig-
inally developed for efficient LLM alignment with preference data, to accommo-
date the MOFT settings. By substituting the Bradley-Terry-Luce model in DPO
with the Plackett-Luce model, our framework is capable of handling a wide range
of MOFT tasks that involve listwise ranking datasets. Compared with previous
approaches, HyperDPO enjoys an efficient one-shot training process for profiling
the Pareto front of auxiliary objectives, and offers post-training control over trade-
offs. Additionally, we propose a novel Hyper Prompt Tuning design, that con-
veys continuous importance weight across objectives to transformer-based models
without altering their architecture, and investigate the potential of temperature-
conditioned networks for enhancing the flexibility of post-training control. We
demonstrate the effectiveness and efficiency of the HyperDPO framework through
its applications to various tasks, including Learning-to-Rank (LTR) and LLM
alignment, highlighting its viability for large-scale ML deployments.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2024b) has been introduced as a memory-
and computation-efficient alternative to the traditional Reinforcement Learning with Human Feed-
back (RLHF) (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022) in Large Language
Model (LLM) alignment. The method fine-tunes a pre-trained LLM with additional data that indi-
cates the preference between different proposals w.r.t. customized objectives, such as safety, ver-
bosity, coherence, etc. (Wu et al., 2024b). The idea of DPO is to reparametrize the reward function
in RLHF and guide the fine-tuning process in a supervised learning manner with the preference data.

LLM alignment also intersects with the Multi-Objective Optimization (MOO) problem, which in-
volves fine-tuning a model w.r.t. multiple objectives simultaneously (Ji et al., 2024b; Wu et al.,
2024b; Zhou et al., 2023; Rame et al., 2024). In many MOO scenarios within machine learning, a
pre-existing model optimized for one or more main objectives is further aligned to a set of auxiliary
objectives without significantly detracting the model’s performance on the main objectives in order
to achieve certain desirable properties (Navon et al., 2020; Ruchte & Grabocka, 2021). This specific
scenario is termed the Multi-Objective Fine-Tuning (MOFT) problem. As auxiliary objectives may
conflict with each other, the notion of alignment is generalized to achieving the Pareto optimality in
the MOFT setting, where the goal is to profile the Pareto front, representing a spectrum of trade-off
solutions where no single auxiliary objective can be improved without compromising another.

In this work, we address the task of multi-objective fine-tuning in a broad context through our
proposed HyperDPO framework. This conditioned one-shot multi-objective fine-tuning framework
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is designed to (1) generalize DPO to the MOFT setting, (2) profile the Pareto front of the auxiliary
objectives while maintaining the model performance on the main objectives with an efficient one-
shot training process, and (3) offer as flexible post-training controls over the trade-offs as possible.

1.1 CONTRIBUTIONS

The main contributions of this work are as follows:

• We propose the HyperDPO method, a conditioned one-shot multi-objective fine-tuning frame-
work that generalizes DPO to the multi-objective setting, profiles the Pareto front through one-
shot training, and offers flexible post-training control over trade-offs.

• The HyperDPO framework is tested across diverse tasks, including Learning-to-Rank (LTR)
and LLM alignment tasks, demonstrating its state-of-the-art performance to achieve compre-
hensive Pareto fronts against existing baselines and its efficiency across a wide range of high-
dimensional, multi-objective, large-scale applications.

• For LLM applications, we develop a novel Hyper Prompt Tuning design that translates the con-
tinuous importance weight into a mask applied to the prefix embedding, effectively conveying
weights across auxiliary objectives to the LLM without altering its underlying architecture.

• We further investigate the potential of the temperature-conditioned network for enhancing the
flexibility of post-training control over the trade-offs, promising broader application of the
HyperDPO framework to more complex multi-objective fine-tuning scenarios.

We refer readers to Appendix A and B for related works and preliminaries on proximal and direct
preference optimization, and multi-objective optimization.

2 METHODOLOGY

In this section, we first introduce the multi-objective fine-tuning problem and its relation to the
LLM alignment problem. Then, we present the HyperDPO framework, a conditioned one-shot
multi-objective fine-tuning framework that generalizes the DPO framework to the MOFT setting
and profiles the Pareto front of the auxiliary objectives.

2.1 MULTI-OBJECTIVE FINE-TUNING

The MOFT problem is a generalization of the LLM alignment problem to the multi-objective setting,
where the goal is to fine-tune an existing base model pbasepy|xq with respect to multiple auxiliary
objectives simultaneously while maintaining the model performance on the main objective(s) that
the base model is optimized for.

In this work, we formulate the MOFT problem as follows: given a set of item groups, each of which
contains a list of items and corresponding labels with respect to m different objectives. The dataset
is in the form of

DMOFT “ tDj
MOFTujPrms “

"

!

xpkq, py
pkq
i qiPrnpkqs, pz

j,pkq
i qiPrnpkqs
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where npkq is the number of items, xpkq P RD denotes the context and y
pkq
i P Rd denotes the feature

vector of the i-th item, and z
j,pkq
i P Rnpkq

denotes the j-th label of the i-th item, in the k-th item
group, which often indicates the preference tendency of each item with respect to the j-th aspect.

Relation to the Learning-to-Rank Task. Datasets in this particular form are closely related to
the Learning-to-Rank (LTR) problem, as one may immediately derive a ranking of the items in each
group by sorting with respect to the labels z

j,pkq
i . In general, the dataset (1) may contain not only

`

n
2

˘

pairwise preference data but also the comparative intensity of the preferences, necessitating
generalized models to handle the MOFT task. The LTR task will be discussed in more detail in
Section 3.1 as we present the application of the HyperDPO framework to it.

Relation to the LLM Alignment. The preference dataset DDPO in LLM alignment can be viewed
as a special case of the MOFT problem, where the number of auxiliary objectives m “ 1, the number
of items (proposals) in each group n “ 2, and the label z1,pkq

i is binary, being 1 if the i-th item is
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preferred over the other, and 0 otherwise. We also refer to Liu et al. (2024); Song et al. (2024) for
more discussions on LLM alignment with listwise data.

Relation to the MOO task. MOFT is a generalization of the MOO problem (15) to the fine-tuning
setting, where the model fθpyq is the new model pθpy|xq, and the dataset DMOO is the preference
dataset DMOFT (1). The MOFT problem can be formulated in the MOO language as follows:

min
θPΘ

Lppθ; pbase,β,DMOFTq “ pLjppθ; pbase, βj ,Dj
MOFTqqjPrms, (2)

in which the specific choices of the loss functions will be introduced in the next section.

2.2 FROM PREFERENCE TO RANKING

Recall that DPO is obtained by reparametrizing the reward function in PPO (13) by the ratio of the
model probabilities as in (14), one may generalize the DPO framework from preference to ranking
datasets, by switching from the BTL model to the Plackett-Luce (PL) model (cf. (11) and (3)), as
proposed by Liu et al. (2024). For the clarity of further generalization, we give a brief recapitulation
of the PL model and its relation to the ListNet loss (Cao et al., 2007) in the following.

Plackett-Luce Model. PL model (Plackett, 1975) is one of the most popular ways to model the
ranking data. In the PL model, the probability of a ranking is postulated as:

Ppyπ1 ą yπ2 ą ¨ ¨ ¨ ą yπn |xq :“
n

ź

i“1

exppspyπi
|xqq

řn
k“i exppspyπk

|xqq
, (3)

where spy|xq is the score function. The model is trained by aligning the j-th label with the top-one
probability of the PL model Ppyi ą yi1 , @i1 ‰ i|xq “

exppspyi|xqq
řn

i1“1
exppspyi1 |xqq

, i.e. the ListNet loss (Cao
et al., 2007):

´LListNetpsθ;Dj
LTRq “ E

«

n
ÿ

i“1

tpzji q log

ˆ

exppsθpyi|xqq
řn

i1“1 exppsθpyi1 |xqq

˙

ff

, (4)

where the expectation is taken over the data distribution of DLTR, and tp¨q is an appropriate normal-
ization of the label vector z s.t.

řn
i“1 tpziq “ 1. Common choices include the softmax function

for dense labels and L1 normalization for sparse labels, corresponding to different modeling of the
ranking data.

The log-likelihood log pθpy|xq is related to the score function sθpy|xq by the softmax function,
mimicking the BTL model (11) in which log pθpy|xq is related to the reward function rθpy|xq by
the sigmoid function. Therefore, given the ranking dataset DMOFT (1), the loss function (14) of the
j-th aspect can be modified to, incorporating the ListNet loss (4):

´LListNetpsθ; sbase, βj ,Dj
LTRq “ E

«

n
ÿ

i“1

tpzji q log

ˆ

exp pβjpsθpyi|xq ´ sbasepyi|xqqq
řn

i1“1 exp pβjpsθpyi1 |xq ´ sbasepyi1 |xqqq

˙

ff

.

(5)
For completeness, the proof of this claim is provided in Appendix C.1. One should notice that when
tp¨q is the L1 normalization, the ListNet loss (4) applied to the preference dataset DDPO in the form
of binary labels is equivalent to the DPO loss (14).

2.3 MOFT WITH IMPORTANCE-CONDITIONED NETWORKS

With the introduction of the ListNet loss (4), we may rewrite the MOFT problem (2) in a more
detailed form:

min
θPΘ

LListNetpsθ; sbase,β,DMOFTq “ pLListNetpsθ; sbase, βj ,Dj
MOFTqqjPrms. (6)

We assume the temperature parameter β “ pβ1, β2, . . . , βmq P Rm
` that controls the trade-off

between the main objective and each auxiliary objective is fixed for now.

The most straightforward way to solve this MOO problem is to train the model sθ with a linear
combination of the preference data (Zhou et al., 2023):

LListNet,wpsθ; sbase,β,DMOFTq :“ wJLListNetpsθ; sbase,β,DMOFTq, (7)
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where w “ pw1, w2, . . . , wmqJ P ∆m is the weight vector that reflects the importance we assign
over the objectives, and with ∆m being the m-dimensional simplex. As w iterates over ∆m, the
model sθ will be optimized over a specific trade-off between the main objective and the auxiliary
objectives and possibly land on the Pareto front. This approach is known as the weighted sum or
linear scalarization method in MOO literature and is able to obtain the complete Pareto front when
it is convex (Jakob & Blume, 2014).

An efficient way to profile the Pareto front of this MOFT problem is to use hypernetworks (Navon
et al., 2020; Hoang et al., 2023). As an efficient alternative to traditional hypernetworks that use
additional neural networks to generate the model parameters, Ruchte & Grabocka (2021) proposes
input-conditioned networks and HyperDPO generalizes this idea to the MOFT settings. To be spe-
cific, we propose to design importance-conditioned neural networks sθ that not only take in the
data but also depend on the importance weight w over objectives. Intuitively, it formulates the
MOO problem as a “meta-learning” problem, where the model sθp¨,w|xq is trained to optimize the
objectives over a distribution of weight vectors. In practice, in order to foster the exploration of
the Pareto front, one may also incorporate artificial penalization terms to the loss function, such as
the cosine similarity between the loss vector Lpsθ; sbase,β,DMOFTq of the model and the weight
vector (Ruchte & Grabocka, 2021):

Gwpsθ; sbase,βq :“ ´ cos= pw,´LListNetpsθp¨,w|xq; sbase,β,DMOFTqq . (8)

This penalization term intuitively confines the loss vector LListNet to converging along the direction
of the weight vector w, empowering possible profiling of concave Pareto fronts (Lin et al., 2019).

We design the following importance-conditioned one-shot (ICOS) fine-tuning loss that if optimized,
will output models sθ,βp¨,w|xq that are Pareto optimal with respect to the auxiliary objectives:

LICOSpsθ; sbase,β,DMOFT,α, λq

:“Ew„Dirpαq rLListNet,wpsθp¨,w|xq; sbase,β,DMOFTq ` λGwpsθp¨,w|xq; sbase,βqs ,
(9)

where α is the concentration parameter of the Dirichlet distribution over ∆m, and λ is the penaliza-
tion coefficient. The HyperDPO framework is summarized in Algorithm 1.

2.4 LINEAR TRANSFORMATION PROPERTY

Aux. Obj. 1

Aux. Obj. 2

PF at βPF at 2β

PF at β
{2

larger

β

smaller

p0, 1q

w

p1, 0q

Figure 1: Conceptual Illustration of
Available Post-Training Controls in the
HyperDPO Framework with 2 auxiliary
objectives.

Due to the linearity of the DPO framework, one can show
the following linear transformation property:

Proposition 2.1 (Linear Transformation Property). For
any β P Rm

` and w P ∆m, we denote the
model optimized by the ICOS loss (9) with tem-
perature β as sθ,βpy,w|xq, and suppose the pe-
nalization term Gwpsθ; sbase,βq is a function of
LListNetpsθp¨,w|xq; sbase,β,DMOFTq.

Then sθ,βpy,w|xq should satisfy the linear transforma-
tion that for any c ą 0, we have that

sθ,cβpy,w|xq “
`

1 ´ 1
c

˘

sbasepy|xq ` 1
c sθ,βpy,w|xq

(10)
is also an optimal solution to the ICOS loss (9) with tem-
perature cβ.

The proof of this proposition is provided in Appendix C.2
and will be empirically validated with experiments as
shown in Figure 11. Powered by Proposition 2.1, this
framework also offers post-training controls over the trade-offs in the MOFT problem. As illus-
trated in Figure 1, one may adjust the trade-offs between the auxiliary objectives by adjusting the
weight vector w, and those between the fidelity to the base model and its performance on the fine-
tuning datasets of the new model by scaling the temperature parameter β with (10). Furthermore,
this property will serve as the foundation for the design of the temperature-conditioned network,
which will be discussed in Appendix E.
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Figure 2: Comparison of Pareto fronts obtained by the HyperDPO framework and the baselines on
the MSLR-WEB10K dataset with 2 auxiliary objectives. Two axes denote the NDCG@10 of the
two auxiliary objectives (the higher, the better). The inset plot shows the average NDCG@10 of the
main objective, with the error bar denoting the standard deviation across the 11 sampled points.

3 EXPERIMENTS

In this section, we provide the detailed experiment design and results of the HyperDPO framework
for different applications, including the learning-to-rank task and the LLM alignment task. We
also analyze the results and compare them with state-of-the-art methods. For baselines and the
hypervolume metric for evaluation, we refer to Appendix D.1.

3.1 LEARNING-TO-RANK TASK

We first test the HyperDPO framework on the learning-to-rank task. In this task, xpkq in DMOFT

denotes a query, and y
pkq
i denotes the feature vector of the i-th document, and z

j,pkq
i denotes the

score of the i-th document with respect to the j-th aspect. The goal is to provide a ranking π of the
documents with respect to the scores zj,pkq

i for each query xpkq, for which the following Normalized
Discounted Cumulative Gain (NDCG) is used to evaluate its performance:

NDCGj@kpπq “ Epx,y,zjq

”

DCG@kpπ,zjq

maxπ1 DCG@kpπ1,zjq

ı

, where DCG@kpπ, zjq “

k
ÿ

i“1

zj
πi

log2pi`1q
.

NN architecture. As the common practice in the LTR tasks, the information of the query x has
often been incorporated into the feature vectors yi by concatenation or other methods during the
upstream data processing. We use a 2-layer transformer architecture of hidden dimension 128 for
the base model sbasepyq, and the model sθp¨,wq is designed as a 2-layer transformer architecture of
hidden dimension 64 with the weight vector w concatenated to the input of the first layer.

Dataset. We adopt the Microsoft Learning-to-Rank Web Search (MSLR-WEB10K) dataset (Qin
& Liu, 2013) for the LTR task. The MSLR-WEB10K dataset consists of 10,000 groups (N “ 104),
each containing a list of webpages retrieved by the search engine in response to the query xpkq and
the corresponding features extracted from the webpage. Following the practice by Mahapatra et al.
(2023b), we treat the first 131 features as the feature vector (ypkq

i P R131). We also identify the
relevance label P r0 : 4s as the main objective used to train the base model, and the last 5 features,
viz. (I) Query-URL Click Count, (II) URL Click Count, (III) URL Dwell Time, (IV) Quality Score
1, (V) Quality Score 2, with the relevance label, as 5 different auxiliary objectives (m “ 5) for
fine-tuning. The dataset is split into training (60%), validation (20%), and test (20%) datasets, and
all results shown below are on the test split.

Experiment Results. We first apply the HyperDPO framework to the case where we only have 2
auxiliary objectives (m “ 2) for better visualization. The results are shown in Figure 2, in which
Figure 2a presents the Pareto front of two sparse labels (tpzq “ z{}z}1 in (4)) with a relatively
easy-to-learn convex Pareto front, while Figure 2b presents the Pareto front of two dense labels
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Method Aux. HV Avg. Main Score (˘Std) Training Time (s) # Parameters

DPO-LS 1.648 ˆ10´3 0.3553 (˘ 0.0290) 14649.15 551,232
DPO Soup 1.468 ˆ10´3 0.3823 (˘ 0.0317) 6061.69 250,615
MO-DPO 1.263 ˆ10´3 0.3595 (˘ 0.0242) 27059.70 801,792

HyperDPO 2.039 ˆ10´3 0.4320 (˘0.0277) 4043.47 50,432

Table 1: Hypervolume metric and training time of HyperDPO and the baselines on the MSLR-
WEB10K dataset with 5 auxiliary objectives. The reference point is p0, 0q, and 11 points are pro-
duced for hypervolume calculation. The main score refers to the NDCG@10 of the main objective.

(tpzq “ softmaxpzq in (4)) with a more ill-posed Pareto front. HyperDPO obtains comprehensive
and competitive Pareto fronts that dominate those of the baselines in both pairs of objectives. No-
tably, HyperDPO is able to obtain a smooth Pareto front in Figure 2b while the baselines fail to do
so. With a common temperature parameter β used across all methods, the inset plots demonstrate
that the superior performance of the HyperDPO framework is not at the cost of the main objective, as
the NDCG@10 of the main objective is comparable or even slightly better to some of the baselines.

We also test the HyperDPO framework on a more complicated case where we have 5 auxiliary
objectives (m “ 5). Our results demonstrate our HyperDPO framework is able to achieve a higher
hypervolume metric with significantly less training time and number of parameters compared to
the baselines and comparably good preservation of the performance on the main objective. While
the computational cost of traditional methods, such as DPO-LS and MO-DPO, grows exponentially
with the number of objectives, HyperDPO models are able to maintain a linear growth with almost
intact performance, indicating the efficiency and capability of the HyperDPO framework in handling
high-dimensional MOFT problems in the LTR task.

Remark on the Training Time. The training time in Table 1 refers to the duration of all training
jobs required for computing the 11-point Pareto front. As described in Algorithm 1, in each epoch
during the HyperDPO training, we first sample a single weight vector w and then compute the ICOS
loss LICOS and back-propagate the gradients. Therefore, the training does not introduce additional
computational cost compared to the training w.r.t. a single objective. However, HyperDPO may
require more training epochs to converge due to the exploration of the Pareto front. In practice, we
find that the HyperDPO framework converges rapidly, and the training time may only be slightly
longer than that of a single model training.

Ablation Studies. We provide the ablation studies of the HyperDPO framework on the LTR task
in Appendix D.2. Specifically, we evaluate the sensitivity of the HyperDPO framework to the con-
centration parameter α (cf. Appendix D.2.1) and the model depth (capacity) (cf. Appendix D.2.2).
Furthermore, we will introduce, discuss the suitability, and compare the performance of two differ-
ent NN parametrizations of sθp¨,w|xq in Appendix D.2.3, namely (a) Training from Scratch and (b)
Augmentation Network, which exhibit different trade-offs between the performance and the compu-
tational cost and thus may serve different purposes in practice.

As mentioned in Section 2.4, besides the weight vector w, the HyperDPO framework also of-
fers post-training control over the temperature parameter β via the linear transformation property
(Proposition 2.1). We provide examples of the post-training control that is consistent with Fig-
ure 1 in Appendix E.1. However, the linear transformation property only offers proportional scaling
of the temperature parameter β, motivating the design and development of the more sophisticated
temperature-conditioned network. Intuitively, the temperature-conditioned network further incor-
porate the information of the temperature parameter β into the model sθp¨,w,β|xq, allowing for
more flexible and versatile post-training control. The details of our approach and some preliminary
results are presented in Appendix E.

3.2 LLM ALIGNMENT TASK

We then apply the HyperDPO framework to the LLM alignment task. In this task, xpkq in DMOFT

denotes a prompt, and y
pkq
i denotes the response generated by the LLM, and z

j,pkq
i denotes the score

of the i-th response with respect to the j-th aspect. The goal is to align the LLM to generate re-
sponses that satisfy the auxiliary objectives (e.g. verboseness, harmlessness, etc.) while maintaining
its performance on general tasks (e.g. fluency, relevance, etc.).
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Figure 3: Illustration of the implementation of the HyperDPO framework for the LLM alignment
task. The proposed Hyper Prompt Tuning method, highlighted within the dashed box on the right,
transforms the importance weight vector w into a weight mask and passes it to the LLM via prompt
tuning. k denotes the number of virtual tokens, and r is the rank of the weight mask.

Model Implementation. In contrast to the LTR task, where we directly concatenate the weight
vector w to the input of the model sθp¨,w|xq in our importance-conditioned network design. In the
LLM alignment task, this strategy is generally infeasible, since the input of transformers is tokenized
prompts, and the weight vector w is a real vector that is not considered in tokenization and thus a
direct concatenation may cause the model to fail to generate meaningful responses.

To address this issue and incorporate the information of the weight vector w into the LLM with
the least modification to the model and the training process, we propose a novel design, called
Hyper Prompt Tuning (HPT). The mechanism of HPT is shown in Figure 3. Inspired by Prompt
Tuning (Lester et al., 2021; Wang et al., 2023), HPT augments the input embedding obtained post
token embedding and positional encoding with a trainable prefix embedding block that is controlled
by the weight vector w. Specifically, HPT follows the following steps:

Step 1. HPT takes in a weight vector w P ∆m that indicates the importance across additional ob-
jectives and, through two simple trainable MLPs, produces two matrices, the matrix product
of which forms the weight mask;

Step 2. The weight mask is multiplied entrywise with a trainable prefix embedding block with k
virtual tokens;

Step 3. The prefix embedding block is then concatenated to the input embedding as a prefix and fed
into the transformer blocks of the LLM.

In contrast to Multi-Task Prompt Tuning (Wang et al., 2023), which can only handle a finite number
of tasks, one can pass a wide spectrum of importance information by HPT into the LLM, offering
flexibility and versatility for our importance-conditioned one-shot fine-tuning implementation. Our
implementation of HPT is compatible with the PEFT package and does not depend on any specific
LLM architecture.

Dataset. The PKU-SafeRLHF dataset (Ji et al., 2024a) is adopted for experiments, which con-
sists of 83.4k entries, each containing a prompt and a pair of responses (n “ 2) annotated with
preferences with respect to both harmlessness and helpfulness (m “ 2). When the k-th response
is annotated as more helpful, we assign z

pkq
1 “ 1; otherwise, zpkq

1 “ 0. Similarly, when the k-th
response is annotated as more harmless, we assign z

pkq
2 “ 1; otherwise, zpkq

2 “ 0. The goal is to
fine-tune the model to generate responses that are both harmless and helpful as a multi-objective
optimization problem.

Training Settings. We perform fine-tuning to the GPT-2 model (Radford et al., 2019) and the
Alpaca-7B-Reproduced model (Dai et al., 2023), following the practice by Zhou et al. (2023) via
Parameter-Efficient Fine-Tining (PEFT) with α “ 8 and r “ 4 in the low-rank adaptions (LoRA)
to the modules within the model. For HyperDPO, we adopt the Hyper Prompt Tuning technique
with k “ 8 and r “ 4. To ensure a fair comparison, baseline methods will also be augmented with
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Figure 4: Comparison of Pareto fronts obtained by the HyperDPO framework and the baselines on
the PKU-SafeRLHF dataset. Two axes denote the expected cross entropy error of the two auxiliary
objectives (the lower, the better). The inset plot shows the interquartile range (IQR) of the deviation
of the log-likelihood of the response from the reference model across the test dataset.

Method GPT-2 Alpaca-7B-Reproduced
HV Training Time (s) HV Training Time (s)

DPO-LS 0.17668 15148.53 0.16873 94156.12
DPO Soup 0.18401 2755.51 0.14270 17138.74

HyperDPO 0.19424 1396.81 0.16885 8520.17

Table 2: Hypervolume metric and training time of HyperDPO and the baselines on the PKU-
SafeRLHF dataset. The reference point for the hypervolume metric is set to p1.1, 1.1q, and 11
points are produced for the hypervolume calculation.

the prompt tuning of k “ 8 on top of LoRA. The HyperDPO framework is built upon the TRL
package (von Werra et al., 2020), and the implementation of the HPT is compatible with the PEFT
package (Mangrulkar et al., 2022), which allows for easy integration with existing LLMs. All the
experiments are conducted on a cluster with 8ˆ NVIDIA A100 GPUs.

Experiment Results. In this task, we compare the results of HyperDPO with those of DPO-LS
and DPO Soup and we refer readers to discussions in Appendix D.1 for the comparison with MO-
DPO. For all experiments, we have chosen a common temperature β “ 0.1 to balance the trade-
offs between the main and auxiliary objectives. HyperDPO achieves smooth and comprehensive
Pareto fronts (cf. Figure 4) with higher hypervolume metrics and less training time (cf. Table 2) for
both LLM architectures compared to the baselines, demonstrating the effectiveness of the Hyper-
DPO framework in the large-scale LLM alignment tasks. Notably, as HyperDPO tackles a “meta-
learning” problem that is intrinsically more challenging and thus demands more expressive power,
the HyperDPO framework is less prone to overfitting and more robust to the choice of the hyperpa-
rameters compared to the baselines. Several ablation studies are provided in Appendix D.2.

4 DISCUSSION

In this work, we propose the HyperDPO framework for multi-objective fine-tuning, which is in-
spired by the DPO framework to profile the Pareto front for a wide range of multi-objective fine-
tuning problems with a conditioned one-shot fine-tuning approach. Our method presented superior
performance in both the LTR and the large-scale LLM alignment tasks with multiple auxiliary objec-
tives compared to the state-of-the-art methods, demonstrating the effectiveness and efficiency of the
HyperDPO framework in handling high-dimensional MOFT problems. Our newly proposed Hyper
Prompt Tuning technique also provides a novel way to incorporate importance information into the
LLM, offering flexibility for both the importance-conditioned implementation and further research
in LLM alignment. We also explored the possibility of temperature-conditioned networks in supple-
mentary materials, opening up new directions for future research. Our work has proven the potential
of the HyperDPO framework, and we expect it to incorporate other possible MOO techniques and
be further explored in various multi-objective fine-tuning problems in the future.
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A RELATED WORKS

LLM Alignment. LLM alignment has been a popular topic in the machine learning community.
Reinforcement Learning from Human Feedback (RLHF) has been a groundbreaking technique for
alignment (Christiano et al., 2017; Schulman et al., 2017; Ouyang et al., 2022; Bai et al., 2022a),
which serves as a foundation for training models like GPT-4 (Achiam et al., 2023), and several
advances have been made in this direction (Dong et al., 2024; Bai et al., 2022b; Lee et al., 2023).
To reduce computational complexity, Direct Preference Optimization (DPO) (Rafailov et al., 2024b)
has been proposed as an alternative to RLHF, and further developed in the literature (Pal et al., 2024;
Wu et al., 2024a; Gheshlaghi Azar et al., 2023; Tang et al., 2024b; Rafailov et al., 2024a; Zeng et al.,
2024; Liu et al., 2024; Song et al., 2024; Zhou et al., 2023; Guo et al., 2024; Yang et al., 2024). We
refer readers to Shen et al. (2023); Wang et al. (2024) for comprehensive reviews on LLM alignment.

Multi-Objective Optimization. Multi-Objective Optimization (MOO) has been actively studied
in control systems (Gambier & Badreddin, 2007) and economics (Tapia & Coello, 2007). The main
focus of the related research is the development of algorithms to profile Pareto fronts efficiently so
as to understand the trade-offs between objectives. Traditional methods include the evolutionary
algorithms (Zhou et al., 2011) and Bayesian optimization (Laumanns & Ocenasek, 2002). Re-
cently, gradient-based MOO methods have been studied in the machine learning settings (Sener &
Koltun, 2018; Lin et al., 2019; Mahapatra & Rajan, 2020; Liu & Vicente, 2021; Ren et al., 2024).
Hypernetwork-based methods are also explored by a series of works (Navon et al., 2020; Lin et al.,
2020; Chen & Kwok, 2022; Hoang et al., 2023).

Learning-to-Rank (LTR). Learning to Rank (LTR) (Liu et al., 2009) tasks differ from traditional
supervised learning in that they do not associate each sample with a simple label; instead, an optimal
order of items within a group to maximize metrics, e.g. Normalized Discount Cumulative Gain
(NDCG) (Järvelin & Kekäläinen, 2002; Wang et al., 2013). Typically, LTR models score documents
and rank them thereby. To bridge LTR with supervised learning, various differentiable losses have
been proposed as the proxy to these metrics (Burges et al., 2006; Taylor et al., 2008; Cao et al.,
2007; Qin et al., 2021; Swezey et al., 2021). In the context of Multi-Objective LTR, existing work
includes label aggregation (Dai et al., 2011; Carmel et al., 2020), loss aggregation (Hu & Li, 2018;
Mahapatra et al., 2023a;b; Tang et al., 2024a), and hypernetwork (Chen et al., 2023).

B PRELIMINARIES

In this section, we briefly introduce the proximal and direct preference optimization frameworks for
fine-tuning LLMs with preference data, the MOO problem in machine learning settings, and related
definitions.

B.1 PROXIMAL AND DIRECT PREFERENCE OPTIMIZATION

Suppose we have a base LLM pbasepy|xq, with x and y being the content and the proposal, re-
spectively, and pbasepy|xq the probability of generating response y given x. The goal of DPO is to
fine-tune the model pbasepy|xq with the preference data DDPO “ tpxpkq, y

pkq
1 ą y

pkq
2 qukPrNs, where

y
pkq
1 ą y

pkq
2 denotes ypkq

1 is more preferred than y
pkq
2 in the context of xpkq.

Proximal Preference Optimization. In RLHF (Christiano et al., 2017) or Proximal Preference
Optimization (PPO) (Schulman et al., 2017), one first models the preference data by the Bradley-
Terry-Luce (BTL) model (Bradley & Terry, 1952):

Ppy1 ą y2|xq “
expprpy1|xqq

expprpy1|xqq`expprpy2|xqq
“ σ prpy1|xq ´ rpy2|xqq , (11)

where rpy|xq is the reward function and σp¨q is the sigmoid function. PPO is carried out in the
following two steps:

Step 1. Parametrize rpy|xq by a neural network rϕpy|xq, where the parameters ϕ are trained by
maximizing the log-likelihood of the preference data:

´Lprϕ;DDPOq “ Epx,y1ąy2q rlog σprϕpy1|xq ´ rϕpy2|xqqs ; (12)
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Step 2. Fine-tune the base model pbasepy|xq by maximizing the expected reward with respect to
the preference data while maintaining the KL-divergence between the refined model and the
base model:

´Lppθ; pbase, rϕ, βq “ E rrϕpy|xqs ´ βDKLppθ||pbaseq “ E
”

rϕpy|xq ´ β log pθpy|xq

pbasepy|xq

ı

,

(13)
where β ą 0 is called the temperature parameter that controls the scale of the fine-tuning.

Direct Preference Optimization. The observation that motivates DPO (Rafailov et al., 2024b)
is that the reward function rϕpx, yq in (13) can be solved explicitly by letting rθpy|xq “

β log pθpy|xq

pbasepy|xq
, and therefore, the training process can be simplified to a one-shot logistic regression

problem:

´Lppθ; pbase, β,DDPOq “ Epx,y1ąy2q

”

log σ
´

β log pθpy1|xq

pbasepy1|xq
´ β log pθpy2|xq

pbasepy2|xq

¯ı

. (14)

For completeness, we provide the proofs of the claim above in Appendix C.1.

B.2 MULTI-OBJECTIVE OPTIMIZATION

In contrast to its single-objective counterpart, MOO considers the optimization problem with mul-
tiple objectives minθPΘ Lpθq “ pL1pθq,L2pθq, . . . ,Lmpθqq, where Θ is the feasible region. The
goal is to profile the Pareto front, which is defined as follows:

P “ tθ P Θ : Eθ1 P Θ s.t. @i P rms,Lipθ
1q ď Lipθq and Dj P rms,Ljpθ1q ă Ljpθqu,

intuitively translating to the set of trade-off solutions that cannot be improved in one without worsen-
ing another. This concept is motivated by the possible conflicts between the objectives, and one may
observe the details of the trade-offs from the Pareto front and make informed decisions accordingly.

For many machine learning applications, the MOO problem can be formulated as follows: given
a dataset in the form of DMOO “ tDj

MOOujPrms “ ttypkq, zj,pkqukPrNsujPrms, where ypkq is the
feature vector and zj,pkq is the j-th label of the k-th data point, the goal is to learn a model fθpyq

that optimizes the following objectives:

min
θPΘ

Lpfθ;DMOOq :“ pL1pfθ;D1
MOOq,L2pfθ;D2

MOOq, . . . ,Lmpfθ;Dm
MOOqq, (15)

where Ljpfθ;Dj
MOOq is the loss function for the model fθ with respect to the j-th objective, and the

feasible region Θ is over all possible model parameters.

C MISSING PROOFS

In this section, we provide the proofs of the propositions and theorems mentioned in the main text.

C.1 PROOFS OF REPARAMETRIZATION-RELATED ARGUMENTS

Proof of (14). Recall that in the second step of PPO, we consider the loss function (13) as follows:

´Lppθ; pbase, rϕ, βq “ Epx,yq

„

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

ȷ

“

ż
ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

˙

pθpy|xqdy,
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we calculate the functional derivative of the loss w.r.t. the density function pθpy|xq:

δLppθ; pbase, rϕ, βq

δpθpy|xq
“ lim

ϵÑ0

Lppθ ` ϵδpθ; pbase, rϕ, βq ´ Lppθ; pbase, rϕ, βq

ϵ

“ lim
ϵÑ0

1

ϵ

„
ż

ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq
´ β

ϵδpθpy|xq

pθpy|xq

˙

ppθpy|xq ` ϵδpθpy|xqqdy

´

ż
ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

˙

pθpy|xqdy

ȷ

“

ż
ˆ

rϕpy|xq ´ β log
pθpy|xq

pbasepy|xq
´ β

˙

δpθpy|xqdy.

Let the functional derivative vanish, we obtain

rϕpy|xq “ β log
pθpy|xq

pbasepy|xq
` β,

i.e.

pθpy|xq 9 pbasepy|xq exp

ˆ

rϕpy|xq

β

˙

.

Since the likelihood Ppy1 ą y2|xq (11) in the BTL model only depends on the difference of the
reward functions, rϕpy|xq admits an arbitrary constant shift, and thus we assume rϕpy|xq to be
normalized in a way such that

E
„

pbasepy|xq exp

ˆ

rϕpy|xq

β

˙ȷ

“ 1,

which leads to the reparametrization rθpy|xq “ β log pθpy|xq

pbasepy|xq
, plugging which into the PPO

loss (13) yields the DPO loss (14).

Proof of (5). As in the derivation of the DPO loss (14) under the BTL model, we first consider the
PPO algorithm for the PL model:

Step 1. Find the optimal score function sϕpy|xq that minimizes the loss function:

´LListNetpsθ;Dj
LTRq “ E

«

n
ÿ

i“1

tpzji q log

ˆ

exppsϕpyi|xqq
řn

i1“1 exppsϕpyi1 |xqq

˙

ff

; (16)

Step 2. Fine-tune the base model sbase with the optimal score function sϕ by maximizing the ex-
pected score value while penalizing the KL divergence between the new model and the base
model:

´Lppθ; pbase, rϕ, βq “ E rsϕpy|xqs´βDKLppθ||pbaseq “ E
„

sϕpy|xq ´ β log
pθpy|xq

pbasepy|xq

ȷ

.

(17)

For the optimization problem in the second step (17), following the same procedure as in the proof
of (14), we solve the optimal pθ by letting the functional derivative of the loss w.r.t. the density
function pθpy|xq vanish and obtain

pθpy|xq 9 pbasepy|xq exp

ˆ

sϕpy|xq

β

˙

. (18)

By the assumption of the PL model and the ListNet loss, we have pθpy|xq modeled as the top-1
probability of the PL model and thus related to the score function sθpy|xq via

pθpy|xq “
exppsθpy|xqq

řn
i1“1 exppsθpyi1 |xqq

.

15



38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024)

Let pbasepy|xq “
exppsbasepy|xqq

řn
i1“1

exppsbasepyi1 |xqq
, (18) can be rewritten as

exppsθpy|xqq 9 exp psbasepy|xq ` βsϕpy|xqq ,

i.e.
sθpy|xq “ sbasepy|xq ` βsϕpy|xq ` C,

where C is a constant shift. By noticing that the softmax function in (16) is invariant to the constant
shift of the score function sϕpy|xq, we may choose certain normalization such that

sθpy|xq “ sbasepy|xq ` βsϕpy|xq

holds, plugging which into the loss (16) yields the reparametrized ListNet loss (5).

C.2 PROOFS OF LINEAR TRANSFORMATION PROPERTY

Proof of Proposition 2.1. For clarity, we first remove the penalization, i.e. to consider the case
where λ “ 0.

Then the ICOS loss (9) is of the following form:

LICOSpsθp¨,w|xq; sbase,β,DMOFTq

“Ew„Dirpαq rLListNet,wpsθp¨,w|xq; sbase,β,DMOFTqs

“Ew„Dirpαq

«

m
ÿ

j“1

wjLListNetpsθp¨,w|xq; sbase,β,Dj
MOFTq

ff

“Ew„Dirpαq

«

m
ÿ

j“1

wjE

«

n
ÿ

i“1

tpzji q log

˜

exp
`

βjpsθpyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

βjpsθpyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸ffff

“E

«

m
ÿ

j“1

n
ÿ

i“1

wjtpz
j
i q log

˜

exp
`

βjpsθpyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

βjpsθpyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸ff

,

where the expectation in the second to last equality is taken over the data distribution DMOFT, and
the expectation in the last equality is taken over both the data distribution DMOFT and the weight
distribution Dirpαq as a shorthand notation.

By the definition of the model sθ,βpy,w|xq, we have that

sθ,βpy,w|xq “ argmax
sθpy,w|xq

E

«

m
ÿ

j“1

n
ÿ

i“1

wjtpz
j
i q log

˜

exp
`

βjpsθpyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

βjpsθpyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸ff

.

We now consider the following reparametrized optimization problem:

max
s1
θpy,w|xq

E
„ m

ÿ

j“1

n
ÿ

i“1

wjtpz
j
i q

log

˜

exp
`

βjpcs1
θpyi,w|xq ` p1 ´ cqsbasepyi,w|xq ´ sbasepyi,w|xqq

˘

řn
i1“1 exp

`

βjpcs1
θpy,w|xq ` p1 ´ cqsbasepyi1 ,w|xq ´ sbasepyi1 ,w|xqq

˘

¸

ȷ

“E

«

m
ÿ

j“1

n
ÿ

i“1

wjtpz
j
i q log

˜

exp
`

cβjps1
θpyi,w|xq ´ sbasepyi,w|xqq

˘

řn
i1“1 exp

`

cβjps1
θpyi1 ,w|xq ´ sbasepyi1 ,w|xqq

˘

¸ff

,

(19)
obtained by reparametrizing sθpy,w|xq as

sθpy,w|xq “ cs1
θpy,w|xq ` p1 ´ cqsbasepy,w|xq, (20)

and thus by solving

sθ,βpy,w|xq “ cs1
θpy,w|xq ` p1 ´ cqsbasepy,w|xq,

we have
s1
θpy,w|xq “

1

c
sθ,βpy,w|xq ´

1 ´ c

c
sbasepy,w|xq (21)
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is an optimal solution to the reparametrized optimization problem.

Notice that the function in the optimization problem (19) is exactly the ICOS loss (9) with the
temperature cβ, we have that the sθ,cβpy,w|xq as defined in (10) coincides with the optimal solu-
tion (21). Thus we have proved the linear transformation property for the ICOS loss with λ “ 0.

For the case with penalization, we assume the penalization term Gwpsθ; sbase,βq is a function of
the vector of ListNet losses LListNetpsθp¨,w|xq; sbase,β,DMOFTq, which is satisfied for the cosine
similarity penalization loss (8) as proposed by Ruchte & Grabocka (2021). And in turn, the vector
of ListNet losses LListNetpsθp¨,w|xq; sbase,β,DMOFTq depends on sθp¨,w|xq only in the form of
sθp¨,w|xq ´ sbasep¨,w|xq, and therefore, we could write the ICOS loss in an abstract form as

sθ,βpy,w|xq “ argmax
sθpy,w|xq

E rΦ psθp¨,w|xq ´ sbasep¨,w|xqqs ,

e.g. for the case where λ “ 0, Φ is of the following form:

Φpsθp¨,w|xq ´ sbasep¨,w|xqq

“

m
ÿ

j“1

n
ÿ

i“1

wjtpz
j
i q log

˜

exp
`

βjpsθpyi,w|xq ´ sbasepyi,w|xqq
˘

řn
i1“1 exp

`

βjpsθpyi1 ,w|xq ´ sbasepyi1 ,w|xqq
˘

¸

.

Apply the same reparametrization as in (20), we have that the reparametrized optimization problem
is of the form

max
s1
θpy,w|xq

E
“

Φ
`

cs1
θp¨,w|xq ` p1 ´ cqsbasep¨,w|xq ´ sbasep¨,w|xq

˘‰

“E
“

Φ
`

cs1
θp¨,w|xq ´ csbasep¨,w|xq

˘‰

,

with an optimal solution in the form of (21). Therefore, the linear transformation property also holds
for the ICOS loss with the penalization term.

Algorithm 1: HyperDPO Framework
Data: Base model sbasepy|xq, dataset DMOFT, temperature β, concentration parameter α,

penalization coefficient λ (Training); scale c, weight vector w (Post-Training Control).
Result: Fine-Tuned model sθ,¨βp¨, ¨|xq (Training); sθ,cβpy,w|xq (Post-Training Control).

// Training
1 for e “ 1 to Nsteps do
2 Sample w1 „ Dirpαq;
3 θ Ð θ´η∇θ rLListNet,wpsθp¨,w1|xq; sbase,β,DMOFTq ` λGwpsθp¨,w1|xq; sbase,βqs;
4 end
// Post-Training Control

5 sθ,cβpy,w|xq Ð p1 ´ 1{cq sbasepy|xq ` sθ,βpy,w|xq{c.

D ADDITIONAL EXPERIMENT DETAILS

In this section, we present additional details of the experiments conducted in the main text, including
further descriptions of the baseline implementations, and the ablation studies of the HyperDPO
framework.

D.1 BASELINE IMPLEMENTATIONS

In the following, we will introduce and discuss the baseline methods used in the experiments in
detail.

• DPO Linear Scalarization (DPO-LS): Given the base model sbase, for each weight vector w P

Rm, the DPO-LS method trains the new model sθ with the loss function LListNet,w (7) and obtain
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Figure 5: Comparison of Pareto fronts obtained by HyperDPO and the baselines on the PKU-
SafeRLHF dataset with the GPT-2 model, including the MO-DPO method. The results for MO-DPO
may not represent its best performance due to the possible conflict between the prompt tuning and
the MO-DPO method.

sθ,w defined as
sθ,w “ argmin

sθ

LListNet,wpsθ; sbase,β,DMOFTq

“ argmin
sθ

wJLListNetpsθ; sbase,β,DMOFTq.

This model is a naive generalization from the weighted sum method in the MOO literature to the
MOFT problem, and the main drawback is that it needs as many training jobs and models as the
number of sampled weight vectors, which is computationally expensive.

• DPO Soup (Rame et al., 2024): The DPO Soup model first trains m models sθ,ei
for each unit

vector ei in the m-dimensional space, i.e. m DPO models w.r.t. the m auxiliary objectives,
respectively, and then linearly combines the m models to obtain the final model with the weight
vector w in the parameter space. The DPO Soup method offers a more efficient way to combine
the models trained with different auxiliary objectives, but it still requires m training jobs and
models for each auxiliary objective, and the performance of this model is largely dependent on
the landscape of the parameter space of the neural network architecture. As depicted in Figure 2,
the Pareto front obtained by the DPO Soup method may present unexpected curves, and Figure 4
shows that the DPO Soup method may even exhibit mode collapse for certain combinations.

• MO-DPO (Zhou et al., 2023): The MO-DPO method also starts with the training of m models
sθ,ei for each unit vector ei in the m-dimensional space, and then instead of linearly combining
the parameters, MO-DPO conducts a new training job for each weight vector w P Rm with the
following loss function:

LMO-DPOpsθ; sbase,β,DMOFTq “ E

»

–

n
ÿ

i“1

tpzji q log

¨

˝

exp
´

βjr
MO-DPO
θ,w

¯

řn
i1“1 exp

´

βjrMO-DPO
θ,w

¯

˛

‚

fi

fl ,

where, for an arbitrary i P rms, rMO-DPO
θ,w is defined as

rMO-DPO
θ,w :“

1

wi

˜

sθpy|xq ´ sbasepy|xq ´
ÿ

i1‰i

wi1
`

sθ,e1
i
py|xq ´ sbasepy|xq

˘

¸

. (22)

As MO-DPO requires m training jobs and one addition training job for each weight vector, it
may require more training time and computational resources compared to the DPO-LS and DPO
Soup methods. For the LLM alignment task, we observe MO-DPO suffers from unstable training
caused by the 1{wi vector in the expression (22) especially when wi is close to zero, and exhibit
less competitive performance. We suspect that the conflict between the prompt tuning and the
MO-DPO method may lead to the suboptimal performance of MO-DPO in the LLM alignment
task.
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The HyperDPO framework is designed to address the limitations of the existing methods and provide
a more efficient and effective way to profile the Pareto front of the MOFT problems. For each
baseline, we will use the same number of weight vectors w for a fair comparison.

Hypervolume Metric. We adopt the hypervolume (HV) indicator (Zitzler & Künzli, 2004) for
evaluating the performance of MOO methods. Assuming the higher evaluation metrics indicate
better performance, the hypervolume of the approximation P̂ to the real Pareto front P is defined as
the volume of the dominated region of P̂ w.r.t. a reference point r, e.g. when applied to minimization
problems, the hypervolume is defined as HVpP̂, rq “

ş

xăr
1DpPP̂,pĺxdx. Higher hypervolume

values indicate higher quality of the Pareto front.

D.2 ABLATION STUDIES

In this section, we provide the ablation studies of the HyperDPO framework, including the sensitiv-
ity of the concentration parameter α in the Dirichlet distribution, the depth of the model, and the
performance of two different NN parametrizations sθ,w,βp¨, ¨|xq, namely (a) Training from Scratch
and (b) Augmentation Network.

D.2.1 CONCENTRATION PARAMETER α

The concentration parameter α controls the span of the Dirichlet distribution from which the weight
vector w is sampled and is the key parameter affecting the performance of the HyperDPO framework
that should be carefully selected and validated. By the basic properties of the Dirichlet distribution,
suppose w „ Dirpαq, then we have

Erws “
α

}α}1
:“ α, varpwq “

diagpαq ´ ααJ

}α}1 ` 1
.

In general, the smaller the α, the more likely the weight vector w is close to the boundary of
the simplex, and the larger the α, the more likely the weight vector w is concentrated around the
expectation α.

As the HyperDPO framework is generally robust to the choice of the concentration parameter α,
we conduct ablation studies to investigate the impact of the concentration parameter α on the per-
formance of the HyperDPO framework in different settings. We first conduct experiments on the
MSLR-WEB10K dataset with 2 auxiliary objectives (Query-URL Click Count vs URL Click Count)
to investigate the impact of the concentration parameter α on the performance of the HyperDPO
framework. The results are shown in Figure 6. The experiment settings and plotting details are the
same as in the main text.

As shown in Figure 6a, as the concentration parameter α decreases, HyperDPO obtains a visually
more comprehensive Pareto front thanks to more samples close to the boundary of the simplex.
However, it is at the cost of a slightly undertrained model across the simplex, indicated by a lower
hypervolume metric. It turns out that the choice of α faces a trade-off between the diversity of the
samples and the overall quality of the fine-tuning, given a fixed training budget. Similar trade-offs
are observed in Figure 6b and 6c when only one dimension of the concentration parameter α is
varied.

We also conducted experiments on the PKU-SafeRLHF dataset to investigate the impact of the
concentration parameter α on the performance of the HyperDPO framework on the LLM alignment
task. The results are shown in Figure 7. A similar pattern is observed in this large-scale task,
where a smaller choice of the concentration parameter α leads to a more comprehensive Pareto
front. However, it does not necessarily lead to a worse hypervolume metric, suggesting that the
performance of HyperDPO here is less hindered by the expressive power of the model, which has
already been abundant in the LLM, but rather by the diversity of the samples.

D.2.2 MODEL DEPTH

The depth of the neural network architecture is also crucial for the performance of the HyperDPO
framework, as it determines the complexity and the expressiveness of the model. We also use the
MSLR-WEB10K dataset with 2 auxiliary objectives (Query-URL Click Count vs URL Click Count)
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Figure 6: Ablation study on the impact of concentration parameter α on the Pareto fronts obtained
by the HyperDPO framework on the MSLR-WEB10K dataset (Objective I vs Objective II) with
different settings of α. The hypervolume metric is shown in the table beside each figure.
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Figure 7: Ablation study on the impact of the concentration parameter α on the Pareto fronts ob-
tained by the HyperDPO framework on the PKU-SafeRLHF dataset.

to investigate the impact of the model depth on the performance of the HyperDPO framework. The
results are shown in Figure 9a, where the depth, referring to the number of transformer layers in the
model, is varied from 1 to 5. As shown in the figure, the performance of the HyperDPO framework
is first significantly improved and gradually saturated with the increase of the depth. Besides, while
the hypervolume metric improves, the coverage of the Pareto front does not change significantly
with the increase in the depth. This suggests that the concentration parameter α may have a more
significant impact on the diversity of the samples than the model depth.

D.2.3 MODEL PARAMETRIZATION

In general, one could adopt one of the two different parametrizations of sθp¨,w|xq in the HyperDPO
framework.

• Training from Scratch: The model sθp¨,w|xq is a completely separate neural network from the
base model sbasepy|xq. Depending on the specific design of the for additional inputs w, the new
model may or may not share the same architecture as the base model. The main advantage of this
design is that it requires less memory and computation resources (Rafailov et al., 2024b), and thus
is more suitable for large-scale applications, e.g. LLMs.

• Augmentation Network: As several works (Chen et al., 2024; Xu et al., 2024) argue that DPO is
prone to overfitting, one may curb the complexity of the model for the score function sθp¨,w|xq

by only adding a first-order correction term to the base model sbasepy|xq as:

sθpy,w|xq “ sbasepy|xq ` ∆sθpy,w|xq,

where the parameters in the base model are fixed, and the importance-conditioned design is only
applied to the correction term ∆sθp¨,w|xq. This design allows limited modification and reversibil-
ity to the base model and is thus suitable for applications where the fine-tuning is limited in budget,
frequent, or expected to be minor.

The two parametrizations are illustrated in Figure 8a and 8b, respectively.

Both parametrizations can be seamlessly applied to the HyperDPO framework and easily switch
between each other. In all the experiments presented in the main text, we have adopted the training
from scratch design for the HyperDPO framework. Figure 9b shows the results of the HyperDPO
framework with the augmentation training design on the same task as the previous ablation studies.
Compared with Figure 9a, the augmentation training achieves a roughly better performance than the
training from scratch design with the same depth, coinciding with the intuition that the augmentation
training benefited from the information provided by the base model and instead of learning the entire
score function sθp¨,w|xq from scratch, it only needs to learn the correction term ∆sθp¨,w|xq. When
the model depth is increased, the performance of the augmentation training is also improved, sharing
the same trend as the training from scratch design.
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Figure 8: Illustration of two different parametrizations of the model sθp¨,w|xq in the HyperDPO
framework. Dashed lines denote that backpropagation is not applied.
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Figure 9: Ablation studies on the impact of the model depth and the model parametrizations on the
Pareto fronts obtained by the HyperDPO framework on the MSLR-WEB10K dataset (Objective I vs
Objective II).

E TOWARDS GENERALIZATION TO TEMPERATURE-CONDITIONED
NETWORKS

In this section, we consider further generalization of the conditioned one-shot training technique to
the temperature parameter β. Generally speaking, the model should exhibit different Pareto fronts
for different temperature parameters β P Rm

` . By considering further conditioning on the temper-
ature parameter β, we aim to output one score for each document y, denoted by sθpy,w,β|xq,
which reflects not only our importance weight w between different auxiliary objectives but also the
trade-off between the main objective and the auxiliary objectives controlled by the vector β.

E.1 CURRENT POST-TRAINING CONTROL OVER TEMPERATURE β

Before we proceed to the temperature-conditioned networks, we would first present the current
available post-training control over the temperature β in the HyperDPO framework. As discussed
in Section 2.4 after Proposition 2.1, the linear transformation property implies that the model can be
scaled proportionally by a constant factor c by a simple linear transformation of the output scores.

Figure 10 gives examples of the post-training control over the temperature β on the MSLR-
WEB10K dataset with 2 auxiliary objectives. As the temperature β increases, the Pareto front
shifts towards the direction where the main objective is more emphasized, which is consistent with
our expectations. In Figure 10b, the two auxiliary objectives are in balance, and thus, the shifts of
the Pareto fronts resemble that depicted in Figure 1. However, in Figure 10a, the unexpected shift-
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Figure 10: Examples of post-training control over temperature β on the MSLR-WEB10K dataset
with 2 auxiliary objectives. Two axes denote the NDCG@10 of the two auxiliary objectives (the
higher, the better). The colorbar denotes the NDCG@10 of the main objective.
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Figure 11: Empirical validation of the linear transformation property on the MSLR-WEB10K
dataset with 2 auxiliary objectives. The Pareto fronts in the figures are obtained by first training
a model with the temperature β in the legend and then transform to the same temperature β “ p1, 1q

using post-training controls. Two axes denote the NDCG@10 of the two auxiliary objectives (the
higher, the better). The colorbar denotes the NDCG@10 of the main objective.

ing pattern is observed, which may reflect the complex interactions between the main and auxiliary
objectives.

Figure 11 provides empirical validation of the linear transformation property on the MSLR-
WEB10K dataset with 2 auxiliary objectives. The methodology is that we first train an importance-
conditioned network with the different temperatures β ranging from p0.8, 0.8q to p1.2, 1.2q, and
then transform the Pareto fronts obtained by the trained models to the same temperature β “ p1, 1q

using the post-training control as indicatd in (10). The penalization coefficient λ is set to 0.05 in the
training. The results show that the transformed Pareto fronts are roughly aligned with each other,
which validates the linear transformation property of the model. The slight deviation may be caused
by the noises in the training process and the non-uniqueness of the optimal solutions of the ICOS
loss.

Motivated by the observation of complicated trade-offs between the main and auxiliary objectives,
one may consider using different temperature β for different objectives and also a disproportionate
post-training scaling of the temperature parameter β to achieve more flexible control over the Pareto
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front. To this end, we propose to design the temperature-conditioned networks to achieve this goal
by incorporating the temperature parameter β into the input in a similar manner as the weight vector
w.

E.2 MODEL PARAMETRIZATION

Proposition 2.1 implies that the temperature β P Rm
` actually has m ´ 1 degrees of freedom, and

thus we propose to use the following reparametrization by projecting β to its L1-normalization
β :“ β{}β}1 P ∆m, i.e.

sθpy,w,β|xq “

ˆ

1 ´
1

}β}1

˙

sbasepxq `
1

}β}1
sθ,w,βpxq. (23)

Compared with importance-conditioned networks, the temperature-conditioned networks further
take the temperature parameter β as input, and the model is trained to output the score for each
document y conditioned on both the importance weight vector w and the temperature parameter β.
The training is then conducted by randomly sampling β P Rm

` over a certain distribution Dpβq val-
ued in Rm

` , and the loss of the temperature-conditioned one-shot (TCOS) fine-tuning can be written
as

LTCOSpsθ; sbase,DMOFT,α, λq

:“Eβ„Dpβq

“

Ew„Dirpαq rLListNet,wpsθp¨,w,β|xq; sbase,DMOFTq ` λGwpsθp¨,w,β|xq; sbaseqs
‰

.

The algorithm for the HyperDPO framework with TCOS fine-tuning is provided in Algorithm 2. The
main difference between Algorithm 1 and Algorithm 2 is the additional sampling of the temperature
parameter β and the reparametrization of the model sθp¨,w,β|xq as in Equation (23).

Algorithm 2: HyperDPO Framework with Temperature-Conditioned One-Shot Fine-Tuning
Data: Base model sbasepy|xq, dataset DMOFT, concentration parameter α, penalization

coefficient λ (Training); temperature β, weight vector w (Post-Training Control).
Result: Fine-Tuned Model sθp¨, ¨, ¨|xq (Training); sθpy,w,β|xq (Post-Training Control).

// Training
1 for e “ 1 to Nsteps do
2 Sample w1 „ Dirpαq, β1 „ Dpβq;
3 θ Ð

θ ´ η∇θ rLListNet,wpsθp¨,w1,β1|xq; sbase,DMOFTq ` λGwpsθp¨,w1,β1|xq; sbaseqs;
4 end
// Post-Training Control

5 sθpy,w,β|xq Ð p1 ´ 1{cq sbasepy|xq ` sθ,βpy,w|xq{c.

In general, the distribution Dpβq should be chosen to cover a reasonable range of temperature pa-
rameters β to ensure the problem is tractable, as our experiments reveal that TCOS fine-tuning may
require highly expressive neural networks to capture the complex trade-offs both between the main
and auxiliary objectives and across the auxiliary objectives.

E.3 PRELIMINARY RESULTS

All experiments presented in this section are conducted on the MSLR-WEB10K dataset with 2 aux-
iliary objectives (Quality Score vs Quality Score 2) to investigate the performance of the HyperDPO
framework with TCOS fine-tuning, as it provides better visualization and comparisons of the Pareto
fronts with different temperature parameters β. In particular, we adopt the augmentation network
design for temperature-conditioned networks for better expressive power and stability.

We provide the preliminary results of the HyperDPO framework with the TCOS fine-tuning on the
LTR task in Figure 12. The model depth is chosen to be 5, and the distribution Dpβq is set to be
Unifpr0.67, 1.5s2q. The results demonstrate the TCOS fine-tuning is capable of capturing the trade-
off between the main objective and the auxiliary objectives for all kinds of temperature configura-
tions β, and the Pareto fronts exhibit expected behaviors with different β. These results suggest that
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Figure 12: Preliminary results of the HyperDPO framework with TCOS fine-tuning on the MSLR-
WEB10K dataset (Objective IV vs Objective V). The colorbar denotes the NDCG@10 of the main
objective.
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(d) Depth = 5.

Figure 13: Ablation study of the impact of model depth on the Pareto fronts obtained by the Hyper-
DPO framework with TCOS fine-tuning on the MSLR-WEB10K dataset (Objective IV vs Objective
V). The colorbar denotes the NDCG@10 of the main objective.
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(a) Dpβq “ Unifpr0.83, 1.2s2q.
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(b) Dpβq “ Unifpr0.71, 1.4s2q.
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Figure 14: Ablation study of the impact of the distribution Dpβq on the Pareto fronts obtained by
the HyperDPO framework with TCOS fine-tuning on the MSLR-WEB10K dataset (Objective IV vs
Objective V). The colorbar denotes the NDCG@10 of the main objective.

temperature-conditioned one-shot fine-tuning is a promising direction for the HyperDPO framework
to achieve more flexible control over the Pareto front.

Given the choices of the temperature parameters, the Pareto fronts in both Figure 10a and 10b should
merge into one single point, which refers to the solution of the single-objective fine-tuning task with
certain temperature parameter β. Although the results are roughly in accordance with the theoretical
expectations, there are still small gaps that may be accounted for by the limit of the expressive power
of the model and insufficient exploration over the weight vector w.

To explain this, we present ablation studies to investigate the effect of the expressiveness of the
model on the performance of the HyperDPO framework with TCOS fine-tuning. We applied models
with 2 to 5 layers of transformer architecture, and the results show that the performance, indicated
by the expected behaviors of the Pareto front, is drastically improved with the increase of the number
of layers. While swallower models yield Pareto fronts with less expected behaviors and more noise,
e.g. the concavity of the Pareto fronts in Figure 13b partially indicates the insufficiency of the
training process, the model with 5 layers of transformer architecture in Figure 13d exhibits improved
scores and more expected behaviors according to different temperature configurations. This suggests
and confirms the intuition that TCOS fine-tuning require more expressive structures to capture the
complex trade-offs between the main and auxiliary objectives.

The choice of the distribution Dpβq also affects the performance of TCOS fine-tuning. Figure 14
shows the ablation study of the impact of the distribution Dpβq on the Pareto fronts obtained by the
HyperDPO framework with TCOS fine-tuning on the MSLR-WEB10K dataset. The results suggest
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that the distribution Dpβq should cover a larger range than those interested to ensure sufficient
training.

Given the preliminary results and ablation studies, we conclude that despite requiring more expres-
sive structures and more training resources, temperature-conditioned one-shot fine-tuning is a feasi-
ble and promising direction for the HyperDPO framework to achieve more flexible control over the
Pareto front and we expect to further investigate the validity of temperature-conditioned networks in
future work.

27


	Introduction
	Contributions

	Methodology
	Multi-Objective Fine-Tuning
	From Preference to Ranking
	MOFT with Importance-Conditioned Networks
	Linear Transformation Property

	Experiments
	Learning-to-Rank Task
	LLM Alignment Task

	Discussion
	Related Works
	Preliminaries
	Proximal and Direct Preference Optimization
	Multi-Objective Optimization

	Missing Proofs
	Proofs of Reparametrization-Related Arguments
	Proofs of Linear Transformation Property

	Additional Experiment Details
	Baseline Implementations
	Ablation Studies
	Concentration Parameter alpha
	Model Depth
	Model Parametrization


	Towards Generalization to Temperature-Conditioned Networks
	Current Post-Training Control over Temperature beta
	Model Parametrization
	Preliminary Results


