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Abstract

Endowing deep models with the ability to gener-
alize in dynamic scenarios is of vital significance
for real-world deployment, given the continuous
and complex changes in data distribution. Re-
cently, evolving domain generalization (EDG) has
emerged to address distribution shifts over time,
aiming to capture evolving patterns for improved
model generalization. However, existing EDG
methods may suffer from spurious correlations
by modeling only the dependence between data
and targets across domains, creating a shortcut be-
tween task-irrelevant factors and the target, which
hinders generalization. To this end, we design a
time-aware structural causal model (SCM) that in-
corporates dynamic causal factors and the causal
mechanism drifts, and propose Static-DYNamic
Causal Representation Learning (SYNC), an ap-
proach that effectively learns time-aware causal
representations. Specifically, it integrates spe-
cially designed information-theoretic objectives
into a sequential VAE framework which captures
evolving patterns, and produces the desired repre-
sentations by preserving intra-class compactness
of causal factors both across and within domains.
Moreover, we theoretically show that our method
can yield the optimal causal predictor for each
time domain. Results on both synthetic and real-
world datasets exhibit that SYNC can achieve
superior temporal generalization performance.

1. Introduction

Deep neural networks (DNNs) have achieved excellent
performance in various applications, yet suffer from per-
formance degradation when the i.i.d. assumption is vio-
lated (Recht et al., 2019; Taori et al., 2020). Domain Gen-
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Figure 1: We plot the category distribution of training do-
mains on Caltran. The lower part shows visualization of
attention maps of the convolutional Layer. Compared with
LSSAE, it can be observed that our method better focuses
on target-related features and makes accurate predictions.

eralization (DG) (Liu et al., 2021b; Wang et al., 2023; Fan
et al., 2024) can effectively address the issue of distribution
shift, but it still struggles to handle the dynamic scenarios
that are widespread in the real world (Yao et al., 2022a; Qin
et al., 2022). In order to adapt to changing environments
over time, evolving domain generalization (EDG) (Nasery
etal., 2021; Qin et al., 2022; Zeng et al., 2023b; Bai et al.,
2023; Xie et al., 2024; Zeng et al., 2023a; Qin et al., 2023)
has emerged in recent years and is garnering increasing at-
tention, aiming to capture the underlying evolving patterns
in data distribution to generalize well to the near future.

Despite promising results, existing EDG methods may suffer
from spurious correlations by solely modeling the statistical
correlation between data and targets. Fig. 1 illustrates the
behavior of the baseline model (Qin et al., 2022) trained on
the Caltran dataset (Hoffman et al., 2014), tasked with deter-
mining whether a vehicle is present in an image. Among the
images captured by the camera, most of those containing
vehicles were taken during the day, while images without
vehicles were captured at evening or night. Therefore, there
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Figure 2: (a) SCM for DG. (b) Our proposed time-aware
SCM for EDG. By introducing Z% and Z¢, dynamic causal
factors and causal mechanism drifts are explicitly modeled.

exists a shortcut from the background representation to the
target, i.e., the trained model tends to rely on lighting (spu-
rious feature) to determine the presence of a vehicle, rather
than the object of the vehicle (causal feature). Due to spuri-
ous correlations, the model during the inference stage tends
to classify day (night) images as “Car” (“No Car”’), which
compromises its generalization performance.

Causality (Pearl, 2009; Pearl et al., 2016) has proven to
be a powerful tool for addressing spurious correlations and
has therefore been widely explored. (Arjovsky et al., 2019;
Mahajan et al., 2021; Sun et al., 2021; Lv et al., 2022; Sheth
et al., 2022). However, since causal factors and causal
mechanisms behave more complex and changeable in non-
stationary environments, its implementation in dynamic
scenarios still remains underexplored. Fig. 2a shows a clas-
sical structural causal model (SCM) for static DG (Liu et al.,
2021a; Sun et al., 2021; Lv et al., 2022), where category-
irrelevant (spurious) factors Z, and category-related (causal)
factors Z, are modeled as time-invariant. Such a temporal
homogeneous SCM fails to account for the underlying con-
tinuous structure in non-stationary tasks, rendering static
causal representations insufficient for generalizing to evolv-
ing new domains. Moreover, as the statistical properties of
the target variables change over time (Gama et al., 2014; Lu
etal., 2018), the influence of causal factors on the target may
also vary, suggesting the mapping from causal factors to
labels gradually shifts, leading to causal mechanism drifts.

To address the aforementioned issues, we propose a novel
time-aware SCM for EDG. As shown in Fig. 2b, the local
variable L is introduced to model instability and dynamics,
and the global variable G is utilized to represent globally
unchanging knowledge. We then split the causal factors into
static causal factors Z5! and time-varying dynamic causal
factors Z4Y, thereby incorporating the evolving patterns into
causal factors. To model the causal mechanism drifts, we
introduce a time-varying drift factor Z¢. Moreover, Z5!
and Z%, along with the static spurious factors Z5* and dy-
namic spurious factors ij, constitute the static factors Z5¢

and dynamic factors Z%, respectively. Therefore, in our
new SCM, the data X is generated by X <« (7%, Z%)
while the label Y is generated via Y < (Z5t, Z% 7). Tt
can be observed that the time factor acts as a latent con-
founder, with its components G and L forming backdoor
paths between static and dynamic spurious factors and the
target. These paths introduce spurious correlations, which
can be mitigated by identifying the true causal factors and
constructing a causal model accordingly.

In order to learn the causal model with the help of the time-
aware SCM, we propose Static-DYNamic Causal Represen-
tation Learning (SYNC), a method designed to effectively
capture time-aware causal representations by simultaneously
uncovering static and dynamic causal representations. Con-
cretely, a sequential VAE framework is employed to capture
the underlying evolving patterns in data distribution. To sep-
arate causal factors from the complex and entangled mixture
of factors, we first minimize the mutual information (MI)
loss between static and dynamic factors to encourage dis-
entanglement between them. After that, static and dynamic
causal factors can be obtained by maximally preserving the
intra-class compactness of causal factors both across and
within temporal domains, implemented by optimizing the
designed cross-domain and intra-domain conditional MI
losses that account for continuous domain structure in EDG.
We theoretically show that, with the devised objectives,
our method can yield the optimal causal predictor for each
time domain, ultimately excluding spurious correlations and
achieving superior temporal generalization performance.

Contributions: (i) By taking a novel causal perspective
towards EDG problem, we design a time-aware SCM that
enables the refined modeling of both dynamic causal factors
and causal mechanism drifts. After that, we propose SYNC,
an approach for effectively learning time-aware causal rep-
resentations, thereby mitigating spurious correlations. (ii)
Theoretically, we show that SYNC can build the optimal
causal predictor for each time domain, resulting in improved
model generalization. (iii) Results on both synthetic and
real-world datasets, along with extensive analytic experi-
ments demonstrate the effectiveness of proposed approach.

2. Related Work

Evolving Domain Generalization (EDG) is introduced
to address the issue of generalizing across temporally drift
domains (Nasery et al., 2021; Qin et al., 2022; Zeng et al.,
2023b; Bai et al., 2023; Xie et al., 2024; Zeng et al., 2024;
2023a; Qin et al., 2023; Jin et al., 2024). Most existing
methods learn a time-sensitive model. To name a few,
GI (Nasery et al., 2021) suggests training a time-sensitive
model by utilizing a gradient interpolation loss. LSSAE and
MMD-LSAE (Qin et al., 2022; 2023) account for covari-
ate shifts and concept drifts and introduce a probabilistic
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model with variational inference to capture evolving pat-
terns. MISTS (Xie et al., 2024) further proposes to learn
both invariant and dynamic features through mutual infor-
mation regularization. Additionally, DRAIN (Bai et al.,
2023) launches a Bayesian framework and adaptively gen-
erates network parameters through dynamic graphs. SDE-
EDG (Zeng et al., 2023a) proposes to learn continuous tra-
jectories captured by the stochastic differential equations.
Different from the aforementioned methods, DDA (Zeng
et al., 2023b) simulates the unseen target data by a meta-
learned domain transformer. However, these methods do
not account for spurious correlations, which could hinder
the model generalization. In this work, we introduce a novel
causal perspective to EDG problem and learn time-aware
causal representations to address this issue.

Causality and Generalization. Causality describes the
fundamental relationship between cause and effect, which
goes beyond the statistical correlation simply obtained from
observational data (Pearl, 2009; Pearl et al., 2016). Since
causal models can effectively mitigate the impact of spu-
rious correlations, many studies have proposed leveraging
causal theories to develop more robust models. Causal meth-
ods in DG can be broadly categorized into two types. The
first type of methods (Arjovsky et al., 2019; Ahuja et al.,
2020; Li et al., 2022; Ahuja et al., 2021; Sun et al., 2021;
Yong et al., 2024) focuses on constructing an optimal in-
variant predictor through invariant learning. However, by
neglecting dynamic causal information or the correlations
between temporal domains, these methods struggle to per-
form effectively in dynamic environments. The second
type (Mahajan et al., 2021; Lv et al., 2022; Wang et al.,
2022; Hu et al., 2022; Mao et al., 2022; Chen et al., 2023;
Yue et al., 2021) leverages interventions to extract causal
features. Nevertheless, in dynamic scenarios, the presence
of dynamical causal factors complicates the rational inter-
vention in spurious factors. Regarding causal methods for
time series modeling (Entner & Hoyer, 2010; Malinsky &
Spirtes, 2018; Li et al., 2021; Yao et al., 2022b), they often
need somewhat strong assumptions on models such as the
reversibility of the generation function to infer underlying
causal structures. Furthermore, the aforementioned methods
overlook the fact that the causal mechanisms of the target
may drift (Lu et al., 2018) in dynamic scenarios.

3. Methodology

3.1. Preliminaries

Evolving Domain Generalization. Letx € XY andy € Y
denote the input data and its label, respectively, where X
and ) represent the nonempty input space and label space,
respectively. P(x,y,t) characterizes the temporal dynamic
of the probability distribution for (z, ), wherein underlying
evolving patterns over time ¢ exist. Suppose that we are

given T sequential source domains S = {D;}L ;, where
each domain D; consists of N; data (x;, y:;) which are
drawn from P(x,y|t), i.e., Dy = {(a;“,y“)}fﬁl The
goal of EDG is to leverage given T’ training domains to
establish a robust model i : X — ) which can generalize
well to K unseen target domains 7 = {Dt}?jTIfrl arriving
sequentially in the near future. Due to the existence of
evolving patterns across the sequential domains, the ideal
model should be capable of capturing these patterns.

Structural Causal Model. The structual causal model
(SCM) over n random variables X1, Xo, -, X,,, accord-
ing to (Pearl, 2009), is defined as a triple (G, P(€), F). G
denotes the causal directed acyclic graph (DAG) which is
comprised of the nodes V' and the directed edges I, where
the starting point and end point of each directed edge rep-
resent cause and effect, respectively. € is the independent
exogenous noise variables. These noise variables follow
the joint distribution P(€). F denotes a set of assignments
{X; = fi(PA;, €;)}_,, where PA,; is the set of parents of
X, i.e., direct causes, f; represents a deterministic function.
Each SCM induces a corresponding causal DAG, and the
data generation process can be characterized by the SCM.

3.2. Temporally Evolving SCM

Spurious correlations may mislead the model into learning
features that are irrelevant to the target, posing a notable
challenge to model generalization in EDG. Since causal
models can effectively alleviate spurious correlations, we
aim to construct an appropriate SCM for EDG and acquire
the causal model by learning causal representations.

Given that causal-based methods (Lv et al., 2022; Liu et al.,
2021a; Lu et al., 2021; Sun et al., 2021) have been exten-
sively explored in static DG, we start by briefly reviewing
the SCM employed in static DG. As mentioned in Sec-
tion 1, the target Y is determined solely by causal factors
Z., and the causal mechanism P(Y'|Z.) remains consistent
across environments. On this basis, a causal model can
be established by extracting 7. and constructing the corre-
sponding invariant causal mechanisms. Nevertheless, such
time-independent SCM is not suitable for dynamic scenar-
ios. Specifically, first, ignoring the underlying continuous
structure in non-stationary tasks limits performance. Sec-
ond, the statistical properties of the target may change over
time (Gama et al., 2014; Lu et al., 2018), implying that the
influence of causal factors on the target may vary, resulting
in causal mechanism drifts. Therefore, to apply causality in
EDG, designing a new and suitable SCM is essential.

Regarding the first issue, we further partition the causal
factors into static causal factors Z5' and dynamic causal
factors Z4¥, where Z5¢ contains stable category-related in-
formation, while Z% is related to domain-specific category-
related information. Z5* and Z%Y, along with the static

c
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spurious factors Z$! and dynamic spurious factors Z%,
constitute the static factors Z*¢ and dynamic factor Z dy
respectively. Then, Z5! and Z% collaborate to generate the
observed data X . Regarding the second issue, in order to
characterize the evolving causal structure P(Y'|Z5t, Z%W),
we introduce drift factors Z¢ to characterize the evolution
of causal mechanisms. Finally, we introduce the local vari-
able L, which consist of unstable and dynamic information,
along with the stable global variable G, to represent the
generation of Z*!, Z% and Z?. Combined with the above
analysis, we propose the time-aware SCM as follows:

Definition 1 (Time-aware SCM). The time-aware SCM
M built on observed variables X, Y, latent variables
zst 75tz 7% 74 and information factors G and L,
is a triple, i.e., M7y = (G, P(€), F), G is the corresponding
directed acyclic causal graph shown in Fig. 2b, P(€) de-
notes the distribution that exogenous noise follows, and F
denotes the assignments { f*, fY, f5t, fst fdv fdy_fd1.

Xo= (22,28, 28, 28 ea) Y = U2 28, 2 ey
z: = 120G e, 23 = f1N(G e,
chy = fgy(Laegy) s Zgy = f.sdy(L7€gy) ) Zd = fd(Laed) .

From Def. 1, the generation of the observed variables is fully
determined by five latent factors, with no additional unob-
served factors involved. Under the global Markov condition
and the causal faithfulness (Pearl et al., 2016), it follows
that Y 1L [Z3t, Z%) | [Z5t, Z4¥, Z9]. This observation
suggests that, within a given time domain D, predictors
built on causal representations are immune to the influence
of spurious factors. By incorporating a mutual information
(MI) term to filter out information irrelevant to the target, the
optimal causal predictor for D, can be defined as follows:

Definition 2 (Optimal Causal Predictor). For a time domain
D;, the corresponding drift factors Z are given. Let Z, ; =

(23,2 j}?g) be the causal factors in domain D, that satisfy
Zey € argmaxy | 1(Y; Zey, Z), and Y UL (254, 23] |
[Ze.t, Z3]. Then the predictor based on factors Z,. ; and Z{
is the optimal causal predictor.

From Def. 2, when static and dynamic causal factors, along
with drifts in causal mechanisms, are modeled together,
the causal model for each time domain can be accurately
learned. Building on the time-aware SCM M, we formu-
late a temporally evolving SCM M., which is composed
of M as the basic element, connected sequentially along
the time axis. As shown in Fig. 3, static factors remain
invariant to temporal changes, whereas dynamic and drift
factors evolve according to specific patterns.

Existing causal methods developed for static DG suffer from
the following two problems in non-stationary environments:
(i) The presence of dynamic causal factors complicates the

Figure 3: Temporally Evolving SCM for EDG. The dashed
line indicates that the two factors are correlated.

rational intervention in spurious factors; (ii) Learning with
invariant causal mechanisms, as in a static environment, is
not feasible. To address these issues, we propose Static-
DYNamic Causal Representation Learning (SYNC), which
effectively learns time-aware causal representations com-
posed of both static and dynamic causal components.

3.3. Static-Dynamic Causal Representation Learning
3.3.1. EVOLVING PATTERN LEARNING

We consider the evolving patterns of both static and dynamic
latent factors. For data (x¢,y;) collected at time stamp
t, let 25 and 2z denote the static factors and dynamic
factors, respectively. Our goal is to learn the latent evolving
patterns by modeling the condition distributions p(z¢¢|z;)
and p(z%|z% x,). To this end, a neural network
dy| d d dyyy ;
a0 (22, 1) = N (=), 0 (21%)) is employed to ap-
proximate p(zY \ziyt, @). This approximation is achieved
e .. d d d d
by minimizing Dgp(qo(ze" |25, x),p(27Y 225, 1)),
which is equivalent to maximizing
d dy d dy d

Eq, logp(ze|2t”) — Dir(go(2:” |25, @), p(2¢7[220)
where p(zfy |2%) is the prior distribution of z¥. Inspired
by (Qin et al., 2022), we model it using LSTM (Hochre-
iter & Schmidhuber, 1997), by setting the initial state as
23 = 0. For p(2§*|x,), we utilize a network g, (25*|x;) =
N(p(z5h), 0%(25")) to approximate. Analogously, to mini-
mize D, (qy (25 |21), p(25t|2:)), we need to maximize

By, logp(z:i|2;") — Dicr(gw (2" [2e), p(21"))

where p(z;t) is set as N'(0, I). In general, the objective
function for learning the latent patterns of features is

T
st _d
Ly =— Zquqw [Ing(wAztf’ z")]
t=1

T
+ ) Drrlgy(zla), p(z5")) (M
t=1
T
d d d d
+ ZID)KL(qg(zty|z<yt7wt),p(zty|z<‘1i)),
t=1
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Figure 4: The training framework of SYNC. We employ ¢y, g4, q¢ to model the posteriors, where o; = (ul,

is the mean and variance of the posterior,

- denotes “st”, “dy” or “d”. Then, the sampled 25!,

) o
and z‘li:T are utlhzed to

reconstruct the data through the decoder D. After passing the corresponding causalizer (in which m5* or m% is a 0-1
masker), they are combined with 2¢.,. to make predition through the classifier w. The reconstruction term and the divergency
between the priors and the posteriors is used to calculate the evolving pattern loss Leyolve. The means of the static and
dynamic posteriors are utilized to calculate MI losses L, Lgic; Layc, aiming to obtain static and dynamic causal factors.

where the log-likelihood term represents the reconstruction
term for input x;, two KL divergence terms are used to
align the posterior distributions of z5* and z%¥ with the
corresponding prior distributions.

3.3.2. DISENTANGLEMENT OF STATIC AND DYNAMIC
REPRESENTATIONS

Although static and dynamic factors are modeled sepa-
rately in Eq. (1), the absence of additional constraints pre-
vents us from guaranteeing that static factors do not con-
tain dynamic information, the same is true for dynamic
factors. MI quantifies the degree of dependence between
two variables. By minimizing the MI, the exclusivity of
the information contained in these variables can be pro-
moted. Therefore, in order to achieve the disentanglement
of z¢* and zfy, we propose to minimize the MI between
them. The MI between 25! and z{Y can be written as
I(zst 2%) = H(z5") + H(2Y) — H(25", 2"). Follow-
ing (Chen et al., 2018b), we use a standard mini-batch
weighted sampling (MWS) to estimate the entropy term
H(-) = —Ey([log q(-)]. Specifically, when provided with
a mini-batch of samples {x},x?,--- , P} at time ¢, we
can use the estimator

Eq(.)[log q(

B B
szlogB ij z])], ()

where z(x!) denotes a sample from ¢(-|x¢), and B and B’
denote the batch size and data size, respectively. The MI
loss can be written as

£MI ZI Zt ,Zt . (3)

3.3.3. UNEARTHING STATIC AND DYNAMIC CAUSAL
REPRESENTATIONS

As mentioned in Section 3.2, learning causal representations
poses significant challenges. To address this, we need to find
some properties of causal factors and translate them into
equivalent and feasible objectives. Prop. 1 below gives the
properties of causal factors in the continuous time domain:

Proposition 1. Let D, be a time domain, and for a given
class Y, it can be conclude that:

(i) If there is H(Z tt|Z(,t 1Y) < H(ZStt|th 1Y),
then](ZSt ZStt 1\Y)>I(thf,ZStt 1|Y)

c,ty

(ii) If there is H(Z3\|Z3,Y) < H(Z:H|Z8,Y), then

c,ty s,t?

1285 Z24)Y) > I(Zf% ZLIY).

In fact, the condition in Prop. 1 is generally easy to meet, as
causal factors typically exhibit greater similarity, leading to
smaller conditional entropy.

Remark 1. Although Prop. 1 appears straightforward, its in-
spiration comes from M and can be intuitively understood
within this framework. Since the two claims are similar,
we explain only the second one for simplicity. As shown
in Fig. 2b, there exists a collider th — Y « foy and a
fork Z% <+ L — Z%. According to d-separation (Pearl
et al., 2016), when conditioned on Y, both Z% and Z% are
related to Z5*. Consider a boundary case where Z5* and
Z% are independent, this implies that the backdoor path
between Z%¥ and Z is blocked, leading to independence
between Z3¢ and Z%, while Z5! remains related to Z.
Prop. 1 generalizes this observation, under certain entropy
inequalities, static causal factors are more strongly related
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to dynamic causal factors than dynamic spurious factors. As
mentioned above, the conditions are easy to satisfy.

Prop. 1 (i) provides a way to learn the static causal factors:

max (9 (X0); P (Xi-1)|Y), @)

where ®5! consists of the feature extraction component of
¢y, namely qfft, and a neural-network-based masker mg’,
such that ®3 = m?' o g™, m" is implemented by

m3" = Gumbel-Softmax (wit(qfft(Xt)), kN), (5

where w3t learns the scores of each dimensions of qfft (X3),
and the dimensions correspond to the mask ratio € (0, 1)
are regarded as causal dimensions, N is the dimension of
3" (X¢). We employ the Gumbel-Softmax trick (Jang et al.,
2017) to sample a mask with kN values approaching 1.

Since an exact estimate of Eq. (4) could be highly expen-
sive (Oord et al., 2018), we use supervised contrastive learn-
ing (Khosla et al., 2020; Belghazi et al., 2018) as a practical
solution for the approximating I (P (X,); ®5H(X;—1)[Y):

REICNOVE

SN

(6)
where I51,(j, k) = sim(®(Xy;), ®S(X] ;). and
51(7.0) = sim(®(X,,), BL(X], ). sim(--) is the
cosine similarity. In Eq. (6), the positive sample qu,k
shares the same label as X; ;, while the negative sam-
ples {X}* M. have different labels. 7 is the tempera-
ture hyperparameter. In addition, we utilize the MI term
I(Y; ®5¢(X,)) to filter out information irrelevant to the tar-
get. Lem. 1 as follows demonstrates the effectiveness of
designed objective.

Eix, ;. xr, ~pP(xly=y) 108 i,
(X7 L ~P(X|y#Y)

Lemma 1. For a time domain Dy, the static causal factors
can be obtained by solving the following objective:

max (Y3 8(X,),

7
s.t. @5 cargmax (@5 (X,); 5H(X,_1)|Y), ™
st

where maximizing the MI term can be achieved by mini-
mizing the cross-entropy loss between the representation
®5!(X;) and the target Y. Prop. 1 (ii) demonstrates that
by using the static causal factors Z5 as the anchor, the
dynamic causal representations can be learned through

max [(®2(X,); Z24|Y), ®)
o ’

where ®2 is comprised of the feature extraction component
of qp, i.e., qgl't, and a neural-network-based masker mgy,

such that ®%¥ = md¥ o g§*t. m2¥ is implemented is similar
to Eq. (5). We estimate I(®%¥(X,); Z5|Y) by

iV (k) /7
e GR/T L M el G/
&)
where 17 (j, k) = sim(®2(X,;), 25 (X)), [8(j, i) =
sim(®% (X, ;), i‘zt(Xfl)) with X7, being a positive sam-
ple that shares the same label as X ;, and the negative sam-
ples { X7}, are those having different labels. 2it(Xt'7_)
denotes the static causal factors of X ., which are imple-
mented by ®3'(X; ). We provide the following Lem. 2,
which demonstrates the effectiveness of devised objective.

E{x,,.x? ~P(x|y=Y) log
{X7 L ~P(X|y#£Y)

Lemma 2. For a time domain Dy, let D% (X,) be the
static causal factors learned by the model, then the dynamic
causal factors can be obtained by the following objective:

max I(Y; ®% (X)),
v

s.t. ®W € argmax I(®Y(X,); @:4%(X,)|Y).

oY

(10)

Overall, the objective in Eq. (4) brings the static causal repre-
sentations of the same category across domain closer, while
the objective in Eq. (8) aligns the static and dynamic causal
representations of the same category within the domain.

3.3.4. LEARNING EVOLVING CAUSAL MECHANISMS

We introduce drift factors Z¢ to model the evolving causal
mechanisms. In order to approximate p(zZ|z%,,y:), we
use a network parameterized by a recurrent neural network
qc(2822,, y;) with a categorical distribution as the output.
The initial state is set as z¢ = 0. Then minimizing the KL
divergency between g and p can be achieved by maximizing

Eq 10gp(3/t|z§l) - DKL(‘IC(ZﬂZit; yt)ap(zﬂzit)) )

where p(z¢|z%,) is presented as a learnable categorical
distribution. Together with the classification loss, the loss
function for learning the evolving causal mechanisms is

T
dy ; d
Lump =— Zquqwqc UOgP(ythc,Zv Zifta z;)]
t=1
. (1
+Y Drrlac(zfz4,v0), p(zF124,)) -
t=1
3.3.5. OVERALL OPTIMIZATION OBJECTIVE
Let Levoive = Lip + Lmp, Where Leyole represents the

loss function for capturing the evolving Pattern. Let
‘Ccausa] = ﬁstc + ‘CdyC’ where Estc = - t=2 Ist(t) and
Laye = — Z;‘F:l I4y(t), Is¢(t) and 14, (t) represent the term



Learning Time-Aware Causal Representation for Model Generalization in Evolving Domains

Table 1: Comparison of accuracy (%) between SYNC and other baseline methods. “Wst” and “Avg” denote worst-case and
mean performance across all test domains for a given dataset, respectively. The best and second best results are marked in
bold and underline, respectively. “Overall” refers to the mean of the two metrics averaged across all datasets.

Method Circle Sine RMNIST Portraits Caltran PowerSupply ONP Overall
etho Wst Avg Wst Avg Wst Avg Wst Avg Wst Avg Wst  Avg  Wst Avg Wst  Avg
ERM 417 499 495 630 378 436 755 878 299 663 644 710 642 659 519 639
Mixup 417 484 493 629 383 449 755 878 523 660 643 708 64.1 66.0 551 638
MMD 41.7 50.7 476 558 390 448 740 873 294 571 648 709 47.1 513 49.1 597
MLDG 41.7 50.8 495 632 375 431 764 885 517 662 646 708 639 659 550 64.1
RSC 41.7 48.0 495 615 358 417 752 873 519 670 644 709 633 647 545 630
MTL 422 512 469 629 36.1 417 782 89.0 526 682 642 70.7 634 656 548 0642
FISH 417 488 495 623 376 442 786 888 575 68.6 642 708 632 659 560 642
CORAL 41.7 539 463 516 385 445 746 874 509 657 646 710 63.8 658 543 628
AndMask 417 479 429 693 378 428 62.0 703 299 569 640 707 512 546 47.1 589
DIVA 567 679 38.6 529 369 427 762 882 538 692 639 707 645 660 558 654
IRM 417 513 495 632 341 390 742 854 431 60.6 64.1 708 619 645 527 62.1
1B 42.0 539 476 613 385 450 781 89.7 548 693 645 708 632 663 552 62.1
iDAG 420 49.0 476 57.1 398 441 79.8 88.6 535 697 66.1 712 63.8 664 56.1 637
GI 420 544 498 652 392 446 778 881 531 707 651 710 63,5 657 558 657
LSSAE 42.0 73.8 490 714 403 464 777 89.1 543 703 654 T71.1 645 66.0 562 69.7
DDA 42.0 512 430 666 380 451 760 879 310 661 644 709 635 653 512 647
DRAIN 45.0 50.7 430 713 372 438 777 894 557 690 649 710 59.8 61.1 548 652
MMD-LSAE 540 795 430 714 429 492 809 904 569 696 652 714 618 664 58.1 70.9
CTOT 540 752 432 672 317 448 792 864 480 669 636 7T1.1 61.1 656 544 682
SDE-EDG 45.0 81.5 423 722 397 526 786 89.6 551 713 641 708 63.1 656 554 719
SYNC (Ours) 67.0 84.7 60.0 76.1 458 50.8 81.0 90.8 588 722 669 71.7 646 656 634 73.1

at time ¢ as defined in Eq. (6) and Eq. (9), respectively. The
objective function of SYNC is

Lsync = Levolve + a1 Ly + @2 Leausal s (12)

where a1 and « are the trade-off hyperparameters.

3.4. Theoretical Analysis

In this section, we aim to provide a theoretical insight on
our proposed SYNC. More details on the theoretical proof
and discussion can be found in Appendix B. First, we show
that optimizing Leyove approximates the joint distribution
p(x1.7,y1.7) and captures the underlying evolving pattern.

Theorem 1. Assume that the underlying data generation
process at each time step is characterized by SCM M.
Then, by optimizing Leyone the model can learn the data
distribution p(x1.7,y1.7) on training domains.

Thm. 1 demonstrates that minimizing Leyolve can effectively
capture the underlying evolving pattern in data distribution.
Now, we provide Thm. 2 as follows to state that minimizing
Lsync leads to the optimal causal predictor at each time
domain Dy, thereby addressing spurious correlations and
improving model generalization.

Theorem 2. Let ®5'(X;), @4 (X,;) and Z denote the rep-
resentations and drift factors at the time domain D;, ob-
tained by training the network through the optimization of
Lsync. Then the predictor constructed upon these compo-
nents is the optimal causal predictor as defined in Def. 2.

4. Experiments
4.1. Experimental setup

Datasets. We evaluate SYNC on several commonly used
benchmarks, including two synthetic datasets (Circle, Sine)
and five real-world datasets (RMNIST, Portraits, Caltran,
PowerSupply, ONP). Circle (Pesaranghader & Viktor, 2016)
contains evolving 30 domains, where the instance are sam-
pled from 30 2D Gaussian distributions. Sine (Pesarang-
hader & Viktor, 2016) includes 24 evolving domains, which
is achieved by extending and rearranging the original dataset.
RMNIST (Ghifary et al., 2015) consists of MNIST digits
with varying rotations. Following (Qin et al., 2022), we
generate 19 evolving domains by sequentially applying ro-
tations from 0° to 180° in 15° increments. Portraits (Yao
etal., 2022a) is a real-world dataset of American high school
senior photos spanning 108 years across 26 states. We split
it into 34 evolving domains using fixed temporal intervals.
Caltran (Hoffman et al., 2014) is a surveillance dataset
captured by fixed traffic cameras deployed at intersections
and is split into 34 domains by time to predict the type of
scene. PowerSupply (Dau et al., 2019) is created by an Ital-
ian electricity company and contains 30 evolving domains.
ONP (Fernandes et al., 2015) is collected from the Mashable
website within two years and is divided into 24 domains
according to month. All domains are split into source do-
mains, intermediate domains and target domains according
to the ratio of {1/2:1/6 : 1/3}. The intermediate domains
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Figure 5: (a) and (b) show the independence degree of LSSAE and SYNC, respectively, during the training process on the
Circle and RMNIST. (c) and (d) present the test accuracy trajectory of SYNC and various baselines on Circle and Portraits.

are utilized as validation set for model selection.

Baselines. We select three categories of related meth-
ods for comparison: (i) Non-Causal DG: ERM (Vap-
nik, 1999), Mixup (Zhang et al., 2018), MMD (Li et al.,
2018b), MLDG (Li et al., 2018a), RSC (Huang et al.,
2020), MTL (Blanchard et al., 2021), FISH (Shi et al.,
2022), CORAL (Sun & Saenko, 2016), AndMask (Paras-
candolo et al., 2021), DIVA (Ilse et al., 2020). (ii) Causal
DG: IRM (Arjovsky et al., 2019), IIB (Li et al., 2022),
iDAG (Huang et al., 2023). (iii) EDG: GI (Nasery et al.,
2021), LSSAE (Qin et al., 2022), DDA (Zeng et al., 2023b),
DRAIN (Bai et al., 2023), CTOT (Jin et al., 2024), SDE-
EDG (Zeng et al., 2023a), MMD-LSAE (Qin et al., 2023).
We keep the neural network architecture of encoding and
classification part constant across all baselines used in dif-
ferent benchmarks for a fair comparison.

Implementation. All experiments in this work are per-
formed on a single NVIDIA GeForce RTX 4090 GPU with
24GB memory, using the PyTorch packages, and are based
on DomainBed (Gulrajani & Lopez-Paz, 2021). Please
refer Appendix E.2 for additional training details and Ap-
pendix C.3 for network architecture details.

Evaluation Metrics. In this work, we report the gen-
eralization performance on K target domains in the fu-
ture, including the worst accuracy performance “Wst”
(mingeq1,2,... K} Accuracy(DT+*)) and the average accu-

racy performance “Avg” (% ZkK: | Accuracy(DT+F)),

4.2. Quantitative results

The results of our proposed SYNC, along with various base-
line methods, are presented in Table 1. It can be observed
that the average performance of EDG methods generally
exceeds that of traditional DG methods, underscoring the
importance of modeling and leveraging evolving patterns in
dynamic environments. In terms of worst-case performance,
EDG methods do not exhibit a significant improvement
over DG methods, in contrast to their advantage in aver-
age performance. This may be attributed to the fact that, if
EDG methods fail to capture robust evolutionary patterns,

their generalization ability may deteriorate over longer tem-
poral spans. In contrast, DG methods focus on learning
domain-invariant representations, which can serve as a per-
formance lower bound and offer a more stable guarantee
for generalization. These results demonstrate the impor-
tance of leveraging stable representations to enhance model
generalization in dynamic environments.

SYNC consistently outperforms other baselines over all
benchmarks, achieving an accuracy of 63.4% in the worst-
case scenario and 73.1% in terms of average performance.
Specifically, compared to existing causal DG methods,
SYNC achieves significantly better results on both metrics,
with improvements of at least 7.6% in worst-case perfor-
mance and 7.7% in average performance. This highlights
the importance of incorporating dynamic causal information
and modeling causal mechanism shifts. Moreover, when
compared with EDG methods, SYNC outperforms the state-
of-the-art approach by 5.3% and 1.2% in the two metrics,
respectively. These results demonstrates that, by learning
the causal model, SYNC achieves superior generalization
and captures more robust evolving patterns. Lastly, it can be
observed that VAE-based methods, such as LSSAE, achieve
better performance, suggesting that generative approaches
are effective in capturing more robust evolving patterns.
Building on this, SYNC further learns both static and dy-
namic causal representations, which enhances model gener-
alization and advances the modeling of evolving patterns.

4.3. Analytical Experiments

Ablation study We conduct an ablation study on RM-
NIST to evaluate the effectiveness of various components
in our method, and results are presented in Table 2. Vari-
ant A serves as the base method trained solely with evolv-
ing pattern 1oss Leyove. Variant B builds upon the base
method by additionally training with MI loss Lyy. It can be
observed that Variant B achieves better performance than
Variant A, suggesting that better separation enables more
effective utilization of features from each part. Variants
C and D build upon Variant B by incorporating additional
training with static causal loss Ly and dynamic causal
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Figure 6: Visualization of decision boundary of the Circle dataset, where the positive and negative classes are colored in red
and blue. (a)-(c) show the decision boundaries learned by ERM, MMD-LSAE and SYNC. (d) presents the ground truth.

Table 2: Ablation study of SYNC on RMNIST dataset.

Ablation Evo. Disent. Z35* Z%3 Wst Avg Overall
Variant A v - - - 40.5 44.1 423
VariantB v/ v - - 419 457 438
Variant C v v v - 44.1 4877 464
VariantD v/ v - v 429 492  46.1
SYNC v v v v 458 508 483

loss Ly, respectively. Variant C and D achieve higher ac-
curacy than Variant B, demonstrating that learning causal
representations enhances model generalization. Notably, it
is clear that Variant C achieves a greater improvement in
worst-case performance compared to Variant D, indicating
that static causal factors can ensure stable generalization
under continuous distribution shifts. However, focusing
solely on them ignores evolving pattern, limiting further
generalization gains. Learning dynamic causal factors cap-
tures features related to task evolving over time, enabling
to generalize better to the current distribution. Variant D
outperforms Variant C in average performance and provides
evidence for this claim. SYNC jointly learns static and
dynamic causal representations and achieves the best perfor-
mance, highlighting their significant contributions to overall
effectiveness. This demonstrates that static and dynamic
causal factors are complementary and play a crucial role in
enhancing model generalization.

Disentanglement To illustrate the extent of disentangle-
ment between static and dynamic factors in our approach,
we use mutual information as the measure of independence
and estimate it using mini-batch weighted sampling between
the static and dynamic representations produced by LSSAE
and SYNC on the Circle and RMNIST datasets. As shown
in Fig. 5a and Fig. 5b, compared to LSSAE, SYNC exhibits
a faster and more stable decline in the independence indi-
cator, indicating that our method achieves a more effective
disentanglement of static and dynamic factors.

Temporal Robustness Fig. 5c and Fig. 5d show the ac-
curacy trajectories of our method and multiple baseline

methods on Circle and Portraits. SYNC demonstrates more
stable predictive performance while maintaining high accu-
racy. Notably, compared to SDE-EDG on the Circle dataset,
SYNC continues to perform well in the later domains, high-
lighting the effectiveness of time-aware causal representa-
tion learning in enhancing long-term generalization.

Evaluation on evolving pattern captured In order to
verify whether the evolving patterns learned through causal
representations are more accurate, we visualize the decision
boundaries of our proposed approach along with ERM and
MMD-LSAE on the Circle dataset. As shown in Fig. 6,
ERM struggles to generalize to unseen target domains due
to its inability to model latent evolving patterns. In contrast,
MMD-LSAE demonstrates improved generalization to fu-
ture domains. SYNC goes one step further and achieves
decision boundaries that most closely align with the ground
truth, highlighting its effectiveness in capturing evolving
patterns and enhancing generalization to unseen target data.

5. Conculsion

In this work, we investigate the issue that existing EDG
methods may experience poor generalization performance
due to the presence of spurious correlations. To address this
problem, we propose a time-aware SCM by considering both
dynamic causal factors and causal mechanism drifts. We
propose Static-DYNamic Causal Representation Learning
(SYNC), an approach that can effectively learn time-aware
causal representations and reconstruct causal mechanisms,
thereby obtaining the causal model. Extensive experiments
demonstrate the effectiveness and superiority of our method
in improving the temporal generalization performance. We
hope this work can offer valuable insights into improving
model generalization in dynamic environments.
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Impact Statement

In this work, we highlight the potential negative impact
of spurious correlations on the model generalization in the
evolving domain generalization problem and provide in-
sights into how to build and learn causal models in non-
stationary environments. By learning time-aware causal
representations, the model can effectively mitigate the im-
pact of task-irrelevant factors in dynamic tasks, thereby
enabling reliable predictions and decision-making in com-
plex, changing environments. This allows the model to cope
with challenges in non-stationary dynamic environments,
offering potential benefits for real-world applications such
as autonomous driving and advertisement recommendation.
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A. Related Work

Domain Generalization (DG) aims to generalize knowledge extracted from multiple source domains to unseen target
domain. In recent years, extensive research has been conducted to address this issue in the literature (Wang et al., 2023;
Liu et al., 2021b), which can be roughly categorized into three groups: (i) Invariant representation learning: This category
of methods focus on learning invariant representations across distributions to generalize well to unseen target domains,
which is achieved through domain alignment (Muandet et al., 2013; Ghifary et al., 2017; Li et al., 2018c) and feature
disentangement (Piratla et al., 2020; Chattopadhyay et al., 2020). Domain alignment methods learn invariant representation
via kernel-based optimization (Muandet et al., 2013; Ghifary et al., 2017), adversal training (Li et al., 2018c; Motiian et al.,
2017) and using additional normalization (Peng & Saenko, 2018). Feature disentaglement methods (Piratla et al., 2020;
Chattopadhyay et al., 2020) aim to disentagle the features into domain-specific and domain-invariant features, and the
latter are utilized for better generalization. (ii) Domain augmentation: These methods enrich the diversity of the training
domain by manipulating domain data, thereby enhancing the model’s generalization. They encompass operations at both
the image levels (Zhang et al., 2018; Hendrycks et al., 2020) and feature levels (Zhou et al., 2021a; 2020; Xu et al., 2021).
(iii) Learning strategies: This category of methods utilize effective learning strategies to improve model generalization
performance, such as meta-learning (Balaji et al., 2018; Li et al., 2018a), ensemble learning (Zhou et al., 2021b; Arpit et al.,
2022) and self-supervised learning (Carlucci et al., 2019; Huang et al., 2020). Although significant progress has been made
in DG, when faced with non-stationary environments that are more common in the real world (Grossniklaus et al., 2013;
Wang et al., 2025), it still faces major challenges (Yao et al., 2022a; Qin et al., 2022).

B. Theoretical Details
B.1. Proof of Proposition 1

Proposition 1. Let D; be a time domain, and for a given class Y, it can be conclude that:

(i) If there is H(ch,tt|ch,tt—1v Y) < H(Zss,tt|ZcS,tt—1a Y), then I(Z3; Z3, 1Y) > 1(Z3Y; 225, 1 ]Y).

c,ty “c, s,tr “c,

(ii) If there is H(ZS4| 22, Y) < H(Z34|Z3,Y), then I(Z3Y; Z34|Y) > 1(Z34; Z354|Y).

c,tr “c, s,tr “c,

Proof. For I(-; Z5t|Y'), according to the properties of conditional MI, it can be derived that

I(5 234 0 |Y) = H(Z2, 4 |Y) = H(ZZ ] Y),

st st st (13)
I(? Zc,t|Y) = H(Z(',t|Y) - H(Zc,t|'ﬂ Y) 5
thus we have
H(ZSft|Z§ft71>Y) < H(Zj,tt|sz,ttflv Y) <= I(Zg,tﬁ sz,ttfl‘y) > I(Z;ffté ch,ttfl‘y>a (14)
H(ZZ8,Y) < H(Z3423.Y) < L2234 Z34Y) > (285 Z54]Y) .
O

These two propositions regarding the properties of causal factors demonstrate that, as long as the causal factors are sufficiently
similar, the conditional MI can be maximized to distinguish the causal factors from the spurious factors.

B.2. Proof of Theorem 1

Theorem 1. Assume that the underlying data generation process at each time step is characterized by SCM M. Then, by
optimizing Leyone, the model can learn the data distribution p(x1.T, y1.7) on training domains.

13
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Proof. According to Eq. (1) and Eq. (11), minimizing Leyolve is equivalent to maximizing

T T T
dy| d dy| d
—Levolve = ZE‘N% [log p(: |2 7zt ZDKL qu (27 |z1), p(25")) — ZDKL(QG(Zty|Z<ytvwt)ap(zty|z<yt))
t=1 t=1 t=1
T T
+ Z]E(IS(IWI( [lng(yt|ZCt, cytv ?)] - ZDKL(QC(ZﬂZit?yt)’p(zﬂzit))'
t=1
15)
The above equation can be further simplified to
T
d

evolve — q0 4. tl=t <t 969+ 4. t1%ctr “c,tr ~t
—L ZIE ,log p(ay| 27" 2] +Z]E vacllog p(ye| 28y, 284, 2]

t=1 t=1

. Q¢ Zf |mt zt |z<tth qC Zt|z<tayt)

-3 g B S g W) 5 o W) g

— p(z} |z ‘Z<t)

T d

ZE (azt|zt azt Y)p (yt|zcta cytvz?)p(zﬁ)p(zty|z<t)p(zty|z<yt)

qwqeqc d ’
t=1 qw(z“\:ct)qg(zt 122 e)ac (271244 1)

Based on the time-aware SCM My and the temporally evolving SCM M,,,, and let g(z¢ ,zf c2 ey, y) =
qw(ztt\wt)qg(zt |z<t,wt)q<(zt|z<t,yt) then it can be obtained that

e = 3By g P o 2 0 e 20112
q¢(ztt|:ct)q9(zt |z<t7wt)q<(zt|z<t,yt)
< Epy g 3 log P 2 ) plulzcl, = zeh 2)p(2 (= |22)p(=" 122)
t=1 qu (¢ @1 )q0 (2 y|z<tth)QC(zg|zitayt) (17)
By o Lt P 2zl =i 2l ol 2ot |2
[Tm1 g (2" ®e) a0 (27" |25 @) ac (281224, i)
= E,log P(wsltTa y;/% 25, Z(lif/Tz(li:T)

C1(z1 Ty Z1.Ts zii;T|fB1:T, Y1.1) '

Since the distribution of observational data p(x1.7, y1.7) is generated by the latent factors Z st 74y and Z<¢, we aim to
model this distribution by approximating the posterior p(z5, zf;yT, 2% |@1.7, y1.7) with a variational network ¢:

d
Q(ZitTy 21-yT7 Z‘f;T\mlzT, Yy1.1)

d
(o ZlyT’ Zil:T|$1:T, Y1.1)

Drkr(q,p) = Eqlog

dy _d (18)

p(zl:T? zl;T7 Z1.7,1:T, yl:T)
d

q(z3'r, Z1§yT» zil:T|‘B1:T7 Y1:T7

= —E,log +log p(x1.7, y1.7) -

Combing with Eq. (17), it is clear that optimizing Leyolve is equivalent to minimizing D 1, (¢, p), which facilitates learning
the data distribution p(@ 1.7, y1.7)- O
B.3. Proof of Theorem 2

In this section, we elaborate on how SYNC derives the optimal causal predictor for each time domain. We first briefly
introduce the relevant theories of causal graphical models and causal assumptions in Sec. B.3.1. Then, we provide the proofs
of Lem. 1 and Lem. 2 in Sec. B.3.2 and Sec. B.3.3, respectively. Finally, the proof of Thm. 2 is presented in Sec. B.3.4.

B.3.1. PRELIMINARIES

Causal Graphical Models. In causal research (Pearl, 2009; Pearl et al., 2016), a causal graphical model G is a directed
acyclic graph (DAG) that can be derived from a SCM M, characterizing the joint probability distribution P over n random

14
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variables X1, X5, --- , X,,. The causal DAG G is comprised of the nodes V' and the directed edges F, where the starting
point and end point of each directed edge (—) represent cause and effect, respectively. The directed edges encode the causal
relationships between the variables. The joint distribution P has causal factorization as follows:

P(X1.) = [[ P(Xi|PA(X))), (19)

=1

where P A(X;) denotes the parents of variable X; in DAG G. Causal graphical models typically consist of three fundamental
structures: chain, fork, and collider. The three basic causal structures and their metaphorical dependencies are as follows:

e Chain: X — Y — Z. In a chain structure, X is a cause that influences Y, and Y is a cause of Z. This structure
implies dependency: X 1L Z, while X A Z|Y.

e Fork: X <~ Y — Z. In this structure, Y is the common parent of both X and Z, and is therefore referred to as a
confounder. A fork structure shows that X A Z, while X 1L Z|Y.

e Collider: X — Y « Z.Y is the common child of the two variables, X and Z, and is referred to as a collider. The
dependency implied by a collider structure is X 1 Z, while X £ Z|Y.

Causal Assumptions. Due to the available data offer only partial insights into the underlying causal mechanisms. Therefore,
it is crucial to make certain priors or assumptions about the structure of the causal relationships to enable causality learning.
The following assumptions (Pearl, 2009; Pearl et al., 2016) are commonly used:

* Causal Markovian Condition. For each variable in a causal model, if given its parents, then it is conditionally
independent of all its non-descendants.

» Causal Sufficient. The causal sufficiency assumption states that there are no unmeasured common causes of any pair
of variables in a causal model. This assumption is crucial in a wide range of literature.

¢ Global Markov Condition. Given a DAG G and the joint distribution P of all nodes, for any two non-adjacent nodes
X; and X in G, and given a set of nodes Z, if X; and X are d-separated by Z, then X; 1. X, | Z. We say that the
distribution P satisfies the global Markov property with respect to the DAG G.

¢ Causal Faithfulness. Given a DAG G and the joint probability distribution P of all nodes, for any two non-adjacent
nodes X; and X in G, given a set of nodes Z, if X; I X | Z, then the nodes X; and X ;j are d-separated by the node
set Z. We say that the distribution P satisfies the faithfulness with respect to G. This assumption represents exactly the
distributional independence relations implied by d-separation.

With these theories, we combine the time-aware SCM M to give the following proposition, which leads to the definition
of the optimal causal predictor.

Proposition 2 (Conditional Independence). It is assumed that there are no unmeasured common causes of any pair
of variables in M, i.e., Mt is causal sufficient. With the global Markov condition and the causal faithfulness, the
conditional independence of latent factors can be derived from d-separation: (i)Y M [Z,ZW) | [Z3t, ZW). (ii)
Y L[z 2 | (23 zdv, 27).

Proof. The DAG corresponding to the time-aware SCM M is shown in Fig. 2b. It can be observed that there exists three
paths from (Z5', ZW¥) 10 Y: Z5' + G = ZS' - Y, ZW + L — Z% — Y,and Z¥ + L — Z¢ — Y. Note that the
causal sufficiency of M guarantees that there are no other unobserved variables, thus all the paths between (Z5¢, Z%)
and Y are blocked by Z5t, Z% and Z¢. Therefore, it follows that Z5, Z% and Z? block all the paths from 7 to Y,
whereas Z3¢ and Z% do not. According to d-separation criterion, it is obtained that Y A aq,. [Z5t, ZW] | [Z3¢, Z%),
Y UL oy [Z88 23] | (258, Z3, Z9). Since the global Markov condition and the causal faithfulness guarantee the
equivalence between d-separation and conditional independence, therefore we have:

YV L (25 28] | [z Z), Y L[zt 2 | (z5t Z3v, 2. (20)

O
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From Prop. 2, it follows that for each time domain D, if we can obtain the static causal factors Z ft, dynamic causal factors
Z gy, and drift factors Z¢ that indicate the state of the causal mechanism in the current time domain, then we can use them to
construct a stable causal relationship between features and labels. The predictor built in this way will not be influenced by
spurious factors. Additionally, the ideal causal features should capture as much information as possible about the target.
Based on the above analysis, we now define the optimal causal predictor.

Definition 2 (Optimal Causal Predictor). For a time domain D;, the corresponding drift factors Z{ are given. Let
Zey = (2" z° */) be the causal factors in domain D that satisfy Z.; € argmaxy_, 1(Y; Zy, Z{),andY 1L [Z',, Zi‘v,{] |

c,ty
(Zet, Zf ] Then the predictor based on factors Z. ; and Z; d is the optimal causal predictor.

The following two lemmas establish a theoretical foundation for learning the causal factors Z ;.

B.3.2. PROOF OF LEMMA 1

Lemma 1. For a time domain Dy, the static causal factors can be obtained by solving the following objective:

rgax I(Y;®5(Xy)), s.t. @5 € argmax I(®5(Xy); @5H(X;1)|Y). 20
o Bot

Proof. For simplicity, we use ®3'; to represent ®5(X;). For a pair of domains (D;_1, D;) sampled from training domains
{D;}{_,, maximizing conditional MI I(®%,; ®5', ||Y’) is essentially maximizing I(®5,,¢; @5, |, ¢ —1]Y) (Chen et al.,
2022), where ¢t and ¢t — 1 represent all the information within the corresponding time domain (including both global and
local information) and serve as proxy variables for time. Thus, we have

ma L(@(X); @ (X)) = max I(@2, 60y, 6 = 1Y)
‘ . . (22)
— I%?E(H((I)i,tvﬂy)_H(cbitaﬂq)ct 17t_]-7Y)'

Let Z:' and Z$* denote the ground truth static causal factors and static spurious factors, respectively, while Zi! C Z5!
and Z! C Z:" represent the static causal factors and static spurious factors learned by the model. After that, we define
Z5t = Z5' — Zit and Z5L = Z5' — ZF! as the remaining static causal factors and static spurious factors. For term
H (<I>§tt, t|Y'), according to chain rule of entropy:

H (@St

c,ty

HY) = H(tY)+ H(®,|t,Y) = H(®|t,Y), (23)

where the second equality is due to ¢ is determined so that H (¢|Y") = 0. Suppose that the representations @ﬁft learned by the
model contain both causal information and spurious information, i.e., %, = (Zf,, Z!,), then Eq. (23) can be rewritten as

H((I)ift“’y) :H(Zlct’ lb t|t Y) ( lct|t Y)+H(le t‘ZlcNt Y) (24)
Analogously, replacing @3, with the ground truth Z3', (Z3, = (Z}!,, Z3!,)) yields
H(Zg,tt|t7y) :H(Zlct7 iz,t|tﬂy) ( lct|t Y)+H( rit‘Zlcht Y) (25)

Hence, it can be konwn that
AH(®|t,Y) = H(Z|t,Y) — H(®L[t,Y)
= ( ( lctlt Y) +H( r£t|Zlctat Y)) ( ( lct|t Y) +H(le t‘Zlct’t Y)) (26)
( rﬁt‘Zlc tvt Y) ( ls t‘Zlc tvt Y)

For the second term H (93", t[®g),_;,t —1,Y) in Eq. (22), suppose that &%, = (Z!,, Z;! ), @3, = (Z7L, 1, Z7, ),
then it can be derived that

H((I)Ztmth)ct 17t 17Y) H(Zlct,Zf:t7t‘cht’t71,Zf;’t71,t—I,Y)

:H( le, t’t|Zla thlsct,t—thS;,t—lrt_l?Y) ( t|Zlct’t Zlct 1vzlst 1> _17Y)'
(27)
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Similarly, let Z3% | = (Z;,_,, Z3t ), we can get:

H(thtﬂﬂzct 1 —1,Y)=H( lct7 |ZSt

rc,t)

Zlct lvzﬁzt lvt_lvy) (Z&t

rc,t

|Zlc tvt Zlct 1 Z;zt 17 - 17Y) .
(28)
Combing with Eq. (27) and Eq. (28), we have:

AH(Q“ t|<I>Ct 1 —1,Y):H(Z3t t|Z‘gtt 1 —1,Y)—H(<I>3t t|<1>2f‘/t717 t—1,Y)

c,ty c,t c,t
*H(Zlcfv ‘Zﬁgﬁzl(‘t 17Z78£t 1 *LY)*H( l('f?t|Zl9f7 lsff 1vzlef 1 717Y)
+H(Z:zt:t|Zlctvt Zlct 17Z;§t 1> _1’Y) (Z;;t|Zlct>t Zlct I’let 1 _LY)'
(29)
Now we can derive the expression for the change in the conditional MI 1 (@itt, <I>5tt 1UY):
I(Z2 23,4 |Y) — 1(@; 8, 4 |Y)
—N@ZQ#I’SZ 1Y)
= AH(D|t,Y) — AH (R, 1|0, 4.t — 1Y)
:( ( rit‘Zlcht Y) ( rit'ZlctVt Zlct 17Zr£t 1,t—1,Y))
term 1 (30)
+(H( lct7t‘Zlat7Zlct 1’let 1 _I’Y)_H( lct’ |erft’ lsctt—lvzﬁz,t—lvt_lvy))

term 2
( ( lst|Zlct7t Zlct 17let 1 _17Y) ( lst|Zlct7t Y)) .

term 3

For term 1 in Eq. (30), since conditioning reduces the entropy for both discrete and continuous variables, we can conclude
that the value of term 1 is greater that 0. For term 2, since the similarity between causal factors is generally higher than the
similarity between causal factors and spurious factors, the entropy of the second half is smaller than that of the first half.
Therefore, the value of term 2 is greater than 0. For term 3, it can be rewritten as —I(Z}!,, ZiF, , Zi!, (,t—=1|Z},t,Y).
When ¢ is used as a condition, it is equivalent to giving all the information of D;. At this time, the spurious factors at time ¢
and the factors at time ¢t — 1 are independent of each other, so the value of term 3 is 0. Based on the above analysis, we have

(22 22,4 |Y) — 1(@; 02, 4[Y) > 0. €3]

sty @3 1Y) will allow ®3F(-) to capture static
causal factors Z‘jt. Hence, Lem. 1 is proved. O

The above inequality indicates that maximizing the conditional MI 1 ((I)‘St

We have known that ®¥(-) can extract dynamic category-related information by optimizing the cross-entropy loss between
®%(X) and target Y. The following Lem. 2 shows that dynamic causal factors Z% can be learned by introducing the
intra-domain conditional MI constraints.

B.3.3. PROOF OF LEMMA 2

Lemma 2. For a time domain Dy, let ®55*(X,) be the static causal representations learned by the model, then the dynamic
causal factors of Xy can be obtained through the following objective:

max [(Y; 92(Xy)), st @2 € argmax (D (X,); DI (X,)[Y) - (32)
q)cy @gy

Proof. For simplicity, we use @, and @ to represent ®5'(X;) and &% (X,), respectively. Let Z% and Z% be the
ground truth dynamic causal factors and dynamic spurious factors, respectively, while Z lciy C Z%and Z fiy C Z% represent
the dynamic causal factors and dynamic spurious factors learned by the model. After that, we define Z% = Z% — Z,, dy
and Z% = 7% — Z as the remaining dynamic causal factors and dynamic spurious factors. For [ (@f%, <I>St *|Y)
suppose that the representations @g% learned by the model contain both causal information and spurious information, i.e.,
L = (Zldcyt, Zldsyt) then we rewrite it as:

I(@% 0 )Y) = 1(ZY,, 2 234 |Y) = H(Z",, 2}

c,t le,t? lst7 le,t? “ls,t le,t) “lsto

Y)+ H(Z|Y) — H(ZY,. 22, Z2Y) . (33)
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dy, (I>st,*
c

Analogously, I(Z .+ |Y) is expanded as:

c,t

HZS 000 Y) = H(Zi, Ze|Y) + H(ZELY) — H(Z,Y,, 23

¢t le,t) “re, letr Cret Z(S.ff|Y) . (34)
Hence, we have:
AL @27 |Y) = I(Z24; 07 |Y) — 1(9%; 921V

c,tr c,ty c,ty

= (H(Z2, Z20Y) = H(Z2, Z2000)) = (H(Z, 258, Z20Y) = H(ZY, 2, Z5)Y))
AHl AHQ
(35)
For AH{, we have:
AHy = H(Z[, Z@2,|Y) - H(Z[,, Z,|Y)
= (H(Z2) + H(Z2,22,.7)) = (H(Z2)Y) + HZ2,1Z2,7)) (36)

d d d d
= H(Zr(?it‘zlcljtv Y) - H(lel{t|Zlc?ft7 ) ’

As for A Hs, it can be known that:

d d S d d S
AHQ = H(Zlc?ft? Zrcy,t’ Zc,tt|Y) - H(Zlczjw le?{t’ Zc,tt|Y)
= (H(Z )2, 22 7) + B2, 220 ) - (H(Z2120, 22, Y) + B(Z2, Z35)Y))  6T)

le,t) “e,ty le,tr “c s,t1le,t) “e,ty legtr “c

=H(ZY |2, 23, Y) - H(ZY | Z¥,, Z54)Y) .

re,t1 et “e Is,t1“lc,t) “e,ty

By substituting Eq. (36) and Eq. (37) into Eq. (35), we obtain:

AI(®Y; 02|Y) = AH, — AH,
= (H(Z2) 22, V) ~ HZ2Z2,.7) ) = (H(Z2,12, 22, Y) — H(Z2, 22, 28, 7))

le,t? s, leyt? le,t? s,

d1 da, da, d1 s d1 d d da, s
= (H(Z2) 28, V) = H(Z2) 22, 220 ) ) = (H(Z2) 252, Y) - H(Z2 |2, 22,Y))

le,t? le,tr “e

term 1 term 2

(38)
From Eq. (38), since causal factors typically exhibit higher similarity to each other than to spurious factors, for a new given
7%, the entropy decay with respect to Z, Wi generally greater than the entropy decay with respect to Z, i,yt. Therefore, it

c,t> rc,t
can be derived that
I(Z25 @57 |Y) — I B35 V) = AI(@L: @25 |Y) > 0, (39)
Hence, dynamic causal factors fo{/ is the maximizer of Eq. (32). This completes the proof. O

B.3.4. PROOF OF THE MAIN RESULT

Theorem 2. Let ®35¢(X;), ®W(X,) and Z{ denote the representations and drift factors at the time domain Dy, obtained
by training the network through the optimization of Lsync. Then the predictor constructed upon these components is the
optimal causal predictor as defined in Def. 2.

Proof. As Lsync = Levolve + @1 L1 + @2 Leausal, according to Lem. 1 and Lem. 2, by minimizing losses Ly, Leausal and the
cross-entropy 10ss in Leyorve, ®5¢(X;) and ®%(X;) will gradually approach the ground truth static causal factors Z** and
dynamic causal factors Z%Y, which exclude any spurious factors. In addition, optimizing the 10ss Leyolve make the drift factors
Z{ approach the drift of causal mechanisms. According to d-separation, We can conclude that the predictor built on top
of these satisfies Y I [Z5t, ZW] | [®3!(X}), @ (X,), Z&]. Meanwhile, the mutual information between representations
and the target can be maximized by minimizing the cross-entropy loss in Leyoe. Therefore, it can be concluded that the
resulting predictor satisfies the criteria for the optimal causal predictor as defined in Def. 2. This completes the proof. [
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C. Implementation Details
C.1. Mini-batch Weighted Sampling

Mini-batch weighted sampling (MWS) strategy, proposed by (Chen et al., 2018b), introduces a biased negative entropy
estimator based on the principle of importance sampling. Although biased, this estimator is straightforward to use for
estimation and does not require any additional hyperparameters. Suppose that the distribution of the dataset samples is p(n),
the dataset size is IV, and let By; = {n1, - ,ny} be a mini-batch of M indices where each element is sampled i.i.d. from
p(n). Let p(Bar) be the probability of any mini-batch By sampled from the dataset, then

IEq(z) [log Q(z)} = IEq(z,n) [1Og q(z(n))]
= Eq(z,n) [10g En/wp(n)q(z(n)\n’
1 M
= IEq(z,n) [IOg EBMNP(BM) [M Z q(z(n) |nJ)]]
=1

~—

]

(40)
> IEq(z,n) [1Og EBM ~p(Bar|n) [

1 M 1 M
Ey(e) 0g0(2) = 17 > llogl—r > a(=(ni)ny)]. @)

i=1 j=1

C.2. Gumbel-Softmax Trick

To sample a k-hot vector from an /N-dimensional vector, we use the Gumbel-Softmax trick (Jang et al., 2017) and perform k
samplings without replacement. Specifically, let s be a score vector of dimension N, for the i-th (i € [k]) sampling, using
the Gumbel-Softmax trick, the sampled vector m’ is obtained by

. log st + && , o
mi = OP(logs; +&)/m) € = —log(—logu}), u}, ~ Uniform(0, 1), 42)

7N exp((log st +€4)/m)

where 7 is the temperature hyperparameter. Following a common setting (Chen et al., 2018a), we set 7 = 0.5. After each
sampling, we find the position of the largest element p = argmax JE[N] m; and set s[p] to a very small value to acquire
scores s'T1, then continue with the next sampling. This process continues for k& samplings, and the sampled k-hot vector
m = Gumbel-Softmax(s, k) is obtained by m; = max;¢|y mé

C.3. Network Structure

For the static variational encoding network ¢, we utilize a feature extractor to implement. The dynamic variational encoding
network ¢y can be implemented using a feature extractor with the same architecture as g, but without sharing network
parameters, followed by an LSTM network. The prior p(ztdy \z‘iyt) is obtained by F%¥, using a one-layer LSTM network.
We implement g by a dynamic inference network, which takes the one-hot code of y; as the input and output the categorical
distribution. The prior p(z¢|z<,) is acquired in a manner similar way to p(zH |z‘iyt), and is modeled by a prior netweotk
F?. In order to reconstruct the data x1.7 and the labels y1.7, we utilize the appropriate decoder D and linear classifier V.
To ensure fairness, the feature extractor and decoder in each task are used the same as LSSAE (Qin et al., 2022). The masker
is implemented by a 3-layer MLP which is randomly initialized. During training stage, the sampling of z$¢ and zfy are
performed using the reparameterization trick (Kingma & Welling, 2014), and z¢ is acquired using the Gumbel-Softmax
reparameterization trick (Jang et al., 2017).
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C.4. Model Inference

In this work, to make the prediction of x; sampled from the target domain D;, we need to leverage the static causal
representation <I>;§’ft, the dynamic causal representation <I>g% and the drift factor Z¢ simultaneously. Therefore, during
inference stage, we use gy, to infer ®;*, and ®%, is obtained through the masker m3’, i.e., ®5f, = ms(®5*). For Z{, we
employ the trained network of prior p(zfﬂziﬂ) to infer without requirement of g¢. To get <I>iyt, we store the state variables
of gg from the last training domain in the hidden state bank B at training time. Then, we randomly select a test batch from B
and send to gy to infer ;¥ from x;, and @?% = mgy(q)fy). At the same time, the state variables in 5 is updated to the state
variables of the LSTM network in the current domain, in preparation for the prediction of the next domain. Ultimately, <I>zft,

@i}@ and Z¢ are feed into the classifier W for prediction.

D. Algorithm of SYNC

The training and testing procedures of SYNC are shown in Algorithm 1 and 2.

Algorithm 1 Training procedure for SYNC

1: Input: sequential source labeled datasets S; static variational encoding network gy,; dynamic variational encoding
networks gy, q¢ and their corresponding prior networks F’ 4y Fd: decoder D and classifier W; masker mit and mfy;
hidden state bank 5; total number of epoch N¢pocn, and number of iterations per epoch ;.

2: Randomly initialize all the networks.

3: forepochin1,2,---, Nepocp, do

4:  Set the hidden state bank B = ().

5. foritinl,2,--- ) N; do

6: Sample training date (1.7, y1.7) from Sy.7.

7 Assign z0Y + 0, z¢ + 0, generate prior distributions p(2¢¥|2%), p(2%|2%,),t = 1,..., T via F%, F,

8 Generate posterior distribution ¢(z{*|x;) via gy, generate posterior distribution q(zfy \z‘iyt, x),t=1,2,...,T and

hidden state st via gy, generate posterior distribution q(zf\zit, y),t=1,2,..,T viagq.

9: Send 2% and %% sampled from the posterior distributions of ¢(z§*|a;),t = 1,2, ..., T and ¢(2%¥|2% x,),t =
1,2, ..., T, along with the means of the posterior distributions g5’ and u‘li:yT, to the corresponding mask module.
10: > Calculate Levolve fOT ¢y, g0, qc, F%, F4, D, W, mg! and m2v.
11: > Calculate Lyy for gy, qo, ¢, FY, F2.
12: > Calculate Lequsar for mst and mdv.
13: Update all modules by the summary of these loss.
14:  end for
15: end for

Algorithm 2 Testing procedure for SYNC

1: Input: sequential target datasets 7, static variational encoding network ¢,,; dynamic variational encoding networks gy;
prior network F?; masker mit and mgy; classifier W; hidden state bank 5.

2: Create a new bank B’.
3: for D, € T do

4:  SetB =0.
5. forx € D, do
6:

7

8

9

Randomly sample a hidden state st from the hidden state bank 5.

Obtain p% and st’ by feeding = and st into gg. Store st’ into 3.

Obtain p*t by feeding « into g,,. Sample z¢ via F'%.

Send p*t, u® to the corresponding mask module, and use the resulting representations along with 2% to make
prediction via W.

10:  end for
11:  Assign B+ B'.
12: end for
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Figure 7: (a) The loss curve of Lsync on RMNIST and Portraits during the training phase. (b) Ablation study of SYNC to
the mask ratio 7 on RMNIST and Portraits.

E. More Experimental Details
E.1. More Details on Datasets

Circle (Pesaranghader & Viktor, 2016) contains evolving 30 domains (15 source domains, 5 validation domains, and 10
target domains), where the instance are sampled from 30 2D Gaussian distributions.

Sine (Pesaranghader & Viktor, 2016) includes 24 evolving domains (12 source domains, 4 validation domains, and 8 target
domains), which is achieved by extending and rearranging the original dataset.

Rotated MNIST (RMNIST) (Ghifary et al., 2015) is composed of MNIST digits with various rotations. We follow the
approach outlined in (Qin et al., 2022) and extend it to 19 evolving domains (10 source domains, 3 validation domains, and
6 target domains) by applying the rotations with degree of {0°,15°,30°, - -- ,180°} in order on each domain.

Portraits (Yao et al., 2022a) is a real-word dataset consisting of photos of American high school seniors over 108 years
(1905-2013) across 26 states. We divide it into 34 evolving domains (19 source domains, 5 validation domains, and 10
target domains) by a fixed internal over time.

Caltran (Hoffman et al., 2014) is a surveillance dataset captured by fixed traffic cameras deployed at intersections. It is split
into 34 domains (19 source domains, 5 validation domains, and 10 target domains) by time to predict the type of scene.

PowerSupply (Dau et al., 2019) is created by an Italian electricity company and contains 30 evolving domains (15 source
domains, 5 validation domains, and 10 target domains) for predicting the current power supply based on the hourly records.

ONP (Fernandes et al., 2015) dataset documents articles collected from the Mashable website within two years (2013-2015),
aiming to predict the number of shares in social networks. This dataset is divided into 24 domains (12 source domains, 4
validation domains, and 8 target domains) according to month.

E.2. Training Details
Table 3: Training details on different datasets.
Dataset B Epochs Optimizer Learning Rate i s T N
Circle 64 30 Adam Se-6 1 002 06 20
Sine 64 50 Adam le-5 1 0.001 0.6 32
RMNIST 48 120 Adam Se-4 0.005 0.001 0.6 32
Portraits 24 80 Adam Se-5 0.05 0.002 0.6 32
Caltran 24 80 Adam le-5 0.005 0.002 0.6 32
PowerSupply 64 50 Adam Se-6 0.001 0.01 0.6 32
ONP 64 50 Adam Se-6 0.001 0.01 0.6 32

Training details on different datasets are shown in Table 3, where B denotes the batch size, oy and «p represent the trade-off
hyper-parameter for the loss function Ly and Lcaysal, respectively. 7 is the mask ratio of the masker and [V represents the
dimension of the latent space. All experiments in this work are performed on a single NVIDIA GeForce RTX 4090 GPU
with 24GB memory, using the PyTorch packages. Following (Qin et al., 2022), the intermediate domains are utilized as
validation set for model selection.
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Figure 8: Visualization of decision boundary, where the positive and negative classes are colored in red and blue. (a)-(d)
show the decision boundary of Circle-Orignal, Circle-Gradual, Circle-Abrupt and Circle-Noise, respectively.

E.3. Additional Results
E.3.1. COMPUTATIONAL COST

To evaluate the computational cost of our approach, we conduct experiments on the RMNIST and Portraits datasets,
recording the memory cost and runtime per iteration. As shown in Table 4 and Table 5, it can be found that our method is
comparable among the considered methods. Specifically, the two indicators of our method are roughly similar to those of
LSSAE and MMD-LSAE, with the memory cost lower than that of MMD-LSAE and the runtime per iteration lower than
that of GI. Moreover, it is worth noting that SYNC consistently outperforms all baseline methods, achieving an average
accuracy improvement of at least 1.2% and the lowest accuracy improvement of 5.3% across all datasets. This suggests that
only a slight increase in computational cost is required to achieve performance improvements.

Table 4: Comparison of memory cost (GB) on different datasets.

Dataset LSSAE MMD-LSAE GI SYNC
RMNIST 5.06 5.24 3.81 5.19
Portraits 17.01 17.20 14.48 17.14

Table 5: Comparison of runtime per iteration (s) during the training phase on different datasets.

Dataset LSSAE MMD-LSAE GI SYNC
RMNIST 0.12 0.13 2.80 0.17
Portraits 0.35 0.36 7.84 0.42

E.3.2. CONVERGENCE ANALYSIS

In Fig. 7 (a), we plot the loss curve of our method during training phase. From the results, it can be observed that the total
loss of SYNC decreases steadily until convergence on RMNIST and Portraits. This suggests that, although our loss function
comprises multiple components, the optimization path formed by their combination remains relatively smooth, with the
components working synergistically to promote convergence. By optimizing Lsync, the model can progressively capture
the underlying evolving patterns in the data distribution and learn time-aware causal representations, thereby mitigating the
influence of spurious correlations that may arise from data bias, ultimately enhancing the temporal generalization.

E.3.3. STUDY ON DIFFERENT MASK RATIO

We conduct an experiment on RMNSIT and Portraits to explore the impact of mask ratio 7 in Fig. 7 (b). It can be found that
SYNC is a little bit sensitive to 7. Based on empirical results, a mask ratio of 0.6 proves more effective for extracting causal
factors, thereby enhancing generalization performance. Model performance improves when the proportion of true causal
factors within the mixed factors aligns more closely with the selected mask ratio.

E.3.4. MORE DISTRIBUTION DRIFT TYPES

In order to further verify the robustness of our proposed method, we follow (Qin et al., 2022; 2023) and conduct experiments
on three additional circle-based distribution drift datasets (Circle-Gradual, Circle-Abrupt and Circle-Noise) to demonstrate
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Table 6: The comparison of the accuracy (%) between SYNC and other baselines. “Wst” denotes the worst performance of
the dataset on all test domains, and “Avg” denotes the average performance of the dataset on all test domains. The best
result are marked in bold.

Gradual Abrupt Noise Overall
Method
Wst Avg Wst Avg Wst Avg Wst Avg
LSSAE 320 53.1 440 57.8 290 538 350 549
MMD-LSAE 344 655 450 687 320 538 37.1 627
SYNC 49.0 67.2 60.0 66.7 69.0 77.0 593 70.3

the effectiveness of SYNC in more complex scenarios. As shown in Fig. 8, the decision boundary of Circle-Gradual changes
gradually, and decision boundary of Circle-Abrupt changes suddenly at a certain moment, while the decision boundary of
Circle-Noise fluctuates irregularly due to the influence of noise. These three drift types can simply simulate slow variations,
drastic fluctuations, and irregular variations in real-world data distribution. We evaluate our method with LSSAE (Qin
et al., 2022) and MMD-LSAE (Qin et al., 2023) on these synthetic datasets. As shown in Table 6, our method significantly
outperforms the baselines in both metrics, achieving at least 12.2% and 7.6% improvements in Wst and Avg on average
across all datasets, respectively. This suggests that SYNC has the potential to handle more complex and diverse drift types.

E.4. Full Experimental Results

We provide complete experimental results of SYNC and other baselines. It can be found that in most scenarios, our approach
achieve the state-of-the-art performance, showing the effectiveness of SYNC in non-stationary tasks. It is worth noting that
for the experiment of SDE-EDG on PowerSupply, we report the results using the same backbone architecture as LSSAE to
ensure a fair comparison.

Table 7: Circle. We show the results on each target domain by domain index.

ALGORITHM 21 22 23 24 25 26 27 28 29 30 Avg.
ERM 539+35 558+48 539+52 447+£63 569+44 478+£58 419+75 41.7£59 542+£3.0 478 £57 499
Mixup 48.6 £3.8 51.7+£4.0 494+£45 43.6+58 569+44 478+58 419+£75 41.7+£59 542+£3.0 478+5.7 484
MMD 500+£39 53.6+44 550+43 51.9+£60 608+39 49.7+72 419+75 41.7£59 542+£3.0 478 £57 50.7
MLDG 578 £3.6 57.7+50 553+49 464+68 569+44 478+£58 41.9+75 41.7+59 542430 47.8+57 508
RSC 453 £3.6 51.4+38 494+£45 43.6+58 569+44 478+58 419+£75 41.7+59 542+£3.0 478+5.7 48.0
MTL 61.4+£22 572+64 533451 483+62 569+48 492+£37 433+£50 458+28 542457 422449 512
Fish 51.7+£3.7 53.1+£3.7 494+45 43.6+58 569+44 478+£58 41.9+75 41.7+£59 542+3.0 478 £57 488
CORAL 653+£32 639+44 600+48 564+60 602+43 478 +£58 41.9+75 41.7+59 542430 47.8+57 539
AndMask 428 +£34 50.6+4.1 494+45 43.6+58 569+44 478+58 419+£75 41.7+59 542+£3.0 497+54 479
DIVA 813+£35 763+£42 747+46 567+51 67.0+6.1 623+51 620£56 663+£41 703£56 62.0+42 679
IRM 578 +£39 594+54 569+49 48.1+74 575+43 478+£58 419+75 41.7+£59 542+3.0 478+£57 513
1B 790+£33 68.0E£4.1 580+45 440£32 550+4.1 490£42 420+41 450425 550+33 44.0£3.0 539
iDAG 520+34 53.04+37 51.0+4.1 44.0£3.6 550+42 49.0+£33 420+£39 450+£28 550+34 44.0£3.6 49.0
GI 720+£49 62.0£49 61.0+£49 58.0+£49 56047 49.0+£47 420+£42 450+£45 550+£4.0 440E£41 544
LSSAE 958+19 956+21 935+29 963+1.8 838+52 743+£36 519+56 523 +£8.1 465+92 484+53 738
DDA 71.0£0.7 56.0£0.0 51.0+£0.0 440+£28 550+0.7 49.0£2.1 420+7.1 450£0.7 550+35 440£42 512
DRAIN 48.0£2.1 520+0.7 540£35 47.0+14 580=£35 520435 450+£42 48.0+49 580+£49 47.0+2.8 50.7
MMD-LSAE 93.0+£21 89.0£13 83.0+26 84.0+£20 840+44 83.0£35 79.0+£50 76.0+£64 540+6.1 65.0£50 79.5
CTOT 86.0+1.0 88.0+£1.7 8.0+15 87.0£1.0 77.0+25 790£12 720+12 650+£3.0 55009 540+£12 752
SDE-EDG 95.0+£0.7 99.0+14 980+14 940+14 950+14 93.0£78 740+57 66.0+£07 450+64 56.0+45 815
SYNC 87.0+£1.7 950+£21 87.0£21 940+15 88.0+32 84.0+33 85.0+45 80.0£55 67.0+£6.0 80.0+47 845
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Table 8: Sine. We show the results on each target domain by domain index.

ALGORITHM 17 18 19 20 21 22 23 24 Avg.
ERM 714+61 91.0£15 81.6+24 5344+29 51.1+67 543+£47 495+48 51.7+50 63.0
MIXUP 63.1+59 935+£17 80.6+38 528+29 603+£72 542+£27 495+44 493+£80 629
MMD 57.0+42 57.1+41 476+54 500+18 551+£67 544+47 495+48 51.7+£50 558
MLDG 692+42 67.7+41 521+54 507+18 51.1+£67 543+47 495+48 51.7+£50 632
RSC 61.3+6.6 835£19 845+26 528+28 551+£67 544+47 495+48 51.7£50 615
MTL 706 £66 91.6+12 799+34 51.0+47 603+76 536+52 495+£53 469+59 629
Fish 66.1£69 820+27 875+24 552+£3.0 51.1+£67 543+47 495+48 51.7+£50 623
CORAL 60.0+£53 57.1+42 486+64 507+18 497+62 48.6+46 463+50 51.7+£50 516
AndMASK 442 +£51 429442 542+£70 719+19 864+32 904+29 88.1+34 764+37 693
DIVA 790+66 608+£19 476+26 500+28 551+67 519+47 386+48 404+50 529
IRM 669 +6.2 8l1.1+32 885+30 566+60 572+58 53.7+51 495+22 51.7+54 632
1IB 56.0+54 79.1+£22 869+13 583+40 551+49 544+54 495436 507+41 613
iDAG 86.0+£32 63.0+43 494437 500£38 551+£45 543+51 496438 500£33 571
GI 77.0+0.7 842+44 89.1+£06 609+36 551+08 535+£60 498+41 520+28 652
LSSAE 93.0+1.7 86.9+07 692+15 63.8+£38 688+25 768+48 639+13 49.0+3.1 714
DDA 43.0+£07 472+£06 742+16 89.6+1.1 755+1.1 700£71 59.1+£22 740+14 66.6
DRAIN 430+£49 446+47 693+£09 89.6+1.1 828+48 785+25 702+£41 920£57 713
MMD-LSAE 43.0+£32 439+44 607+23 797+£19 969+07 988+0.2 905+23 573+54 714
CTOT 432+19 526+£12 621+£09 874+12 784+28 71.6+£12 774+£13 653+27 673
SDE-EDG 99.0£07 969+06 900+42 888+£06 649+22 524+03 430+£49 423+£40 722
SYNC 67.0+4.0 89.0+1.6 845+32 798+18 755+28 689+13 600+27 840+3.1 760

Table 9: RMNIST. We show the results

on each target domain denoted by rotation angle.

ALGORITHM 130° 140° 150° 160° 170° 180° Avg.
ERM 56.8+09 442408 378+0.6 383+08 409+0.8 43.6+08 43.6
MIXUP 61.3+07 474408 39.1+0.7 383+£0.7 405+08 428+09 449
MMD 592+09 460+08 390+0.7 393+£08 41.6+£07 43.7+£08 448
MLDG 574+07 445+09 375+08 375+08 399408 420+09 43.1
RSC 541+09 4194+08 358+0.7 37.0+08 398+08 41.6+08 41.7
MTL 548+09 431+08 364+08 36.1+08 391+£09 409+08 417
FISH 60.8+08 478+0.8 392+08 376407 39.0+0.8 407+£07 442
CORAL 588+09 462408 389+0.7 385+08 413+£08 435+£08 445
ANDMASK 535+09 4294+08 37.8+0.7 38.6+08 408+£08 432+£08 428
DIVA 583+08 450+£0.8 37.6+£08 369407 38.1+£0.8 40.1+£08 427
IRM 477+£09 385+£0.7 341+£07 357+08 37.8+0.8 403+0.8 39.0
1IB 594407 495408 424+09 385+08 39.6+0.7 403+08 450
iDAG 56.7+£09 446+08 398+£09 398+07 41608 41.9+£09 441
GI 61.6+09 464+09 392+0.8 40.0+£08 40.1+08 40.1+0.7 446
LSSAE 64.1+08 51.6+08 434+08 386407 403+0.8 404+08 464
DDA 60.7+08 500+£0.8 426+£08 39.64+08 380+£0.8 397+£08 451
DRAIN 595+08 4544+08 402+07 372+£07 396+£08 41.0£0.7 438
MMD-LSAE 658+08 536408 466+08 431408 429+0.8 435+£08 492
CTOT 682407 5534+08 449+09 367+08 323+£08 31.7+£08 448
SDE-EDG 751+£08 61.3+09 498+0.8 498+£0.8 397+£07 39.7+09 526
SYNC 651407 528+09 485+1.1 458+09 463+13 466+£09 508

Table 10: Portraits. We show the results on each target domain by domain index.

ALGORITHM 25 26 27 28 29 30 31 32 33 34 Avg.
ERM 755+£09 838+£09 835+08 933+07 934406 921£07 90.6+0.8 843+09 885+09 879+14 878
MIXUP 7554+09 838+09 885+£08 933£07 934+0.6 921+07 90.6+08 843+09 85+£09 879+14 878
MMD 740+ 1.0 838+08 872+08 93.0+£0.7 93.0+0.6 91.9+07 909+07 847+14 883+£09 858+18 873
MLDG 764+08 855+09 90.1+£07 943+£06 935+0.6 920+07 908+08 856+1.1 893+08 87.6+1.6 885
RSC 752409 847+08 879+07 933£07 925407 91.0+07 900+07 846+12 882+0.8 858+19 873
MTL 782+£09 865+08 909+08 942407 938+06 920£07 912+£07 86.0+12 893+08 874+14 89.0
Fish 78.6+09 869+08 895+08 935+£0.7 933+0.6 921+06 91.1+07 862+13 8.7+£09 87.7+16 888
CORAL 746+£09 84.6+08 879+08 933+06 92707 91.5£07 90.7£07 846+15 881%£09 859+19 874
AndMASK 620+1.1 708+1.1 670+12 702+1.1 752411 741£10 727+11 64716 77311 749+21 709
DIVA 7624+1.0 86.6+08 888+08 935+£0.7 93.1+0.6 91.6+06 91.1+07 847+13 89.1+08 87015 832
IRM 742+09 835+£09 885+08 91.0+08 904+07 873+£08 87.0+£09 804+15 86709 851+18 B854
1B 78.1+13 872411 918+£12 958+£08 949+0.7 922414 91.7+12 876+11 895+14 884+15 897
iDAG 798+1.1 862+14 913+08 940+07 926+09 893£1.1 89.8+13 874+14 879+11 884£13 886
GI 778+12 86.6+13 90.8+1.1 953+13 931412 893+1.1 889+12 841+18 87.7+10 875+20 881
LSSAE 777409 87.1+£08 908+0.7 943+£06 943406 922+06 91.2+07 867+1.1 89.6+0.8 86.9+14 891
DDA 76.0+£1.0 856+0.8 83.6+08 93.6+06 929407 929+£06 903+08 843+12 887+08 859+12 879
DRAIN 77.7+08 862+08 90.6+06 948+£05 944406 928+07 922+06 872+12 899+08 879+1.1 894
MMD-LSAE 809+£09 88.6+£0.8 928+0.7 950+06 949+05 91.0£09 923+£0.6 831+12 904+08 89711 904
CTOT 77.94+09 83.0+08 792+08 83.0+£0.7 904+0.6 89.8+08 879+08 839+16 878+08 863+1.1 864
SDE-EDG 78.6+0.8 86.6+09 90.1+£08 948+£06 945+0.6 933+07 921+£07 879+13 89.6+£09 8.0%1.1 89.6
SYNC 81.0+ 1.1 888+09 935+12 960+£07 957+0.6 93.1+09 926+08 878+13 90.7+09 8.0+12 908
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Table 11: Caltran. We show the results on each target domain by domain index.

ALGORITHM 25 26 27 28 29 30 31 32 33 34 Avg.
ERM 2909435 884+21 6L1+35 563+£32 900+1.6 60.1+25 555+35 888+24 571435 505+52 663
MIXUP 53.6+39 89.0+£20 618424 557+29 882+21 586430 523+37 886+27 571430 55.1+43 660
MMD 302421 927417 564437 39.01+£32 93.6+17 521432 428+30 9201+22 421+38 294+38 571
MLDG 548+ 4.1 886+26 622436 551+4l 883+17 60.9+43 51.7+£26 89.0+19 565434 553+48 662
RSC 572430 884+26 62.6+30 565+37 880+24 594£30 519429 90.0+£20 594429 560+3.1 67.0
MTL 642430 87.2:+25 649439 60048 845+22 60.6+35 526+£37 839+29 582+4l 657+56 682
Fish 61.1+£35 882+15 647440 579+3.1 883+£22 599430 57.5+£27 8§7.4+28 577437 63.0+61 686
CORAL 504430 908+20 612438 550+£25 920+17 568438 520+38 909+1.6 568+24 509+56 657
AndMASK 300422 927+17 562438 3901432 936+17 516432 426+29 921+22 412437 299+36 569
DIVA 60.6+29 90.1+17 67.5+3.1 589435 884+28 587433 538+36 898+17 618448 620+34 692
IRM 464437 908+17 608+34 529431 918+17 566+3.1 521+£29 909+26 556+3.9 431455 641
1B 622441 938+11 680429 557433 914+18 568430 548+3.1 884+22 584437 68.1+51 693
iDAG 583438 912+12 685+32 562+£28 888+19 632431 539+22 89.1+26 694+35 535+41 697
GI 688+3.1 866+19 655+32 60.6+43 888+24 585436 53.1+28 887+21 637+29 730+£51 707
LSSAE 634434 921+£20 626+47 588+44 929+16 620439 543+£30 921+22 605438 674+36 706
DDA 310434 926+18 568409 590+£28 940+22 617423 529+23 929+22 578+53 629+58 66.1
DRAIN 664+33 838+10 657422 628432 77.9+33 623437 557+37 789+31 606438 757+56 69.0
MMD-LSAE 613437 874+19 657+33 604+49 857+27 604+3.1 569+26 852+24 583426 750+49 69.6
cToT 480+ 14 880+10 640+17 540421 930+36 57.0+19 480432 850+26 61.0+28 71.0+26 66.9
SDE-EDG 705+29 888+£49 66.1+28 55.1+£26 851+36 59.5+44 58.6+33 882+34 689+35 T22+£57 713
SYNC 588426 907+13 7TLI+3.1 594+45 913+£23 635435 650+£25 90.7+21 688433 626+45 722
Table 12: PowerSupply. We show the results on each target domain by domain index.
ALGORITHM 21 2 23 24 25 26 27 28 29 30 Avg,
ERM 698+ 14 700+14 692+13 644+15 858+10 760+13 70.1+15 698+15 69.0+13 655+15 710
MIXUP 696+ 14 695+15 683+15 643+15 8.1+10 766+13 70.1+14 692+13 681+15 650+16 708
MMD 700+ 13 697+14 687+14 648+15 856+10 761+13 700+15 69.5+14 687413 656+15 709
MLDG 697+ 14 697+15 686+15 646+15 864+11 763+14 70.1+14 694+13 684+15 656+15 708
RSC 699+ 14 69.6+14 686114 644+15 866+10 763113 70015 694+14 68413 654+15 709
MTL 69.6+ 1.4 694+15 682416 642+15 874+12 766+13 699+15 69.1+15 682415 646+14 707
Fish 697+ 14 694+14 682414 642414 873+10 766+13 699+15 692+15 682413 652+15 708
CORAL 699+ 14 697+14 689+14 646+14 861+10 763+13 700+£15 69.5+15 688+13 657+15 710
ANDMASK 699+ 14 694+14 682+13 640+14 87.4+09 767+13 700+15 69.1+15 680+13 647+15 707
DIVA 697+ 14 695+13 682414 639415 8.5+10 765+13 699+15 69.1+15 681413 647+15 707
IRM 698+ 1.4 695+14 683+14 64lL14 87.2+09 765+13 700+£15 69.1+15 68213 650+14 708
B 694+ 13 695+£14 682114 645+14 869+11 76412 699+14 69.0+15 68.1+13 651+14 708
iDAG 707+ 14 704+14 700412 66.1+13 85+11 763+11 704+14 704+13 689413 667+14 712
Gl 702414 710+£14 705+15 696+15 807+11 684+13 729+15 720+13 718+13 665+15 714
LSSAE 700+ 14 698+14 69.0+15 654+14 851+11 760+14 701+17 69.9+13 690+16 663+14 711
DDA 698+ 1.6 724+15 705+15 638+15 87+12 731412 70.01+13 714+15 705417 634+12 709
DRAIN 70.1+13 700+10 693+ 1.1 655+15 836+10 758+17 703+13 698+15 689+19 664+12 710
MMD-LSAE 699+ 14 743+13 718+15 652+14 80.1+14 700+18 707+15 740+ 14 724+14 660+16 714
cToT 703+ 11 7l4+14 737412 704+£12 720+£12 63.6+16 752+£12 7L1+1L1 728412 706+12 7LI
SDE-EDG 698+ 1.1 695+13 682+11 641+£12 874+11 765412 700+£15 69.0+15 68.0+12 650+11 708
SYNC 702413 725412 717411 669+14 800+12 737+14 706+12 727+14 7LI+12 673+11 717
Table 13: ONP. We show the results on each target domain by domain index.

ALGORITHM 17 18 19 20 21 22 23 24 Avg.

ERM 666+ 1.1 667+12 663+11 67.0+11 67.0+11 642410 649+1.1 646+11 659

Mixup 670412 673+11 661+11 672411 667+11 641+11 645+10 650+11 660

MMD 589+ 11 525413 546+1.0 528412 481+11 471410 492+1.1 474+12 513

MLDG 67.0+12 67.0+£11 660+11 66311 668+11 63.9+1.0 650+£1.1 654+11 659

RSC 649412 652+12 650+11 660+11 655+11 626+11 647+11 633+11 647

MTL 671+ 1.1 665+12 657+11 660+10 665+10 634+1.0 648+1.1 652+12 656

Fish 672412 668+12 657+11 668+12 673+11 632410 651+12 647+11 659

CORAL 66.5+12 669+12 659+1.1 666+1.1 67.0+11 638410 645+1.1 649+11 658

AndMask 595412 561+12 564+11 560+12 524+12 519+1L1 530+11 512+12 546

DIVA 678+ 1.1 672+13 664+1.1 667+12 673+11 634+11 650+1.1 645+12 660

IRM 6.1+ 1.1 651+12 647+1.1 652412 649+12 619+ 11 634+12 643+1.1 645

1B 66.6+12 67512 668+11 67311 664+11 632412 664+12 651+1L1 663

iDAG 683412 678+12 67.8+11 66212 67.0+£12 63.8+11 662+13 639+12 664

Gl 67.6+12 669+1.1 663+11 664+13 67.1+11 644412 649+12 636+12 659

LSSAE 647413 662+14 666+1.0 67.1+10 67.6+1.0 645+1.0 649+ 1.1 664+11 660

DDA 677412 662+1.1 666+12 663+12 668+12 637+11 647+13 647+11 658

DRAIN 609+ 1.1 607+12 598+12 612+11 616+12 60.6+12 619+1.1 61.8+11 658

MMD-LSAE  618+10 664+13 667+1.1 672+12 678409 646+10 654+11 654+12 664

cToT 627+ 14 663+13 655+08 665+12 639+11 632412 653+10 611+12 643

SDE-EDG 678412 668+£08 656+1.0 66710 660+£09 63.1+1L1 64711 646+11 656

SYNC 664+12 660+£10 650+11 65911 669+10 649412 646+1.1 646+12 656
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