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Abstract

In ensembles, improved generalization is frequently
attributed to diversity among members of the en-
semble. By viewing a single neural network as an
implicit ensemble, we apply well-known ensemble
diversity measures to study the relationship between
diversity and generalization in artificial neural net-
works. Our results show that i) deeper layers of the
network have higher levels of diversity and ii) layer-
wise accuracy positively correlates with diversity.
Additionally, we study the effects of well-known reg-
ularizers such as Dropout, DropConnect and batch
size, on diversity and generalization. We generally
find that increasing the strength of the regularizer
increases the diversity in the neural network and
this increase in diversity is positively correlated with
model accuracy. We show that these results hold
for several benchmark datasets (such as Fashion-
MNIST and CIFAR-10) and architectures (MLPs
and CNNs). Our findings suggest new avenues of re-
search into the generalization ability of deep neural
networks.

1 Introduction

A complete understanding of why deep neural net-
works (DNNs) generalize well to unseen data remains
an open problem. For example, it is well-known that
overparameterized neural networks achieve good gen-
eralization despite interpolating their training data
[1-3]. Furthermore, rapid progress has been made
in developing methods, called reqularization, that
encourages generalization. Examples of these meth-
ods include Dropout [4], weight decay [5], input or
weight noise [5].

A widely-used regularization method is ensem-
bling, where the output of several models are ag-
gregated to produce a final output. Crucial to the
generalization ability of the ensemble is the diver-
sity of the models [6-9]. Depending on the task,
there are several definitions of diversity that may be
used [10]. For example, diversity can be measured
by the correlation between the models’ predictions
in the ensemble, in which case, low correlation would
indicate high diversity. In general, higher diversity
among the models is thought to correspond to better
generalization of the ensemble, albeit with a trade-
off where too much diversity can negatively impact
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Investigating the relationship between diversity and generaliza-
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Figure 1. Model performance against averaged diversity
(across layers) for models trained on the Fashion-MNIST
dataset using DropConnect as a regularizer with values in
the range 0 — 50. Diversity is shown by the disagreement
measure. A higher disagreement value constitutes a
higher diversity. There is a clear increase in model
performance as the averaged diversity increases.

generalization [6, 7, 11, 12].

Recently, an insightful approach to investigating
generalization in deep learning models has been to
view a single deep learning model as an implicit
ensemble. For the problem of vanishing gradients
in deep residual networks, Veit et al. [13] view a
deep residual network as a collection of paths and
show that the paths have ensemble-like behavior.
Another approach by Olson et al. [14] decomposes a
single neural network into an ensemble of low-bias
subnetworks and, by using correlation as a proxy for
diversity and showing that the subnetworks exhibit
low correlation, argues that an internal regulariza-
tion process helps mitigate overfitting in neural net-
works. Noting regularities in the activation patterns
of the hidden nodes of a DNN, Davel et al. [15] view
a single hidden node as a classifier. More recently,
through investigating the problem of catastrophic
forgetting in continual learning, Benjamin et al. [16]
show that a neural network in the lazy regime can
be decomposed into an implicit ensemble consisting
of the weights of the neural network.

However, in viewing a neural network as an im-
plicit ensemble, the role of diversity in a neural net-
work remains unexplored. In this paper, we follow
the approach of Davel et al. [15] and view a single
neural network as an implicit ensemble with hidden
nodes as classifiers. This allows us to investigate the
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role of diversity with respect to generalization of the
network. The main contributions of the paper are
as follows:

1. We examine the diversity of the hidden nodes
using established diversity measures.

2. We empirically investigate the relationship be-
tween node-level diversity and generalization
across several benchmark datasets and for dif-
ferent architectures.

3. We analyze the effect of well-known regulariza-
tion methods that encourages generalization and
examine the effect of these methods on diversity.
We show that diversity correlates with the gener-
alization of the neural network (see Figure 1).

Our results provide new insight into the ability
of neural networks to generalize and offers new av-
enues of research into the generalization of neural
networks.

2 Background

2.1 Ensemble Methods

Ensemble methods combine predictions of multi-
ple classifiers to achieve better generalization than
individual models. Classic approaches such as bag-
ging [17] and boosting [18], have shown that ensem-
bles reduce variance, improve robustness, and often
outperform single models across diverse tasks.

A key factor to the success of ensembles is diver-
sity among the base classifiers. If all classifiers make
identical errors, the ensemble offers no advantage.
However, when classifiers make different errors, the
ensemble can correct individual mistakes, yielding
improved accuracy [6, 7]. Theoretical and empiri-
cal studies have shown that ensembles benefit most
when base learners are both accurate and diverse [10].
Diversity can be defined in several ways, for exam-
ple as the degree of correlation between classifiers’
predictions, with lower correlation implying higher
diversity.

2.2 Diversity Measures

Several measures have been proposed to quantify
diversity in ensembles [10]. In this paper, we focus
on four well-known metrics: disagreement, double-
fault, Q-statistic, and entropy.

These measures (besides entropy) are based on
the outcomes of pairs of classifiers, which can be
summarized using a 2 x 2 contingency table (Ta-
ble 1). Assuming a C class classification problem,
let D; and Dj be two classifiers. Given a data set
{(2®,y)1s_, let N1 N0 NO and N denote
the frequency of the following cases, respectively:
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both D; and Dy, correct, D; correct and Dy incor-
rect, Dy correct and D; incorrect, and both D, and
Dy, incorrect.

We consider three pairwise metrics, namely:

e Disagreement

NlO + NOl

DiSi’k = N 5

(1)
where N is the total number of samples. This
measures the proportion of instances where the
classifiers disagree. Higher disagreement relates
to higher diversity.

e Double-fault

NOO
df@k - ‘z§f77 (2)
This measures the proportion of instances where
both classifiers misclassify the same sample. A
lower double-fault relates to a higher diversity

(they fail on different samples).
e (QQ-statistic

(NllNOO _ NlONOI)

Q= (NTIN00 1 N10NOT)

(3)

Values range from —1 to +1, with 0 indicating
independence (which we view as the highest level
of diversity).

We also consider one non-pairwise metric:

e Entropy Entropy quantifies the uncertainty in
ensemble predictions and serves as a proxy for
classifier disagreement [10, 19]. For each sample
z(®) | we estimate the probability as

L
Ply | 2®) = 7 31D, (W) =

=1

yh  (4)

where L is the number of subpredictors, and y €
{1,...,C}. The per sample entropy is:

Hz®W) ==Y Ply|«®)log Py | «™). (5)

We can then calculate the average over the
dataset:

N
1
Entce = + > H®) (6)
k=1

Higher values of entropy indicate higher diversity
between subpredictor predictions.

These measures provide complementary views
of diversity—disagreement emphasizes complemen-
tarity, double-fault emphasizes error overlap, Q-
statistic emphasizes correlation, and entropy em-
phasizes overall variety.
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Table 1. 2x2 contingency table which represents the
frequencies of two classifiers D; and Dy. Here, N*!,
N0 NO and N are the observed frequencies in each
cell. This means that N'! is the number of times that
both D; and Dy are correct, N 10 i5 the number of times
only D; is correct, N°! the number of times only Dy, is
correct, and N% the number of times that both D; and
Dy are incorrect.

Dy, correct (1)
lel
NO1

Dy, incorrect (0)
ple
vaO

D; correct (1)
D; incorrect (0)

3 Method

3.1 Implicit Ensemble Framework

In order to investigate the effects of diversity in deep
neural networks, we view a single neural network as
an implicit ensemble. In particular, we adopt the
framework introduced by Davel et al. [15], which
treats each hidden node as a weak classifier. We
refer to such a node classifier as a subpredictor.

Intuitively, hidden nodes tend to specialize dur-
ing training. That is to say, they become sensitive
to certain patterns or classes. Following Davel et
al. [15], we estimate, for each node n and class ¢, the
class-conditional probability P(z, | ¢) of each node’s
pre-activation z,(z) given a sample x by applying a
kernel density estimator (KDE) trained using all s
training samples’ activation values observed at the
node.

Applying Bayes’ rule yields a node-level posterior
over classes for an input with pre-activation z,,:

_ P(zn]¢)P(c)
P(c| zn) = >w Pl | ¢)P()

where P(c) is the class prior. P(c | z,) is then node
n’s probability for class ¢ when given a certain input.
Then, for a given pre-activation z,(x) and a node n
in layer ¢, the node’s class prediction is computed
as gﬁf = arg max, P(c| z,(x)). We refer to this as
a hard vote.

(7)

Majority vote ensemble: To ensemble the out-
put’s of the subpredictors in a layer ¢, we employ a
simple majority vote rule to determine our layer-wise
prediction, and by extension, layer-wise accuracy.
These hard votes are then used for computing the
diversity of the predictions across nodes within the
given layer.

Nodes as subpredictors We first demonstrate
that individual nodes can indeed be treated as mean-
ingful subpredictors within the implicit ensemble. To
do this, we compute the accuracy of each node when
predicting class labels. Figure 2 shows a heatmap of
node accuracies across layers, while Figure 3 presents
the layer-wise accuracy for the train, validation, and
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Figure 2. Accuracy heatmap of node predictions in a
three layer MLP. Only the first 100 nodes are shown here.
Most nodes in each layer have an individual accuracy of
around 15-20% (higher than random guessing). Results
were obtained from the MNIST test set for a model
trained on 2,000 samples of the MNIST dataset.

Train accuracy per layer Validation accuracy per layer Test accuracy per layer

Layer Layer Layer

Figure 3. Layer-wise accuracy graphs for the train,
validation, and test on MNIST. Accuracy improves with
network depth. Each layer accuracy has significantly
higher accuracy than compared to the individual node ac-
curacies. This clearly showcases the ensembling strength
of individual nodes within a layer.

test sets. These results confirm that individual nodes
can perform as subpredictors.

Although the predictive ability of individual nodes
within a neural network layer may be limited, their
performance is consistently better than random
chance. When the output of these subpredictors
are aggregated, their collective predictions at the
layer level yields better accuracies over the train-
ing, validation, and testing sets, similar in fashion
to the principles of ensemble learning, where multi-
ple ‘weak learners’ are combined to create a single
‘strong learner.’

3.2 Applying Diversity Metrics

We focus on the diversity metrics mentioned in Sec-
tion 2.2.

We compute these metrics directly from the node-
level predictions. For pairwise measures like Q-
statistic, disagreement, or double-fault, we calculate
the average over all unique pairs of nodes within
a specific layer. For our non-pairwise metric i.e.,
entropy, we compute the measures across all nodes
in the layer directly.

To facilitate these calculations, we first needed to
construct our contingency tables (see Table 1) for
each combination of subpredictors within a layer.
This was done by first creating a binary accuracy
matrix, B, from our subpredictor predictions. Each
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entry, By(f), indicates whether node n correctly clas-
sified sample x by comparing the sample’s true class

label y(®) to the node’s predicted class label y)éxrz

1. if - () — o (x)
B(:E) :{ ) 1 y@,n Y (8)

n .
0, otherwise

We then use the binary accuracy matrix to con-
struct the contingency table for each pair of nodes
(n1,m2). This table records the number of samples
for which both nodes made the same or different
predictions, based on whether their predictions were
correct (1) or incorrect (0). Then using the equa-
tions given in 2.2, we can compute each diversity
metric across layers.

3.3 Training protocol

Due to how easily MLPs learn datasets like MNIST
and Fashion-MNIST (with evaluation accuracies of-
ten being above 98%), and to more clearly see the
effects of inducing diversity, we train the MLP net-
works on a small stratified subset of the training data
(e.g., 2,000 samples) until interpolation (100% train-
ing accuracy). This protocol ensures that models
generalize to different degrees despite being perfectly
fit to the training subset. CNN models are trained
using the full CIFAR-10 training set. Models are
trained using cross-entropy loss and optimized with
the Adam optimizer, and no batch normalization has
been applied. All experiments are repeated across
five different random model seeds. We report the
mean + standard deviation for most of our results.

Details regarding datasets used and model archi-
tectures can be found in Appendix A.

3.4 Inducing diversity through regu-
larization

Regularization methods are commonly used to im-
prove generalization in deep learning [5]. To study
the effect of induced diversity, we apply common reg-
ularization techniques that we believe should have
an effect on the diversity within the network:

e Dropout: [4] randomly deactivates nodes dur-
ing training, forcing different subsets of nodes to
specialize. Applied to hidden layers with varying
rates (0.1-0.5 for MLPs, 0.1-0.3 for CNNs).

e DropConnect: [20] similar to Dropout, except
the weights are randomly removed rather than
the activations. The same rates are applied as for
Dropout.

e Batch size variation: [21] smaller batch sizes
increase gradient noise which could possibly intro-
duce some diversity to the nodes during training.
Models are trained with batch sizes of: 16, 32, 64,
128, 256 (baseline), 512.
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Expected effects of induction: For Dropout
and DropConnect, increasing the drop probability p
should raise the node-level diversity by discouraging
co-adaptation and encouraging specialization across
stochastic subnetworks [4]. For batch size, smaller
batches are expected to produce higher diversity
because they introduce more gradient noise and more
parameter updates per epoch, possible promoting
more node-level diversity.

In this work, we use these techniques to explicitly
manipulate diversity and investigate its effect on
generalization in implicit ensembles.

4 Empirical Results

4.1 Diversity trends (no induced reg-
ularization)

Having established that nodes can act as subpredic-
tors, we evaluate whether classical diversity mea-
sures provide meaningful insights in this implicit
setting.

On our three-layer MLP, mean diversity (averaged
over five seeds) increases with depth for most metrics.
Disagreement, Double-fault and entropy all show a
monotonic increase from layer 1 to layer 3, with the
Disagreement measure illustrated in Figure 4. This
overall trend suggests that subpredictors in later
layers produce more varied outputs. However, the
Q-statistic is an outlier, showing an initial increase
followed by a slight decrease in the last layer (Fig-
ure B.1). Additional results for the other metrics
are available in Table B.1.

The increase in diversity with depth mirrors the
trend in layer accuracy, as later layers are more
accurate. We found a strong correlation between
diversity and layer accuracy across all metrics, in
particular, the Disagreement measure shows a near-
linear relationship with layer accuracy (Pearson r =
0.98, Figure 4). Other metrics show qualitatively
similar correlations, though the Q-statistic has a
slightly weaker correlation.

Across datasets, the depth trend is reliable only
for Disagreement and Double-fault. Q-statistic and
entropy vary in their diversity trends by dataset
and layer, and do not yield a consistent monotonic
pattern, so we treat them as secondary in the cross-
dataset summaries (see Table B.1).

4.2 Inducing Diversity

Regularization effects on model perfor-
mance We investigate how certain regularization
techniques—Dropout, DropConnect, and batch size—
affect generalization and diversity.

On Fashion-MNIST, increasing the DropConnect
probability p improves model test accuracy (Fig-
ure 5). We observe the same pattern with Dropout
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Figure 4. (left) Disagreement of node-level predictions
across layers of a three-layer MLP trained on Fashion-
MNIST, averaged over five seeds, and (right) the cor-
relation between the disagreement and layer accuracy.
The annotated values correspond to the averaged layer
accuracies, which rise in tandem with disagreement. The
right panel confirms this relationship, showing a strong
positive correlation (Pearson r = 0.98) between disagree-
ment and layer accuracy across seeds and layers.

f_mnist_dropConnect: Test accuracy vs DropConnect

—e— Mean
15D

0.8325

0.8300

0.8275

0.8250

Test accuracy

0.8225

0.8200

0.8175

o
15
N
3
w
8
2
38
3

Inducing (%)

Figure 5. Model test performance against percentage
DropConnect applied during training for the Fashion-
MNIST dataset. There is a clear increasing trend in
accuracy as the drop probability being applied is in-
creased.

(when increasing p) and with smaller batch sizes
(Table C.1).

Regularization effects on diversity The same
settings that help increase model accuracy, also in-
creases Disagreement and reduces Double-fault. Av-
eraged across layers, disagreement increases (and
double-fault decreases) as p rises for Dropout/Drop-
Connect and as batch size decreases. The Q-statistic
shows a similar decrease as double-fault on Fashion-
MNIST, while entropy has an initial increase fol-
lowed by a continuous decrease (see Table C.3).

Across datasets, the only robust trends are for dis-
agreement and double-fault; Q-statistic and entropy
are unstable and dataset-dependent.

The link between generalization and diversity
We explicitly test whether induced diversity corre-
lates with generalization on Fashion-MNIST. Our
results show that increasing regularizer strength—
through higher drop probabilities for Dropout/Drop-
Connect or smaller batch sizes—yields both higher
test accuracy and higher average diversity (Figure 1),

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Correlation (Pearson r) between model test
accuracy and averaged diversity under induced diver-
sity sweeps (DropConnect, Dropout, batch size) for the
Fashion-MNIST dataset.

Diversity measure | DropConnect | Dropout | Batch size
Disagreement 0.8888 0.6289 0.5566
Double-fault -0.8970 -0.8285 -0.6734
Q-statistic -0.7503 -0.1365 -0.4831
Entropy -0.4859 -0.7126 0.4253

although the results are metric- and regularizer-
dependent.

We see this clearly in Table 2. Disagreement
shows a strong positive correlation with accuracy
(r = 0.89,0.63,0.56)), while Double-fault is strongly
negative (r ~ —0.90, —0.83, —0.67). Q-statistic is es-
pecially weak under Dropout, and entropy is mostly
negative but flips positive for the batch size sweep.

Based on these results, we conclude that there is
a positive association between generalization and
diversity—higher node-level diversity corresponds
to higher test accuracy—most consistently captured
by Disagreement and Double-fault.

Further results The trends and results men-
tioned above repeat across MNIST, K-MNIST, and
CIFAR-10 datasets and hold for both MLPs and
CNNs (Table C.4).

5 Conclusion

By viewing a network as an implicit ensemble of
node-level classifiers, we measured diversity inside
MLPs and a CNN. We find that diversity increases
from shallow to deeper layers. We also find that well-
known regularizers such as Dropout, Dropconnect,
and batch size increases the diversity in a neural
network. Additionally, we find that this increase in
diversity follows model generalization performance:
average diversity correlates with test accuracy.

For the diversity measures applied to a single neu-
ral network, we find that disagreement and double-
fault are the most reliable measures of diversity,
while Q-statistic and entropy are less consistent
across datasets and regularizers.

Future work: Overall, these results show that
diversity could be a used as a method of predicting
generalization in a neural network. Additional pos-
sible research avenues includes exploring additional
diversity induction methods—e.g., adding an explicit
diversity term to the loss function— and extending
the analysis to other architectures (ResNets, Trans-
formers) and more challenging datasets (CIFAR-100,
ImageNet).

356
357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372

373

374
375
376
377
378
379
380
381
382
383
384
385
386
387

388
389
390
391
392
393
394
395
396

NLDL
#60



NLDL

#60

397

398
399
400
401

402
403
404
405
406
407

408
409
410
411
412
413

414
415
416
417
418
419

420
421
422

423
424
425
426
427

428
429
430
431

432
433
434
435

436
437
438
439
440
441

442
443
444
445
446

NLDL 2026 Full Paper Submission #60. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References

1]

[10]

C. Zhang, S. Bengio, M. Hardt, B. Recht, and
O. Vinyals. “Understanding deep learning re-
quires rethinking generalization”. In: arXiv
preprint arXiw:1611.03530 (2016).

M. Belkin, D. Hsu, S. Ma, and S. Mandal.
“Reconciling modern machine-learning practice
and the classical bias—variance trade-off”. In:
Proceedings of the National Academy of Sci-
ences 116.32 (2019), pp. 15849-15854. DOLI:
10.1073/pnas.1903070116.

P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B.
Barak, and I. Sutskever. “Deep double descent:
Where bigger models and more data hurt”. In:
Journal of Statistical Mechanics: Theory and
Ezperiment 2021.12 (2021), p. 124003. DOI:
10.1088/1742-5468/ac3aT74.

N. Srivastava, G. Hinton, A. Krizhevsky, 1.
Sutskever, and R. Salakhutdinov. “Dropout:
a simple way to prevent neural networks
from overfitting”. In: The Journal of Machine
Learning Research 15.1 (2014), pp. 1929-1958.
DOI: 10.5555/2627435.2670313.

S. J. Prince. Understanding Deep Learning.

The MIT Press, 2023. URL: http://udlbook.

com.

L. Hansen and P. Salamon. “Neural Network
Ensembles”. In: IEFEFE Transactions on Pat-
tern Analysis and Machine Intelligence 12

(1990), pp. 993-1001. DOI: 10 . 1109 / 34 .

58871.

A. Krogh and J. Vedelsby. “Neural network en-
sembles, cross validation, and active learning”.
In: Advances in Neural Information Processing
Systems 7 (1994).

T. G. Dietterich. “Ensemble methods in ma-
chine learning”. In: International Workshop
on Multiple Classifier Systems. Springer. 2000,
pp. 1-15. DOL: 10.1007/3-540-45014-9_1.

M. A. Ganaie, M. Hu, A. K. Malik, M. Tan-
veer, and P. N. Suganthan. “Ensemble Deep
Learning: A Review”. In: Engineering Appli-
cations of Artificial Intelligence 115 (2022),
pp. 105-151. por: 10 . 1016/ j
2022.105151.

L. I. Kuncheva and C. J. Whitaker. “Measures
of diversity in classifier ensembles and their
relationship with the ensemble accuracy”. In:
Machine Learning 51 (2003), pp. 181-207. DO
10.1023/A:1022859003006.

. engappai .

[11]

[15]

[16]

[17]

[18]

L. A. Ortega, R. Cabanas, and A. Masegosa.
“Diversity and Generalization in Neural Net-
work Ensembles”. In: International Conference
on Artificial Intelligence and Statistics. PMLR,
2022, pp. 11720-11743. por: 10.48550/arXiv.
2110.13786.

D. Wood, T. Mu, A. M. Webb, H. W. Reeve,
M. Lujén, and G. Brown. “A unified theory
of diversity in ensemble learning”. In: Journal
of Machine Learning Research 24.359 (2023),
pp. 1-49. DOI: 10.48550/arXiv.2301.03962.

A. Veit, M. J. Wilber, and S. Belongie. “Resid-
ual networks behave like ensembles of rela-
tively shallow networks”. In: Advances in Neu-
ral Information Processing Systems 29 (2016).
DOI: 10.48550/arXiv.1605.06431.

M. Olson, A. Wyner, and R. Berk. “Modern
neural networks generalize on small data sets”.
In: Advances in Neural Information Processing
Systems 31 (2018). DOL: 10.5555/3327144 .
3327279.

M. H. Davel, M. W. Theunissen, A. M. Pre-
torius, and E. Barnard. “DNNs As Layers Of
Cooperating Classifiers”. In: Proc. AAAI Con-
ference on Artificial Intelligence (AAAI). 2020.
DOI: 10.1609/aaai.v34104.5782.

A. S. Benjamin, C. Pehle, and K. Daruwalla.
“Continual learning with the neural tangent
ensemble”. In: Advances in Neural Informa-
tion Processing Systems 37 (2024), pp. 58816~
58840. DOI1: 10.5555/3737916.3739791.

L. Breiman. “Bagging predictors”. In: Ma-
chine Learning 24 (1996), pp. 123-140. por:
10.1007/BF00058655.

Y. Freund and R. E. Schapire. “A Desicion-
Theoretic Generalization of on-Line Learning
and an Application to Boosting”. In: Compu-
tational Learning Theory. Ed. by P. Vitanyi.
Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 23-37. DOI: 10.1006/ jcss. 1997 .
1504.

P. Cunningham and J. Carney. “Diversity ver-
sus quality in classification ensembles based
on feature selection”. In: European Conference
on Machine Learning. Springer. 2000, pp. 109-
116. DOI: 10.1007/3-540-45164-1_12.

L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and
R. Fergus. “Regularization of neural networks
using dropconnect”. In: International Con-
ference on Machine Learning. PMLR. 2013,
pp. 1058-1066. DOI: 10 . 5555 / 3042817 .
3043055.

447

449
450
451
452

453
454
455
456
457

458
459
460
461
462

463
464
465
466
467

468
469
470
471
472

473
474

476
477

478

480

481
482
483
484
485
486
487

488
489
490
491
492

493
494
495
496
497
498

NLDL
#60


https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.5555/2627435.2670313
http://udlbook.com
http://udlbook.com
http://udlbook.com
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.48550/arXiv.2110.13786
https://doi.org/10.48550/arXiv.2110.13786
https://doi.org/10.48550/arXiv.2110.13786
https://doi.org/10.48550/arXiv.2301.03962
https://doi.org/10.48550/arXiv.1605.06431
https://doi.org/10.5555/3327144.3327279
https://doi.org/10.5555/3327144.3327279
https://doi.org/10.5555/3327144.3327279
https://doi.org/10.1609/aaai.v34i04.5782
https://doi.org/10.5555/3737916.3739791
https://doi.org/10.1007/BF00058655
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/3-540-45164-1_12
https://doi.org/10.5555/3042817.3043055
https://doi.org/10.5555/3042817.3043055
https://doi.org/10.5555/3042817.3043055

NLDL

#60

499
500
501
502
503

504
505
506
507
508

509
510
511
512
513

514
515
516
517
518

519
520
521

522

523
524

525
526
527
528
529
530

531
532

533
534
535
536
537
538
539
540
541
542
543

544
545
546
547
548
549

NLDL 2026 Full Paper Submission #60.

[21] N. S. Keskar, D. Mudigere, J. Nocedal, M.
Smelyanskiy, and P. T. P. Tang. On Large-
Batch Training for Deep Learning: General-
ization Gap and Sharp Minima. 2017. arXiv:

1609.04836 [cs.LG].

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
“Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11

(1998), pp. 2278-2324. DOL: 10 . 1109 /5 .

726791.

H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-
MNIST: a novel image dataset for benchmark-
ing machine learning algorithms”. In: arXiv

[23]

preprint arXiv:1708.07747 (2017). porL: 10 .

48550/arXiv.1708.07747.

T. Clanuwat, M. Bober-Irizar, A. Kitamoto,
A. Lamb, K. Yamamoto, and D. Ha. “Deep
learning for classical Japanese literature”. In:
arXiv preprint arXiv:1812.01718 (2018). DOIL:
10.48550/arXiv.1812.01718.

[24]

[25] A. Krizhevsky, G. Hinton, et al. “Learning
multiple layers of features from tiny images”.

In: (2009).

A Model setup

Datasets We evaluate our approach on four stan-
dard image classification benchmarks:

e MNIST [22], Fashion-MNIST [23], and K-
MNIST [24] grayscale digit and clothing classi-
fication datasets with 10 classes. K-MNIST is a
variant of MNIST with Japanese characters.

e CIFARIO [25], a colored natural image dataset
with 10 classes.

Architectures We used different architectures to
confirm our results.

e For MNIST, Fashion-MNIST, and K-MNIST,
we use fully-connected multi-layered perceptrons
(MLPs) with a depth of three hidden layers, each
with a width of 512 nodes.

e For CIFAR-10, we use a convolutional neural net-
work (CNN) with multiple convolutional and pool-
ing layers followed by fully connected layers (see
Table A.2 for details). Diversity measures are
applied only to the fully connected layers, where
subpredictors are naturally defined at the node
level.

Hyperparameter setup The specific details re-
garding what hyperparameters were used to train
each model can be found in Table A.1. All mod-
els were trained with a baseline batch size of 256,
while the varying batch size experiments then used
the other values. No Dropout or DropConnect was
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Table A.1. Hyperparameter setup for different model
architectures

Hyperparameter Value
Optimizer Adam
Learning rate 0.0003
Batch size {16, 32, 64, 128, 256 (baseline), 512}
Epochs (max) 1000

Dropout /DropConnect rates (MLPs)
Dropout/DropConnect rates (CNNs)
Learning rate scheduler

{0,0.1,02, 0.3, 04, 0.5}
{0, 0.1, 0.15, 0.2, 0.25, 0.3}
{Step size = 1, gamma = 0.99}

applied to normal baseline models. A learning rate

scheduler was also applied for all different models.
The specific model architecture for the CNNs can

be found in Table A.2.

Table A.2. CNN specification (conv bias=True, ac-

tivation=ReLU, BN=False). “xn” indicates repeated

blocks.

| Stage | Layers | Kernel / Stride / Pad | Output size (for 32x32 input) |
Input 32x32x3
S1 Conv 64 x2 (3,1,1) 32x32x64
MaxPool (2.2,0) 16x16x64
S2 Conv 128 x2 (3.1,1) 16x16x128
MaxPool (2,2,0) 8x8x128
S3 Conv 256 x3 (3,1,1) 8x8x256
MaxPool (2,2,0) 4x4%256
S4 Conv 512 x3 (3.1,1) 4x4x512
MaxPool (2,2,0) 2x2x512
S5 Conv 512 x3 (3,1,1) 2x2x512
MaxPool (2,2,0) 1x1x512
Head | Flatten — MLP(3x512) — Dense(C) c

B Additional results

Table B.1. Average layer-wise accuracy and diver-
sity across datasets (averaged over 5 seeds). Diver-
sity includes Disagreement (Dis), Double-Fault (DF),
Q-statistic (Q), and Entropy (Ent).

‘ Dataset Layer ‘ Acc. ‘ Dis. ‘ DF ‘ Q ‘ Ent ‘
MNIST L1 0.288 | 0.285 | 0.605 | 0.490 | 2.620
L2 0.523 | 0.315 | 0.558 | 0.467 | 2.690
L3 0.605 | 0.325 | 0.540 | 0.450 | 2.720
K-MNIST L1 0.482 | 0.280 | 0.667 | 0.130 | 3.040
L2 0.533 | 0.304 | 0.643 | 0.159 | 3.050
L3 0.543 | 0.305 | 0.636 | 0.190 | 3.030
Fashion-MNIST L1 0.497 | 0.323 | 0.544 | 0.450 | 2.620
L2 0.645 | 0.347 | 0.512 | 0.387 | 2.710
L3 0.675 | 0.349 | 0.505 | 0.405 | 2.715
CIFAR-10 L1 0.563 | 0.331 | 0.520 | 0.476 | 2.510
L2 0.575 | 0.333 | 0.515 | 0.464 | 2.580
L3 0.596 | 0.336 | 0.507 | 0.455 | 2.595

Across datasets (MNIST, K-MNIST, Fashion-
MNIST, and CIFAR-10) and architectures (MLPs,
CNNs), layer accuracy increases monotonically with
depth (Table B.1).

Depth-wise diversity shows parallel but metric-
specific trends. Disagreement increases with depth
and Double-fault decreases, indicating higher di-
versity in later layers for all datasets. In contrast,
the Q-statistic is dataset-dependent: on Fashion-
MNIST it drops from the first to the second layer
(increase in diversity) but rebounds in the final
layer (breaking the expected monotonic decrease,
see Figure B.1), while on K-MNIST it increases
with depth (implying lower diversity in deeper lay-
ers). Entropy generally rises with depth on MNIST,
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Figure B.1. (left) Q-statistic of node-level predictions
across layers of a three-layer MLP trained on Fashion-
MNIST, averaged over five seeds, and (right) the corre-
lation between the Q-statistic and layer accuracy. The
annotated values correspond to the averaged layer ac-
curacies. The right panel shows a strong relationship
between the Q-statistic and layer accuracy (Pearson
r = —0.81) across seeds and layers.

Table C.1. Test accuracy versus induction level. Ac-
curacy values are averaged over five seeds; A indicates
the change in percentage points relative to the baseline
model (0% dropout/dropconnect or largest batch size).

‘ Dataset ‘ Method ‘ Induction level ‘ Accuracy (%) ‘

Fashion-MNIST | Dropout 0% 0.8178
10% 0.8197

20% 0.8216

30% 0.8222

40% 0.8244

50% 0.8260

Fashion-MNIST | DropConnect 0% 0.8178
10% 0.8215

20% 0.8252

30% 0.8269

40% 0.8312

50% 0.8319

Fashion-MNIST | Batch size 512 0.8170
256 0.8178

128 0.8260

64 0.8285

32 0.8345

16 0.8360

Fashion-MNIST, and CIFAR-10, but remains nearly
unchanged across layer on K-MNIST. Overall, Dis-
agreement and Double-fault provide the most consis-
tent depth trends, whereas Q-statistic and entropy
vary by dataset (Table B.1).

C Induced diversity

Accuracy increase from Dropout Test accu-
racy increases monotonically with stronger dropout,
but the gains are modest: from 0.8182 at 0% to
0.8260 at 50% (+0.82). This suggests small but
consistent benefits over the explored Dropout range
(Table C.1).

Accuracy increase from DropConnect
Weight-level masking yields a larger improvement
than normal Dropout on Fashion-MNIST: accuracy
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Table C.2. Test accuracy versus induction level. Ac-
curacy values are averaged over five seeds; A indicates
the change in percentage points relative to the baseline
model (0% dropout/dropconnect or largest batch size).
Batch size models were trained on a subset of the train-
ing data (5,000 samples) for CIFAR-10.

‘ Dataset ‘ Method ‘ Induction level ‘ Accuracy (%) ‘

CIFAR-10 | Dropout 0% 0.759
10% 0.791
15% 0.795
20% 0.793
25% 0.792
30% 0.794
CIFAR-10 | DropConnect 0% 0.759
10% 0.794
15% 0.799
20% 0.794
25% 0.794
30% 0.792
CIFAR-10 | Batch size 512 0.500
256 0.489
128 0.520
64 0.552
32 0.564
16 0.568

rises from 0.8178 to 0.8319 at 50% (+1.41), with a
steady increase across all levels (Table C.1).

Accuracy increase from varying batch sizes
Reducing the batch size delivers sizable gains: the
accuracy increases from 0.8170 (512 batch size, base-
line is 256) to 0.8360 (16 batch size), a +1.90 im-
provement, with improvements at each reduction
step (Table C.1).

Similar accuracy increases were obtained from
models trained on the MNIST and K-MNIST
datasets.

CIFAR-10 For CIFAR-10, batch sizes sweeps
were run on a 5,000 stratified subset to avoid con-
founds we observed on the full training set, where
extremely small batches produced so many updates
that their diversity appeared ‘averaged out,” invert-
ing the expected ordering. We expect the ordering
to recover at larger batch sizes (e.g., 512 vs 1,024),
but we did not test this. See Table C.2.

Accuracy increase from Dropout Test accu-
racy improves with moderate dropout, peaking at
15% (0.759 — 0.795; 4+3.6%) and remaining stable
for 20 — 30% (Table C.2). From the literature, it is
widely accepted that a moderate amount of Dropout
applied to CNNs can boost performance, whereas
excessive Dropout can negatively impact the perfor-
mance [4].

Accuracy increase from DropConnect Again,
weight-level masking appears to yield the largest
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Table C.3. Effect of DropConnect rate on layer-wise
diversity (averaged over runs) for the Fashion-MNIST
dataset. Disagreement increases with a higher drop rate,
while Double-fault and Q-statistic generally decrease;
entropy shows a mild non-monotonic trend.

D t
‘ Diversity measure ‘ rop rate p (%)

| | o | 10 | 20 | 30 | 40 | 50 |
Disagreement 0.340 | 0.348 | 0.354 | 0.358 | 0.363 | 0.366
Double-fault 0.520 | 0.514 | 0.505 | 0.495 | 0.487 | 0.476
Q-statistic 0.418 | 0.381 | 0.373 | 0.368 | 0.364 | 0.361
Entropy 2.677 | 2.710 | 2.700 | 2.691 | 2.668 | 2.653

model-level gain, peaking at 15% (0.759 — 0.799;
+4.0%), with small declines at higher rates (Ta-
ble C.2).

Accuracy increase from varying batch sizes
On the 5,000 sample subset, reducing the batch size
improves accuracy monotonically over most of the
range (0.500 at 512 to 0.568 at 16; +6.8%), with
gains becoming pronounced below 128 batch size
(Table C.2).

DropConnect effects on diversity DropCon-
nect generally increases diversity. As the drop
rate rises from 0% to 50%, Disagreement increases
steadily, while Double-fault and Q-statistic decrease.
Together, these shifts indicate higher averaged di-
versity with a higher rate of DropConnect being
applied (Table C.3).

Entropy is less stable. Entropy shows a mild,
non-monotonic pattern with a small net decline,
suggesting it is a weaker or more dataset-sensitive in-
dicator in this setting. Overall, the consistent mono-
tone trends in Disagreement, Double-fault, and Q-
statistic support the view that DropConnect reliably
induces diversity in Fashion-MNIST (although Q-
statistic has inconsistent layer-wise diversity trends).

Diversity  tracks generalization Across
datasets and induction methods, induced diversity
is strongly correlated with higher test accuracy (Ta-
ble C.4). Disagreement is consistently positive (e.g.,
r &~ 0.56 — 0.97), and Double-fault is consistently
negative (e.g., r &~ —0.60tp — 0.99), aligning with
their interpretations (higher Disagreement / lower
Double-fault leads to greater diversity and better
accuracy).

Method sensitivity DropConnect yields some of
the strongest correlations across all datasets, while
Dropout is slightly weaker on average. Batch size
shows very strong trends for MNIST and K-MNIST
and more moderate trends for Fashion-MNIST and
CIFAR-10.

Metric stability /consistency Q-statistic and
entropy are less stable across datasets and regular-
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Table C.4. Correlation between model test accuracy
and diversity across datasets, diversity metrics, and
regularization methods (Dropout, DropConnect, and
varying batch size). For each dataset-method—metric
triplet, diversity is first averaged across all hidden layers
per model; Pearson correlation is then computed between
test accuracy and this layer-averaged diversity across
the full set of models (baseline plus all regularization
levels).

‘ Diversity measure ‘ Dataset ‘ Method ‘ Correlation ‘
MNIST Dropout 0.9163
K-MNIST Dropout 0.9322
Fashion-MNIST | Dropout 0.6289
CIFAR-10 Dropout 0.6420
MNIST Batch size 0.9737
Disagreement K-MNIST Batch size 0.8367
Fashion-MNIST | Batch size 0.5566
CIFAR-10 Batch size 0.5458
MNIST DropConnect 0.9588
K-MNIST DropConnect 0.9443
Fashion-MNIST | DropConnect 0.8888
CIFAR-10 DropConnect 0.8936
MNIST Dropout -0.9529
K-MNIST Dropout -0.9134
Fashion-MNIST | Dropout -0.8285
CIFAR-10 Dropout -0.6023
MNIST Batch size -0.9852
K-MNIST Batch size -0.9405
Double-fault Fashion-MNIST | Batch size -0.6734
CIFAR-10 Batch size -0.7493
MNIST DropConnect -0.9784
K-MNIST DropConnect -0.9526
Fashion-MNIST | DropConnect -0.8970
CIFAR-10 DropConnect -0.7961
MNIST Dropout -0.6095
K-MNIST Dropout 0.8047
Fashion-MNIST | Dropout -0.1365
CIFAR-10 Dropout -0.4153
MNIST Batch size -0.9200
Q-statistic K-MNIST Batch size 0.8836
Fashion-MNIST | Batch size -0.4831
CIFAR-10 Batch size -0.2076
MNIST DropConnect -0.8727
K-MNIST DropConnect 0.9031
Fashion-MNIST | DropConnect -0.7503
CIFAR-10 DropConnect -0.4384
MNIST Dropout -0.9320
K-MNIST Dropout -0.6390
Fashion-MNIST | Dropout -0.7126
CIFAR-10 Dropout 0.3025
MNIST Batch size -0.1802
Entropy K-MNIST Batch size -0.6067
Fashion-MNIST | Batch size 0.4253
CIFAR-10 Batch size 0.3399
MNIST DropConnect -0.6234
K-MNIST DropConnect -0.6922
Fashion-MNIST | DropConnect -0.4859
CIFAR-10 DropConnect 0.3672
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izers. Q-statistic is negative on MNIST, Fashion-
MNIST, and CIFAR-10, but flips positive on K-
MNIST. Entropy is mostly negative on MNIST,
Fashion-MNIST, and K-MNIST, but positive on
CIFAR-10 for all regularizers, also being positive
for Fashion-MNIST under the batch size variation
(Table C.4).
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