
Fuzzy Logic for Biological Networks as ML Regression:
Scaling to Single-Cell Datasets With Autograd

Constance Le Gac∗
IBM Research Europe

Rüschlikon Switzerland
clegac@student.ethz.ch

Alice Driessen
IBM Research Europe

Rüschlikon Switzerland
adr@zurich.ibm.com

Nicolas Deutschmann
IBM Research Europe

Rüschlikon Switzerland
deu@zurich.ibm.com

María Rodríguez Martínez
IBM Research Europe

Rüschlikon Switzerland
mrm@zurich.ibm.com

Abstract

We present the BioFuzzNetmodule, a fuzzy logic tool to model signal transduction
in biological networks. By equating the optimisation of the fuzzy logic transfer
functions to a regression problem, we show that gradient descent is a suitable
optimisation method for fuzzy logic modelling. The speed of this approach allows
us to scale fuzzy logic modelling to single-cell datasets and leverage available
transcriptomics data. Furthermore, the flexibility of gradient descent optimisation
allows us to perform arbitrary computations, thereby enabling us to model feedback
loops and fit them in simple cases. Promising results also suggest that BioFuzzNet
can generate insights in the signalling network topology by identifying logical
gates and spurious connections.

1 Introduction

Bio-molecular networks, such as gene regulatory networks or protein signalling network, summarise
large bodies of prior knowledge about the interactions of molecular species in biological systems
such as cells. The graphs indicate which species interact together and therefore encode how the
cellular machinery operates and reacts to external stimuli. Boolean network modelling is a successful
approach to identify which chains of interactions (pathways) connect stimuli to cellular behaviour.
For this, measured and predicted values are required to be binarised as “high” or “low”, describing
whether the species is over-expressed or (in)activated compared to baseline levels. The species are
connected through logical gates. For example, the formation of a complex of two molecules requires
both components to be present. Thus, this can be described as an AND gate whose input are the two
molecules and whose output describes the complex.

While Boolean logic models provide insights into relevant pathways, they lack any kind of quantitative
information. This is problematic as biological data is predominantly measured on a continuum. This
limitation led to the development of fuzzy logic models of bio-molecular networks, which extend
the logical framework to continuous values. Fuzzy logic networks are optimized by minimising the
discrepancy between the measured data and their predictions. Here, the predictions are the simulated
node values given the network topology and parameters, both of which are tuned during optimization.
Existing implementations, such as CNORfuzzy [MSRC+11], rely on optimization algorithms for

∗Work performed while interning at IBM Europe. Current address: Department of Biosystems Science and
Engineering, ETH Zurich, Basel, Switzerland .

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

discrete data such as genetic algorithms. Despite successes, this approach has two main drawbacks.
First, the genetic algorithms as implemented choose parameters from a discrete set, which means that
the explored parameter space is rather limited. Second, genetic algorithms are fairly inefficient as
they explore the parameter space randomly.

Modern automatic differentiation tools such as Pytorch [PGM+19] or Jax [BFH+18], make ob-
taining the gradient of an arbitrary computation very simple. These tools build a computational
graph dynamically, which is then used to evaluate the exact gradient of the result with respect to any
input parameter. Gradient descent offers two advantages during optimization. It allows the whole
parameter space to be accessible and requires a single evaluation to guide updates, so it limits the
total number of simulations that need to be run. Since these automatic differentiation frameworks can
automatically parallelise their operations on hardware accelerators such as GPUs, they also provide
the potential to improve performance by leveraging modern computing resources.

Biological networks often contain feedback loops, which can in principle be included in either
Boolean or fuzzy logic networks. Nevertheless, existing approaches avoid feedback behaviour as
these complicate the optimization process. However, gradient tracking can work smoothly through
multiple node updates, limited only by the memory of the computing device storing the computational
graph.

Wanting to improve on current fuzzy logic models, we developed BioFuzzNet, a fuzzy logic
simulation package that exploits automatic differentiation to permit gradient-based optimization. We
show with in silico experiments using simulated data that that we can accurately predict network
behaviour. Additionally we show that our implementation can, to some extent, handle feedback loops,
identify incorrect interactions in the prior knowledge and determine the type of logical gate best
representing an interaction.

2 Methods

2.1 Modelling biological networks with fuzzy logic

For fuzzy logic models to handle continuous values, a Hill function is associated with each edge in
the network and used to map each node value on the interval [0, 1].

HillK,n(x) =
xn

Kn + xn
, (1)

where K > 0, the EC50 parameter, encodes when saturation occurs and n, the cooperativity
coefficient, encodes how fast saturation is reached. Note that as inputs are constrained in the [0, 1]
interval, the output is constrained to [0, 1/(1 +Kn)], meaning that Kn can be used to completely
shut down an edge.

Fuzzy logic operators describe how the Hill-transformed activations interact. These operators are
analytic continuations of the Boolean logic operators.

NOT(x) = 1− x, AND(x, y) = x× y, OR(x, y) = x+ y − x× y. (2)

Signal transduction is simulated via the computation of the logical function for each biological
node in the network. Gradient descent constrains us to use a sequential update scheme detailed on
algorithm 1 in which each node is updated if and only if all its parent nodes have been updated. For
cyclic networks, this update rule is modified as described in algorithm 2 to allow continuous evolution
until a steady state is reached.

Optimization occurs by repeatedly simulating signal transduction through the BioFuzzNet, com-
puting the mean squared error between the predicted and observed node activities, and updating the
transfer function parameters using stochastic gradient descent (see algorithm 3).

2.2 Simulating and fitting loops

When modelling loops we operate under the assumptions that there is a wide range of initialisations
leading to the same steady state, and that steady states including orbits can be decently approximated
by constant states.

2

Figure 1: Boxplot of the RMSE on the validation
set for 97 replicates when fitting a BioFuzzNet
to bulk data simulated using CNORfuzzy

Figure 2: Boxplots of RMSE after 50 replicates
of fitting a BioFuzzNet to a random negative
loop, an oscillatory loop, and a bistable loop

This motivates the simple approach we have taken to optimizing models with feedback loops: we
simulate their evolution over a long-enough time that a constant state or an orbit is reached. To
account for orbits, we use the average of the last k steps as a prediction, where k should be suffiently
large to converge. We then fit the average to the measured value using the MSE loss (see algorithm 2
and algorithm 3). For validation we use topologies shown in fig. S2. We compare fitting a converging
negative feedback loop with 50 different random transfer function parameters, a negative feedback
loop with oscillatory behaviour and a positive feedback loop with bistable behaviour. As a control
we also compare a random vector to data generated with a negative feedback loop with 50 different
random transfer function parameters (see appendix A.2 for details).

2.3 Data-driven logical gate determination

In contrast to existing fuzzy logic software, the BioFuzzNet module is not explicitly built for
topology inference. Nonetheless, we provide a logical operator which interpolates AND and OR gates:

AND_ORα(x, y) = αAND + (1− α)OR, (3)

where α ∈ [0, 1] is a tunable weight that is jointly optimized with the Hill function parameters to
minimize the MSE loss function. We encourage α to be either close to 0 or 1 by adding the penalty
α(1− α) to the loss function (see Equation 5). An α close to 1 would indicate an AND gate and an α
close to 0 an OR gate. We tested the performance of this gate identification by simulating synthetic
data on randomly-initialized fuzzy networks with definite logical gates and then fitting this data
to a network with interpolating gates. We then verified whether the optimization process correctly
identified the interpolating gates as nearly-pure AND or OR gates (see appendix A.2 for details).

2.4 Detecting errors in prior knowledge networks

We simulated data using a BioFuzzNet with a given topology (see Figure S4), and fitted an incorrect
prior knowledge network to the data we obtained. The incorrect topologies contained spurious edges
added to the original topology using a AND or an OR gate (see appendix A.2 for details).

3 Results

3.1 SGD optimized fuzzy logic models accurately predict simulated data

We first wanted to evaluate BioFuzzNet on bulk data. Therefore, we simulated bulk data with the
aforementioned CNORfuzzy tool using Boolean inputs. BioFuzzNet showed a good performance on
predicting the node levels. As shown in Figure 1, the median root mean squared error (RMSE) at
each node is lower than 0.1. PI3K stands out due to its high RMSE, which is most probably due to its
high in-degree, with seven incoming edges (see Figure S1).

3

3.2 Simulating and fitting cyclic topologies

We can model different types of behaviours typical of cyclic topologies, including converging,
oscillatory and bistable behaviours (fig. 2, fig. S2 and appendix A.2). As the current optimization
method supports only a single steady-state value for each cell, our method can fit converging
behaviours accurately but has difficulties fitting oscillatory and bistable behaviours.

3.3 Determining logical gates by tuning AND-OR interpolators: preliminary results

We implemented a heuristic method for learning the optimal choice between AND and OR gates (see
section 2.3). The preliminary tests are performed by simulating synthetic data on fuzzy networks
with definite logical gates and then fitting this data to a network with only interpolating gates. We
then verified whether the optimization process correctly identified the interpolating gates as AND or
OR gates. For all interpolating gates, the parameter determining its gate type was either 0.9991 or
0.0009, indicating an AND and an OR gate respectively. We ran 10 replicates, each time predicting all
9 gates of the chosen topology (see fig. S3). An average of 1.1 gates were incorrectly identified; with
a maximum of two incorrectly identified gates in one replicate. In two out of the ten replicates, all
logical gates were correctly identified. Concurrently, the node predictions remained accurate: the
maximum observed RMSE at a node over all ten replicates was 6.26 · 10−3.

The ability to correctly predict the logical gate type is independent of how far downstream the gate is
from in the inputs. Rather, OR gates are more often incorrectly predicted than AND gates. Over all
replicates, 10 out of the 11 incorrectly identified gates were OR gates incorrectly predicted as AND
gates.

3.4 Optimizing topologies by eliminating spurious edges: preliminary results

We show some very preliminary results that suggest incorrect prior knowledge edges can be detected
and suppressed. We added an incorrect edge to the topology used for simulation and connected it to
its target node with an OR or an AND gate (see section 2.4). In the first case the edge was correctly
turned off: only the signal of the true incoming edge passes through the OR gate (see eq. (2)). The
fitted parameters of the Hill function at the incorrect edge were n = 6.72 and K = 3.16, thus the
maximum value that the transfer function can take on the range x ∈ [0, 1] is 4 · 10−4. In the case of
the AND gate, the edge was correctly turned ON: since this gate is modelled with a multiplication we
want the incorrect edge to be close to 1 in order for the correct edge to pass its signal (see eq. (2)).
The parameters of the associated Hill function are n = 2.49 and K = 1.77 · 10−3. In both cases the
RMSE on the predictions of the target node of the incorrect edge remained low, 2.44 · 10−2 in the OR
case and 2.78 · 10−2 in the AND case. Other preliminary experiments run on a larger network also
yielded encouraging results. All edges were correctly turned ON or OFF as expected. The maximum
RMSE at the target node was on the order of 10−2 as well. This suggests that the BioFuzzNet
module could be able to correct for errors in the prior knowledge, though a systematic study would
be necessary to draw robust conclusions.

4 Discussion

Toward efficient fuzzy network training The optimization of fuzzy logic networks using gradient
descent is expected to significantly improve the convergence and performance of these models.
Gradient-based optimization typically requires fewer model evaluations than genetic algorithms,
and our PyTorch-based implementation can leverage the power of modern hardware accelerators.
While an application to an experimental dataset and a systematic comparison to existing software are
necessary, our anecdotal experience has shown that BioFuzzNet should scale to large-scale data such
as single-cell omics datasets much more manageably than alternatives.

Modelling and fitting feedback Our preliminary results on synthetic data from a fixed network give
encouraging results that BioFuzzNet can fit a wide array of cyclic graph topologies and parameters.
We plan on testing our model on both a wide array of random networks and real data to confirm the
solidity of our results.

4

Continuous alternatives to discrete optimization Genetic algorithms have the clear advantage
over gradient-based optimization of having much weaker constraints. Nevertheless, our preliminary
results show that discrete data such as graph topology and gate choice can be made smooth and
successfully learned, at least in simple cases such as the examples we tested. We cannot yet claim
that this approach is successful in a wide array of situations, but hope to confirm this rigorously in
upcoming work.

References
[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[KB14] Diederick P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[MSRC+11] Melody K. Morris, Julio Saez-Rodriguez, David C. Clarke, Peter K. Sorger, and Douglas A. Lauf-
fenburger. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic:
Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli. PLoS Computational
Biology, 7(3), 2011.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[Sae22] Saez-Rodriguez group. CellNOptR: Models and Documentation, 2022.

[SMO+03] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel Ramage,
Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Research, 13(11):2498–2504,
2003.

A Appendix

A.1 Optimization of a BioFuzzNet

Optimization occurs through a stochastic minibatch gradient descent conducted using the ADAM
optimizer [KB14]. The loss function used in the core optimization script is:

LossBioFuzzNet(B, I, n, b) =
1

b

b∑
k=1

(
1

n

n∑
i=1

(B(I)i − yi)
2

)
, (4)

with B the network topology, I the input combinations for multiple cells, n the number of cells
simulated and b the batch size. B(I)i represents the predicted values for a given batch at observed
node i and yi the measured values at this node for the batch.

A modified loss function with an added regularisation term is used when fitting a BioFuzzNet with
interpolated gates:

LossBioMixNet(B, I, n, b,m) = LossBioFuzzNet(B, I, n, b) +

m∑
j=1

(αj · (1− αj)) , (5)

where m is the number of interpolated gates in the network and all other notations are identical to
those in eq. (4). The function of the regularisation term is to constrain the interpolated gates to be
either AND or OR gates after optimization.

5

A.2 Simulation parameters

Data simulated with CNORfuzzy The data and prior knowledge network from the LiverDREAM
dataset [MSRC+11] (accessible at the CellNOpt website [Sae22]) was used as input to the
CNORfuzzy software to obtain a network topology. The default CNORfuzzy parameters were used,
except for the sizeFac parameter which was set to 0.1. We chose one of the obtained topologies
with 4 input nodes (see Figure S1). We then simulated data using CNORfuzzy with this topology and
different Boolean inputs, covering all combinations with a single activated input node, all combina-
tions with two activated input nodes, all combinations with three activated input nodes, as well as the
case where no input node is activated, for a total of 15 different input combinations.

Predicting simulated data To evaluate the accuracy on simulated data, we ran a Monte-Carlo
cross-validation and fit 100 BioFuzzNet networks to the data simulated using CNORfuzzy. At each
replicate, 5 out of the 15 input combinations were randomly chosen and excluded from the training
set, to be used as a validation set. 3 out of the 100 folds failed due to a numerical error and the
resulting folds sampled 79 different training sets. Batch size was set to 3, learning rate to 2 · 10−3,
and the optimization was run for 700 epochs.

Simulating and fitting loops fig. S2 shows the topologies and behaviour of loops used for evaluating
our method when fitting to loops. The negative feedback loop can lead to oscillatory behaviours and
the positive feedback loop to bistable behaviours.
The transfer function parameters used to simulate an oscillating behaviour in the experiment shown
in fig. 2 are (after exponential transformation and rounding to the second decimal) :

nA,AND = 0.60 and KA,AND = 0.40

nB,C = 4.15 and KB,C = 0.51

nC,NOT = 1.81 and KC,NOT = 0.77.

Those used to simulate a bistable behaviour in the same experiment are:

nA,OR = 4.88 and KA,OR = 1.22

nB,C = 1.84 and KB,C = 0.35

nC,OR = 1.65 and KC,OR = 0.64.

Data-driven logical gate determination The topology of the network used in this experiment is
shown in Figure S3. To generate a synthetic dataset, we created 10 different BioFuzzNet models by
randomly assigning the logical gate type AND or OR to each of the 9 logical gates in the network. For
each model, we simulated signal transduction from continuous inputs to obtain 3600 "single cells".
Transfer function parameters were identical between all networks. A BioFuzzNet with the same
topology but 9 interpolated gates was fit to each of those 10 datasets. Optimization was conducted on
a training set of 3000 datapoints, and the remaining 600 points were used as a validation set. Batch
size was set to 200, the learning rate was set to 5 · 10−3 and the optimization occurred over 300
epochs.

Detecting errors in prior knowledge networks A BioFuzzNet with the topology shown in
fig. S4a was used to simulate 2000 "single cells" from continuous inputs. Then we adapted the
topology to include a spurious edge and tried to fit these adapted topologies to the generated dataset.
One adaptation assumed that F ≡ A∨E ∨D, (see Figure S4b) and a second that F ≡ (A∨E)∧D.
The train and validation set used during optimization and for testing had an equal size of 1000
datapoints. The optimization lasted for 300 epochs, the learning rate was 5 · 10−3 and the batch size
was 50.

A.3 Algorithms

6

Algorithm 1 Sequential update of an acyclic BioFuzzNet

Input: B a BioFuzzNet without any cycle and Dinput the measured value at its root/input nodes
Output: Updated B such that B.PREDICTIONS contains the predicted values at all nodes for input

Dinput and the current transfer function parameters.

B.PREDICTIONS[INPUT NODES]← Dinput

NON UPDATED ← B.NODES
TO UPDATE ← INPUT NODES
while NON UPDATED ̸= [] do

node← TO UPDATE.pop()
if node ∈ NON UPDATED then

NON UPDATED PARENTS ← B.parents(node) ∩ NON UPDATED
if NON UPDATED PARENTS = [] then

B.PREDICTIONS[node]← update(B.PREDICTIONS[B.parents(node)]) ▷The value
of a node depends only on the value of its parent nodes

NON UPDATED.remove(node)
TO UPDATE.remove(node) ▷Remove possible duplicates
TO UPDATE.append(B.children(node))

else
for p in NON UPDATED PARENTS do

TO UPDATE.append(p) ▷The parent nodes are added before the child nodes
end for
TO UPDATE.append(node) ▷Add the visited node to the queue again if it had non

updated parents
end if

end if
end while

7

Algorithm 2 Sequential update of a cyclic BioFuzzNet

Input: B a BioFuzzNet with at least one cycle and Dinput the measured value at its root/input
nodes.

Output: Updated B such that B.PREDICTIONS contains the predicted values at all nodes for input
Dinput and the current transfer function parameters.

B.PREDICTIONS[INPUT NODES]← Dinput

L = length(largest cycle in the network)
let k ∈ N ▷k is currently hardcoded but should be adjusted to the network topology.
SAVED STATES ← {} ▷A dictionary to save the last k · L states
for i ∈ (1, ..., 2 · k · L− 1) do

NON UPDATED ← B.NODES
TO UPDATE ← INPUT NODES
while NON UPDATED ̸= [] do

node← TO UPDATE.pop()
if node ∈ NON UPDATED then

NON UPDATED PARENTS ← B.parents(node) ∩ NON UPDATED
can update← False
if NON UPDATED PARENTS = [] then

can update← True
else ▷Nodes that are part of a feedback loop can be updated even if all of their parents

are not updated yet.
PROBLEMATIC PARENTS ← []
for p ∈ NON UPDATED PARENTS do

if ¬ (∃ loop ∈ B such that p ∈ loop and node ∈ loop) then
PROBLEMATIC PARENTS.append(p)

end if
end for
if PROBLEMATIC PARENTS = [] then

can update← True
end if
if can update then

B.PREDICTIONS[node]← update(B.PREDICTIONS[B.parents(node)])
NON UPDATED.remove(node)
TO UPDATE.remove(node) ▷Remove possible duplicates
TO UPDATE.append(B.children(node))

else
for p in PROBLEMATIC PARENTS do

TO UPDATE.append(p) ▷The parent nodes are added before the child nodes
end for
TO UPDATE.append(node) ▷Add the visited node to the queue again if it had

non updated parents
end if

end if

if i ≥ k · L then ▷Save the last k · L predictions
SAVED STATES[i]← B.PREDICTIONS

end if
B.PREDICTIONS ← average([SAVED STATES[i] for i ∈ [k ·L, 2 ·k ·L−1]]) ▷Average

the saved states

8

Algorithm 3 Parameter optimization iteration for one minibatch (Xbatch, ybatch). Multiple iterations
are necessary for a complete optimization.

Input: B a BioFuzzNet and Θ the set of transfer functions parameters to optimize.
▷Xbatch is the measured values/ground truth at input nodes, ybatch the measured values/ground

truth at all observed nodes for a batch of cells
for node ∈ OBSERVED NODES do

B.GROUND TRUTH[node]← ybatch[node] ▷Initialise the ground truth
end for
for node ∈ B.NODES do ▷Initialise the predictions

if node is a root/input node then
B.PREDICTION[node]← ybatch[node] ▷The measured values at input nodes are provided

to the model
else

B.PREDICTION[node]← random value
end if

end for
B.PREDICTION ← Sequential update(B) ▷Simulate the network
Loss←MSELoss(B.PREDICTION, B.GROUND TRUTH) ▷Forward pass
gradient← ∇ΘLoss ▷Backward pass using automatic differentiation
Θ← ADAM optimizer(gradient) =0

9

A.4 Supplementary figures

Supplementary Figure S1: Network used to generate data using CNORfuzzy [MSRC+11]. Figure
generated using Cytoscape version 3.9.1 [SMO+03].

(a) Negative loop topology used for ex-
periments

(b) Positive loop topology used for ex-
periments

(c) Simulated oscillatory behaviour (d) Simulated bistable behaviour

Supplementary Figure S2: Example of loop behaviours simulated using a BioFuzzNet and the
topology used to generate them. Converging behaviours were also observed with the same topologies
but different transfer function parameters.

10

Supplementary Figure S3: Network topology used for testing the identifiability of logical gates.
Logical gates occur every time a node has an in-degree superior to 1. Figure generated using
Cytoscape version 3.9.1 [SMO+03].

(a) True topology used to generate the data. (b) Incorrect prior knowledge network fitted to the data.

Supplementary Figure S4: The prior knowledge topology fitted to the data incorrectly assumed that
F ≡ A ∨ E ∨ F . The data was generated with the rule F ≡ A ∨ E ∨ F . Another test was run
by fitting an incorrect prior knowledge network assuming that F ≡ (A ∨ E) ∧ F : its topology is
identical to the one shown in Figure S4b except the red logical gate implements the AND logical
function. Bold edges indicate edges which comport a Hill transfer function. Red edges and logical
gates correspond to incorrect prior knowledge.

11

	Introduction
	Methods
	Modelling biological networks with fuzzy logic
	Simulating and fitting loops
	Data-driven logical gate determination
	Detecting errors in prior knowledge networks

	Results
	SGD optimized fuzzy logic models accurately predict simulated data
	Simulating and fitting cyclic topologies
	Determining logical gates by tuning AND-OR interpolators: preliminary results
	Optimizing topologies by eliminating spurious edges: preliminary results

	Discussion
	Appendix
	Optimization of a BioFuzzNet
	Simulation parameters
	Algorithms
	Supplementary figures

