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Abstract

Multimodal entity linking (MEL), a task aimed001
at linking mentions within multimodal contexts002
to their corresponding entities in a knowledge003
base (KB), has attracted much attention due to004
its wide applications. However, existing MEL005
methods primarily rely on mention words as006
retrieval cues, which limits their ability to ef-007
fectively utilize both textual and visual informa-008
tion. As a result, MEL struggles to retrieve en-009
tities accurately, particularly when the focus is010
on image objects or when mention words are ab-011
sent from the text. To address these issues, we012
introduce Visual Prompts guided Multimodal013
Entity Linking (VP-MEL). Given a text-image014
pair, VP-MEL links a marked image region015
(i.e., visual prompt) to its corresponding KB016
entity. To support this task, we construct017
VPWiki, a dataset specifically designed for018
VP-MEL. Additionally, we propose the Im-019
plicit Information-Enhanced Reasoning (IIER)020
framework, which enhances visual feature021
extraction through visual prompts and lever-022
ages the pre-trained Detective-VLM model to023
capture latent information. Experimental re-024
sults on VPWiki demonstrate that IIER outper-025
forms baseline methods across multiple bench-026
marks for VP-MEL. Code and datasets will027
be released at https://anonymous.4open.028
science/r/VP-MEL-26E2.029

1 Introduction030

Linking ambiguous mentions with multimodal031

contexts to the referent unambiguous entities in032

a knowledge base (KB), known as Multimodal033

Entity Linking (MEL) (Moon et al., 2018), is an034

essential task for various multimodal applications.035

Most MEL works (Gan et al., 2021; Wang et al.,036

2022a; Dongjie and Huang, 2022; Luo et al., 2023;037

Zhang et al., 2023a; Xing et al., 2023; Shi et al.,038

2024) mainly focus on improving the interaction039

of multimodal information and achieve promising040

performance. However, existing methods typically041

Figure 1: Comparison between MEL and VP-MEL
tasks. MEL is typically limited to selecting mentions
from text. In contrast, VP-MEL addresses this limita-
tion by using visual prompts to link specific regions in
the images to the correct entities in the knowledge base.

represent mentions in the form of mention words 042

and assume that each mention is associated 043

with a high-quality image, which results in two 044

limitations for MEL. 045

Text information dependency: MEL primarily 046

relies on mention words for entity linking, as these 047

words frequently exhibit significant overlap with 048

entity names in real-world applications. Such 049

overlap serves as a strong cue for identifying 050

entities within the knowledge base(KB). However, 051

MEL performs poorly when mention words are 052

absent or unannotated. As shown in Figure 1, 053

without annotated mention words, MEL computes 054

similarity based on the entire text, which can lead 055

to erroneous entity linking. For instance, MEL 056

may incorrectly associate the data with the entity 057

Olympic Games due to high textual similarity. 058

Since Lee C W and Lin Dan are not explicitly men- 059

tioned, MEL fails to establish correct links to these 060

entities. This issue underscores the difficulty of 061

MEL in accurately linking data when the mention 062

words related to entities are missing from the data. 063

Image modality impurity: Compared to textual 064
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data, images often exhibit higher levels of noise.065

Misinterpreting or misusing image information can066

substantially impact MEL performance. Most exist-067

ing coarse-grained methods (Yang et al., 2023; Luo068

et al., 2023; Wang et al., 2022a) directly encode069

the entire image, making it difficult to eliminate070

noise interference. Song et al. (2024) enhances071

MEL performance by extracting fine-grained im-072

age information through object detection. How-073

ever, this approach still relies on sufficient textual074

information for accurate object localization and is075

prone to interference from visually similar objects.076

Therefore, a potentially effective strategy to miti-077

gate image noise is enhancing object localization078

precision while reducing the dependence on textual079

data.080

These limitations hinder the ability of MEL to081

fully exploit multimodal data effectively. Despite082

being fundamental to multimodal data, images con-083

tribute minimally to MEL. Furthermore, the strong084

reliance on textual data significantly limits MEL085

performance, especially when the text is scarce or086

incomplete. So we ask: Is it possible to link spe-087

cific objects in multimodal images to the KB even088

with insufficient textual information? Investigating089

this possibility could unlock the full potential of090

multimodal data for MEL.091

In this paper, we introduce Visual Prompts092

guided Multimodal Entity Linking (VP-MEL), a093

new task designed for entity linking in image-094

text pairs, as shown in Figure 1. VP-MEL an-095

notates mentions directly on images using visual096

prompts, eliminating reliance on textual mention097

words. This approach broadens its applicability,098

enabling effective linking of multimodal data to099

the KB even when textual information is limited or100

image-based information is prioritized. To support101

this task, we develop the VPWiki dataset by ex-102

tending existing public MEL datasets, where visual103

prompts are assigned to each mention within the104

corresponding images.105

To tackle the challenges of VP-MEL, we propose106

the Implicit Information-Enhanced Reasoning107

(IIER) framework. IIER leverages visual prompts108

as guiding texture cues to focus on specific local109

image regions. To reduce reliance on textual data,110

it employs an external implicit knowledge base to111

heuristically generate auxiliary information for the112

reasoning process. Specifically, a CLIP visual en-113

coder is employed to extract both global image fea-114

tures and local features guided by visual prompts.115

Additionally, a Vision-Language Model(VLM) in-116

corporating a CLIP visual encoder is pre-trained to 117

generate textual information from visual prompts, 118

supplementing existing text data. IIER integrates 119

both supplementary visual and textual information, 120

enhancing the linking of objects in images to the 121

KB. 122

Main contributions are summarized as follows: 123

(i) We introduce VP-MEL, a new entity linking 124

task that replaces traditional mention words 125

with visual prompts, linking specific objects 126

in images to the KB. 127

(ii) We develop VPWiki, a high-quality annotated 128

dataset, to establish a strong benchmark for 129

evaluating VP-MEL. Furthermore, we intro- 130

duce an automated annotation pipeline to im- 131

prove the efficiency of VPWiki dataset con- 132

struction. 133

(iii) We propose the IIER framework to tackle VP- 134

MEL by effectively leveraging multimodal 135

information and reducing reliance on a sin- 136

gle modality. Compared to previous methods, 137

IIER achieves a 20% performance improve- 138

ment in the VP-MEL task and maintains com- 139

petitive results in the MEL task. 140

2 Related Work 141

2.1 Multimodal Entity Linking 142

Given the widespread use of image-text content 143

in social media, the integration of both modalities 144

for entity linking is essential. For example, Moon 145

et al. (2018) pioneer the use of images to aid entity 146

linking. Building on this, Adjali et al. (2020) and 147

Gan et al. (2021) construct MEL datasets from 148

Twitter and long movie reviews. Expanding the 149

scope of MEL datasets, Wang et al. (2022c) present 150

a high-quality MEL dataset from Wikinews, featur- 151

ing diversified contextual topics and entity types. 152

To achieve better performance on these datasets, 153

a multitude of outstanding works in the MEL field 154

(Wang et al., 2022a; Yang et al., 2023; Luo et al., 155

2023; Shi et al., 2024) emerge, focusing on extract- 156

ing and interacting with multimodal information. 157

Song et al. (2024) use object detection to extract 158

visual information from images and better link 159

mention words to correct entities, but still face dif- 160

ficulty in linking images to KBs in the absence of 161

mention words. Although multimodal information 162

can enhance entity linking performance, in these 163

methods, text consistently dominates over images. 164
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2.2 Vision Prompt165

Region-specific comprehension in complex visual166

scenes has become a key research topic in the field167

of Multimodal Computer Vision. Existing methods168

typically utilize textual coordinate representations169

(Zhu et al., 2024; Zhao et al., 2023), learned posi-170

tional embeddings (Peng et al., 2024; Zhang et al.,171

2023b; Zhou et al., 2023), or Region of Interest172

(ROI) features (Zhang et al., 2023b) to anchor lan-173

guage to specific image regions. More recently,174

Cai et al. (2024) propose a coarse-grained visual175

prompting solution that directly overlays visual176

prompts onto the image canvas. In contrast, our VP-177

MEL provides a fine-grained entity linking method178

based on visual prompts to reduce reliance on text.179

3 Dataset180

As there is no existing MEL dataset that incorpo-181

rates visual prompts, constructing a high-quality182

dataset is essential for establishing a strong bench-183

mark for the VP-MEL task.184

Data Collection. Our dataset is built based on185

two benchmark MEL datasets, i.e., WikiDiverse186

(Wang et al., 2022c) and WikiMEL (Wang et al.,187

2022a). Appendix A.7 provides detailed informa-188

tion.189

Annotation Design. Given an image-text pair190

with corresponding mention words, annotators are191

required to: 1) identify and annotate relevant visual192

prompts in the image based on the mention words;193

2) discard samples where the image and mention194

words are unrelated; 3) refine annotations for sam-195

ples with inaccurate automated labels; 4) assign an196

entity type to each instance (i.e., Person, Organiza-197

tion, Location, Country, Event, Works, Misc.).198

Annotation Procedure. To improve data anno-199

tation efficiency, we develop a pipeline that auto-200

matically annotates visual prompts in images based201

on mention words inspired by Li et al. (2024). In202

the pipeline, the Visual Entailment Module is em-203

ployed to evaluate and filter out the highly relevant204

data. Subsequently, the Visual Grounding Module205

annotates the visual prompts in the images. The206

details of the pipeline are provided in Appendix207

A.6. The annotation team consists of 10 annotators208

and 2 experienced experts. All annotators have lin-209

guistic knowledge and are instructed with detailed210

annotation principles. Fleiss Kappa score (Fleiss,211

1971) of annotators is 0.83, indicating strong agree-212

ment among them. We employ the Intersection213

Train Dev. Test Total

pairs 8,000 1,035 1,052 10,087
ment. per pair 1.18 1.16 1.27 1.19
words per pair 9.89 9.80 10.32 9.92

Table 1: Statistics of VPWiki. ment. denotes Mentions.

over Union (IoU) metric to assess annotation qual- 214

ity and discard samples with an IoU score below 215

0.5. 216

Figure 2: An example from VPWiki. GT denotes the
ground truth entity. The red box in the left image repre-
sents the visual prompt annotated for the VP-MEL task.

(a) (b)

Figure 3: More statistics of VPWiki. (a) Distribution of
entity types. (b) Distribution of the number of candidate
entities per mention.

Dataset Analysis. Figure 2 illustrates an example 217

from the VPWiki dataset. Additional data samples 218

are provided in A.8. The VPWiki dataset comprises 219

a total of 12,720 samples, which are randomly split 220

into training, validation, and test sets with an 8:1:1 221

ratio. Detailed statistics of the VPWiki dataset are 222

provided in Table 1. Additionally, Figure 3 presents 223

the distribution of entity types and the number of 224

candidate entities per mention in the dataset. In Fig- 225

ure 3(a), abbreviations are used to represent each 226

entity type. Meanwhile, Figure 3(b) shows that as 227

the number of candidate entities per mention in- 228

creases, the task becomes increasingly challenging. 229
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4 Task Formulation230

The multimodal knowledge base consists of a231

set of entities E = {Ei}Ni=1, where each entity is232

represented as Ei = (eni , evi , edi , eai). Here, eni233

represents the entity name, evi denotes the entity234

images, edi corresponds to the entity description,235

and eai encodes the entity attributes. A mention236

is denoted as Mj = (msj ,mvj ), where msj237

represents the sentence and mvj corresponds to the238

corresponding image. The corresponding entity239

of mention Mj in the knowledge base is denoted240

as Ei. The objective of the VP-MEL task is to241

retrieve the ground truth entity Ei from the entity242

set E in the knowledge base, based on Mj .243

5 Methodology244

In this section, we describe the proposed IIER245

framework for the VP-MEL task. As illustrated246

in Figure 4, IIER utilizes visual encoder to extract247

both deep semantic features and shallow texture248

features, which are enhanced by visual prompts249

(§5.1). To avoid excessive reliance on visual250

features, the Detective-VLM module is designed251

to generate supplementary textual information252

guided by visual prompts(§5.2), which is then253

combined with the original text and processed by254

the text encoder (§5.3). Finally, a similarity score255

is computed after integrating the visual and textual256

features(§5.4).257

5.1 Visual Encoder258

We choose pre-trained CLIP model (Dosovitskiy259

et al., 2021) as our visual encoder. Extensive re-260

search (Cai et al., 2024; Shtedritski et al., 2023)261

demonstrates its effectiveness in interpreting vi-262

sual markers. The image mvj of Mj is reshaped263

into n 2D patches. After this, image patches264

are processed through visual encoder to extract265

features. The hidden states extracted from mvj266

by the CLIP visual encoder are represented as267

V l
Mj

=
[
v0[CLS]; v

1
Mj

; v2Mj
; ...; vnMj

]
∈ R(n+1)×dc ,268

where dc denotes the dimension of the hidden state269

and l denotes the number of layers in the encoder.270

Since CLIP focuses on aligning deep features271

between images and text and may overlook some272

low-level visual details (Zhou et al., 2022), we se-273

lectively extract features from both the deep and274

shallow layers of CLIP. Specifically, a shallow fea-275

ture (V 3
Mj

) is used to represent the textures and276

geometric shapes in the image, while deep fea-277

tures (V 10
Mj

, V 11
Mj

, V 12
Mj

) are used to represent ab-278

stract semantic information. We take the hidden 279

states corresponding to the special [CLS] token 280

(v0[CLS] ∈ Rdc) from these layers as the respective 281

visual features F l. These features are concatenated 282

and normalized using LayerNorm, and then passed 283

through a MLP layer to transform the dimensions 284

to dv, with the output representing the global fea- 285

tures of the image V G
Mj

∈ Rdv . 286

Fl = v0[CLS] ∈ V l
Mj

, 287
288

V G
Mj

′
= LN

(
Concat(F 3, F 10, F 11, F 12)

)
, 289

290

V G
Mj

= MLP
(
V G
Mj

′)
. 291

Then, hidden states from the output layer of en- 292

coder V l
Mj

are passed through a fully connected 293

layer, which also transforms the dimensions to dv, 294

yielding the local features of the image V L
Mj

∈ 295

R(n+1)×dv : 296

V L
Mj

= FC
(
V l
Mj

)
. 297

For the image evi of entity Ei, the global feature 298

V G
Ei

and local feature V L
Ei

are obtained using the 299

same method described above. 300

5.2 Detective-VLM 301

Real-world multimodal data often contain chal- 302

lenges such as short texts or image noise. In this 303

context, VLMs serve as implicit knowledge bases, 304

can analyze both image and text to infer useful aux- 305

iliary information. Most VLMs (Liu et al., 2024; 306

Zhu et al., 2024; Ye et al., 2023; Li et al., 2023) 307

adopt the CLIP visual encoder, enabling them 308

to focus more effectively on markers in images 309

compared to other visual methods (Cai et al., 2024; 310

Shtedritski et al., 2023). Therefore, we instruction 311

fine-tune a VLM to extract effective information 312

from images. The VLM follows template designed 313

below to further mine potential information from 314

the image mvj and sentence msj of mention Mj , 315

assisting in subsequent feature extraction: 316

Background: {Image}
Text: {Sentence}
Question: Based on the text ’{Sentence}’,
tell me briefly what is the {Entity Type} and
{Entity Name} in the red box of the {Image}?

Answer: {Entity Name} {Entity Type}

We utilize VPWiki dataset to design the fine- 317

tuning dataset, where {Image} and {Sentence} 318

correspond to mvj and msj in Mj , respectively. 319

During the inference process, {Entity Name} 320
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Figure 4: The overall architecture of Implicit Information-Enhanced Reasoning (IIER) framework. The image-text
pairs of the Mention and Entity are used together as input. Specifically, Mention Text is the sentence corresponding
to Mention Image, while Entity Text consists of Entity Name and Entity Attribute corresponding to the Entity Image
in the Knowledge Base.

and {Entity Type} need to be generated by VLM.321

Details of the dataset and Detective-VLM can be322

found in Appendix A.4.323

The objective formula for instruction fine-tuning324

Detective-VLM is expressed as follows:325

min
θ

N∑
i=1

L(fθ(xi), yi),326

where f represents the pre-trained VLM, and θ327

denotes the model parameters. N represents the328

number of instruction-output pairs, xi is the i-th329

instruction, and yi is the corresponding desired330

output. L is defined as:331

L(fθ(xi), yi) = −
T∑
t=1

logPθ(y
(t)
i |xi),332

where T is the length of output sequence, yi(t) is333

the t-th word of the expected output yi at time step334

t, and P is conditional probability that the model335

generates the output yi(t) at time step t.336

Detective-VLM aims to ensure that the output is337

both accurate and relevant, minimizing the likeli-338

hood of generating irrelevant information. Notably,339

we represent the Answer output by VLM as mwj .340

5.3 Textual Encoder 341

For the mention Mj , after concatenating mention 342

sentence msj with mwj , they form the input se- 343

quence, with different parts separated by [CLS] 344

and [SEP] tokens: 345

IMj = [CLS]mwj [SEP ]msj [SEP ] . 346

Hidden states of output layer after the input se- 347

quence passes through text encoder are represented 348

as TMj =
[
t0[CLS]; t

1
Mj

; ...; tltMj

]
∈ R(lt+1)×dt , 349

where dt represents the dimension of output layer 350

features, and lt denotes the length of input. We 351

use the hidden state corresponding to [CLS] as the 352

global feature of the text TG
Mj

∈ Rdt , and the en- 353

tire hidden states as the local features of the text 354

TL
Mj

∈ R(lt+1)×dt . 355

The input sequence for entity Ei consists of the 356

entity name eni and entity attributes eai , which can 357

be represented as: 358

IEi = [CLS] eni [SEP ] eai [SEP ] . 359

Then, using the above method, we obtain the 360

text features TG
Ei

and TG
Ei

for the entity. 361
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5.4 Multimodal Feature Interaction362

Inspired by the multi-grained multimodal interac-363

tion approach (Luo et al., 2023), we build the fea-364

ture interaction part. The multimodal feature in-365

teraction section consists of three different units.366

Notably, this section focuses only on introducing367

the functions of each unit, detailed mathematical368

derivations are provided in Appendix A.5.369

Visual-Features Interaction (VFI). Image370

features of the mention Mj and the entity Ei371

interact separately. For feature interaction from372

Mj to Ei, after passing through VFI:373

SM2E
V = VFIM2E(V

G
Mj

, V G
Ei
, V L

Ei
).374

The three input features are sufficiently inter-375

acted and integrated, resulting in the similarity376

matching score SM2E
V . Similarly, for the feature in-377

teraction from Ei to Mj , the similarity score SE2M
V378

can be obtained through VFI:379

SE2M
V = VFIE2M(V G

Ei
, V G

Mj
, V L

Mj
).380

Based on this, the final visual similarity score381

SV can be obtained:382

SV = (SM2E
V + SE2M

V )/2.383

Textual-Features Interaction (TFI). TFI com-384

putes the dot product of the normalized global385

features TG
Mj

and TG
Ei

, yielding the text global-to-386

global similarity score SG2G
T :387

SG2G
T = TG

Mj
· TG

Ei
.388

To further uncover fine-grained clues within lo-389

cal features, TFI applies attention mechanism to390

capture context vector from the local features TL
Mj

391

and TL
Ei

, producing the global-to-local similarity392

score SG2L
T between the global feature TG

Ei
and the393

context vector:394

SG2L
T = TFIG2L(T

G
Ei
, TL

Mj
, TL

Ei
).395

Based on this, the final textual similarity score396

ST can be obtained:397

ST = (SG2G
T + SG2L

T )/2.398

Cross-Modal Features Interaction (CMFI).399

CMFI performs a fine-grained fusion of features400

across modalities. It integrates visual and textual401

features to generate a new context vector, he:402

he = CMFI(TG
Ei
, V L

Ei
).403

The mention is processed similarly to produce 404

the new context vector hm: 405

hm = CMFI(TG
Mj

, V L
Mj

). 406

Based on this, the final multimodal similarity 407

score SC can be obtained: 408

SC = he · hm. 409

5.5 Contrastive Learning 410

Based on the three similarity scores SV , ST , and 411

SC , the model is trained using contrastive loss func- 412

tion. For a mention M and entity E, the combined 413

similarity score is the average of the similarity 414

scores from the three independent units: 415

S(M,E) = (SV + ST + SC)/3. 416

This loss function can be formulated as: 417

LO = −log
exp(S(Mj , Ei))∑
i exp(S(Mj , E

′
i))

, 418

where Ei represents the positive entity correspond- 419

ing to Mj , while E
′
i denotes negative entity from 420

the knowledge base E . It is expected to assign 421

higher evaluation to positive mention-entity pairs 422

and lower evaluation to negative ones. 423

Similarly, the three independent units are trained 424

separately using contrastive loss function: 425

LX = −log
exp(SX(Mj , Ei))∑
i exp(SX(Mj , E

′
i))

, X ∈ {V, T,C}. 426

The final optimization objective function is ex- 427

pressed as: 428

L = LO + λ(LV + LT + LC), 429

where λ is the hyperparameter to control the loss. 430

6 Experiments 431

6.1 Experimental Settings 432

All the training and testing are conducted on a 433

device equipped with 4 Intel(R) Xeon(R) Platinum 434

8380 CPUs and 8 NVIDIA A800-SXM4-80GB 435

GPUs. Detailed experimental settings are provided 436

in Appendix A.1. To comprehensively evaluate 437

the effectiveness of our approach, we compare 438

IIER with various competitive MEL baselines and 439

VLM baselines. A detailed introduction of these 440

baselines is provided in the Appendix A.2. 441

For the VP-MEL task experiments, all ap- 442

proaches are evaluated on the VPWiki dataset. And 443

for the MEL task experiments, all approaches are 444

evaluated on the WikiDiverse (Wang et al., 2022c) 445

dataset. Additional experiments and detailed expla- 446

nations are provided in the Appendix A.9. 447
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Table 2: Performance comparison on the VP-MEL(a) and MEL(b) tasks. Baseline results marked with "∗" are based
on Sui et al. (2024). Each method is run 5 times with different random seeds, and the mean value of each metric is
reported. The best score is highlighted in bold. Detailed evaluation metrics can be found in Appendix A.3.

Methods
VP-MEL

H@1 H@3 H@5

BLIP-2-xl (Li et al., 2023) 15.86 35.41 45.32
BLIP-2-xxl (Li et al., 2023) 21.90 37.31 49.70
mPLUG-Owl3-7b (Ye et al., 2023) 29.46 30.45 48.94
LLaVA-1.5-7b (Liu et al., 2024) 43.20 64.35 65.71
LLaVA-1.5-13b (Liu et al., 2024) 32.93 65.56 66.92
MiniGPT-4-7b (Zhu et al., 2024) 28.10 33.53 37.31
MiniGPT-4-13b (Zhu et al., 2024) 37.61 37.61 40.03

VELML (Zheng et al., 2022) 22.51 37.61 43.35
GHMFC (Wang et al., 2022a) 25.53 41.39 48.94
MIMIC (Luo et al., 2023) 24.62 42.35 49.25
MELOV (Song et al., 2024) 26.44 42.75 51.51

IIER(ours) 48.36 67.51 77.50

(a)

Methods
MEL

H@1 H@3 H@5

ViLT∗ (Kim et al., 2021) 34.39 51.07 57.83
ALBEF∗ (Li et al., 2021) 60.59 75.59 83.30
CLIP∗ (Radford et al., 2021) 61.21 79.63 85.18
METER∗ (Dou et al., 2022) 53.14 70.93 77.59

BERT∗ (Devlin et al., 2019) 55.77 75.73 83.11
BLINK∗ (Wu et al., 2020) 57.14 78.04 85.32
JMEL∗ (Adjali et al., 2020) 37.38 54.23 61.00
VELML (Zheng et al., 2022) 55.53 78.11 84.61
GHMFC (Wang et al., 2022a) 61.17 80.53 86.21
MIMIC (Luo et al., 2023) 63.51 81.04 86.43
MELOV∗ (Sui et al., 2024) 67.32 83.69 87.54

IIER(ours) 69.47 84.43 88.79

(b)

6.2 Main Results448

Results on VP-MEL. As shown in Table 2a,449

IIER significantly outperforms all other methods450

on VP-MEL task. First, among the VLM methods,451

LLaVA-1.5 has the smallest performance gap com-452

pared to our method, with differences of 5.16%,453

3.16%, and 11.79% from IIER across the three454

metrics, respectively. Even so, given the signif-455

icantly lower training cost compared to LLaVA,456

IIER offers a clear advantage in efficiency while457

achieving competitive performance. Second, there458

is a notable performance gap between MEL meth-459

ods and IIER. MEL methods struggle with effective460

entity linking in scenarios where mention words461

are absent, underscoring their limitations and the462

robustness of our approach.463

Results on MEL. Table 2b presents the experi-464

mental results comparing IIER with other methods465

on MEL dataset. During testing, the Detective-466

VLM analyzes image and text data to generate a467

concise representation of mention words, which468

are concatenated with the text and used for entity469

linking similarity calculation. With enhanced vi-470

sual features and external knowledge, IIER demon-471

strates excellent performance in the MEL task. Al-472

though our work primarily focuses on VP-MEL473

rather than MEL, IIER still demonstrates strong474

competitiveness compared to the state-of-the-art475

MEL method. This highlights the effectiveness476

Methods
WikiDiverse WikiDiverse∗

H@1 H@3 H@5 H@1 H@3 H@5

VELML 55.53 78.11 84.61 15.35 26.32 31.38
GHMFC 61.17 80.53 86.21 17.37 28.97 34.36
MIMIC 63.51 81.04 86.43 17.23 29.60 34.84
MELOV 67.32 83.69 87.54 17.66 30.03 36.43

IIER 69.47 84.43 88.79 23.87 38.37 45.14

Table 3: Performance comparison in the absence of men-
tion words on the WikiDiverse dataset. The symbol "∗"
represents the dataset without annotated mention words.

of external implicit knowledge in supporting the 477

reasoning process of entity linking. 478

6.3 Detailed Analysis 479

Influence of Mention Words on MEL Methods. 480

As shown in Table 3, the performance of MEL 481

methods drop significantly across all three metrics 482

in the absence of mention words. The average per- 483

formance decline is 72.65%, 64.48%, and 60.28%, 484

respectively. This indicates that MEL methods 485

fail to extract meaningful information from visual 486

and textual data, making them unsuitable for tasks 487

without mention words. In contrast, even without 488

Detective-VLM, visual prompts, or mention words, 489

IIER can still achieve the best metrics. This demon- 490

strates that IIER in the VP-MEL task possesses a 491

stronger capability to leverage both image and text 492
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Methods
VP-MEL

H@1 H@3 H@5 H@10 H@20

MiniGPT-4-7b 28.55 43.66 52.27 62.99 70.70
MiniGPT-4-13b 27.04 43.96 53.02 63.44 70.72
BLIP-2-xl 37.16 54.38 59.52 66.62 72.81
BLIP-2-xxl 40.63 54.53 61.78 68.73 74.62
LLaVA-1.5-7b 42.45 63.14 69.03 76.74 82.33
LLaVA-1.5-13b 41.54 59.37 66.92 73.11 77.80

Detective-VLM(ours) 48.36 67.51 77.50 82.59 87.90

Table 4: Performance comparison in different VLMs.

V G-Layer
VP-MEL

H@1 H@3 H@5 H@10 H@20

Single Shallow Layer 39.88 60.88 71.00 79.31 86.56
Single Deep Layer 39.73 58.91 69.94 80.82 88.07

(Shallow+Deep) Layers 43.66 60.88 68.58 78.70 84.29
(3 Shallow+Deep) Layers 40.33 59.22 67.37 75.38 83.23

IIER 48.36 67.51 77.50 82.59 87.90

Table 5: Performance comparison across different fea-
ture layers in V G.

information effectively.493

Effect Analysis of Detective-VLM. As shown in494

Table 4, we evaluate the effectiveness of Detective-495

VLM by replacing it with various VLMs and an-496

alyzing the results. Our method achieves the497

best performance across all metrics. In particular,498

Detective-VLM shows an absolute improvement499

of 5.91% in Hit@1 compared to the second-best500

approach. In contrast, non-fine-tuned VLMs often501

produce a large amount of irrelevant information,502

which hampers subsequent processing.503

Contributions of Visual Features from Differ-504

ent Layers. As shown in Table 5, we combine505

visual features from different layers during the ex-506

traction of V G to compare the effects of various507

combinations. In the deeper layers of CLIP visual508

encoder, the model tends to focus more on abstract,509

high-level concepts. VP-MEL focuses on aligning510

high-level concepts between images and text, facili-511

tating the capture of their semantic correspondence.512

This explains why using a single deep layer fea-513

ture achieves the highest H@20 score of 88.07%.514

However, in the VP-MEL task, low-level texture515

details are equally important. Shallow texture fea-516

tures need to be extracted to help the model focus517

on the presence of visual prompts. Based on this,518

Methods
VP-MEL

H@1 H@3 H@5 H@10 H@20

IIER 48.36 67.51 77.50 82.59 87.90

IIER† 35.65 53.93 65.26 73.57 80.51

IIER∗ 35.03 53.80 65.01 73.26 80.39

Table 6: The model marked "†" without VLM. The
model marked "∗" without VLM and Visual Prompts.

we choose to concatenate the deep features with 519

the shallow features. Experimental results show 520

that the best performance is achieved when the 521

proportion of deep features is larger. 522

Ablation Study. In Table 6, we conduct ablation 523

study on the IIER framework. First, we remove 524

the Detective-VLM module from IIER, which re- 525

sults in a decline across all metrics. Notably, even 526

without Detective-VLM, IIER shows robust entity 527

linking performance, outperforming MEL methods 528

as shown in Table 2a. This highlights the ability of 529

IIER to efficiently leverage multimodal information 530

from both images and text. Subsequently, remov- 531

ing the visual prompts from the images results in a 532

decline across all metrics, emphasizing the crucial 533

role of visual prompts in guiding the model to focus 534

on relevant regions within the images. Note that 535

the slight decrease in metrics does not suggest a 536

diminished significance of visual prompts, as they 537

are integral to the functioning of the VLM. 538

7 Conclusion 539

In this paper, we propose VP-MEL, a novel task 540

designed to link visual regions in image-text pairs 541

to their corresponding entities in a knowledge base, 542

guided by visual prompts. To support this task, 543

we develop VPWiki, a high-quality dataset con- 544

structed using an automated annotation pipeline 545

to improve annotation efficiency. To tackle VP- 546

MEL, we propose IIER, a framework that effec- 547

tively leverages visual prompts to extract enriched 548

local visual features and generate supplementary 549

textual information. IIER maintains a balance be- 550

tween visual and textual features, preventing exces- 551

sive reliance on a single modality. Extensive ex- 552

perimental results demonstrate that IIER surpasses 553

state-of-the-art methods. Furthermore, VP-MEL 554

significantly alleviates the constraints of mention 555

words and expands the applicability of MEL to 556

real-world scenarios. 557
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Limitations558

VP-MEL expands the application scenarios of559

MEL, allowing users to directly annotate areas560

of interest within images. However, this requires561

a correlation between the image and the text. In562

cases where the image and text are uncorrelated,563

the performance of VP-MEL may degrade. In564

practical applications, users may utilize arbitrarily565

shaped regions to indicate areas of interest. Future566

research will aim to refine the design of visual567

prompts for improved adaptability and perfor-568

mance. We hope this work will inspire further569

research into leveraging recent advancements in570

both natural language processing and computer571

vision to enhance performance.572

Ethics Statement573

The datasets employed in this paper, WikiDiverse,574

WikiMEL, and RichpediaMEL, are all publicly ac-575

cessible. As such, the images, texts, and knowledge576

bases referenced in this study do not infringe upon577

the privacy rights of any individual.578
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A Appendix 760

A.1 Experimental Settings 761

For our proposed model framework, we use pre- 762

trained ViT-B/32 (Dosovitskiy et al., 2021) as the 763

visual encoder, initialized with weights from CLIP- 764

ViT-Base-Patch321, with dv and dc set to 96. The 765

number of epochs is set to 20, and the learning rate 766

1https://huggingface.co/openai/
clip-vit-base-patch32
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is tuned to 1×10−5. The batch size is set to 128. In767

the loss function, λ is set to 1. For the text encoder,768

we select pre-trained BERT model (Devlin et al.,769

2019), setting the maximum input length for text770

to 40 and the output feature dimension dt to 512.771

Without including the VLM, the size of the train-772

able parameters is 153 M, and the total estimated773

model parameters size is 613 M. We train and test774

on a device equipped with 4 Intel(R) Xeon(R) Plat-775

inum 8380 CPUs and 8 NVIDIA A800-SXM4-776

80GB GPUs.777

A.2 Descriptions of Baselines778

To thoroughly evaluate the performance of our779

method, we compare it against strong MEL base-780

lines, including BERT (Devlin et al., 2019),781

BLINK (Wu et al., 2020), JMEL (Adjali et al.,782

2020), VELML (Zheng et al., 2022), GHMFC783

(Wang et al., 2022a), MIMIC (Luo et al., 2023)784

and MELOV (Sui et al., 2024).785

Additionally, we select robust VLMs for com-786

parison, including BLIP-2-xl 2, BLIP-2-xxl 3 (Li787

et al., 2023), mPLUG-Owl3-7b 4 (Ye et al., 2023),788

LLaVA-1.5-7b 5, LLaVA-1.5-13b 6 (Liu et al.,789

2024), MiniGPT-4-7b 7, MiniGPT-4-13b 8 (Zhu790

et al., 2024), ViLT (Kim et al., 2021), ALBEF (Li791

et al., 2021), CLIP (Radford et al., 2021), and ME-792

TER (Dou et al., 2022). We reimplemented JMEL,793

VELML and MELOV according to the original lit-794

erature due to they did not release the code. We ran795

the official implementations of the other baselines796

with their default settings.797

•BERT (Devlin et al., 2019) is a pre-trained lan-798

guage model based on the Transformer architecture,799

designed to deeply model contextual information800

from both directions of a text, generating general-801

purpose word representations.802

•BLINK (Wu et al., 2020) present a two-stage zero-803

shot linking algorithm, where each entity is defined804

2https://huggingface.co/Salesforce/
blip2-flan-t5-xl-coco

3https://huggingface.co/Salesforce/
blip2-flan-t5-xxl

4https://huggingface.co/mPLUG/
mPLUG-Owl3-7B-240728

5https://huggingface.co/liuhaotian/llava-v1.
5-7b

6https://huggingface.co/liuhaotian/llava-v1.
5-13b

7https://drive.google.com/file/d/
1RY9jV0dyqLX-o38LrumkKRh6Jtaop58R/view?usp=
sharing

8https://drive.google.com/file/d/
1a4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=
share_link

only by a short textual description. 805

•JMEL (Adjali et al., 2020) extracts both unigram 806

and bigram embeddings as textual features. Differ- 807

ent features are fused by concatenation and a fully 808

connected layer. 809

•VELML (Zheng et al., 2022) utilizes VGG-16 810

network to obtain object-level visual features. The 811

two modalities are fused with additional attention 812

mechanism. 813

•GHMFC (Wang et al., 2022a) extracts hierarchi- 814

cal features of text and visual co-attention through 815

the multi-modal co-attention mechanism. 816

•MIMIC (Luo et al., 2023) devise three interaction 817

units to sufficiently explore and extract diverse mul- 818

timodal interactions and patterns for entity linking. 819

•MELOV (Sui et al., 2024) incorporates inter- 820

modality generation and intra-modality aggrega- 821

tion. 822

•BLIP-2 (Li et al., 2023) effectively utilizes the 823

noisy web data by bootstrapping the captions, 824

where a captioner generates synthetic captions and 825

a filter removes the noisy ones. 826

•mPLUG-Owl3 (Ye et al., 2023) propose novel 827

hyper attention blocks to efficiently integrate vi- 828

sion and language into a common language-guided 829

semantic space, thereby facilitating the processing 830

of extended multi-image scenarios. 831

•LLaVA-1.5 (Liu et al., 2024) is an end-to-end 832

trained large multimodal model that connects a 833

vision encoder and an LLM for general purpose 834

visual and language understanding. 835

•MiniGPT-4 (Zhu et al., 2024) aligns a frozen vi- 836

sual encoder with a frozen LLM, Vicuna, using just 837

one projection layer. 838

•ViLT (Kim et al., 2021) commissions the trans- 839

former module to extract and process visual fea- 840

tures in place of a separate deep visual embedder. 841

•ALBEF (Li et al., 2021) introduce a contrastive 842

loss to align the image and text representations 843

before fusing them through cross-modal attention, 844

which enables more grounded vision and language 845

representation learning. 846

•CLIP (Radford et al., 2021) is a neural network 847

trained on a variety of (image, text) pairs. It can be 848

instructed in natural language to predict the most 849

relevant text snippet, given an image. 850

•METER (Dou et al., 2022) systematically inves- 851

tigate how to train a fully-transformer VLP model 852

in an end-to-end manner. 853
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A.3 Evaluation Metrics854

For evaluation, we utilize Top-k accuracy as the855

metric that can be calculated by the following856

formula:857

Accuracytop−k =
1

N

N∑
i

I(ti ∈ yki ),858

where N represents the total number of samples,859

and I is the indicator function. When the receiving860

condition is satisfied, I is set to 1, and 0 otherwise.861

A.4 Detective-VLM862

Detective-VLM is based on the mplug-owl2 frame-863

work (Ye et al., 2024), with instruction fine-tuning864

carried out using the mplug-owl2-llama2-7b model865
9.866

We utilize VPWiki dataset to design the fine-867

tuning dataset, where {Image} and {Sentence}868

correspond to mvj and msj in Mj , respectively. In869

the fine-tuning dataset, the {Entity Name} cor-870

responds to the mention words in Mj that are asso-871

ciated with the Visual prompt, the {Entity Type}872

is one of [Person, Organization, Location,873

Country, Event, Works, Misc].874

A.5 Feature Interaction Formula875

Visual-Features Interaction (VFI). The two876

similarity scores SM2E
V and SE2M

V in visual feature877

interaction are calculated using the same method.878

Here, we take SM2E
V as an example.879

hp = MeanPooling(V L
Ei
),880

881
hvc = FC(LayerNorm(hp + V G

Mj
)),882

883
hvg = Tanh(FC(hvc)),884

885
hv = LayerNorm(hvg ∗ hvc + V G

Ei
),886

887
SM2E
V = hv · V G

Mj
.888

Textual-Features Interaction (TFI). The calcu-889

lation of the global-to-local similarity score SG2L
T890

incorporates an attention mechanism as follows:891

Q,K, V = TL
Ei
Wtq, T

L
Mj

Wtk, T
L
Mj

Wtv,892
893

Ht = softmax(
QKT

√
dT

)V,894

where TL
Ei
Wtq, TL

Mj
Wtk, TL

Mj
Wtv are learnable895

matrices.896

ht = LayerNorm(MeanPooling(Ht)),897
898

SG2L
T = FC(TG

Ei
) · ht.899

9https://huggingface.co/MAGAer13/
mplug-owl2-llama2-7b

Cross-Modal Features Interaction (CMFI). 900

CMFI performs alignment and fusion of features 901

from different modalities. 902

het, hmt = FCc1(T
G
Ei
),FCc1(T

G
Mj

), 903

904
Hev, Hmv = FCc2(V

L
Ei
),FCc2(V

L
Mj

), 905

in which FCc1 is defined by Wc1 ∈ Rdt×dc and 906

bc1 ∈ Rdc , FCc2 is defined by Wc2 ∈ Rdv×dc and 907

bc2 ∈ Rdc . 908

αi =
exp(het ·H i

ev)∑n+1
1 exp(het ·H i

ev)
, 909

910

hec =
n∑
i

αi ∗H i
ev, i ∈ [1, 2, ..., (n+ 1)], 911

912
heg = Tanh(FCc3(het), 913

in which FCc3 is defined by Wc3 ∈ Rdc×dc and 914

bc3 ∈ Rdc . 915

he = LayerNorm(heg ∗ het + hec). 916

By replacing inputs het and Hev with hmt and 917

Hmv, hm can be obtained using the aforementioned 918

formula. 919

A.6 Data Annotation Pipeline 920

Please note that the pipeline serves as a prepro- 921

cessing stage for data annotation. We use the Vi- 922

sual Entailment Module and the Visual Grounding 923

Module to automatically annotate visual prompts 924

in the images. While the accuracy of the pipeline 925

is limited—such as its difficulty in distinguishing 926

between specific individuals when multiple people 927

are present—it still plays a crucial role in improv- 928

ing annotation efficiency. Due to these limitations, 929

manual verification and re-annotation are neces- 930

sary after pipeline processing. However, for anno- 931

tators, making a simple "yes or no" judgment is 932

much easier than selecting a specific individual. As 933

a result, even with limited accuracy, the pipeline 934

significantly boosts the overall efficiency of the 935

annotation process. 936

For the Visual Entailment Module and Visual 937

Grounding Module, we choose OFAlarge(V E) and 938

OFAlarge(V G) (Wang et al., 2022b), respectively. 939

A.7 WikiDiverse and WikiMEL 940

WikiDiverse is a high-quality human-annotated 941

MEL dataset with diversified contextual topics and 942

entity types from Wikinews, which uses Wikipedia 943
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WIKIDiverse WikiMEL RichpediaMEL

Sentences 7,405 22,070 17,724
M. in train 11,351 18,092 12,463
M. in valid 1,664 2,585 1,780
M. in test 2,078 5,169 3,562
Entities 132,460 109,976 160,935

Table 7: Statistics of WIKIDiverse, WikiMEL, and Rich-
pediaMEL. M. denotes Mentions.

Figure 5: Entity type distribution of WIKIDiverse.

as the corresponding knowledge base. WikiMEL944

is collected from Wikipedia entities pages and con-945

tains more than 22k multimodal sentences. The946

statistics of WIKIDiverse and WikiMEL are shown947

in Table 7. The entity type distribution of WIKIDi-948

verse is illustrated in Figure 5.949

During the data collection process, we select950

the entire WIKIDiverse dataset along with 5,000951

samples from the WikiMEL dataset. Compared952

to WikiMEL, WIKIDiverse features more content-953

rich images that better represent real-world appli-954

cation scenarios, making it particularly suitable955

for meeting the requirements of the VP-MEL task956

in practical contexts. Consequently, WIKIDiverse957

constitutes the majority of the VPWiki dataset. Ad-958

ditionally, we integrate the knowledge bases (KBs)959

from both datasets, resulting in an entity set encom-960

passing all entities in the main namespace.961

A.8 Data Samples962

We provide additional data samples categorized by963

entity type. The specific details can be found in964

Figure 7.965

A.9 Additional Experiments966

To comprehensively assess the performance of the967

IIER framework in the MEL task, we test IIER on968

the WikiMEL and RichpediaMEL datasets (Wang969

Methods
WikiMEL RichpediaMEL

H@1 H@3 H@5 H@1 H@3 H@5

ViLT∗ 72.64 84.51 87.86 45.85 62.96 69.80
ALBEF∗ 78.64 88.93 91.75 65.17 82.84 88.28
CLIP∗ 83.23 92.10 94.51 67.78 85.22 90.04
METER∗ 72.46 84.41 88.17 63.96 82.24 87.08
BERT∗ 74.82 86.79 90.47 59.55 81.12 87.16
BLINK∗ 74.66 86.63 90.57 58.47 81.51 88.09
JMEL∗ 64.65 79.99 84.34 48.82 66.77 73.99
VELML 68.90 83.50 87.77 62.80 82.04 87.84
GHMFC 75.54 88.82 92.59 76.95 88.85 92.11
MIMIC 87.98 95.07 96.37 81.02 91.77 94.38
MELOV∗ 88.91 95.61 96.58 84.14 92.81 94.89

IIER 88.93 95.69 96.73 84.63 93.27 95.30

Table 8: Baseline results marked with "∗" according to
Sui et al. (2024). We run each method three times with
different random seeds and report the mean value of
every metric. The best score is highlighted in bold.

et al., 2022a). The statistics of WikiMEL and Rich- 970

pediaMEL are shown in Table 7. Experimental 971

results are shown in Table 8. The experimental 972

results demonstrate that IIER remains highly com- 973

petitive with state-of-the-art MEL method. 974

It is noted that within these two datasets, certain 975

metrics of IIER exhibit values that are comparable 976

to those of MELOV, such as H@1 and H@3 in the 977

WikiMEL dataset. This may be attributed to the 978

higher image quality and the homogeneous entity 979

types (primarily Person) in WikiMEL and Richpe- 980

diaMEL. When datasets contain fewer entity types 981

and minimal image noise, the auxiliary information 982

generated by IIER contributes less to performance 983

improvement. 984

Nevertheless, IIER achieves the best perfor- 985

mance on WikiDiverse, which includes a wider va- 986

riety of entity types, and achieves a new SOTA for 987

the VP-MEL task. As MEL increasingly addresses 988

more complex scenarios, IIER shows significant 989

potential for future advancements. 990

A.10 Case Study 991

To clearly demonstrate the proposed VP-MEL task 992

and the IIER model, we conduct case studies and 993

compare them against two strong competitors (i.e., 994

LLaVA-1.5 and MIMIC), in Figure 6. As shown 995

in Figure 6a, in the first case, all three methods 996

correctly predicted the entity. IIER makes full use 997

of both image and text information, allowing it to 998

more effectively distinguish between the different 999
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(a) Successful predictions.

(b) Failed predictions.

Figure 6: Case study for VP-MEL. Each row is a case, which contains Input, ground truth entity, and top three
retrieved entities of three methods, i.e., IIER (ours), LLaVA-1.5 (Liu et al., 2024), MIMIC (Luo et al., 2023).
Each retrieved entity is described by its Wikidata QID and entity name, with the entity marked with a checkmark
indicating the correct one.

individuals in the image. LLaVA-1.5 may be over-1000

whelmed by the textual information, while MIMIC1001

struggles to identify the correct entity when the1002

mention words are unavailable. In the second case,1003

both LLaVA-1.5 and MIMIC retrieve Endeavour1004

as the first choice. Only IIER, with the guidance of1005

Visual Prompts and integration of textual informa-1006

tion, correctly predicts the right entity. In Figure1007

6b, we present the failed predictions. In the first1008

case, when the content of the image interferes with 1009

the visual prompt, it impairs the reasoning process 1010

of IIER. The red box in the image bears a high 1011

similarity to the visual prompt. As a result, IIER in- 1012

correctly focuses on the wrong region of the image, 1013

ranking Donald Trump first. When IIER encoun- 1014

ters difficulties in distinguishing the objects within 1015

the visual prompts, it leads to incorrect inferences. 1016

For example, in the second case, the distinguish- 1017
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Figure 7: Examples of the VPWiki dataset. Each row represents a sample corresponding to a specific entity type,
which contains the entity type, image of mention, text of mention, image of entity, and entity.

ing features of the two individuals in the image1018

are obstructed, which causes IIER to struggle in1019

differentiating between them. The image content1020

in real-world data is often complex, which makes1021

VP-MEL a challenging task. We hope that this task1022

can be further refined and developed over time.1023
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