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Abstract001

Large language models are prone to generating002
hallucination that deviates from factual infor-003
mation. Existing studies mainly focus on de-004
tecting the presence of hallucinations but lack005
a systematic classification approach, which hin-006
ders deeper exploration of their characteris-007
tics. To address this, we introduce the concept008
of belief state, which quantifies the model’s009
confidence in its own responses. We define010
the belief state of the model based on self-011
consistency, leveraging answer repetition rates012
to label confident and uncertain states. Based013
on this, we categorize factuality hallucination014
into two types: Overconfident Hallucination015
and Unaware Hallucination. Furthermore, we016
propose BAFH, a factuality hallucination type017
detection method. By training a classifier on018
model’s hidden states, we establish a link be-019
tween hidden states and belief states, enabling020
efficient and automatic hallucination type de-021
tection. Experimental results demonstrate the022
effectiveness of BAFH and the differences be-023
tween hallucination types.024

1 Introduction025

Large Language Models (LLMs) have demon-026

strated remarkable capabilities in various Natural027

Language Processing tasks (Achiam et al., 2023).028

However, there’s a concerning trend where they029

exhibit an inclination to generate hallucination (Co-030

hen et al., 2023; Ren et al., 2023; Kuhn et al., 2023),031

which makes it risky to deploy LLMs in practical032

scenarios. Consequently, accurately detecting and033

addressing hallucination has become a significant034

research challenge (Azaria and Mitchell, 2023).035

Existing LLM hallucination detection methods036

mainly focus on identifying factual errors in LLM037

outputs, which are commonly referred to as factual-038

ity hallucination (Lin et al., 2022a; Li et al., 2023;039

Manakul et al., 2023). For instance, Chern et al.040

(2023) utilize external tools for evidence gathering041

to detect factual errors. If the model’s output does042

Figure 1: Our proposed two types of factuality halluci-
nation. Red represents incorrect, and green represents
correct.

not align with evidence, it is considered a potential 043

hallucination (Manakul et al., 2023; Zhang et al., 044

2023a; Azaria and Mitchell, 2023). Another cate- 045

gory of methods do not rely on external knowledge, 046

but instead detect hallucination by estimating the 047

uncertainty of model outputs (Varshney et al., 2023; 048

Luo et al., 2023; Yao et al., 2024). For example, 049

MIND (Su et al., 2024) leverages the hidden states 050

of LLMs for real-time hallucination detection with- 051

out requiring manual annotations. 052

Despite significant progress in factuality hallu- 053

cination detection, existing work still has notable 054

limitations. Current research primarily focuses on 055

detecting the presence of factuality hallucination, 056

with insufficient attention given to the detailed anal- 057

ysis of specific types of hallucination. A few stud- 058

ies (Huang et al., 2023a; Zhang et al., 2023b) that 059

have attempted to classify hallucination typically 060

base on semantic errors (e.g., factual or logical 061

errors), but they lack a general classification frame- 062

work and automated methods. These limitations 063

constrain deeper understanding of the hallucination 064

mechanisms in LLMs. 065

Therefore, we focus on factuality hallucination 066

and pose the critical questions: "Can factuality 067

hallucination be categorized into distinct types? 068

How can we effectively differentiate between these 069
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types of hallucination?"070

Manakul et al. (2023) point out that models ex-071

hibit varying degrees of uncertainty about their072

own answers. Inspired by this, we analyze and con-073

clude that models also exhibit different levels of074

uncertainty about the hallucinations they generate.075

We describe this uncertainty as the model’s belief076

state and propose a belief-state-based classification077

paradigm for factuality hallucination, as illustrated078

in Figure 1. We define belief states by measuring079

the consistency across different responses. As an-080

alyzed and discussed in Section 3, we categorize081

them into two types: confident state and uncertain082

state. Hallucinations generated by the model in con-083

fident belief state are referred to as Overconfident084

Hallucinations, while those generated in uncertain085

belief state are termed Unaware Hallucinations.086

Given these considerations, we developed Belief-087

State-Aware Factuality Hallucination Type Detec-088

tion (BAFH) method, a lightweight framework that089

integrates with Transformer-based LLMs. BAFH090

leverages hidden states to determine belief states091

and classify hallucination types. In summary, our092

contributions are as follows:093

• We analyzed the distribution of model re-094

sponses based on self-consistency and proposed095

a new classification framework for factuality hal-096

lucination, which divides hallucinations into two097

types based on the model’s belief states.098

• We propose BAFH, which leverages the hidden099

states of large language models to analyze belief100

states and detect different types of hallucination.101

• Experiment results demonstrate that BAFH102

achieves high accuracy on multiple datasets, while103

maintaining stability under various hyperparameter104

settings. These findings highlight the rationality of105

classification method we introduce and underscore106

the necessity of classifying hallucinations.107

2 Related Work108

Factuality Hallucination Detection Existing109

LLM hallucination detection methods primarily110

focus on factuality hallucination (Lin et al., 2022a;111

Li et al., 2023; Manakul et al., 2023) and can be112

divided into evidence-based and uncertainty-based113

methods. Evidence-based methods utilize external114

knowledge sources to verify model outputs. For in-115

stance, FACTSCORE (Min et al., 2023) determines116

the veracity of long-format text by decomposing117

LLM-generated content into atomic facts and cal-118

culating the percentage of atomic facts supported119

by reliable sources. Uncertainty-based methods 120

detect hallucination by analyzing the model’s hid- 121

den states or behavior (Slobodkin et al., 2023). For 122

example, SAPLMA (Ji et al., 2024) and MIND (Su 123

et al., 2024) use hidden states to construct classi- 124

fiers, while Selfcheckgpt (Manakul et al., 2023) de- 125

tects hallucinations by comparing the consistency 126

of multiple responses. Although these methods 127

have shown significant efficacy, they cannot distin- 128

guish between specific types of hallucinations or 129

deeply explore the relationship between accuracy 130

and the model’s confidence in its answers. 131

Hallucination Classification In early studies, 132

hallucinations are broadly categorized into intrinsic 133

and extrinsic hallucinations based on whether the 134

correctness of the output could be verified against 135

the source content (Li et al., 2022; Huang et al., 136

2023b; Ji et al., 2023). Recent research has ex- 137

panded these classifications to encompass halluci- 138

nations in broader contexts. For example, consid- 139

ering the user-centered interaction emphasized by 140

LLMs, Huang et al. (2023a) classify hallucination 141

into factuality and faithful hallucination. Faithful 142

hallucination reflects the logical consistency within 143

the generated content (Zhang et al., 2023b). Fac- 144

tuality hallucination refers to outputs containing 145

factual inaccuracies that can be verified against re- 146

liable sources. While existing frameworks provide 147

valuable insights (Zhang et al., 2023b; Huang et al., 148

2023a), their classification basis is often limited to 149

task-specific or semantic levels, making them inad- 150

equate for comprehensively describing the complex 151

generative behaviors of LLMs. To this end, we pro- 152

pose a new classification criteria and a detection 153

method for factuality hallucination types and con- 154

duct comparative analysis of the characteristics of 155

different hallucination types. 156

3 Motivation 157

In this section, we analyze the repetition count of 158

model responses. Manakul et al. (2023) point out 159

that the self-consistency of model responses re- 160

flects the model’s uncertainty, which we refer to as 161

belief states. Specifically, we define belief states 162

as the model’s internal confidence level in its gen- 163

erated responses, which can be inferred indirectly 164

through the consistency of repeated outputs. To 165

quantify belief states, we prompt the model to gen- 166

erate ten responses for each question and extracted 167

the answers (as described in Section 4). Then we 168

record the repetition count of the most frequent 169
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Figure 2: The overall process of BAFH

Figure 3: Statistical Analysis of Model Response Con-
sistency for Gemma-2-9b-it on NQOPEN.

response along with its correctness.170

Figure 3 shows that as repetition count increases,171

correct responses become more frequent, indicating172

that a higher repetition count is generally linked to173

greater confidence and accuracy. Moreover, while174

most factual errors have a low repetition count,175

some still occur with high repetition. This sug-176

gests that LLMs may retain high confidence even177

when generating hallucinations, implying that not178

all hallucinations stem from uncertainty.179

Notably, response repetition counts exhibit an180

uneven distribution, with higher counts (e.g., 10)181

and lower counts (e.g., 1–5) being more common,182

while intermediate counts (e.g., 6–8) are relatively183

rare. This observation suggests a potential bimodal184

tendency in the behavior of LLMs (More details185

are provided in Appendix A.1). Based on these186

observations, we hypothesize that this distribution187

may reflect a clustering of the model’s belief state188

around two primary modes, which we refer to as189

confident state and uncertain state. Correspond-190

ingly, we categorize the hallucinations arising from191

these states as Overconfident Hallucinations and192

Unaware Hallucinations. Section 4 presents our193

hallucination type detection method.194

4 Method 195

4.1 Overview 196

We define the task of detecting factuality hallu- 197

cination types as a binary classification problem: 198

determining whether a hallucination produced by 199

a model is an Overconfident Hallucination or an 200

Unaware Hallucination. To this end, we propose 201

BAFH consisting of two core modules: a belief 202

state classifier and an evidence-based hallucination 203

detection module, as illustrated in Figure 2. 204

Given a question, BAFH extracts the hidden 205

states from the LLM during the answer genera- 206

tion process. The hallucination detection module 207

employs the method from Li et al. (2023), utilizing 208

ChatGPT to assess the correctness of the model’s 209

response. The belief state classifier employs a feed- 210

forward neural network, which takes the hidden 211

states from the generation process as input and 212

outputs the model’s belief state (confident or un- 213

certain). BAFH then combines the hallucination 214

detection result and the belief state to categorize 215

the hallucination as either an Overconfident Hallu- 216

cination or an Unaware Hallucination. 217

4.2 Belief State Classifier 218

To obtain the model’s belief state, we train a clas- 219

sifier based on a feedforward neural network. As 220

shown in Figure 4, we first evaluate the model’s 221

belief state and construct a training set by associat- 222

ing belief state labels with hidden states obtained 223

during answer generation. This training set is then 224

used to train a model-specific belief state classifier. 225

Belief State Evaluation Evaluating the belief state 226

is a crucial step in constructing the training dataset. 227

In this paper, we define the belief state as the 228

model’s confidence level in its own answer, in- 229

dependent of the question’s answerability or the 230

correctness of the response. We categorize the 231

model’s belief state regarding its own answer into 232

two types: confident state and uncertain state. 233

Inspired by Kadavath et al. (2022) and Lin et al. 234
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Figure 4: Constructing the Belief State Training Dataset

(2022b), we determine the belief state by assess-235

ing the self-consistency of the model’s answers.236

Specifically, for each question q, we obtain multi-237

ple answers from the model. Following the practice238

of Cheng et al. (2024) and to balance statistical re-239

liability with computational efficiency, we set the240

number of answers to 10. To automatically process241

the free-format answers generated by the model,242

inspired by Manakul et al. (2023), we adopt tech-243

niques from the Extractive Question Answering244

task (Chen et al., 2019). Specifically, we utilize245

a DeBERTa-v3-large (He et al., 2021) model fine-246

tuned on SQuAD2.0 (Rajpurkar et al., 2018) to247

extract core answers from free-format responses.248

This process standardizes diverse answer formats249

and improves response comparability.250

After extracting core answers, we measure an-251

swer consistency by calculating the frequency of252

repeated responses. We define the frequency of253

the most repeated answer a, denoted as freq(a),254

as a measure of the model’s confidence in its re-255

sponse. The belief state is determined based on the256

following formula:257

s =

{
scon if freq(a) ≥ δcon
sunc if freq(a) < δunc

258

where s is the model’s belief state for question q.259

To more precisely distinguish belief states, we in-260

troduce two thresholds δcon and δunc (δcon > δunc):261

if the model generates highly consistent answers262

to a question, it indicates that the model has high263

confidence and stability in its own answer, corre-264

sponding to the confident state (scon). Conversely, 265

if the answers are dispersed and lack consistency, 266

it suggests that the model has a high degree of un- 267

certainty about its own answer, corresponding to 268

the uncertain state (sunc). 269

Algorithm 1 BAFH
Require: Question q, LLM Model E, Belief State

Classifier T
Ensure: Hallucination type v: overconfident or

unaware
/* Step 1: Answer Generation and hidden
states Retrieval */

1: a← E(q) // Generate answer a for question
2: H ← HiddenState(E, q, a) // Get hidden

states H
/* Step 2: Hallucination Detection and Belief
State Classification*/

3: r ← HallucinationDetection(q, a) // Detect
hallucination by comparing a with external
knowledge

4: s← T (H) // Classify belief state for a
/* Step 3: Factuality Hallucination Classifi-
cation */

5: if r = "Hallucination" then
6: if s = scon then
7: v ← "Overconfident Hallucination"
8: else if s = sunc then
9: v ← "Unaware Hallucination"

10: end if
11: else
12: return "No Hallucination"
13: end if
14: return v

Training Set Construction To obtain the model’s 270

hidden states during the generation process, we 271

concatenate the question with the model’s answer 272

and extract the hidden states of the i-th token in the 273

l-th layer, represented as hl,i ∈ Rd, where d is the 274

dimension of the hidden states. These hidden states 275

serve as input to the classifier, with the correspond- 276

ing belief state si assigned as the label. This forms 277

a training dataset of N samples
{
hl,ij , sj

}N

j=1
. 278

Classifier Training The belief state classifier em- 279

ploys a feedforward neural network with hidden 280

layer sizes of 256, 128, and 64, all utilizing ReLU 281

activations. The classifier takes hidden state vec- 282

tor hl,i ∈ Rd as input and produces a binary label 283

(confident/uncertain) through a sigmoid-activated 284

output layer. The classifier does not rely on hy- 285
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perparameters such as temperature or top-k, ensur-286

ing robustness and avoiding the resource-intensive287

need for multiple question-answering sessions re-288

quired by self-consistency methods (Slobodkin289

et al., 2023; Su et al., 2024). Given that models,290

domains, and prompts influence consistency, we291

construct datasets specific to these factors and train292

dedicated classifiers accordingly.293

To distinguish between overconfident hallucina-294

tions and unaware hallucinations, BAFH analyzes295

the model’s belief state during answer generation.296

The detection framework combines the model’s297

belief state with advanced hallucination detection298

methods to determine the factuality hallucination299

type. We present the algorithm flow for factuality300

hallucination type detection in Algorithm 1.301

5 Experimental Setting302

5.1 Dataset303

To constructed dataset and evaluate the perfor-304

mance of BAFH, we considered three existing QA305

benchmarks as data sources:306

TriviaQA (Joshi et al., 2017) is a reading com-307

prehension dataset. Its question-answer pairs can308

be used for open-domain question-answer tasks.309

NQOPEN (Kwiatkowski et al., 2019) is a ques-310

tion answering dataset consisting of real queries311

issued to the Google search engine.312

ALCUNA (Yin et al., 2023a) is a benchmark to313

assess LLMs’ abilities in new knowledge under-314

standing.315

Evaluation Metrics Our evaluation follows a sim-316

ilar approach to Cheng et al. (2024), with modi-317

fications to better suit our task. We employ the318

following four metrics:319

OH (Overconfident Hallucination): The propor-320

tion of correctly detected overconfident hallucina-321

tions among all overconfident hallucinations.322

UH (Unaware Hallucination): The proportion of323

correctly detected unaware hallucinations among324

all unaware hallucinations.325

Truthful Rate: The overall proportion of hallu-326

cination types correctly detected.327

In addition, we also use AUC (Area Under the328

Curve) as an evaluation metric. Note that AUC is329

not applicable to prompt-based methods, as they330

do not produce continuous confidence scores.331

5.2 Baselines332

Most prior work focuses on detecting the presence333

of hallucinations, while the identification of hallu-334

cination types remains underexplored. Therefore, 335

we use the results of LLM’s self-assessment of its 336

own hallucination types as the baseline. 337

Directly providing hallucinated responses and 338

asking the LLM is unreasonable because this task 339

is too challenging for LLM. Therefore, we design a 340

multiple-choice open-domain QA task to indirectly 341

evaluate the model’s ability to detect its own hallu- 342

cination types. In this task, the model must choose 343

from three options: its own hallucinated response, 344

the correct answer to the question, and I don’t 345

know. Selecting I don’t know or the correct answer 346

indicates that the model recognizes its knowledge 347

limitations, corresponding to Unaware Hallucina- 348

tion. Conversely, selecting its own hallucinated 349

response suggests that the model remains confident 350

in its answer, corresponding to Overconfident Hal- 351

lucination. We use the model’s performance on this 352

task to measure its ability to perceive hallucination 353

types and compare the performance with BAFH. 354

We adopt two prompting strategies: 355

Direct Instruction Prompt, where the model is 356

directly instructed to select an answer. 357

Few-shot Prompt, which provides examples to 358

illustrate the task requirements and then prompts 359

the model to select the correct answer. 360

In both methods, we use greedy decoding to 361

ensure determinism in the generated outputs, allow- 362

ing for a more accurate assessment of the model’s 363

perception of hallucination types. The details of 364

the prompts can be found in Appendix D. 365

To further evaluate the performance of the belief 366

state classifier, we compare our method against the 367

following uncertainty estimation approaches: (1) 368

MIND is an unsupervised framework that leverages 369

LLMs’ internal states for real-time hallucination 370

detection. (2) SAR (Duan et al., 2024) is one of 371

the latest uncertainty estimation methods based on 372

probability sampling and attention allocation. 373

5.3 Implementation Details 374

Dataset Construction To comprehensively eval- 375

uate the performance and generalizability of our 376

factuality hallucination type detection method, we 377

generate data using multiple open-source LLMs (in- 378

cluding Gemma, Llama, and Mistral series) across 379

various tasks. Following the procedure in Section 380

4.2, we utilize TriviaQA, NQOPEN, and ALCUNA 381

as data sources to build model-specific datasets. 382

The training set contains 3,000 samples, evenly 383

distributed between confident and uncertain states, 384

which are used to train the belief state classifier. 385
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Models Methods ALCUNA NQOPEN TriviaQA
Truthful AUC Truthful UH OH AUC Truthful UH OH

Gemma-2-27b-it
Direct Instruction 0.385 - 0.274 0.312 0.236 - 0.304 0.336 0.272
Few-shot 0.47 - 0.294 0.352 0.236 - 0.338 0.398 0.278
BAFH 0.999 0.9063 0.821 0.854 0.788 0.8623 0.769 0.89 0.648

Gemma-2-9b-it
Direct Instruction 0.643 - 0.31 0.36 0.26 - 0.33 0.38 0.28
Few-shot 0.661 - 0.314 0.378 0.25 - 0.321 0.386 0.256
BAFH 0.992 0.8907 0.799 0.784 0.814 0.8406 0.751 0.836 0.666

Gemma-2-2b-it
Direct Instruction 0.617 - 0.259 0.33 0.188 - 0.18 0.226 0.134
Few-shot 0.638 - 0.306 0.37 0.242 - 0.217 0.31 0.124
BAFH 0.989 0.8601 0.766 0.75 0.782 0.8111 0.719 0.836 0.602

Llama-3.1-
70B-Instruct

Direct Instruction 0.55 - 0.327 0.436 0.218 - 0.34 0.476 0.204
Few-shot 0.518 - 0.313 0.43 0.196 - 0.328 0.468 0.188
BAFH 0.877 0.7924 0.741 0.708 0.774 0.7509 0.675 0.688 0.662

Llama-3.1-
8B-Instruct

Direct Instruction 0.664 - 0.4 0.49 0.31 - 0.364 0.474 0.254
Few-shot 0.84 - 0.526 0.656 0.396 - 0.481 0.64 0.322
BAFH 0.993 0.8605 0.771 0.824 0.718 0.7982 0.705 0.876 0.534

Llama-3-
70B-Instruct

Direct Instruction 0.406 - 0.371 0.42 0.322 - 0.377 0.448 0.306
Few-shot 0.431 - 0.407 0.482 0.332 - 0.453 0.536 0.37
BAFH 0.894 0.7894 0.706 0.636 0.776 0.7894 0.709 0.71 0.708

Llama-3.1-
8B-Instruct

Direct Instruction 0.56 - 0.415 0.476 0.354 - 0.393 0.502 0.284
Few-shot 0.618 - 0.451 0.554 0.348 - 0.41 0.524 0.296
BAFH 0.973 0.8117 0.722 0.678 0.766 0.7521 0.687 0.758 0.616

Mistral-7B-
Instruct-v0.3

Direct Instruction 0.553 - 0.397 0.506 0.288 - 0.363 0.45 0.276
Few-shot 0.5 - 0.453 0.52 0.386 - 0.397 0.476 0.318
BAFH 0.907 0.8232 0.759 0.72 0.798 0.747 0.683 0.694 0.672

Table 1: Performance comparison of different models and methods across multiple datasets and metrics

The training set focuses solely on the model’s belief386

state regarding its answers.387

The test set consists of 1,000 hallucination sam-388

ples, evenly split into overconfident and unaware389

hallucinations, which is used to evaluate the accu-390

racy of factuality hallucination type detection.391

Notably, our datasets constructed from TriviaQA392

and NQOPEN include both training and test sets,393

while the dataset constructed from ALCUNA only394

includes a test set, for evaluating the performance395

of Unaware Hallucination detection.396

Hidden States Selection In our main experiments,397

we use the model’s last layer hidden states of the398

last token as features. This choice is based on find-399

ings from previous research (Azaria and Mitchell,400

2023; Chuang et al., 2023), which suggest that401

the final layers tend to encode more abstract and402

high-level semantic information. Given that hidden403

states of different tokens in various layers may en-404

code varying levels of semantic information, we an-405

alyze multiple token-layer combinations and com-406

pare their effects in the ablation study.407

Threshold Selection In the main experiments, to408

ensure distinction between belief states and cover409

most of the data, we set δcon=10 and δunc=5. In410

Section 6.3 we present a comparative analysis of411

different threshold settings. 412

6 Results 413

We conduct experiments to evaluate our proposed 414

factuality hallucination type detection method. 415

Specifically, this section aims to answer the fol- 416

lowing research questions (RQs): 417

RQ1: Does BAFH achieve good performance? 418

RQ2: How do the two types of hallucinations 419

differ from each other and from correct answers? 420

RQ3: Can hidden state of LLMs be used to 421

distinguish different types of hallucinations? 422

6.1 Overall Results of BAFH and Baselines 423

In this section, we conduct a comprehensive evalu- 424

ation of the BAFH framework against baselines to 425

address research question RQ1. Table 1 presents 426

a comparison of BAFH with constructed baselines 427

across eight LLMs and three QA datasets. Our 428

findings are as follows: 429

(1) BAFH outperforms baselines across all mod- 430

els and datasets, demonstrating strong generaliza- 431

tion, as further evidenced in Appendix C. This sug- 432

gests LLMs exhibit distinct belief states when gen- 433

erating factual errors and leveraging LLM hidden 434
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states allows us to infer the model’s belief state and,435

consequently, the hallucination type.436

(2) In most cases, prompt-based methods yield437

UH values below 50% across all datasets. This438

indicates that models tend to provide answers439

rather than acknowledge their knowledge limita-440

tions when responding to questions, which aligns441

with findings from previous studies (Yin et al.,442

2023b). Interestingly, the UH metric for prompt-443

based methods generally outperforms the OH met-444

ric across most models and datasets, suggesting445

that models more readily admit to being unaware446

but struggle to identify their own overconfident hal-447

lucinations. The Few-shot approach outperforms448

the Direct Instruction method, demonstrating that449

guiding the model with examples helps it recognize450

its own biases and limitations.451

(3) Both BAFH and prompt-based methods per-452

form better on the ALCUNA dataset compared to453

others, revealing differences in model belief states454

between new and existing knowledge.455

(4) With classifier parameters fixed, the perfor-456

mance of the classifier varies with model size. In457

the Gemma series, the Truthful of classifier posi-458

tively correlates with model size, possibly due to459

richer feature representations in the hidden states460

of larger models. In contrast, for the Llama se-461

ries, Truthful decreases as model size increases,462

which may be because the classifier struggles to463

fully exploit the increasingly complex internal fea-464

tures beyond a certain scale.465

Methods Llama2-7B Llama2-13B
BAFH 0.758 0.794
MIND 0.627 0.568
SAR 0.702 0.644

Table 2: The experimental results of BAFH and other
baselines on our self-construct dataset based on Triv-
ialQA

Performance of the Belief State Classifier As a466

key component of BAFH, the belief state classifier467

significantly impacts the framework’s effectiveness.468

In this section, we compare it with state-of-the-art469

methods, MIND and SAR, on the dataset based on470

TriviaQA. MIND is as a strong representative of471

linear probing approaches and SAR is one of the472

most effective probability-based methods.473

As shown in Table 2, BAFH outperforms both474

baselines in belief state classification. This may475

be because our dataset relies on self-consistency476

rather than correctness, which better aligns with477

hallucination classification by capturing the inter- 478

nal belief patterns of LLMs. Furthermore, leverag- 479

ing hidden layer activations enables the classifier 480

to capture more nuanced semantic representations. 481

We also assess computational efficiency (Appendix 482

B.2), showing that BAFH maintains competitive 483

efficiency while achieving superior performance. 484

Models Confident State Uncertain State

Gemma-2-2b-it 0.8561 0.4973
Llama3-8B-Instruct 0.7892 0.4766
Llama3.1-8B-Instruct 0.8056 0.5105
Mistral-7B-Instruct 0.7279 0.4719

Table 3: Model’s Hallucination Selection Rates in
Multiple-Choice Questions for Overconfident and Un-
aware Hallucinations

6.2 The Difference Between the Two 485

Hallucinations 486

We construct a multiple-choice task to address 487

RQ2. The results are shown in Table 3. Specifi- 488

cally, we first extract the hallucinated answers gen- 489

erated by the model using the method described 490

in Section 4.2. These answers could either be 491

Overconfident Hallucinations or Unaware Halluci- 492

nations. We then form multiple-choice questions 493

by presenting the model’s hallucinated answer and 494

the ground-truth answer as the two answer choices, 495

with the original question serving as the prompt. 496

Since automatic extraction of answers may in- 497

troduce errors, we conducted manual screening to 498

ensure data quality, as detailed in Appendix B.1. 499

Finally, we separately compute the hallucination 500

selection rates for the two types of questions: 501

Confident State Group: The proportion of times 502

the model selected its own hallucinated answer in 503

all multiple-choice questions containing an Over- 504

confident Hallucination. 505

Uncertain State Group: The proportion of times 506

the model selected its own hallucinated answer 507

in all multiple-choice questions containing an Un- 508

aware Hallucination. 509

The results show that LLMs tend to prefer their 510

own answers when confident, while their choices 511

appear random when uncertain. This may indicate 512

that factuality hallucinations stem from different 513

causes, such as inherent biases or a lack of relevant 514

knowledge. These findings highlight the role of 515

belief states in differentiating hallucination types. 516

Internal Space Differentiation To address RQ2 517

and RQ3, we perform a PCA projection of the 518

7



Figure 5: 3D PCA projection of the last hidden layer’s
embedding of LLaMA-3-8B-Instruct

Figure 6: AUC of BAFH under different thresholds

embedding from the final hidden layer of the last519

generated token onto a 3-D plane. Figure 5 illus-520

trate the results for LlaMA-3-8B-Instruct on the521

NQOPEN dataset. We observe that the bound-522

ary between Overconfident Hallucinations (pink523

dots) and Correct Answers (red dots) is not distinct.524

Furthermore, Unaware Hallucinations (blue dots)525

form a distinguishable, though not sharply defined,526

boundary with the other two categories. This sug-527

gests that the model’s hidden states can be used528

to differentiate between different belief states, and529

overconfident hallucinations show a strong similar-530

ity to correct answers in their belief states.531

6.3 Ablation Studies532

Effect of δcon and δunc threshold We investigate533

the impact of belief state thresholds δcon and δunc534

on the model’s AUC metric. To mitigate the in-535

fluence of data distribution, we constructe bal-536

anced datasets for training and testing under var-537

ious threshold combinations. The results are il-538

lustrated in Figure 6. As the gap between δcon539

and δunc thresholds widens, the classifier’s AUC540

improves significantly. This indicates that larger541

threshold differences better capture variations in542

belief states. Additionally, the consistency level 543

of answers reflects the model’s belief state, with 544

higher consistency suggests greater model confi- 545

dence in its responses. 546

Layers Token Positions

Qend Aend

20 0.7818 0.8901
24 0.7612 0.8867
28 0.7585 0.8871
32 0.7703 0.8848

Table 4: AUC scores across different token positions
and layers

Token and Hidden Layer Selection To examine 547

the impact of token position and hidden layer se- 548

lection on framework performance, We conduct 549

experiments using data generated by Llama3-8B- 550

Instruct on the NQOPEN dataset. We focus on 551

tokens at the question’s end (Qend) and the se- 552

quence’s end (Aend), as well as hidden layers near 553

the output. As shown in Table 4, tokens at the same 554

position perform similarly across different layers, 555

whereas classification accuracy is significantly af- 556

fected by token position. The sequence-end token 557

(Aend) performs best, likely due to its hidden states 558

retaining more belief state-related information. 559

7 Conclusion 560

We propose a belief-state-based factuality halluci- 561

nation classification method and introduce BAFH, 562

a hallucination type detection method. Experimen- 563

tal results show that BAFH achieves high accuracy 564

across multiple datasets. Furthermore, different 565

types of hallucinations are distinct in the distribu- 566

tion of hidden states, and LLMs exhibit distinct 567

behavioral patterns when encountering different 568

hallucination types. However, LLMs struggle to 569

recognize the hallucination types of their own. In 570

summary, our research reveals distinctions among 571

factuality hallucination categories and highlights 572

the significance of hallucination classification. 573

8 Limitations 574

This study focuses on the classification of factual- 575

ity hallucinations, while more challenging types, 576

such as faithfulness hallucinations and those involv- 577

ing complex reasoning, have not been explored in 578

depth. Future work will incorporate a broader range 579

of hallucination types and classification criteria to 580

provide a more comprehensive understanding of 581

the differences between them. 582

8



Meanwhile, this study primarily aims to identify583

hallucination types and analyze their differences,584

rather than directly investigating the causes of hallu-585

cinations or the key factors influencing their types.586

We believe that hallucination classification can con-587

tribute to understanding the mechanisms behind588

hallucination generation and lay the groundwork589

for future research on its causes and influencing590

factors. This direction will be further explored in591

our future work.592
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A Validation of the hypothesis795

A.1 Statistical Analysis of Model Response796

Consistency797

(a) NQOPEN

(b) TriviaQA

Figure 7: Gemma-2-2b-it

(a) NQOPEN

(b) TriviaQA

Figure 8: Gemma-2-9b-it

(a) NQOPEN

(b) TriviaQA

Figure 9: Gemma-2-27b-it

(a) NQOPEN

(b) TriviaQA

Figure 10: LLaMA-3.1-8B-Instruct
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(a) NQOPEN

(b) TriviaQA

Figure 11: LLaMA-3.1-70B-Instruct

In this section, we conduct experiments on LLaMA-798

3.1 and Gemma-2 to analyze the repetition rate of799

model responses. As shown in Figre 7 to 11. The800

results align with our hypothesis: the distribution of801

response repetition rates is uneven, with higher and802

lower repetition rates being more prevalent, while803

intermediate repetition rates are relatively less fre-804

quent. Moreover, similar patterns are observed805

across other models. The bimodal phenomenon is806

more pronounced in smaller models but less appar-807

ent in larger ones. This may be because the dataset808

used is relatively simple for the larger models, lead-809

ing to more high-confidence and high-accuracy pre-810

dictions, while uncertain cases are relatively rare.811

A.2 Internal Space Differentiation812

In this section, we visualize the internal states of813

the model’s hallucinations. As shown in Figure814

12, blue points represent hallucinations with high815

repetition counts (9-10), red points represent those816

with low repetition counts (1-4), and green points817

represent hallucinations with intermediate repeti-818

tion counts. The results indicate that the internal819

states of hallucinations with high and low repetition820

counts exhibit separation, whereas hallucinations821

with intermediate repetition counts do not form a822

distinct category, suggesting that their belief states823

are difficult to classify into a separate group. 824

Figure 12: 3D PCA projection of the last hidden layer’s
embedding of LLaMA-3.1-8B-Instruct

A.3 A more fine-grained classification 825

method. 826

Number of Classes 2 3 4
Llama3-8B-Instruct 0.7703 0.3395 -
Gemma_2_9b_it 0.7325 0.3226 -

Table 5: Performance comparison of Llama3-8B-
Instruct and Gemma_2_9b_it with different numbers
of classes.

In this section, we attempt to train the linear clas- 827

sifier using hidden states to categorize belief states 828

at a finer granularity and evaluate its F1 scores un- 829

der different numbers of categories. As shown in 830

Figure 5, the binary classification setting achieves 831

the best performance, while in the three-class set- 832

ting, the classifier’s performance is close to random. 833

In the four-class setting, the classifier struggles to 834

converge effectively, indicating a high degree of 835

uncertainty in the task. 836

This phenomenon may be due to the fact that 837

finer-grained classification of belief states is more 838

susceptible to various potential noise factors, which 839

in turn affect the classifier’s performance. There- 840

fore, dividing belief states into two categories is a 841

reasonable simplification. 842
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B Implementation details843

B.1 Construct multiple-choice questions.844

We first use ChatGPT to perform an initial filter-845

ing of hallucination types that meet the definition.846

Then, we invite a human annotator to further re-847

fine the selection in order to construct high-quality848

multiple-choice questions containing both types of849

hallucinated responses from the model. Specifi-850

cally, we obtain an initial hallucination type dataset851

following the process outlined in Section 4.2, after852

which ChatGPT conducts a preliminary screening.853

A human annotator then reviews the dataset, ensur-854

ing the correctness of the hallucination type labels855

from the following three aspects: the answer is cor-856

rectly extracted from the model’s response, it meets857

the hallucination definition, and the answer’s repe-858

tition rate is calculated correctly. For each model in859

Table 3, we ultimately retain 1000 multiple-choice860

questions that meet the requirements, with 500861

questions for each type of hallucination.862

Method Train Time (s) Inference Time (s)
LLM’s Response – 1.52
BAFH 17.90 0.05
MIND 18.47 0.05
SAR – <0.01

Table 6: Comparison of training and inference times
for BAFH and other baselines using Llama-7B hidden
activations.

B.2 Computational Cost of the Belief State863

Classifier864

Table 6 shows a comparison of the training and865

inference times for the BAFH method versus other866

baselines using hidden layer activations of Llama-867

7B. The experiment was conducted on an NVIDIA868

V100 GPU. The training time of our method is869

comparable to the hidden layer activation-based870

method MIND[3], and it is significantly faster than871

the response time of LLMs.872

C Generalization Experiments873

We evaluate the generalization capability of our874

approach. We train the classifier using a balanced875

training set based on NQOPEN and test it on a876

test set derived from TriviaQA. As shown in Table877

7, the classifier trained on NQOPEN data main-878

tains good performance on the out-of-domain test879

set, demonstrating the strong generalization abil-880

ity of our detection framework. This effectiveness881

may be attributed to two factors: First, the belief882

Model ID NQOPEN-TriviaQA

AUC Truthful UH OH

Llama3.1_70B_Instruct 0.7606 0.658 0.868 0.448
Llama3.1_8B_Instruct 0.8532 0.763 0.818 0.708
Llama3_70B_Instruct 0.7432 0.671 0.730 0.612
Llama3_8B_Instruct 0.8111 0.734 0.812 0.656
Mistral_7B_Instruct 0.7996 0.732 0.758 0.706
Gemma_2_27b_it 0.9027 0.797 0.940 0.654
Gemma_2_2b_it 0.8108 0.728 0.748 0.708
Gemma_2_9b_it 0.8476 0.758 0.862 0.654

Table 7: Performance comparison of different models
on NQOPEN-TriviaQA dataset

state classifier, trained on hidden states, is less in- 883

fluenced by textual features. Second, it appears 884

to successfully capture the model’s underlying be- 885

lief state. These results suggest that our approach 886

can generalize well across different domains and 887

datasets. 888

D Prompt 889

Figure 13: Few-shot prompt used for dataset construc-
tion

Figure 14: Direct Instruction used for dataset construc-
tion
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Figure 15: Prompts used for multiple-choice task to
address RQ2
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