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Abstract

In ensembles, improved generalization is frequently
attributed to diversity among members of the en-
semble. By viewing a single neural network as an
implicit ensemble, we perform an exploratory inves-
tigation that applies well-known ensemble diversity
measures to a neural network in order to study the
relationship between diversity and generalization in
the over-parameterized regime. Our results show
that i) deeper layers of the network generally have
higher levels of diversity—particularly for MLPs—
and ii) layer-wise accuracy positively correlates with
diversity. Additionally, we study the effects of well-
known regularizers such as Dropout, DropConnect
and batch size, on diversity and generalization. We
generally find that increasing the strength of the
regularizer increases the diversity in the neural net-
work and this increase in diversity is positively cor-
related with model accuracy. We show that these
results hold for several benchmark datasets (such as
Fashion-MNIST and CIFAR-10) and architectures
(MLPs and CNNs). Our findings suggest new av-
enues of research into the generalization ability of
deep neural networks.

1 Introduction

A complete understanding of why deep neural net-
works (DNNs) generalize well on unseen data re-
mains an open problem in machine learning. For ex-
ample, it is well-known that neural networks achieve
good generalization despite interpolating their train-
ing data [1–3]. Yet, despite our limited understand-
ing of generalization in DNNs, rapid progress has
been made in developing methods, called regulariza-
tion, that encourages generalization. Examples of
these methods include Dropout [4], weight decay [5],
input or weight noise [5].

A widely-used regularization method is ensem-
bling, where the output of several models are ag-
gregated to produce a final output. Crucial to the
generalization ability of the ensemble is the diver-
sity of the models [6–9]. Depending on the task,
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Figure 1. Model performance against average diversity
(across layers) for models trained on the Fashion-MNIST
dataset using DropConnect as a regularizer with values in
the range 0−50. Diversity is shown by the Disagreement
measure. A higher Disagreement value constitutes a
higher diversity. There is a clear increase in model
performance as the average diversity increases.

there are several definitions of diversity that may
be used [10]. For example, diversity can measure
the correlation between the models’ predictions in
the ensemble, in which case, low correlation would
be considered high diversity. In general, a higher
diversity of the models will correspond to better gen-
eralization of the ensemble, albeit that there may be
a trade-off where too much diversity can negatively
impact generalization [6, 7, 11, 12].

Recently, an insightful approach to investigating
generalization in deep learning models has been to
view a single deep learning model as an implicit
ensemble. For the problem of vanishing gradients
in deep residual networks, Veit et al. [13] view a
deep residual network as a collection of paths and
show that the paths have an ensemble-like behavior.
Another approach by Olson et al. [14] decomposes a
single neural network into an ensemble of low-bias
subnetworks and, by using correlation as a proxy
for diversity and showing that the subnetworks ex-
hibit low correlation, argues that an internal regular-
ization process helps mitigate overfitting in neural
networks. Through the observation of regularities
in the activation patterns of the hidden nodes of a
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DNN, Davel et al. [15] views a single hidden node
as a classifier. More recently, through investigating
the problem of catastrophic forgetting in continual
learning, Benjamin et al. [16] show that a neural
network in the lazy regime can be decomposed into
an implicit ensemble consisting of the weights of the
neural network.

However, in viewing a neural network as an im-
plicit ensemble, the role of diversity in a neural net-
work remains unexplored. In this paper, we follow
the approach of Davel et al. [15] and view a single
neural network as an implicit ensemble with hidden
nodes as classifiers. This allows us to investigate the
role of diversity with respect to generalization of the
network. The main contributions of the paper are
as follows:

1. We examine the diversity of the hidden nodes
using established diversity measures.

2. We empirically investigate the relationship be-
tween node-level diversity and generalization
across several benchmark datasets and for dif-
ferent architectures.

3. We analyze the effect of well-known regulariza-
tion methods that encourages generalization and
examine the effect of these methods on diversity.
We show that diversity correlates with the gen-
eralization of the neural network (see Figures 1
and 6).

Our results provide new insight into the ability
of over-parameterized neural networks to generalize
and offers new avenues of research into the general-
ization of neural networks.

2 Background

2.1 Ensemble Methods

Ensemble methods combine predictions of multi-
ple classifiers to achieve better generalization than
individual models. Classic approaches such as bag-
ging [17] and boosting [18], have shown that ensem-
bles reduce variance, improve robustness, and often
outperform single models across diverse tasks.

A key factor to the success of ensembles is diversity
among the base classifiers. If all classifiers make
identical errors, the ensemble offers no advantage.
However, when classifiers make different errors, the
ensemble can correct individual mistakes, yielding
improved accuracy [6, 7]. Theoretical and empirical
studies have shown that ensembles benefit most
when base learners are both accurate and diverse [10].
Diversity can be defined in several ways, for example
it can be the degree of correlation between classifiers’
predictions, with lower correlation implying higher
diversity.

2.2 Diversity Measures

Several measures have been proposed to quantify
diversity in ensembles [10]. In this paper, we focus
on four well-known metrics: Disagreement, Double-
fault, Q-statistic, and Entropy.
These measures (besides Entropy) are based on

the outcomes of pairs of classifiers, which can be
summarized using a 2 × 2 contingency table (Ta-
ble 1). Assuming a C class classification problem,
let Da and Db be two classifiers. Given a data set
{(x(i), y(i))}Ni=1, let N

11, N10, N01, and N00 denote
the frequency of the following cases:

• N11: Number of samples for which both Da

and Db are correct.

• N10: Number of samples for whichDa is correct,
and Db is incorrect.

• N01: Number of samples for which Da is incor-
rect, and Db is correct.

• N00: Number of samples for which both Da

and Db are incorrect.

Since every sample must fall into exactly one of
these four categories, the sum of these four frequen-
cies must equal the total number of samples (N) in
the dataset:

N = N11 +N10 +N01 +N00

We consider three pairwise metrics, namely:

• Disagreement

Disa,b =
N10 +N01

N
(1)

We define the disagreement between two classi-
fiers Da and Db based on the state of their predic-
tion correctness on a sample x(i). This measures
the proportion of instances where the classifiers
exhibit a difference in their correctness status
(N10 or N01). Disagreement is bounded between
[0, 1] where higher Disagreement values relate to
higher diversity. A Dis = 1 indicates the highest
amount of disagreement between classifiers.

• Double-fault

dfa,b =
N00

N
, (2)

This measures the proportion of instances where
both classifiers misclassify the same sample.
Double-fault is bounded between [0, 1], where a
lower Double-fault value relates to a higher diver-
sity (they fail on different samples).

• Q-statistic

Qa,b =
(N11N00 −N10N01)

(N11N00 +N10N01)
(3)

Values range from [−1, 1] with lower Q-statistic
values indicating higher diversity.
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Table 1. 2× 2 contingency table for pairwise measures.
See text for details.

Db correct (1) Db incorrect (0)
Da correct (1) N11 N10

Da incorrect (0) N01 N00

We also consider one non-pairwise metric:

• Entropy Entropy quantifies the uncertainty in
ensemble predictions and serves as a proxy for
classifier disagreement [10, 19]. Let P (c | x(i))
denote the proportion of classifiers in the ensemble
that assign x(i) to class c, where c ∈ {1, . . . , C}.
This can be estimated as:

P (c | x(i)) =
1

L

L∑
m=1

1{Dm(x(i)) = c}, (4)

where L is the number of subpredictors, Dm(x(i))
is the class predicted by the m-th classifier, and
1{·} is an indicator function which equals 1 if the
condition inside is true, and 0 otherwise.. The per
sample entropy is then calculated as:

H(x(i)) = −
C∑

c=1

P (c | x(i)) logP (c | x(i)). (5)

We can then calculate the average over the
dataset:

EntCC =
1

N

N∑
i=1

H(x(i)) (6)

Higher values of Entropy indicate higher diversity
between subpredictor predictions. It is important
to note that Entropy uses the raw multi-class pre-
dictions, and not the binary correct/incorrect pre-
dictions (like the other measures do). This leads
to Entropy being bounded between [0, log(C)] or
[0, 3.32] (the classification datasets we employ each
consist of 10 classes).

These measures provide complementary views
of diversity—Disagreement emphasizes complemen-
tarity, Double-fault emphasizes error overlap, Q-
statistic emphasizes correlation, and Entropy em-
phasizes overall variety.

3 Method

3.1 Implicit Ensemble Framework

In order to investigate the effects of diversity in deep
neural networks, we view a single neural network as
an implicit ensemble. In particular, we adopt the
framework introduced by Davel et al. [15], which
treats each hidden node as a weak classifier. We
refer to such a node classifier as a subpredictor.

Intuitively, hidden nodes tend to specialize during
training. That is to say, they become sensitive to cer-
tain patterns or classes. Following Davel et al. [15],
we estimate, for each node n and class c, the class-
conditional probability P (zn(x

(i)) | c) of each node’s
pre-activation zn given a sample x(i) by applying a
kernel density estimator (KDE) trained using all N
training samples’ activation values observed at the
node.

Applying Bayes’ rule yields a node-level posterior
over classes for an input with pre-activation zn:

P (c | zn) =
P (zn | c)P (c)∑
c′ P (zn | c′)P (c′)

, (7)

where P (c) is the class prior1. P (c | zn) is then
node n’s probability for class c when given a certain
input. Then, for a given pre-activation zn(x

(i)) and
a node n in layer ℓ, the node’s class prediction is
computed as ŷℓ,n(x

(i)) = argmaxc P (c | zn(x(i))).
We refer to this as a hard vote.

Majority vote ensemble: To ensemble the out-
put’s of the subpredictors in a layer ℓ, we employ a
simple majority vote rule to determine our layer-wise
prediction, and by extension, layer-wise accuracy.
These hard votes are then used for computing the
diversity of the predictions across nodes within the
given layer.

Nodes as subpredictors: We first demonstrate
that individual nodes can indeed be treated as mean-
ingful subpredictors within the implicit ensemble. To
do this, we compute the accuracy of each node when
predicting class labels. Figure 2 shows a heatmap of
node accuracies across layers, while Figure 3 presents
the layer-wise accuracy for the train, validation, and
test sets. These results confirm that individual nodes
can perform as subpredictors.

Although the predictive ability of individual nodes
within a neural network layer may be limited, their
performance is consistently better than random
chance. When the output of these subpredictors
are aggregated, their collective predictions at the
layer level yields better accuracies over the train-
ing, validation, and testing sets, similar in fashion
to the principles of ensemble learning, where multi-
ple ‘weak learners’ are combined to create a single
‘strong learner.’

3.2 Applying Diversity Metrics

We focus on the diversity metrics mentioned in Sec-
tion 2.2.

We compute these metrics directly from the node-
level predictions. For pairwise measures like Q-
statistic, Disagreement, or Double-fault, we calculate

1Class priors are taken as the empirical class frequencies
in the training data.
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Figure 2. Accuracy heatmap of node predictions in a
three layer MLP. Only the first 100 nodes are shown here.
Most nodes in each layer have an individual accuracy of
around 15-20% (higher than random guessing). Results
were obtained from the MNIST test set for a model
trained on 2,000 samples of the MNIST dataset.

Figure 3. Layer-wise accuracy graphs for the train,
validation, and test on MNIST. Accuracy improves with
network depth. Each layer accuracy has significantly
higher accuracy than compared to the individual node ac-
curacies. This clearly showcases the ensembling strength
of individual nodes within a layer.

the average over all unique pairs of nodes within
a specific layer. For our non-pairwise metric i.e.,
Entropy, we compute the measures across all nodes
in the layer directly.

To facilitate these calculations, we first needed to
construct our contingency tables (see Table 1) for
each combination of subpredictors within a layer.
This was done by first creating a binary accuracy
matrix, B, from our subpredictor predictions. Each

entry, B
(x(i))
n , indicates whether node n correctly

classified sample x(i) by comparing the sample’s
true class label y(i) to the node’s predicted class
label ŷℓ,n(x

(i)):

B(x(i))
n =

{
1, if ŷℓ,n(x

(i)) = y(i)

0, otherwise
(8)

We then use the binary accuracy matrix to con-
struct the contingency table for each pair of nodes
(n1, n2). This table records the number of samples
for which both nodes made the same or different
predictions, based on whether their predictions were
correct (1) or incorrect (0). Then using the equa-
tions given in Section 2.2, we can compute each
diversity metric across layers.

3.3 Training protocol

Due to how easily MLPs learn datasets like MNIST
and Fashion-MNIST (with evaluation accuracies of-
ten being above 98%), and to more clearly see the
effects of inducing diversity, we train the MLP net-
works on a small stratified subset of the training data
(e.g., 2 000 samples) until interpolation (100% train-
ing accuracy). This protocol ensures that models
generalize to different degrees despite being perfectly
fit to the training subset. CNN models are trained
using the full CIFAR-10 training set for all exper-
iments besides the varying batch size experiments
where a stratified subset of 8 000 samples was used.
Models are trained using cross-entropy loss and op-
timized with the Adam optimizer, and no batch
normalization has been applied. All experiments are
repeated across five different random model seeds.
We report the mean ± standard deviation for most
of our results.
Details regarding datasets used, hyperparameter

setup, and model architectures can be found in Ap-
pendix A.

3.4 Inducing diversity through regu-
larization

Regularization methods are commonly used to im-
prove generalization in deep learning [5]. To study
the effect of induced diversity, we apply common reg-
ularization techniques that we believe should have
an effect on the diversity within the network:

• Dropout: [4] randomly deactivates nodes dur-
ing training, forcing different subsets of nodes to
specialize. Applied to hidden layers with varying
rates (0.1-0.5 for MLPs, 0.1-0.3 for CNNs).

• DropConnect: [20] similar to Dropout, except
the weights are randomly removed rather than
the activations. The same rates are applied as for
Dropout.

• Batch size variation: [21] smaller batch sizes
increase gradient noise which could possibly intro-
duce some diversity to the nodes during training.
Models are trained with batch sizes of: 16, 32, 64,
128, 256 (baseline), 512.

Expected effects of induction: For Dropout
and DropConnect, increasing the drop probability p
should raise the node-level diversity by discouraging
co-adaptation and encouraging specialization across
stochastic subnetworks [4]. For batch size, smaller
batches are expected to produce higher diversity
because they introduce more gradient noise and more
parameter updates per epoch, possible promoting
more node-level diversity.

In this work, we use these techniques to explicitly
manipulate diversity and investigate its effect on
generalization in implicit ensembles.
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Figure 4. Mean diversity (averaged over model seeds) for Disagreement, Double-fault, Q-statistic, and Entropy,
computed per layer for MNIST, K-MNIST, Fashion-MNIST (MLPs) and CIFAR-10 (CNN). Note that the y-axis
for Double-fault and Q-statistic have been inverted in order to show increasing diversity.

4 Empirical Results

4.1 Diversity trends (no induced reg-
ularization)

Having established that nodes can act as subpredic-
tors, we evaluate whether classical diversity mea-
sures provide meaningful insights in this implicit
setting.

Diversity relationship with depth: Across the
three-layer MLPs, mean diversity (averaged over five
model seeds) increases monotonically with depth for
most metrics. As shown in Figure 4, Disagreement
and Double-fault exhibit complementary monotonic
trends—Disagreement increases and Double-fault de-
creases from Layer 1 to 3 across MNIST, K-MNIST,
and Fashion-MNIST—indicating higher diversity in
deeper layers (note that for Double-fault and Q-
statistic, we have inverted the y-axis to indicate
increasing diversity). The Q-statistic and Entropy
measures show more dataset dependent behavior:
for MNIST and Fashion-MNIST, diversity increases
across layers, while for K-MNIST it decreases. For
CIFAR-10 (CNN), diversity first decreases then in-
creases for Disagreement and Double-fault, while
Q-statistic and Entropy increase across all three lay-
ers. This non-monotonic pattern in the CNN (for
Disagreement and Double-fault) likely reflect the
distinct role of the fully-connected stage in the con-
volutional network, where its function differs from
the hierarchical transformations in MLPs.

Layer accuracy correlated with diversity:
Layer accuracies also increase with depth for all
MLP models, confirming that deeper layers yield
more discriminative subpredictors. Figure 5 shows
that Disagreement and Double-fault are strongly

correlated with layer accuracy across datasets (Pear-
son r > 0.85 for all MLPs), demonstrating that
diversity mirrors the layer performance. In contrast,
Q-statistic and Entropy display dataset-dependent
correlations—for MNIST and Fashion-MNIST, we
have a strong negative correlation with Q-statistic,
and a strong positive correlation with Entropy, but
weak or even opposite for K-MNIST (r = 0.500
with Q-statistic, and r = 0.029 with Entropy).
For CIFAR-10, we see similar trends to MNIST
and Fashion-MNIST although weaker in correlation
strength.

Summary: Across datasets, Disagreement and
Double-fault show the most reliable and interpretable
correlations between layer diversity and layer per-
formance. Layers with higher Disagreement (and
lower Double-fault) consistently achieve higher ac-
curacy, supporting the link between diversity and
predictive strength. In contrast, Q-statistic and
Entropy exhibit dataset-dependent or inconsistent
behavior—particularly for K-MNIST—where corre-
lations vary in both magnitude and direction. These
two measures therefore provide limited cross-dataset
generality and are treated as secondary in our anal-
yses.

4.2 Inducing Diversity

Regularization effects on model perfor-
mance: We investigate how certain regularization
techniques—Dropout, DropConnect, and batch size—
affect model generalization and diversity.

Figure 6 shows test accuracy against Dropout
probability across datasets. Increasing the drop
rate p improves model accuracy for all datasets.
For CIFAR-10, once 15− 20% Dropout is applied,
performance begins to plateau or decline slightly,
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Figure 6. Model test accuracy versus Dropout prob-
ability across datasets. Model performance improves
consistently with increasing Dropout.

indicating a possible onset of over-regularization.
Similar behavior is observed for DropConnect and
when reducing the training batch size, where smaller
batches yield higher test accuracy. These results
confirm moderate regularization improves model
performance across all datasets. DropConnect and
batch size results can be seen in Figures B.1 and B.2,
respectively.

Regularization effects on diversity: To assess
how regularization influences diversity within the
network, we measure layer-wise diversity at varying
Dropout probabilities for Fashion-MNIST (Figure 7).
Each point represents a model initialized with a spe-
cific seed and then trained with a specific Dropout
level. Across layers, observe a positive correlation be-
tween layer accuracy and Disagreement—r = 0.639
for Layer 1, r = 0.661 for Layer 2, and r = 0.909 for

Layer 3—indicating that higher Dropout promotes
both increased diversity and improved predictive per-
formance. The relationship strengthens in deeper
layers.

Averaging across layers, the same pattern holds
across datasets (Figure 8). Disagreement increases
and Double-fault decreases with stronger regulariza-
tion, reflecting greater diversity among subpredic-
tors. In contrast Q-statistic still exhibits dataset-
dependent trends—K-MNIST still diverges from
metrics—while Entropy generally decreases with
Dropout, showing only minor fluctuations. See Fig-
ures B.3 and B.4 for results obtained for DropCon-
nect and batch size.

The link between generalization and diver-
sity: To evaluate whether induced diversity corre-
lates with generalization, we compute the Pearson
correlation between model test accuracy and aver-
age layer diversity across all regularization settings
and datasets. Figure 9 summarizes these relation-
ships for the four diversity measures when applying
Dropout to the network.

Across datasets and regularizers, increasing the
strength of the regularizer—through higher drop
probabilities p for Dropout and DropConnect, or
smaller batch sizes—yields both higher test accu-
racy and higher average diversity, although the
strength of this link depends on the metric and
the dataset. For the Disagreement measure, cor-
relations are consistently positive and strong (r =
0.629-0.932 for Dropout), confirming that greater
node-level disagreement coincides with better model
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Figure 7. Scatterplots of layer performance versus layer Disagreement for Fashion-MNIST under different Dropout
probabilities. Each point represents a model trained with a specific Dropout rate.
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Figure 8. Average diversity versus Dropout probability across datasets for all diversity metrics. Note that the
y-axis for Double-fault and Q-statistic have been inverted in order to show increasing diversity.

performance. The complementary Double-fault mea-
sures shows equally strong but negative correlations
(r = −0.622- − 0.953), as lower shared-error fre-
quency indicates higher diversity and thus improved
generalization.

In contrast, Q-statistic and Entropy display less
consistent behavior. The Q-statistic reverses sign for
K-MNIST (r = 0.805), suggesting dataset-specific
dependencies in how subpredictor agreement relates
to performance.

Entropy is largely negative across datasets (e.g.,
MNIST r = −0.932). However, the CIFAR-10 case
shows small, near-zero or even positive correlations
(Figure B.6), which could suggest that for convo-
lutional models, the distributional spread of node
predictions behave differently from the fully con-
nected MLPs.

Overall, these results demonstrate a clear posi-
tive association between generalization and diver-
sity: models that generalize better tend to exhibit
greater diversity among subpredictors. The relation-
ship is most consistently and robustly captured by
the Disagreement and Double-fault measures, while
Q-statistic and Entropy depend more strongly on
dataset and architecture.

Further results: Additional results for the re-
maining regularization methods (DropConnect and
batch size) and their effects on model performance,
diversity, and the relationship between the two, are
provided in the supplementary material.
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Figure 9. Correlation between model test accuracy and diversity across datasets and metrics under induced-
diversity conditions using Dropout.

5 Conclusion

This work examined how diversity within over-
parameterized neural networks relates to generaliza-
tion by treating each hidden node as a subpredictor
of an implicit ensemble. Using classical ensemble
diversity measures, we quantified layer-wise diversity
across multiple datasets and architectures and inves-
tigated how this diversity behaves both without and
with regularization such as Dropout, DropConnect,
and batch sizes.

Our results show that diversity generally increases
with depth. Additionally, we find that regularizers
such as Dropout, DropConnect, or smaller batch
sizes, generally increases the diversity in a neural
network’s layers.

We find that layer diversity strongly correlates
with layer accuracy. When regularizers are in-
cluded (Dropout, DropConnect, and batch size),
both layer accuracy and diversity generally increase.
Among all measures, Disagreement and Double-fault
emerge as the most consistent indicators of this
correlation—showing strong positive and negative
correlations with accuracy, respectively. In con-
trast, Q-statistic and Entropy exhibit dataset- and
architecture-dependent variability.

Finally, with respect to a neural network’s gener-
alization, we observed that diversity within a single
neural network, averaged over layers, is correlated
with model test accuracy.

Future work: As a first step, this work provides
an exploratory study of the relationship between a

neural network’s diversity and generalization. To-
wards a next step in this study, an interesting di-
rection would be to extend this framework to larger
and more modern architectures such as ResNets and
Transformers, potentially using pre-trained large-
scale models (e.g., ImageNet networks trained with
Dropout) to study diversity at scale. Another valu-
able next step would be to directly compare the
diversity-performance relationship in neural net-
works to that of explicit ensembles.

There are also intriguing questions that emerge
from this study. Notably, does a tradeoff between a
neural network’s diversity and generalization exist?
For example, in this investigation, we used a moder-
ate amount of regularization. As the strength of the
regularizer is increased, we hypothesize a decrease in
both the model’s generalization performance and di-
versity. Finally, there are also discrepancies between
different diversity measures, particularly the diver-
gent behavior of the Q-statistic and Entropy. An
open problem is to better understand this discrep-
ancy and to understand their sensitivity to datasets
and architectures.
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Berlin, Heidelberg: Springer Berlin Heidelberg,
1995, pp. 23–37. doi: 10.1006/jcss.1997.
1504.

[19] P. Cunningham and J. Carney. “Diversity ver-
sus quality in classification ensembles based
on feature selection”. In: European Conference
on Machine Learning. Springer. 2000, pp. 109–
116. doi: 10.1007/3-540-45164-1_12.

[20] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and
R. Fergus. “Regularization of neural networks
using dropconnect”. In: International Con-
ference on Machine Learning. PMLR. 2013,
pp. 1058–1066. doi: 10 . 5555 / 3042817 .

3043055.

9

https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.5555/2627435.2670313
http://udlbook.com
http://udlbook.com
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.48550/arXiv.2110.13786
https://doi.org/10.48550/arXiv.2110.13786
https://doi.org/10.48550/arXiv.2301.03962
https://doi.org/10.48550/arXiv.1605.06431
https://doi.org/10.5555/3327144.3327279
https://doi.org/10.5555/3327144.3327279
https://doi.org/10.1609/aaai.v34i04.5782
https://doi.org/10.5555/3737916.3739791
https://doi.org/10.1007/BF00058655
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/3-540-45164-1_12
https://doi.org/10.5555/3042817.3043055
https://doi.org/10.5555/3042817.3043055


[21] N. S. Keskar, D. Mudigere, J. Nocedal, M.
Smelyanskiy, and P. T. P. Tang. On Large-
Batch Training for Deep Learning: General-
ization Gap and Sharp Minima. 2017. arXiv:
1609.04836 [cs.LG].

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
“Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324. doi: 10 . 1109 / 5 .

726791.

[23] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-
MNIST: a novel image dataset for benchmark-
ing machine learning algorithms”. In: arXiv
preprint arXiv:1708.07747 (2017). doi: 10.
48550/arXiv.1708.07747.

[24] T. Clanuwat, M. Bober-Irizar, A. Kitamoto,
A. Lamb, K. Yamamoto, and D. Ha. “Deep
learning for classical Japanese literature”. In:
arXiv preprint arXiv:1812.01718 (2018). doi:
10.48550/arXiv.1812.01718.

[25] A. Krizhevsky, G. Hinton, et al. “Learning
multiple layers of features from tiny images”.
In: (2009).

A Model setup

Datasets: We evaluate our approach on four stan-
dard image classification benchmarks:

• MNIST [22], Fashion-MNIST [23], and K-
MNIST [24] grayscale digit and clothing classi-
fication datasets with 10 classes. K-MNIST is a
variant of MNIST with Japanese characters.

• CIFAR10 [25], a colored natural image dataset
with 10 classes.

Architectures: We used different architectures
to confirm our results.

• For MNIST, Fashion-MNIST, and K-MNIST,
we use fully-connected multi-layered perceptrons
(MLPs) with a depth of three hidden layers, each
with a width of 512 nodes.

• For CIFAR-10, we use a convolutional neural net-
work (CNN) with multiple convolutional and pool-
ing layers followed by fully connected layers (see
Table A.2 for details). Diversity measures are
applied only to the fully connected layers, where
subpredictors are defined at the node level.

Hyperparameter setup: The specific details re-
garding what hyperparameters were used to train
each model can be found in Table A.1. All mod-
els were trained with a baseline batch size of 256,
while the varying batch size experiments then used
the other values. No Dropout or DropConnect was

Table A.1. Hyperparameter setup for different model
architectures

Hyperparameter Value

Optimizer Adam

Learning rate 0.0003

Batch size {16, 32, 64, 128, 256 (baseline), 512}
Epochs (max) 1000

Dropout/DropConnect rates (MLPs) {0, 0.1, 0.2, 0.3, 0.4, 0.5}
Dropout/DropConnect rates (CNNs) {0, 0.1, 0.15, 0.2, 0.25, 0.3}
Learning rate scheduler {Step size = 1, gamma = 0.99}

applied to normal baseline models. A learning rate
scheduler was also applied for all different models.

The specific model architecture for the CNNs can
be found in Table A.2.
Table A.2. CNN specification (conv bias=True, ac-
tivation=ReLU, BN=False). “×n” indicates repeated
blocks.

Stage Layers Kernel / Stride / Pad Output size (for 32×32 input)

Input 32×32×3
S1 Conv 64 ×2 (3, 1, 1) 32×32×64

MaxPool (2, 2, 0) 16×16×64
S2 Conv 128 ×2 (3, 1, 1) 16×16×128

MaxPool (2, 2, 0) 8×8×128
S3 Conv 256 ×3 (3, 1, 1) 8×8×256

MaxPool (2, 2, 0) 4×4×256
S4 Conv 512 ×3 (3, 1, 1) 4×4×512

MaxPool (2, 2, 0) 2×2×512
S5 Conv 512 ×3 (3, 1, 1) 2×2×512

MaxPool (2, 2, 0) 1×1×512
Head Flatten → MLP(3×512) → Dense(C) C

B Additional results

Regularization effects on model performance:
Figures B.1 and B.2 illustrate the effects that Drop-
Connect and varying batch size have on the model
accuracy. We observe that increasing the amount of
DropConnect or decreasing the batch size yields a
corresponding improvement in model performance
across all datasets. This behavior is consistent with
prior literature, which highlights regularization as a
mechanism that generally enhances model general-
ization.
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Figure B.1. Model test performance against percentage
DropConnect applied during training across datasets.
There is a clear increasing trend in accuracy as the drop
probability being applied is increased.

Regularization effects on diversity: Fig-
ures B.3 and B.4 illustrate the effects that DropCon-
nect and varying batch size have on the diversity
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Figure B.2. Model test performance for models trained
with varying batch sizes. There is a clear in accuracy
with smaller batch sizes.

within the network. We observe that increasing the
amount of DropConnect or decreasing the batch size
generally yields a corresponding increase in diver-
sity across all datasets—this is evident by the clear
correlation we see between diversity and how much
DropConnect is applied or the size of the batches.
We do however, note some inconsistencies with some
metrics, where the Q-statistic and Entropy mea-
sures show some contradictory results—especially
on the K-MNIST dataset. The results suggest—
particularly for the Disagreement and Double-fault
measures—that added DropConnect and smaller
batch sizes generally lead to increased diversity.

Relationship between diversity and general-
ization performance: Figures B.5 and B.6 il-
lustrate the effects that DropConnect and varying
batch size have on the relationship between diversity
and generalization performance. We generally ob-
serve strong positive relationships between increased
diversity and improved generalization. This is partic-
ularly evident for the Disagreement and Double-fault
measures, both of which show strong correlations
with model performance in the DropConnect and
batch size experiments. For DropConnect, we obtain
Pearson correlations of r > 0.71 for Disagreement,
and r < −0.79 for Double-fault, while decreasing
the batch size yields similarly strong trends with
r > 0.55 and r < −0.67, respectively. We still
find some inconsistencies with the results for the
Q-statistic and Entropy measures, where they show
weaker or even reversed trends for some datasets
(especially the K-MNIST dataset). Besides these
inconsistencies, we do however, still see some trend
where an increase in diversity correlates with im-
proved diversity.
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Figure B.3. Average diversity versus DropConnect probability across datasets for all diversity metrics. Dis-
agreement increases and Double-fault decreases with DropConnect level, indicating higher diversity at stronger
regularization. Q-statistic shows mixed behavior, with K-MNIST diverging from other datasets, while Entropy
decreases slightly with minor fluctuations.
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Figure B.4. Average diversity versus batch size across datasets for all diversity metrics. Disagreement generally
increases and Double-fault generally decreases with smaller batch sizes, indicating higher diversity. Q-statistic and
Entropy show mixed behavior, with K-MNIST and CIFAR-10 (only for the Entropy) diverging from other datasets.
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Figure B.5. Correlation between model test accuracy and averaged diversity across datasets and metrics under
induced diversity conditions using DropConnect.
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Figure B.6. Correlation between model test accuracy and averaged diversity across datasets and metrics under
induced diversity conditions using varying batch sizes.
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