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Abstract

The use of Al in Universal Algebra (UA)—one of the fields laying the foun-
dations of modern mathematics—is still completely unexplored. While UA’s
topological representations would enable the analysis of such properties using
graph neural networks, the limited transparency and brittle explainability of
these models hinder their straightforward use to empirically validate existing
conjectures or to formulate new ones. To bridge these gaps, we generate Al-ready
datasets based on UA’s conjectures, and introduce a novel neural layer to build
fully interpretable graph networks. The results of our experiments demonstrate
that interpretable graph networks strongly generalize when predicting universal
algebra’s properties, and generate simple explanations that empirically validate
existing conjectures.

1 Introduction
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Contributions. In this work we study 5 properties of SuPPortuniversal algebra research.

UA structures known as lattice varieties i.e., distributivity, modularity, meet/join-semi/semi-
distributivity [11, 12] (see App. A for further details). To this end, we build a large dataset of
lattice varieties (see App. B) and introduce a novel neural layer that makes GNNs fully interpretable,
according to Rudin’s [4] notion of interpretability (Sec. 2). The results of our experiments (Sec. 3)
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demonstrate that interpretable GNNs provide interpretable predictions without sacrificing task accu-
racy, and generate simple concept-based explanations that empirically validate existing conjectures.

2 Interpretable Graph Networks

In this section, we design an interpretable graph network (iGNN) that satisfies the notion of "inter-
pretability" introduced by Rudin [4]. According to this definition, a machine learning (ML) system is
interpretable if and only if (1) its inputs are semantically meaningful, and (2) its model inference is
simple for humans to understand (e.g., linear/sparse/symbolic). To achieve this goal in GNNs, we
introduce an interpretable graph layer that learns semantically meaningful concepts and uses them as
inputs for an interpretable classification layer.

2.1 Interpretable Graph Layer

Node-level concepts. An interpretable concept space is the first step towards interpretability.
Following Ghorbani et al. [13], a relevant concept is a “high-level human-understandable unit of
information” shared by input samples and thus identifiable with clustering techniques. Message
passing algorithms do cluster node embeddings based on the structure of node neighborhoods,
as observed by Magister et al. [7]. However, the real-valued large embedding representations
h; € R?, ¢ € N generated by message passing can be challenging for humans to interpret. To address
this, we use a hard Gumbel-Softmax activation © : R? — {0, 1}, following Azzolin et al. [9]:

c; = O(hy) h; = ¢(Xz‘, @ ¢(Xi>xj)) (1)

JEN;

where x, € R is a node’s feature vector, ¢ and ¢ are learnable functions aggregating information
from a node neighborhood V;, and & is a permutation invariant aggregation function (such as sum
or mean). During the forward pass, the Gumbel-Softmax activation © produces a one-hot encoded
representation of each node embedding. Since nodes sharing the same neighborhood have similar
embeddings h; due to message passing, they will also have the same one-hot vector c¢; due to the
Gumbel-Softmax—allowing us to interpret nodes having the same one-hot concept c; as nodes
having similar embeddings h; and thus sharing a similar neighborhood. More formally, we can
assign a semantic meaning to a reference concept v € {0, 1} by visualizing concept prototypes
corresponding to the inverse images of a node concept vector. In practice, we can consider a subset of
the input lattices I' corresponding to the node’s (p-hop) neighborhood covered by message passing:

I‘(’y,p):{L“’p)HEL/\ LED/\cizv} 2)

where D is the set of all training lattices L (see App. A for lattices, and App. B for dataset), and
L{?) is the graph corresponding to the p-hop neighborhood (p € {1,...,|L|}) of the node i € L, as
suggested by Magister et al. [7], Ghorbani et al. [13]. This way, by visualizing concept prototypes as
subgraph neighborhoods, the meaning of the concept representation becomes easily interpretable to
humans, aiding in the understanding of the reasoning process of the network.

Example 2.1 (Interpreting node-level concepts). Consider the problem of classifying distributive

lattices with a simplified dataset including the lattices N5 83 and M3 @ only, and where each node
has a constant feature x; = 1. As these two lattices only have nodes with 2 or 3 neighbours, one layer
of message passing will then generate only two types of node embeddings e.g., h;; = [0.2, —0.4, 0.3]

for nodes with a 2-nodes neighborhood (e.g., g})), and h;;; = [0.6,0.2, —0.1] for nodes with a 3-
nodes neighborhood (e.g., @C). As a consequence, the Gumbel-Softmax will only generate two
possible concept vectors e.g., crr = [0,0, 1] and ¢;77 = [1, 0, 0]. Hence, for instance the concept

belongs to ¢y, while “¢” belongs to cy;.

Graph-level concept embeddings. To generate a graph-level concept space in the interpretable
graph layer, we can utilize the node-level concept space produced by the Gumbel-Softmax. Normally,
graph-level embeddings are generated by applying a permutation invariant aggregation function on
node embeddings. However, in iGNNs we restrict the options to (piece-wise) linear permutation
invariant functions in order to follow our interpretability requirements dictated by Rudin [4]. This
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restriction still includes common options such as max or sum pooling. Max pooling can easily be
interpreted by taking the component-wise max over the one-hot encoded concept vectors c;. After
max pooling, the graph-level concept vector has a value of 1 at the k-th index if and only if at least
one node activates the k-th concept i.e., 3¢ € L, c;; = 1. Similarly, we can interpret the output of a
sum pooling: a graph-level concept vector takes a value v € N at the k-th index after sum pooling if
and only if there are exactly v nodes activating the k-th concept i.e., Jig,...,i, € L,c;r = 1.

Example 2.2 (Interpreting graph-level concepts). Following Example 2.1, let us use sum pooling
to generate graph-level concepts. For an N5 graph, we have 5 nodes with exactly the same 2-node
neighborhood. Therefore, sum pooling generates a graph-level embedding [0, 0, 5], which certifies

that we have 5 nodes of the same type e.g., g} For an M3 graph, the top and bottom nodes have a

3-node neighborhood e.g., @, while the middle nodes have a 2-node neighborhood e.g., @ This
means that sum pooling generates a graph-level embedding [2, 0, 3], certifying that we have 2 nodes

of type @“ and 3 nodes of type C@

2.2 Interpretable architectures

The interpretable graph layer can be used to instantiate different types of iGNNs. One approach is to
plug this layer as the last message passing layer of a standard GNN architecture:

i= (B (0(s% (thU,g PHOmE ) ) ) ®
O = 60 (hEH)’ o ¢<l>(h§171>7h@*1>)> 1=1,.. K )
JEN; ’

where f is an interpretable classifier (e.g., single-layer network), H is an interpretable piece-wise
linear and permutation-invariant function (such as max or sum), © is a Gumbel-Softmax hard
activation function, and h? = x;. In this way, we can interpret the first part of the network as a feature
extractor generating well-clustered latent representations from which concepts can be extracted. This
approach is useful when we only care about the most complex neighborhoods/concepts. Another
approach is to generate a hierarchical transparent architecture where each GNN layer is interpretable:

g)(l):f(EEieK((a(h;l)))) I=1,.. K (5)

In this case, we can interpret every single layer of our model with concepts of increasing complexity.
The concepts extracted from the first layer represent subgraphs corresponding to the 1-hop neighbor-
hood of a node, those extracted at the second layer will correspond to 2-hop neighborhoods, and so on.
These hierarchical iGNNs can be useful to get insights into concepts with different granularities. By
analyzing the concepts extracted at each layer, we gain a better understanding of the GNN inference
and of the importance of different (sub)graph structures for the classification task.

3 Experiments and Key Findings

For our comparative study, we evaluate the performance of iGNNs and their hierarchical version
against equivalent GNN models (i.e., having the same hyperparameters such as number layers, training
epochs, and learning rate). We employ three quantitative metrics to assess a model’s generalization
and interpretability. We use the Area Under the Receiver Operating Characteristic (AUC ROC)
curve to assess task generalization. To evaluate interpretability, we use standard metrics such as
completeness [14] and fidelity [15]. Completeness assesses the quality of the concept space on
a global scale using an interpretable model to map concepts to tasks, while fidelity measures the
difference in predictions obtained with an interpretable surrogate model and the original model.
All metrics are computed on test sets using 5 random seeds, and reported using the mean and 95%
confidence interval. App C covers experimental details, and App. D shows additional results.

iGNNs improve interpretability without sacrificing task accuracy (Figure 2). Our experimental
evaluation reveals that interpretable GNNs are able to strike a balance between completeness and
fidelity, two crucial metrics that are used to assess generalization-interpretability trade-offs [15]. We
observe that the multilabel classification scenario, which requires models to learn a more varied and
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diverse set of concepts, is the most challenging and results in the lowest completeness scores on
average. On the contrary, interpretable surrogate models of black-box GNNs exhibit, as expected,
lower fidelity scores, confirming analogous observations in the explainable Al literature [4, 15]. In
practice, this discrepancy between the original black-box predictions and the predictions obtained with
an interpretable surrogate model questions the actual usefulness of black-boxes when interpretable
alternatives achieve similar results in solving the problem at hand, as extensively discussed by Rudin
[4]. Overall, these results demonstrate how concept spaces are highly informative to solve universal
algebra’s tasks and how the interpretable graph layer may improve GNNs’ interpretability without
sacrificing task accuracy.
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Figure 2: Accuracy-interpretability trade-off in terms of concept completeness (accuracy) and model
fidelity (interpretability). iGNNs attain optimal fidelity as model inference is inherently interpretable,
outmatching equivalent black-box GNNs. All models attain similar results in terms of completeness.

Concept-based explanations empirically validate universal algebra’s conjectures (Figure 3).
We present empirical evidence to support the validity of existing UA conjectures by examining the con-
cepts generated for modular and distributive tasks. Similarly to Ribeiro et al. [15], we visualize in Fig-
ure 3 the weights of our trained linear classifier representing the relevance of each concept. We remark
that the visualization is limited to the (top-5) most negative weights, as we are interested in those con-
cepts that negatively affect the prediction of a property. In the same plot, we also show the prototype of
each concept represented by the 2-hop neighborhood of a node activating the concept, following a sim-
ilar procedure as Magister et al. [7], Azzolin et al. [9], Ghorbani et al. [13]. Using this visualization,
we investigate the presence of certain concepts when classifying modular and distributive lattices.
For the modularity task, our re-
sults show that the lattice N5 ap-
pears among non-modular con-
cepts, but is never found in mod-
ular lattices, while the lattice M 3
appears among both modular and
non-modular concepts, which is
consistent with Dedekind [11].
In the case of distributivity, we
observe that both M3 and N5 are
present among non-distributive
concepts, and are never found in
distributive lattices, which is also
in line with Birkhoff [12].

Concept ID [Distributive] Concept ID [Modular]
8 6 7 15 4 6 9 10 3 15
Figure 3: Ranking of relevant clusters of lattices (x-axis) accord-
ing to the interpretable GNN linear classifier weights (y-axis, the
lower the more relevant the cluster). N5 is always the most im-

portant lattice to omit for modularity, while both M3 and N3 are
relevant for distributivity, thus validating theorems ?? and ??.
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4 Discussion

Relations with Graph Neural Network explainability. Inspired by vision approaches [13, 15, 16],
early explainability techniques focused on feature importance [17], while subsequent works aimed to
extract local explanations [6, 8, 10] or global explanations using conceptual subgraphs by clustering
the activation space [7, 18, 19]. However, all these techniques either rely on pre-defined subgraphs
for explanations (which are often unknown in UA) or provide post-hoc explanations which may be
brittle and unfaithful as extensively demonstrated by Rudin [4]. On the contrary, our experiments
show that iGNNs generate interpretable predictions according to Rudin [4] notion of interpretability
via linear classifiers applied on sparse human-understandable concept representations.
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Broader impact and perspectives. Al techniques are becoming increasingly popular for solving
previously intractable mathematical problems and proposing new conjectures [20-23]. However, the
use of modern Al methods in universal algebra was a novel and unexplored field until the development
of the approach presented in this paper. To this end, our method uses interpretable graph networks to
suggest graph structures that characterize relevant algebraic properties of lattices. With our approach,
we empirically validated Dedekind [11] and Birkhoff [12] theorems on distributive and modular
lattices, by recovering relevant lattices. This approach can be readily extended—beyond equational
properties determined by the omission of a sublattice in a variety [24]—to any structural property
of lattices, including the characterization of congruence lattices of algebraic varieties [24-27]. Our
methodology can also be applied (beyond universal algebra) to investigate (almost) any mathematical
property that can be topologically characterized on a graph, such as the classes of graphs/diagraphs
with a fixed set of polymorphisms [28-30].
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A Algebra definitions
A.1 Formal defintions for Universal Algebra

Universal algebra is the field of mathematics that studies algebraic structures, which are defined as a
set A along with its own collection of operations. An n-ary operation on A is a function that takes n
elements of A and returns a single element from the set. More formally [1, 31, 32]:

Definition A.1. N-ary function For a non-empty set A and n non-negative integer we define
AY = {0} and, for n > 0, A™ is the set of n-tuples of elements from A. An n-ary operation on A is
any function f from A™ to A; n is the arity of f. An operation f on A is called an n-ary operation if
its arity is n.

Definition A.2. Algebraic Structure An algebra A is a pair (A, F') where A is a non-empty set
called universe and F'is a set of finitary operations on A.

Apart from the operations on A, an algebra is further defined by axioms, that in the particular case of
universal algebras are in the form of identities.

Definition A.3. A lattice L is an algebraic structure composed by a non-empty set L and two binary
operations V and A satisfying the following axioms and their duals obtained exchanging V and A:

rVy~yVae (commutativity)
xV(yVz)=(zVy) (associativity)
zVrxzx (idempotency)
xrzV(rAy) (absorption)

Theorem A.4 ([1]). A partially ordered set L is a lattice if and only if for every a,b € L both
supremum and infimum of {a, b} exist (in L) with a VV b being the supremum and a A b the infimum.
Definition A.5. Let L be a lattice. Then L is modular (distributive, \ -semi-distributive, \-semi-
distributive) if it satisfies the following:

r<y—=zV(yAz)=yA(xVz) (modularity)
xV(yAz)=(xVy) A(xVz) (distributivity)
xVymazVz—oazV(yAz)=zVy (V-semi-distributivity)
rAymxzAz—=cA(yVz)=zAy (A-semi-distributivity).

Furthermore a lattice L is semi-distributive if is both V-semi-distributive and A-semi-distributive

0 0

Figure 4: N5, a non-modular non-distributive and M3, a modular non-distributive lattice.
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Definition A.6. Congruence Lattice
An equivalence relation on a set A is a binary relation ~ that satisfies three properties: reflexivity,
symmetry, and transitivity.

Reflexivity: For every element a in A, a is related to itself, denoted as a ~ a;
Symmetry: For any elements ¢ and b in A, if a ~ b, then b ~ a;
Transitivity: For any elements a, b, and cin A, ifa ~ band b ~ ¢, then a ~ c.

In other words, an equivalence relation partitions the set A into subsets, called equivalence classes,
such that elements within the same class are equivalent to each other under the relation ~.

Let A be an algebra. A congruence 0 of A is a equivalent relation on A, that is compatible with the
operations of A. Formally, for every n-ary operation f of A: if (a1,b1), (a2,b2),..., (an,b,) € 6,
then (f(a1,as,...,ay), f(b1,ba,...,b,)) € 6. For every algebra A on the set A, the identity
relation on A, and A x A are trivial congruences. An algebra with no other congruences is called
simple. Let Con(A) be the set of congruences on the algebra A. Since congruences are closed
under intersection, we can define a meet operation: A : Con(A) x Con(A) — Con(A) by simply
taking the intersection of the congruences 1 A Ey = E; N E,. Congruences are not closed under
union, however we can define the following closure operator of a binary relation F, with respect to a
fixed algebra A, such that its image is congruence: (E)a = ({F € Con(A) | E C F}. Note that
the closure of a binary relation is a congruence and thus depends on the operations in A, not just
on the base set. Now define V : Con(A) x Con(A) — Con(A) as Ey V Es = (Ey U Eg)a. For
every algebra A, (Con(A), A, V) with the two operations defined above forms a lattice, called the
congruence lattice of A.

A type F is defined as a set of operation symbols along with their respective arities. Each operation
symbol represents a specific operation that can be performed on the elements of the algebraic system.
To refer to the specific operation performed by a given symbol f on an algebra A of type F, we
denote it as fA. This notation allows us to differentiate and access the particular operation carried
out by f within the context of A.

Definition A.7. Subalgebra Let A and B be two algebras of the same type. Then B is a subalgebra
of A if B C A and every fundamental operation of B is the restriction of the corresponding operation
of A, i.e., for each function symbol f, B is f restricted to B.

Definition A.8. Homomorphic image Suppose A and B are two algebras of the same type F, i.e.
for each operation of A, there exists a corresponding operation B with the same arity, and vice versa.
A mapping « : A — B is called a homomorphism from A to B if

afA(ala"'aan) = fB(aala"'aaan)

for each n-ary f in F and each sequence a1, ..., a, from A. If, in addition, the mapping « is onto
then B is said to be a homomorphic image of A.

Definition A.9. Direct product Let A; and Ay be two algebras of the same type F. We define the
direct product A; x As to be the algebra whose universe is the set Ay x As, and such that for f € F
and a; € Ay, a, € Ay, 1 <i<mn,

fAle2(<a1’a’1>,...,(an,a;l) = <fA1(a/17...7an)7fA2(a/17-- .,CL{”)>

The collection of algebraic structures defined by equational laws are called varieties. [33]

Definition A.10. Variety A nonempty class K of algebras of type F is called a variety if it is closed
under subalgebras, homomorphic images, and direct products.
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B A Tool to Generate Datasets of Lattice Varieties

Algorithm 1: Generate dataset of lattice varieties.

Input: n > 1, hasProperty(-,-,-) /I m: cardinality
Dataset = ||
AllFuncs < genAllFuncs(n) 1 binary functions as n X n matrices
for L € AllFuncs do /I L(i,3) = 1 meaningi <y, j
if isPartialOrder( L) then /I check if <7, is refl., antisym. and trans.
if isLattice( L) then Il check if L is a lattice

fori, 57 < ndo
ALli, j] + supy<p{z <p itandz < j}
Vili, gl < infpcp{i <p wandj <p, x}
if hasProperty(L, A1, V 1) then Il check N\ ,,V 1, properties
Dataset.append([L, True])
else
Dataset.append([L, False])

We propose a general methodology to investigate any algebraic property whose validity can be
verified on a finite lattice. In this work, we focus on properties that can be characterized via equations
and quasi-equations. To train AI models, we propose a general dataset generator! for lattice varieties
(Algorithm 1). The generator takes as input the number of nodes n in the lattices and a function
to check whether a lattice satisfies a given property. We generate 2" matrices of size n X n,
containing all binary functions definable on {1, ..., n}2, and filter only binary matrices representing
partial orders®. Then, we verify that the partial ordered set L is a lattice, by checking that any pair
of nodes always has a unique infimum and supremum. This directly verifies that Ay, and V, satisfy
Definition A.3. Finally, we check whether the lattice satisfies the target property or not, and append
it and the property label to our dataset. We remark that checking the validity of a single ternary
equation on a medium-size lattice is not computationally prohibitive (i.e., it “only” requires checking
n? identities), but the number of existing lattices increases exponentially as n increases. For instance,
it is known that there are at least 2,000,000 non-isomorphic lattices with n = 10 elements [34].
Therefore, we only sample a fixed number of lattices per cardinality starting from a certain node
cardinality. While this may seem a strong bias, we notice that known and relevant lattice omissions
often rely on lattices with few nodes [11, 12]. To empirically verify that this is not a significant
limitation, in our experiments we deliberately investigate the generalization capacity of GNNs when
trained on small-size lattices and tested on larger ones. This way we can use GNNs to predict the
satisfiability of equational properties on large graph structures without explicitly checking them.
Using Algorithm 1, we generated the first large-scale AI-compatible datasets of lattices containing
more than 29, 000 graphs and the labels of 5 key properties of lattice (quasi-)varieties i.e., modularity,
distributivity, semi-distributivity, join semi-distributivity, and meet semi-distributivity.

C Experimental details

In practice, we train all models using eight message passing layers and different embedding sizes
ranging from 16 to 64. We train all models for 200 epochs with a learning rate of 0.001. For
interpretable models, we set the Gumbel-Softmax temperature to the default value of 1 and the
activation behavior to "hard," which generates one-hot encoded embeddings in the forward pass,
but computes the gradients using the soft scores. For the hierarchical model, we set the internal
loss weight to 0.1 (to score it roughly 10% less w.r.t. the main loss). Overall, our selection of
baselines aims at embracing a wide set of training setups and architectures to assess the effectiveness
and versatility of GNNs for analyzing lattice properties in universal algebra. To demonstrate the
robustness of our approach, we implemented different types of message passing layers, including
graph convolution and GIN.

D Additional results

D.1 Contrastive explanations highlight topological differences between properties of lattice
varieties (Figure 5).

We leverage interpretable GNNs to analyze the key topological differences of classical lattice
properties such as join and meet semi-distribuitivity characterized by relevant quasi-equations

'The dataset generator code and the generated datasets will be made public in case of paper acceptance.
2Qur algorithm optimizes this step considering only reflexive and antisymmetric binary relations, and enforces
transitivity with an easy fix-point calculation.
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(cf. Appendix A.5). To this end, we visualize specific concept prototypes corresponding
to lattices that are not meet semi-distributive against lattices that are meet semi-distributive.
We observe N5 but not MS Non Join Semi-Distributive Lattice Varieties Non Meet Semi-Distributive Lattice Varieties
among the Concepts of meet Meet Semi-Distributive Meet Semi-Distributive Meet Semi-Distributive Join Semi-Distributive Join Semi-Distributive  Join Semi-Distributive
semi-distributive lattices, while
we observe both N5 and Mj

only in concepts that are not meet . . ) i o )
semi-distributive. This observa- Figure 5: Contrastive explanations showing lattice varieties with a

tion suggests that N5 is notakey 2 pair of discording 1a}bells to.h@ghlight the key difference between
lattice for meet semi-distributive Join and meet semi-distributivity.

lattices, unlike distributive lattices. Furthermore, we find that the lattice pattern ¥ is relevant for non
meet semidistributivity, while its dual 2+ is relevant for non join semidistributivity, thus empirically
confirming the hypotheses of Jénsson and Rival [35]. These findings are significant because they
demonstrate how analyzing concepts in interpretable GNNs can provide universal algebraists with a
powerful and automatic tool to formulate new conjectures based on identifying simple lattices that
play a role in specific properties. By leveraging the power of interpretable GNNs, we may uncover
previously unknown connections between different properties and identify new patterns and structures
that could lead to the development of new conjectures and theorems in universal algebra, providing
exciting opportunities for future research in universal algebra.

D.2 Concept completeness and purity

Our experimental results (Tables 1 & 3) demonstrate that interpretable GNNs produce concepts with
high completeness and low purity, which are standard quantitative metrics used to evaluate the quality
of concept-based approaches. Completeness score is the accuracy of a classifier, such as decision
tree, which takes concepts as inputs and predicts a label. Purity score is the number of graph edits,
such as node/edge addition/eliminations, necessary to match two graphs in a cluster. A concept space
is said to be pure if the purity score is zero.

We employ decision tree as the classifier, but compute recall instead of accuracy to calculate com-
pleteness score since the datasets are heavily unbalanced towards the negative labels. We compute
purity scores for each cluster and report the average of those scores as the final purity score. Our
approach achieves at least 73% and up to 87% recall, which shows that our interpretable models
consistently avoid false negatives in the abundance of negative labels. We obtain around 3-4 purity
scores, which suggests that our interpretable models extract relatively pure concept spaces in the
presence of large lattices.

Furthermore, the hierarchical structure of interpretable GNNs enables us to evaluate the quality
of intermediate concepts layer by layer. This hierarchy provides insights into why we may need
more layers, and it can be used as a valuable tool to find the optimal setup and tune the size of the
architecture. Additionally, it can also be used to compare the quality of concepts at different layers of
the network. To that end, we compare the purity scores of the concept spaces obtained by the second
layer and the final layer of HIGNN. As shown in Table 2, deeper layers may produce higher quality
concepts for distributivity and join semi-distributivity whereas earlier layers may result in more
reliable concepts for the remaining properties. Overall, these results quantitatively assess and validate
the high quality of the concepts learned by the interpretable GNNSs, highlighting the effectiveness of
this approach for learning and analyzing complex algebraic structures.

Table 1: Concept purity scores of graph neural models in solving universal algebra’s tasks. Lower is
better.

WEAK PURITY STRONG PURITY
GNN iGNN HiGNN GNN iGNN HiGNN
Distributive 3.30+£0.36 3.64+0.30 3.09+£0.56 3294038 4.00£0.77 4.15+0.67

Join Semi Distributive  2.38 +0.37 3.96 +£0.51 3.74+0.62 3.454+0.34 3.98+0.68 4.29+0.61
Meet Semi Distributive 3.24 +0.63 3.55+0.62 3.39+£0.29 3.364+0.32 4.25+0.39 4.97+0.44
Modular 3.10£0.35 3.50+£046 4.44£0.56 3.14+024 3.19+£1.01 4.25+0.69
Semi Distributive 2.84+051 3.70+0.54 4.11£046 3.70£055 3.92+£0.28 4.08+0.85

D.3 Concept visualization

Figure 6 visualizes 18 randomly sampled graph concepts (out of the 7896 graph concepts represented
by different graph encodings) following the visualization procedure introduced by [7]. The figure
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Table 2: Concept purity scores of different layers of HIGNN. Lower is better.

WEAK PURITY STRONG PURITY
2nd Layer Last Layer 2nd Layer Last Layer
Distributive 3.26+043 3.09+0.56 4.66+0.98 4.154+0.67

Join Semi Distributive  4.25+0.69 3.74+0.62 4.30+0.39 4.29+0.61
Meet Semi Distributive 3.64 £0.39 3.39+0.29 4.41+£0.27 4.97+0.44
Modular 3.89+0.63 4.44+056 4.19+0.56 4.25+0.69
Semi Distributive 3.556+£0.58 4.11+046 3.16+£0.59 4.08+0.85

Table 3: Concept completeness scores of graph neural models in solving universal algebra’s tasks.
Higher is better.

WEAK COMPLETENESS STRONG COMPLETENESS
iGNN HiGNN iGNN HiGNN
Distributive 77.30£0.20 76.60£2.35 T7819+£1.71 73.16+3.63

Join Semi Distributive  85.20 £ 0.86 86.84 £0.37 81.08£0.18 79.76 +0.38
Meet Semi Distributive 84.21 £0.68 84.34£1.08 80.86+1.32 79.68 £ 0.22
Modular 76.98+0.28 73.77+£3.14 81.36+£0.70 77.61+£2.37
Semi Distributive 87.33+1.16 85.624+0.27 84.03£0.89 82.26+0.21

shows for each concept an example of four (randomly sampled) graphs having the same concept label
in the 7-th layer of the hierarchical iGNN trained on the multilabel dataset. Graphs belonging to the
same concept show a coherency in their structure and similar patterns. These patterns represent the
knowledge extracted and discovered by the hierarchical iGNN.

D.4 Explanations of post-hoc explainers

We compared our Explainable Hierarchical GNN against a standard explainer (namely GNNExplainer
[8]) to further support our results. GNNExplainer is the first general, model-agnostic approach for
providing interpretable explanations for predictions of any GNN-based model on any graph-based
machine learning task and it is widely used in the scientific community as one of the staple explainers
in GNN’s XAl In this particular setting, GNNExplainer was configured as follows: model-wise
explanation on multiclass-node level classification task, with HIGNN as the model of choice, and
GNNExplainer as the desired algorithm, trained for 200 epochs. The explainer takes as input a single
graph in the dataset and outputs and explanation for its classification. GNNExplainer will enforce a
classification based on the presence or omission of M3 and/or N5 and it is possible to visualize the
subgraph that lead to this classification by leveraging the visualize_graph function. By doing this,
we retrieve the following visualizations:

On the right, the substructure identified as N5 by GNNExplainer which lead to the classification of
said graph as non modular and non distributive. On the right, in green M 3. Our hierarchical model
arrives to the same conclusions as the standard explainer but can also be augmented with a standard
explainer.

E Code, Licences, Resources

Libraries. For our experiments, we implemented all baselines and methods in Python 3.7 and relied
upon open-source libraries such as PyTorch 1.11 [36] (BSD license) and Scikit-learn [37] (BSD
license). To produce the plots seen in this paper, we made use of Matplotlib 3.5 (BSD license). We
will release all of the code required to recreate our experiments in an MIT-licensed public repository.

Resources. All of our experiments were run on a private machine with 8 Intel(R) Xeon(R) Gold

5218 CPUs (2.30GHz), 64GB of RAM, and 2 Quadro RTX 8000 Nvidia GPUs. We estimate that
approximately 100-GPU hours were required to complete all of our experiments.
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Figure 6: Examples of graph concepts.
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Figure 7: Visualizations obtained with GNNExplainer on weak distributive generalization (on the
left) and strong multiclass generalization (on the right)
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