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Abstract001

In ensembles, improved generalization is frequently002

attributed to diversity among members of the en-003

semble. By viewing a single neural network as an004

implicit ensemble, we apply well-known ensemble005

diversity measures to study the relationship between006

diversity and generalization in artificial neural net-007

works. Our results show that i) deeper layers of the008

network have higher levels of diversity and ii) layer-009

wise accuracy positively correlates with diversity.010

Additionally, we study the effects of well-known reg-011

ularizers such as Dropout, DropConnect and batch012

size, on diversity and generalization. We generally013

find that increasing the strength of the regularizer014

increases the diversity in the neural network and015

this increase in diversity is positively correlated with016

model accuracy. We show that these results hold017

for several benchmark datasets (such as Fashion-018

MNIST and CIFAR-10) and architectures (MLPs019

and CNNs). Our findings suggest new avenues of re-020

search into the generalization ability of deep neural021

networks.022

1 Introduction023

A complete understanding of why deep neural net-024

works (DNNs) generalize well to unseen data remains025

an open problem. For example, it is well-known that026

overparameterized neural networks achieve good gen-027

eralization despite interpolating their training data028

[1–3]. Furthermore, rapid progress has been made029

in developing methods, called regularization, that030

encourages generalization. Examples of these meth-031

ods include Dropout [4], weight decay [5], input or032

weight noise [5].033

A widely-used regularization method is ensem-034

bling, where the output of several models are ag-035

gregated to produce a final output. Crucial to the036

generalization ability of the ensemble is the diver-037

sity of the models [6–9]. Depending on the task,038

there are several definitions of diversity that may be039

used [10]. For example, diversity can be measured040

by the correlation between the models’ predictions041

in the ensemble, in which case, low correlation would042

indicate high diversity. In general, higher diversity043

among the models is thought to correspond to better044

generalization of the ensemble, albeit with a trade-045

off where too much diversity can negatively impact046

Figure 1. Model performance against averaged diversity
(across layers) for models trained on the Fashion-MNIST
dataset using DropConnect as a regularizer with values in
the range 0−50. Diversity is shown by the disagreement
measure. A higher disagreement value constitutes a
higher diversity. There is a clear increase in model
performance as the averaged diversity increases.

generalization [6, 7, 11, 12]. 047

Recently, an insightful approach to investigating 048

generalization in deep learning models has been to 049

view a single deep learning model as an implicit 050

ensemble. For the problem of vanishing gradients 051

in deep residual networks, Veit et al. [13] view a 052

deep residual network as a collection of paths and 053

show that the paths have ensemble-like behavior. 054

Another approach by Olson et al. [14] decomposes a 055

single neural network into an ensemble of low-bias 056

subnetworks and, by using correlation as a proxy for 057

diversity and showing that the subnetworks exhibit 058

low correlation, argues that an internal regulariza- 059

tion process helps mitigate overfitting in neural net- 060

works. Noting regularities in the activation patterns 061

of the hidden nodes of a DNN, Davel et al. [15] view 062

a single hidden node as a classifier. More recently, 063

through investigating the problem of catastrophic 064

forgetting in continual learning, Benjamin et al. [16] 065

show that a neural network in the lazy regime can 066

be decomposed into an implicit ensemble consisting 067

of the weights of the neural network. 068

However, in viewing a neural network as an im- 069

plicit ensemble, the role of diversity in a neural net- 070

work remains unexplored. In this paper, we follow 071

the approach of Davel et al. [15] and view a single 072

neural network as an implicit ensemble with hidden 073

nodes as classifiers. This allows us to investigate the 074
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role of diversity with respect to generalization of the075

network. The main contributions of the paper are076

as follows:077

1. We examine the diversity of the hidden nodes078

using established diversity measures.079

2. We empirically investigate the relationship be-080

tween node-level diversity and generalization081

across several benchmark datasets and for dif-082

ferent architectures.083

3. We analyze the effect of well-known regulariza-084

tion methods that encourages generalization and085

examine the effect of these methods on diversity.086

We show that diversity correlates with the gener-087

alization of the neural network (see Figure 1).088

Our results provide new insight into the ability089

of neural networks to generalize and offers new av-090

enues of research into the generalization of neural091

networks.092

2 Background093

2.1 Ensemble Methods094

Ensemble methods combine predictions of multi-095

ple classifiers to achieve better generalization than096

individual models. Classic approaches such as bag-097

ging [17] and boosting [18], have shown that ensem-098

bles reduce variance, improve robustness, and often099

outperform single models across diverse tasks.100

A key factor to the success of ensembles is diver-101

sity among the base classifiers. If all classifiers make102

identical errors, the ensemble offers no advantage.103

However, when classifiers make different errors, the104

ensemble can correct individual mistakes, yielding105

improved accuracy [6, 7]. Theoretical and empiri-106

cal studies have shown that ensembles benefit most107

when base learners are both accurate and diverse [10].108

Diversity can be defined in several ways, for exam-109

ple as the degree of correlation between classifiers’110

predictions, with lower correlation implying higher111

diversity.112

2.2 Diversity Measures113

Several measures have been proposed to quantify114

diversity in ensembles [10]. In this paper, we focus115

on four well-known metrics: disagreement, double-116

fault, Q-statistic, and entropy.117

These measures (besides entropy) are based on118

the outcomes of pairs of classifiers, which can be119

summarized using a 2 × 2 contingency table (Ta-120

ble 1). Assuming a C class classification problem,121

let Di and Dk be two classifiers. Given a data set122

{(x(i), y(i))}si=1, let N
11, N10, N01, and N00 denote123

the frequency of the following cases, respectively:124

both Di and Dk correct, Di correct and Dk incor- 125

rect, Dk correct and Di incorrect, and both Di and 126

Dk incorrect. 127

We consider three pairwise metrics, namely: 128

• Disagreement 129

Disi,k =
N10 +N01

N
, (1) 130

where N is the total number of samples. This 131

measures the proportion of instances where the 132

classifiers disagree. Higher disagreement relates 133

to higher diversity. 134

• Double-fault 135

dfi,k =
N00

N
, (2) 136

This measures the proportion of instances where 137

both classifiers misclassify the same sample. A 138

lower double-fault relates to a higher diversity 139

(they fail on different samples). 140

• Q-statistic 141

Q =
(N11N00 −N10N01)

(N11N00 +N10N01)
(3) 142

Values range from −1 to +1, with 0 indicating 143

independence (which we view as the highest level 144

of diversity). 145

We also consider one non-pairwise metric: 146

• Entropy Entropy quantifies the uncertainty in 147

ensemble predictions and serves as a proxy for 148

classifier disagreement [10, 19]. For each sample 149

x(k), we estimate the probability as 150

P (y | x(k)) =
1

L

L∑
i=1

1{Di(x
(k)) = y}, (4) 151

where L is the number of subpredictors, and y ∈ 152

{1, ..., C}. The per sample entropy is: 153

H(x(k)) = −
∑
y

P (y | x(k)) logP (y | x(k)). (5) 154

We can then calculate the average over the 155

dataset: 156

EntCC =
1

N

N∑
k=1

H(x(k)) (6) 157

Higher values of entropy indicate higher diversity 158

between subpredictor predictions. 159

These measures provide complementary views 160

of diversity—disagreement emphasizes complemen- 161

tarity, double-fault emphasizes error overlap, Q- 162

statistic emphasizes correlation, and entropy em- 163

phasizes overall variety. 164
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Table 1. 2x2 contingency table which represents the
frequencies of two classifiers Di and Dk. Here, N11,
N10, N01, and N00 are the observed frequencies in each
cell. This means that N11 is the number of times that
both Di and Dk are correct, N10 is the number of times
only Di is correct, N

01 the number of times only Dk is
correct, and N00 the number of times that both Di and
Dk are incorrect.

Dk correct (1) Dk incorrect (0)
Di correct (1) N11 N10

Di incorrect (0) N01 N00

3 Method165

3.1 Implicit Ensemble Framework166

In order to investigate the effects of diversity in deep167

neural networks, we view a single neural network as168

an implicit ensemble. In particular, we adopt the169

framework introduced by Davel et al. [15], which170

treats each hidden node as a weak classifier. We171

refer to such a node classifier as a subpredictor.172

Intuitively, hidden nodes tend to specialize dur-173

ing training. That is to say, they become sensitive174

to certain patterns or classes. Following Davel et175

al. [15], we estimate, for each node n and class c, the176

class-conditional probability P (zn | c) of each node’s177

pre-activation zn(x) given a sample x by applying a178

kernel density estimator (KDE) trained using all s179

training samples’ activation values observed at the180

node.181

Applying Bayes’ rule yields a node-level posterior182

over classes for an input with pre-activation zn:183

P (c | zn) =
P (zn | c)P (c)∑
c′ P (zn | c′)P (c′)

, (7)184

where P (c) is the class prior. P (c | zn) is then node185

n’s probability for class c when given a certain input.186

Then, for a given pre-activation zn(x) and a node n187

in layer ℓ, the node’s class prediction is computed188

as ŷ
(x)
ℓ,n = arg maxc P (c | zn(x)). We refer to this as189

a hard vote.190

Majority vote ensemble: To ensemble the out-191

put’s of the subpredictors in a layer ℓ, we employ a192

simple majority vote rule to determine our layer-wise193

prediction, and by extension, layer-wise accuracy.194

These hard votes are then used for computing the195

diversity of the predictions across nodes within the196

given layer.197

Nodes as subpredictors We first demonstrate198

that individual nodes can indeed be treated as mean-199

ingful subpredictors within the implicit ensemble. To200

do this, we compute the accuracy of each node when201

predicting class labels. Figure 2 shows a heatmap of202

node accuracies across layers, while Figure 3 presents203

the layer-wise accuracy for the train, validation, and204

Figure 2. Accuracy heatmap of node predictions in a
three layer MLP. Only the first 100 nodes are shown here.
Most nodes in each layer have an individual accuracy of
around 15-20% (higher than random guessing). Results
were obtained from the MNIST test set for a model
trained on 2,000 samples of the MNIST dataset.

Figure 3. Layer-wise accuracy graphs for the train,
validation, and test on MNIST. Accuracy improves with
network depth. Each layer accuracy has significantly
higher accuracy than compared to the individual node ac-
curacies. This clearly showcases the ensembling strength
of individual nodes within a layer.

test sets. These results confirm that individual nodes 205

can perform as subpredictors. 206

Although the predictive ability of individual nodes 207

within a neural network layer may be limited, their 208

performance is consistently better than random 209

chance. When the output of these subpredictors 210

are aggregated, their collective predictions at the 211

layer level yields better accuracies over the train- 212

ing, validation, and testing sets, similar in fashion 213

to the principles of ensemble learning, where multi- 214

ple ‘weak learners’ are combined to create a single 215

‘strong learner.’ 216

3.2 Applying Diversity Metrics 217

We focus on the diversity metrics mentioned in Sec- 218

tion 2.2. 219

We compute these metrics directly from the node- 220

level predictions. For pairwise measures like Q- 221

statistic, disagreement, or double-fault, we calculate 222

the average over all unique pairs of nodes within 223

a specific layer. For our non-pairwise metric i.e., 224

entropy, we compute the measures across all nodes 225

in the layer directly. 226

To facilitate these calculations, we first needed to 227

construct our contingency tables (see Table 1) for 228

each combination of subpredictors within a layer. 229

This was done by first creating a binary accuracy 230

matrix, B, from our subpredictor predictions. Each 231
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entry, B
(x)
n , indicates whether node n correctly clas-232

sified sample x by comparing the sample’s true class233

label y(x) to the node’s predicted class label ŷ
(x)
ℓ,n :234

B(x)
n =

{
1, if ŷ

(x)
ℓ,n = y(x)

0, otherwise
(8)235

We then use the binary accuracy matrix to con-236

struct the contingency table for each pair of nodes237

(n1, n2). This table records the number of samples238

for which both nodes made the same or different239

predictions, based on whether their predictions were240

correct (1) or incorrect (0). Then using the equa-241

tions given in 2.2, we can compute each diversity242

metric across layers.243

3.3 Training protocol244

Due to how easily MLPs learn datasets like MNIST245

and Fashion-MNIST (with evaluation accuracies of-246

ten being above 98%), and to more clearly see the247

effects of inducing diversity, we train the MLP net-248

works on a small stratified subset of the training data249

(e.g., 2,000 samples) until interpolation (100% train-250

ing accuracy). This protocol ensures that models251

generalize to different degrees despite being perfectly252

fit to the training subset. CNN models are trained253

using the full CIFAR-10 training set. Models are254

trained using cross-entropy loss and optimized with255

the Adam optimizer, and no batch normalization has256

been applied. All experiments are repeated across257

five different random model seeds. We report the258

mean ± standard deviation for most of our results.259

Details regarding datasets used and model archi-260

tectures can be found in Appendix A.261

3.4 Inducing diversity through regu-262

larization263

Regularization methods are commonly used to im-264

prove generalization in deep learning [5]. To study265

the effect of induced diversity, we apply common reg-266

ularization techniques that we believe should have267

an effect on the diversity within the network:268

• Dropout: [4] randomly deactivates nodes dur-269

ing training, forcing different subsets of nodes to270

specialize. Applied to hidden layers with varying271

rates (0.1-0.5 for MLPs, 0.1-0.3 for CNNs).272

• DropConnect: [20] similar to Dropout, except273

the weights are randomly removed rather than274

the activations. The same rates are applied as for275

Dropout.276

• Batch size variation: [21] smaller batch sizes277

increase gradient noise which could possibly intro-278

duce some diversity to the nodes during training.279

Models are trained with batch sizes of: 16, 32, 64,280

128, 256 (baseline), 512.281

Expected effects of induction: For Dropout 282

and DropConnect, increasing the drop probability p 283

should raise the node-level diversity by discouraging 284

co-adaptation and encouraging specialization across 285

stochastic subnetworks [4]. For batch size, smaller 286

batches are expected to produce higher diversity 287

because they introduce more gradient noise and more 288

parameter updates per epoch, possible promoting 289

more node-level diversity. 290

In this work, we use these techniques to explicitly 291

manipulate diversity and investigate its effect on 292

generalization in implicit ensembles. 293

4 Empirical Results 294

4.1 Diversity trends (no induced reg- 295

ularization) 296

Having established that nodes can act as subpredic- 297

tors, we evaluate whether classical diversity mea- 298

sures provide meaningful insights in this implicit 299

setting. 300

On our three-layer MLP, mean diversity (averaged 301

over five seeds) increases with depth for most metrics. 302

Disagreement, Double-fault and entropy all show a 303

monotonic increase from layer 1 to layer 3, with the 304

Disagreement measure illustrated in Figure 4. This 305

overall trend suggests that subpredictors in later 306

layers produce more varied outputs. However, the 307

Q-statistic is an outlier, showing an initial increase 308

followed by a slight decrease in the last layer (Fig- 309

ure B.1). Additional results for the other metrics 310

are available in Table B.1. 311

The increase in diversity with depth mirrors the 312

trend in layer accuracy, as later layers are more 313

accurate. We found a strong correlation between 314

diversity and layer accuracy across all metrics, in 315

particular, the Disagreement measure shows a near- 316

linear relationship with layer accuracy (Pearson r = 317

0.98, Figure 4). Other metrics show qualitatively 318

similar correlations, though the Q-statistic has a 319

slightly weaker correlation. 320

Across datasets, the depth trend is reliable only 321

for Disagreement and Double-fault. Q-statistic and 322

entropy vary in their diversity trends by dataset 323

and layer, and do not yield a consistent monotonic 324

pattern, so we treat them as secondary in the cross- 325

dataset summaries (see Table B.1). 326

4.2 Inducing Diversity 327

Regularization effects on model perfor- 328

mance We investigate how certain regularization 329

techniques—Dropout, DropConnect, and batch size— 330

affect generalization and diversity. 331

On Fashion-MNIST, increasing the DropConnect 332

probability p improves model test accuracy (Fig- 333

ure 5). We observe the same pattern with Dropout 334
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Figure 4. (left) Disagreement of node-level predictions
across layers of a three-layer MLP trained on Fashion-
MNIST, averaged over five seeds, and (right) the cor-
relation between the disagreement and layer accuracy.
The annotated values correspond to the averaged layer
accuracies, which rise in tandem with disagreement. The
right panel confirms this relationship, showing a strong
positive correlation (Pearson r = 0.98) between disagree-
ment and layer accuracy across seeds and layers.

Figure 5. Model test performance against percentage
DropConnect applied during training for the Fashion-
MNIST dataset. There is a clear increasing trend in
accuracy as the drop probability being applied is in-
creased.

(when increasing p) and with smaller batch sizes335

(Table C.1).336

Regularization effects on diversity The same337

settings that help increase model accuracy, also in-338

creases Disagreement and reduces Double-fault. Av-339

eraged across layers, disagreement increases (and340

double-fault decreases) as p rises for Dropout/Drop-341

Connect and as batch size decreases. The Q-statistic342

shows a similar decrease as double-fault on Fashion-343

MNIST, while entropy has an initial increase fol-344

lowed by a continuous decrease (see Table C.3).345

Across datasets, the only robust trends are for dis-346

agreement and double-fault; Q-statistic and entropy347

are unstable and dataset-dependent.348

The link between generalization and diversity349

We explicitly test whether induced diversity corre-350

lates with generalization on Fashion-MNIST. Our351

results show that increasing regularizer strength—352

through higher drop probabilities for Dropout/Drop-353

Connect or smaller batch sizes—yields both higher354

test accuracy and higher average diversity (Figure 1),355

Table 2. Correlation (Pearson r) between model test
accuracy and averaged diversity under induced diver-
sity sweeps (DropConnect, Dropout, batch size) for the
Fashion-MNIST dataset.

Diversity measure DropConnect Dropout Batch size

Disagreement 0.8888 0.6289 0.5566

Double-fault -0.8970 -0.8285 -0.6734

Q-statistic -0.7503 -0.1365 -0.4831

Entropy -0.4859 -0.7126 0.4253

although the results are metric- and regularizer- 356

dependent. 357

We see this clearly in Table 2. Disagreement 358

shows a strong positive correlation with accuracy 359

(r ≈ 0.89, 0.63, 0.56)), while Double-fault is strongly 360

negative (r ≈ −0.90,−0.83,−0.67). Q-statistic is es- 361

pecially weak under Dropout, and entropy is mostly 362

negative but flips positive for the batch size sweep. 363

Based on these results, we conclude that there is 364

a positive association between generalization and 365

diversity—higher node-level diversity corresponds 366

to higher test accuracy—most consistently captured 367

by Disagreement and Double-fault. 368

Further results The trends and results men- 369

tioned above repeat across MNIST, K-MNIST, and 370

CIFAR-10 datasets and hold for both MLPs and 371

CNNs (Table C.4). 372

5 Conclusion 373

By viewing a network as an implicit ensemble of 374

node-level classifiers, we measured diversity inside 375

MLPs and a CNN. We find that diversity increases 376

from shallow to deeper layers. We also find that well- 377

known regularizers such as Dropout, Dropconnect, 378

and batch size increases the diversity in a neural 379

network. Additionally, we find that this increase in 380

diversity follows model generalization performance: 381

average diversity correlates with test accuracy. 382

For the diversity measures applied to a single neu- 383

ral network, we find that disagreement and double- 384

fault are the most reliable measures of diversity, 385

while Q-statistic and entropy are less consistent 386

across datasets and regularizers. 387

Future work: Overall, these results show that 388

diversity could be a used as a method of predicting 389

generalization in a neural network. Additional pos- 390

sible research avenues includes exploring additional 391

diversity induction methods—e.g., adding an explicit 392

diversity term to the loss function— and extending 393

the analysis to other architectures (ResNets, Trans- 394

formers) and more challenging datasets (CIFAR-100, 395

ImageNet). 396
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A Model setup522

Datasets We evaluate our approach on four stan-523

dard image classification benchmarks:524

• MNIST [22], Fashion-MNIST [23], and K-525

MNIST [24] grayscale digit and clothing classi-526

fication datasets with 10 classes. K-MNIST is a527

variant of MNIST with Japanese characters.528

• CIFAR10 [25], a colored natural image dataset529

with 10 classes.530

Architectures We used different architectures to531

confirm our results.532

• For MNIST, Fashion-MNIST, and K-MNIST,533

we use fully-connected multi-layered perceptrons534

(MLPs) with a depth of three hidden layers, each535

with a width of 512 nodes.536

• For CIFAR-10, we use a convolutional neural net-537

work (CNN) with multiple convolutional and pool-538

ing layers followed by fully connected layers (see539

Table A.2 for details). Diversity measures are540

applied only to the fully connected layers, where541

subpredictors are naturally defined at the node542

level.543

Hyperparameter setup The specific details re-544

garding what hyperparameters were used to train545

each model can be found in Table A.1. All mod-546

els were trained with a baseline batch size of 256,547

while the varying batch size experiments then used548

the other values. No Dropout or DropConnect was549

Table A.1. Hyperparameter setup for different model
architectures

Hyperparameter Value

Optimizer Adam

Learning rate 0.0003

Batch size {16, 32, 64, 128, 256 (baseline), 512}
Epochs (max) 1000

Dropout/DropConnect rates (MLPs) {0, 0.1, 0.2, 0.3, 0.4, 0.5}
Dropout/DropConnect rates (CNNs) {0, 0.1, 0.15, 0.2, 0.25, 0.3}
Learning rate scheduler {Step size = 1, gamma = 0.99}

applied to normal baseline models. A learning rate 550

scheduler was also applied for all different models. 551

The specific model architecture for the CNNs can 552

be found in Table A.2. 553

Table A.2. CNN specification (conv bias=True, ac-
tivation=ReLU, BN=False). “×n” indicates repeated
blocks.

Stage Layers Kernel / Stride / Pad Output size (for 32×32 input)

Input 32×32×3
S1 Conv 64 ×2 (3, 1, 1) 32×32×64

MaxPool (2, 2, 0) 16×16×64
S2 Conv 128 ×2 (3, 1, 1) 16×16×128

MaxPool (2, 2, 0) 8×8×128
S3 Conv 256 ×3 (3, 1, 1) 8×8×256

MaxPool (2, 2, 0) 4×4×256
S4 Conv 512 ×3 (3, 1, 1) 4×4×512

MaxPool (2, 2, 0) 2×2×512
S5 Conv 512 ×3 (3, 1, 1) 2×2×512

MaxPool (2, 2, 0) 1×1×512
Head Flatten → MLP(3×512) → Dense(C) C

B Additional results 554

Table B.1. Average layer-wise accuracy and diver-
sity across datasets (averaged over 5 seeds). Diver-
sity includes Disagreement (Dis), Double-Fault (DF),
Q-statistic (Q), and Entropy (Ent).

Dataset Layer Acc. Dis. DF Q Ent

MNIST L1 0.288 0.285 0.605 0.490 2.620
L2 0.523 0.315 0.558 0.467 2.690
L3 0.605 0.325 0.540 0.450 2.720

K-MNIST L1 0.482 0.280 0.667 0.130 3.040
L2 0.533 0.304 0.643 0.159 3.050
L3 0.543 0.305 0.636 0.190 3.030

Fashion-MNIST L1 0.497 0.323 0.544 0.450 2.620
L2 0.645 0.347 0.512 0.387 2.710
L3 0.675 0.349 0.505 0.405 2.715

CIFAR-10 L1 0.563 0.331 0.520 0.476 2.510
L2 0.575 0.333 0.515 0.464 2.580
L3 0.596 0.336 0.507 0.455 2.595

Across datasets (MNIST, K-MNIST, Fashion- 555

MNIST, and CIFAR-10) and architectures (MLPs, 556

CNNs), layer accuracy increases monotonically with 557

depth (Table B.1). 558

Depth-wise diversity shows parallel but metric- 559

specific trends. Disagreement increases with depth 560

and Double-fault decreases, indicating higher di- 561

versity in later layers for all datasets. In contrast, 562

the Q-statistic is dataset-dependent: on Fashion- 563

MNIST it drops from the first to the second layer 564

(increase in diversity) but rebounds in the final 565

layer (breaking the expected monotonic decrease, 566

see Figure B.1), while on K-MNIST it increases 567

with depth (implying lower diversity in deeper lay- 568

ers). Entropy generally rises with depth on MNIST, 569

7

https://arxiv.org/abs/1609.04836
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.48550/arXiv.1812.01718


NLDL
#60

NLDL
#60

NLDL 2026 Full Paper Submission #60. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure B.1. (left) Q-statistic of node-level predictions
across layers of a three-layer MLP trained on Fashion-
MNIST, averaged over five seeds, and (right) the corre-
lation between the Q-statistic and layer accuracy. The
annotated values correspond to the averaged layer ac-
curacies. The right panel shows a strong relationship
between the Q-statistic and layer accuracy (Pearson
r = −0.81) across seeds and layers.

Table C.1. Test accuracy versus induction level. Ac-
curacy values are averaged over five seeds; ∆ indicates
the change in percentage points relative to the baseline
model (0% dropout/dropconnect or largest batch size).

Dataset Method Induction level Accuracy (%)

Fashion-MNIST Dropout 0% 0.8178

10% 0.8197

20% 0.8216

30% 0.8222

40% 0.8244

50% 0.8260

Fashion-MNIST DropConnect 0% 0.8178

10% 0.8215

20% 0.8252

30% 0.8269

40% 0.8312

50% 0.8319

Fashion-MNIST Batch size 512 0.8170

256 0.8178

128 0.8260

64 0.8285

32 0.8345

16 0.8360

Fashion-MNIST, and CIFAR-10, but remains nearly570

unchanged across layer on K-MNIST. Overall, Dis-571

agreement and Double-fault provide the most consis-572

tent depth trends, whereas Q-statistic and entropy573

vary by dataset (Table B.1).574

C Induced diversity575

Accuracy increase from Dropout Test accu-576

racy increases monotonically with stronger dropout,577

but the gains are modest: from 0.8182 at 0% to578

0.8260 at 50% (+0.82). This suggests small but579

consistent benefits over the explored Dropout range580

(Table C.1).581

Accuracy increase from DropConnect582

Weight-level masking yields a larger improvement583

than normal Dropout on Fashion-MNIST: accuracy584

Table C.2. Test accuracy versus induction level. Ac-
curacy values are averaged over five seeds; ∆ indicates
the change in percentage points relative to the baseline
model (0% dropout/dropconnect or largest batch size).
Batch size models were trained on a subset of the train-
ing data (5, 000 samples) for CIFAR-10.

Dataset Method Induction level Accuracy (%)

CIFAR-10 Dropout 0% 0.759

10% 0.791

15% 0.795

20% 0.793

25% 0.792

30% 0.794

CIFAR-10 DropConnect 0% 0.759

10% 0.794

15% 0.799

20% 0.794

25% 0.794

30% 0.792

CIFAR-10 Batch size 512 0.500

256 0.489

128 0.520

64 0.552

32 0.564

16 0.568

rises from 0.8178 to 0.8319 at 50% (+1.41), with a 585

steady increase across all levels (Table C.1). 586

Accuracy increase from varying batch sizes 587

Reducing the batch size delivers sizable gains: the 588

accuracy increases from 0.8170 (512 batch size, base- 589

line is 256) to 0.8360 (16 batch size), a +1.90 im- 590

provement, with improvements at each reduction 591

step (Table C.1). 592

Similar accuracy increases were obtained from 593

models trained on the MNIST and K-MNIST 594

datasets. 595

CIFAR-10 For CIFAR-10, batch sizes sweeps 596

were run on a 5, 000 stratified subset to avoid con- 597

founds we observed on the full training set, where 598

extremely small batches produced so many updates 599

that their diversity appeared ‘averaged out,’ invert- 600

ing the expected ordering. We expect the ordering 601

to recover at larger batch sizes (e.g., 512 vs 1, 024), 602

but we did not test this. See Table C.2. 603

Accuracy increase from Dropout Test accu- 604

racy improves with moderate dropout, peaking at 605

15% (0.759 − 0.795; +3.6%) and remaining stable 606

for 20− 30% (Table C.2). From the literature, it is 607

widely accepted that a moderate amount of Dropout 608

applied to CNNs can boost performance, whereas 609

excessive Dropout can negatively impact the perfor- 610

mance [4]. 611

Accuracy increase from DropConnect Again, 612

weight-level masking appears to yield the largest 613

8
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Table C.3. Effect of DropConnect rate on layer-wise
diversity (averaged over runs) for the Fashion-MNIST
dataset. Disagreement increases with a higher drop rate,
while Double-fault and Q-statistic generally decrease;
entropy shows a mild non-monotonic trend.

Diversity measure
Drop rate p (%)

0 10 20 30 40 50

Disagreement 0.340 0.348 0.354 0.358 0.363 0.366

Double-fault 0.520 0.514 0.505 0.495 0.487 0.476

Q-statistic 0.418 0.381 0.373 0.368 0.364 0.361

Entropy 2.677 2.710 2.700 2.691 2.668 2.653

model-level gain, peaking at 15% (0.759 − 0.799;614

+4.0%), with small declines at higher rates (Ta-615

ble C.2).616

Accuracy increase from varying batch sizes617

On the 5, 000 sample subset, reducing the batch size618

improves accuracy monotonically over most of the619

range (0.500 at 512 to 0.568 at 16; +6.8%), with620

gains becoming pronounced below 128 batch size621

(Table C.2).622

DropConnect effects on diversity DropCon-623

nect generally increases diversity. As the drop624

rate rises from 0% to 50%, Disagreement increases625

steadily, while Double-fault and Q-statistic decrease.626

Together, these shifts indicate higher averaged di-627

versity with a higher rate of DropConnect being628

applied (Table C.3).629

Entropy is less stable. Entropy shows a mild,630

non-monotonic pattern with a small net decline,631

suggesting it is a weaker or more dataset-sensitive in-632

dicator in this setting. Overall, the consistent mono-633

tone trends in Disagreement, Double-fault, and Q-634

statistic support the view that DropConnect reliably635

induces diversity in Fashion-MNIST (although Q-636

statistic has inconsistent layer-wise diversity trends).637

Diversity tracks generalization Across638

datasets and induction methods, induced diversity639

is strongly correlated with higher test accuracy (Ta-640

ble C.4). Disagreement is consistently positive (e.g.,641

r ≈ 0.56 − 0.97), and Double-fault is consistently642

negative (e.g., r ≈ −0.60tp − 0.99), aligning with643

their interpretations (higher Disagreement / lower644

Double-fault leads to greater diversity and better645

accuracy).646

Method sensitivity DropConnect yields some of647

the strongest correlations across all datasets, while648

Dropout is slightly weaker on average. Batch size649

shows very strong trends for MNIST and K-MNIST650

and more moderate trends for Fashion-MNIST and651

CIFAR-10.652

Metric stability/consistency Q-statistic and653

entropy are less stable across datasets and regular-654

Table C.4. Correlation between model test accuracy
and diversity across datasets, diversity metrics, and
regularization methods (Dropout, DropConnect, and
varying batch size). For each dataset–method–metric
triplet, diversity is first averaged across all hidden layers
per model; Pearson correlation is then computed between
test accuracy and this layer-averaged diversity across
the full set of models (baseline plus all regularization
levels).

Diversity measure Dataset Method Correlation

Disagreement

MNIST Dropout 0.9163

K-MNIST Dropout 0.9322

Fashion-MNIST Dropout 0.6289

CIFAR-10 Dropout 0.6420

MNIST Batch size 0.9737

K-MNIST Batch size 0.8367

Fashion-MNIST Batch size 0.5566

CIFAR-10 Batch size 0.5458

MNIST DropConnect 0.9588

K-MNIST DropConnect 0.9443

Fashion-MNIST DropConnect 0.8888

CIFAR-10 DropConnect 0.8936

Double-fault

MNIST Dropout -0.9529

K-MNIST Dropout -0.9134

Fashion-MNIST Dropout -0.8285

CIFAR-10 Dropout -0.6023

MNIST Batch size -0.9852

K-MNIST Batch size -0.9405

Fashion-MNIST Batch size -0.6734

CIFAR-10 Batch size -0.7493

MNIST DropConnect -0.9784

K-MNIST DropConnect -0.9526

Fashion-MNIST DropConnect -0.8970

CIFAR-10 DropConnect -0.7961

Q-statistic

MNIST Dropout -0.6095

K-MNIST Dropout 0.8047

Fashion-MNIST Dropout -0.1365

CIFAR-10 Dropout -0.4153

MNIST Batch size -0.9200

K-MNIST Batch size 0.8836

Fashion-MNIST Batch size -0.4831

CIFAR-10 Batch size -0.2076

MNIST DropConnect -0.8727

K-MNIST DropConnect 0.9031

Fashion-MNIST DropConnect -0.7503

CIFAR-10 DropConnect -0.4384

Entropy

MNIST Dropout -0.9320

K-MNIST Dropout -0.6390

Fashion-MNIST Dropout -0.7126

CIFAR-10 Dropout 0.3025

MNIST Batch size -0.1802

K-MNIST Batch size -0.6067

Fashion-MNIST Batch size 0.4253

CIFAR-10 Batch size 0.3399

MNIST DropConnect -0.6234

K-MNIST DropConnect -0.6922

Fashion-MNIST DropConnect -0.4859

CIFAR-10 DropConnect 0.3672
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izers. Q-statistic is negative on MNIST, Fashion-655

MNIST, and CIFAR-10, but flips positive on K-656

MNIST. Entropy is mostly negative on MNIST,657

Fashion-MNIST, and K-MNIST, but positive on658

CIFAR-10 for all regularizers, also being positive659

for Fashion-MNIST under the batch size variation660

(Table C.4).661
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