
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAYESIAN NEIGHBORHOOD ADAPTATION FOR GRAPH
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The neighborhood scope (i.e., number of hops) where graph neural networks
(GNNs) aggregate information to characterize a node’s statistical property is crit-
ical to GNNs’ performance. Two-stage approaches, training and validating GNNs
for every pre-specified neighborhood scope to search for the best setting, is a
daunting and time-consuming task and tends to be biased due to the search space
design. How to adaptively determine proper neighborhood scopes for the aggre-
gation process for both homophilic and heterophilic graphs remains largely un-
explored. We thus propose to model the GNNs’ message-passing behavior on a
graph as a stochastic process by treating the number of hops as a beta process. This
Bayesian framework allows us to infer the most plausible neighborhood scope for
messsage aggregation simultaneously with the optimization of GNN parameters.
Our theoretical analysis show the scope inference improves the expressivity of
GNN models. Experiments on benchmark homophilic and heterophilic datasets
show that the proposed method is compatible with state-of-the-art GNN variants,
improving their performance and providing well-calibrated predictions.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling (2016)) and its variants have shown success in
modeling graph-structured data arising in various fields, such as computational biology (Huang
et al. (2020); Kishan et al. (2021)), social information analysis (Li & Goldwasser (2019); Qiu et al.
(2018)), recommender systems (Ying et al. (2018)), etc. Due to the locality assumption, multiple
GNN layers needed to be stacked up in the network structures in order to expand neighborhood scope
for message aggregation. Substantial research efforts focus on enhancing the aggregation schemes
for homophilic and heterophilic graphs, resulting in GNN variants showing significant performance
improvements (Xu et al. (2018); Veličković et al. (2017); Rong et al. (2020); Chen et al. (2020);
Chien et al. (2021); Luan et al. (2022); Zeng et al. (2021)). Although the neighborhood scope where
GNNs aggregate information is also vital to their performance, the state-of-the-art GNN variants
still rely on traditional two-stage approaches to search for the best setting. Since these empirical
approaches involve training and validating GNN models for each single candidate configuration of
neighborhood scope, it is a daunting task and tend to be biased. Moreover, since the validation error
is a noisy quantity, it is necessary to devote large quantities of data to the validation set to obtain a
reasonable signal-to-noise ratio.

Recent research efforts mainly focus on designing aggregation schemes for effective message pass-
ing to improve GNNs’ performance. Regularization-based methods (Rong et al. (2020); Hasanzadeh
et al. (2020)), introduce regularization techniques that randomly drop edges or neural connections
between layers during training. Connection-based methods (Xu et al. (2018); Chen et al. (2020))
incorporate additional residual connections between GNN layers. Another group of methods (Abu-
El-Haija et al. (2019); Wu et al. (2019)) aggregate messages from multiple hops in a single neural
layer by using higher powers of the adjacency matrix. GAT (Veličković et al. (2017)) enables the pri-
oritization of specific nodes during message aggregation in a pre-specified neighborhood scope. The
performance of some approaches rely on an implicit assumption of graph homophily (McPherson
et al. (2001)) (i.e., nodes belonging to the same class tend to form edges) and they may not per-
form well on heterophilic graphs (i.e., nodes with distinct features are more likely connected) (Zhu
et al. (2020); Liu et al. (2021)). Aggregation schemes (Chien et al. (2021); Luan et al. (2022); Zhu
et al. (2020)) tailored for heterophilic settings allow GNN variants to achieve state-of-the-art perfor-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of our proposed neighborhood adaptation strategy. Left: The feature of a
given node (black-colored) is generated by aggregating messages from neighbors located multiple
hops away. The direction of message passing is indicated by arrows. The nodes in each hop l are
assigned a contribution probability (πl) indicating their contribution in aggregation (color-coded).
Right: Visualizing stick-breaking construction of a beta process. The sticks on top are random
draws from a beta process, representing the probabilities over the number of hops. The bottom
shows the conjugate Bernoulli process over node feature dimensions. Filled circles (blue) indicate a
random draw of 1 confirming the selection of a particular feature.

mance. Besides effective aggregation schemes, proper neighborhood scopes for message passing is
also critical for GNNs’ superior performance (Huang et al. (2020); Abu-El-Haija et al. (2019); Per-
ozzi et al. (2014)). Small neighborhood scopes limit GNNs at capturing long-range information in
the graph, whereas overly large neighborhood scopes tend to degrade model expressivity and incur
expensive computation. It remains an open question how to automatically determine proper neigh-
borhood scope for both homophilic and heterophilic graphs without numerous rounds of training
and validating different GNN candidate structures.

To address this challenge, we propose a neighborhood scope adaptation strategy based on non-
parametric Bayesian inference. This general framework allows us to infer the most plausible neigh-
borhood scope for message aggregation simultaneously with learning node representations. Specifi-
cally, we model the expansion of the neighborhood as a stochastic process by defining a beta process
prior over the number of hops. The beta process induces a probability for the neighboring nodes in
each hop to quantify their contribution to the aggregation. Based on the hop-wise probabilities,
we randomly sample a fraction of the node features by masking them with a binary vector gener-
ated from a conjugate Bernoulli process. Such a strategy further prioritizes the nodes’ contribution
within the neighborhood scope, leading to customized message aggregation. To assess the effective-
ness of our proposed framework, we showcase its versatility on state-of-the-art GCN variants, and
demonstrate its ability to boost their performance on both homophilic and heterophilic datasets. We
also provide theoretical and empirical analysis of its ability to improve expressivity in deep network
structures. Moreover, we show that our framework leads to well-calibrated predictions via reliable
uncertainty estimation.

Our contributions are as follows: i) We propose a general Bayesian inference strategy that automat-
ically determines neighborhood scopes for message passing. ii) We introduce an efficient stochastic
variational approximation to simultaneously infer neighborhood scopes and learn node represen-
tations. iii) Our theoretical and empirical analyses show that our framework can enhance GNNs’
expressivity. iv) We demonstrate the adaptive neighborhood scope inference improves state-of-the-
art GNN performance on both homophilic and heterophilic graphs.

2 PRELIMINARIES AND RELATED WORKS

We denote a graph with G with vertices (nodes), edges, and node features denoted by (V, E ,X). The
adjacency matrix with added self-connections is denoted by A ∈ R|V|×|V| and Â is it’s normalized
form. Hl denotes the lth hidden layer in a neural network (H0 = X), with Wl being its parameters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GCN (Kipf & Welling (2016)) proposed a neural network with a graph convolution layers. A GNN
with a single hidden layer is represented as:

Y = σ(Â σ(ÂXW0)W1) (1)

where σ is the activation function. Multiplication by adjacency matrix Â denotes message aggre-
gation from the immediate neighborhood. Eqn. (1) highlights that stacking multiple layers in a
GNN model involves repeated multiplication with Â, expanding the neighborhood scope with each
additional layer. Therefore, specifying the number of layers implicitly assumes the locality i.e. it
incorporates lth-hop neighbors for message aggregation when the network consists of l layers. Sub-
sequent research has aimed to improve upon this basic aggregation scheme, as outlined below.

2.1 MESSAGE AGGREGATION SCHEMES

Dropedge (Rong et al. (2020)) proposes to randomly drop a fraction of the edges and train GNNs
with the resulting sparse graph to reduce noise in the graph structure. Residual connections be-
tween layers are employed to enhance GNN models’ performance while preserving locality. JKNet
(Xu et al. (2018)) aggregates the information from all hidden layers before feeding it into the out-
put layer. Such aggregation helps maintain the local information of each layer when propagating
towards the output layer. PPNP (Gasteiger et al. (2019)) proposes a message aggregation scheme
based on the personalized PageRank algorithm (Page et al. (1998)), allowing message passing from
larger neighborhood. GCNII (Chen et al. (2020)) extends GCNs with an initial residual connection
and identity mapping, resulting in stable and better performance with deeper structures. In addition,
utilizing higher powers of the adjacency matrix for aggregation from broader neighborhoods is also
an effective strategy. The GNN variant proposed in (Wu et al. (2019)) widens the scope from im-
mediate neighbors to the ones lying multiple hops away in a single layer and effectively expand the
neighborhood scope for aggregation. Mixhop, (Abu-El-Haija et al. (2019)), employs multiple heads
in a single layer to aggregate and combine messages from neighbors lying at higher hops. GAT
(Veličković et al. (2017)) incorporates an attention mechanism into GNNs by assigning attention co-
efficients to graph edges based on connected nodes’ feature vectors. (Liu et al. (2022)) proposes to
augment the neighborhood scopes of nodes with a lower degree by generating neighbors for effective
aggregation. Half-hop (Azabou et al. (2023)) adds slow nodes at each edge. DRew (Gutteridge et al.
(2023)) proposes layer dependent rewiring and delay mechanism to slow down message passing.

2.2 AGGREGATION SCHEMES FOR HETEROPHILIC GRAPHS

Some aggregation approaches assume graph homophily and perform poorly on heterophilic graphs
(Pei et al. (2020); Bojchevski et al. (2020; 2019)). Since the connected nodes often exhibit signif-
icantly different properties in heterophilic graphs, a new design of effective message aggregation
becomes necessary (Jia & Benson (2020)). To address this challenge, H2GCN (Zhu et al. (2020))
proposes ego embedding and higher order neighborhood aggregation, allowing for significant per-
formance improvements on heterophilic graphs. GPR-GNN (Chien et al. (2021)) associates message
aggregation in each step with a learnable weight, allowing it to adapt to the homophily or heterophily
structure of the input graph. ACM-GCN (Luan et al. (2022)) proposes adaptive channel mixing and
achieves state-of-the-art results on benchmark heterophilic datasets. However, all these methods rely
on two-stage empirical approaches, such as grid-search, to determine the best neighborhood scope
(the number of propagation steps in H2GCN and GPR-GNN or the number of graph convolutional
layers in ACM-GCN) for the input graph.

2.3 BAYESIAN METHODS FOR GNNS

DropConnect (Hasanzadeh et al. (2020)), as a Bayesian approach to GNNs, extends Dropedge by
selectively dropping out edges and convolutional channels at different layers and neurons, providing
more flexibility. Both DropEdge and dropout (Srivastava et al. (2014)) can be viewed as special cases
of DropConnect. Bayesian-GCNN (Zhang et al. (2019)) considers the input graph as a specific real-
ization from a parametric family of random graphs and performs inference of the joint posterior of
the random graph parameters and the node labels. G3NN (Ma et al. (2019)) defines a random graph
model where the distribution of random graphs also depends on the node features and labels, cap-
turing their interactions for more flexible modeling, and infers missing labels in a semi-supervised

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

learning setting. VGCN (Elinas et al. (2020)) defines a probability distribution over the adjacency
matrix to capture the topological structures of input graphs, enhancing model performance under
adversarial perturbations of the input graph structure. Our method differs fundamentally from these
approaches. While they define priors and conduct inference over the properties of input graphs, such
as features, structure, and labels, we propose a general neighborhood scope inference strategy as an
alternative to the empirical methods that require experimenting with different scope configurations
to find the optimal settings.

3 BAYESIAN NEIGHBORHOOD ADAPTATION FOR GNNS

We propose to model the expansion of neighborhood scope as a beta process and jointly perform
node feature sampling with its conjugate Bernoulli process. Theoretical analysis shows our frame-
work improves GNN models’ expressivity.

3.1 BETA PROCESS PRIOR OVER INFINITE NEIGHBORHOOD SCOPES

We model the number of hops for message aggregation as a beta process(Paisley et al. (2010);
Broderick et al. (2012)). Specifically, we utilize stick-breaking construction of the beta process as
follows:

πl =

l∏
j=1

νj , νl ∼ Beta(α, β) (2)

where νl are sequentially drawn from a beta distribution. Additionally, πl denotes the contribution
probability assigned to neighbors at the l-th hop level. Theoretically, the process assigns a proba-
bility to neighbors at infinite hop levels, potentially enabling message aggregation from an infinite
scope, as demonstrated in Figure 1. πl can be interpreted as a contribution of nodes lying at l-th hop
during message aggregation. To sample features of a node at the l-th hop level, we introduce the
Bernoulli variable zol ∼ Bernoulli(πl). Thus, if zol = 1, it indicates that the o-th feature of a node
at the l-hop level will be included for message aggregation. We thus perform joint inference over
the contribution probabilities of hops with a beta process and feature sampling using its conjugate
Bernoulli process (KC et al. (2021)) by formulating the prior over Z as:

p(Z,ν|α, β) = p(ν|α, β)p(Z|ν) =
∞∏
l=1

Beta(νl|α, β)
O∏

o=1

Bernoulli(zol|πl) (3)

where α and β are hyperparameters. Specifically, large α and small β encourage aggregation from
a broader neighborhood.

3.2 GNN MODELS AS A LIKELIHOOD

Since GNNs aggregate messages from l-th hop neighbors via the l-th layer, we thus sample features
of a node at the l-th hop level by multiplying the output from the l-th layer with the binary mask zl.
Following this framework, a GNN layer is specified as:

Hl = σ(ÂHl−1Wl)
⊗

zl +Hl−1, l ∈ {1, 2, . . .∞} (4)

where Wl ∈ RO×O denotes the weight matrix of layer l, O is the dimensionality of the feature
vector (i.e. the number of neurons in a hidden layer), and σ is the activation function. The output
of layer l is multiplied element-wisely by a binary vector zl where its element zol ∈ {0, 1}. The
residual connections feed the outputs from the last activated GNN layer to the output layer. What’s
more, they also improve GNNs’ performance with deep structures (Kipf & Welling (2016)).

Let D = {X,Y} where Y = {yn} denoting the node labels in a graph G with feature matrix X.
For the node classification, we express the likelihood as:

p(D|Z,W,G) =
|V|∏
n=1

p(yn|ŷn), Ŷ = f(HL) (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where f(·) denotes the output layer with softmax activation and Ŷ = {ŷn} is the estimated outputs.
Z is a binary matrix whose l-th column is zl, W denotes the set of weight matrices, and HL is the
output from the last activated layer.

The marginal likelihood obtained by marginalizing out Z in the product of Eqn. (3) and Eqn. (5) is:

p(D|W,G, α, β) =
∫

p(D|Z,W,G)p(Z,ν|α, β)dZdν (6)

3.3 EFFICIENT VARIATIONAL APPROXIMATION

Due to the non-linearity of neural networks in the likelihood P (D|Z,W,G) and L → ∞ (Eqn. (3)),
exact computation of the marginal likelihood in Eqn. (6) is intractable. We propose a stochastic
variational inference (Hoffman et al. (2013); Hoffman & Blei (2015)) to approximate the marginal
likelihood.

By specifying a truncation level T to denote the maximum number of layers for the variational
distribution, we have

q(Z,ν|{at}Tt=1, {bt}Tt=1) = q(ν)q(Z|ν) =
T∏

t=1

Beta(νt|at, bt)
O∏

o=1

ConBer(zot|πt) (7)

where ConBer(zot|πt) denotes a concrete Bernoulli distribution (Maddison et al. (2016); Jang et al.
(2016)). The concrete Bernoulli presents a continuous relaxation of the binary variables generated
from the Bernoulli process. This reparameterization trick allows optimization through gradient de-
scent. The lower bound for the log marginal likelihood in Eqn. (6) (ELBO) is:

log p(D|W,G, α, β) ≥ Eq(Z,ν)][log p(D|Z,W)]− KL[q(ν)||p(ν)]− KL[q(Z|ν)||p(Z|ν)] (8)
Eqn. (8) is the optimization objective for our proposed framework. The first term in the left-hand
side fits the model to the data and the rest two terms are regularization derived from the prior. The
expectation is estimated with Monte Carlo sampling.

4 EXPRESSIVITY ANALYSIS

Figure 2: (left) Visualization of the convergence
of feature vector H in the subspace U . P and
dM(H) are the projection and the perpendicular
distance of H from the subspace respectively. θ
is the size of the angular region spanned by H
around the U . (right) Visualization of the angu-
lar regions spanned by vanilla GCN (grey), Res-
GCN (blue), and BNA-GCN (purple) around the
subspace U (denoted by the dark line).

For ease of notation, we use N to denote the
number of nodes in the graph (N = |V|). For
a symmetric adjacency matrix A, the eigenvec-
tors are perpendicular. Let λ1, . . . , λN are the
eigenvalues of A sorted in ascending order, and
let the multiplicity of largest eigenvalue λN is
M i.e λ1 < . . . , λN−M < λN−M+1 = · · · =
λN . We also assume that the adjacency matrix
is normalized and possesses positive eigenval-
ues, with the maximum eigenvalue capped at 1.

Let, {em}m=N−M+1,...,N be the orthonormal
basis of the subspace U corresponding to the
eigenvalues {λm}m=N−M+1,...,N = 1, and
{em}m=1,...,N−M be the orthonormal basis for
U⊥. Consequently, H ∈ RN×O can be ex-
pressed as H =

∑N
m=1 em ⊗ wm where wm ∈

RO.

Theorem 1 (Oono & Suzuki (2019)) Let
dM(H) denote the perpendicular distance be-
tween the representations H and the subspace
U , then the output representations from Lth

layer (HL) in a GCN exponentially converges to the subspace U .
dM(HL) ≤ λLH0; dM(H) = min

P∈U
||H−P|| (9)

λ = max
m∈{1,..,N−M}

λm

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Evolution of neighborhood scope and contribution probabilities over the number of epochs
for the Pubmed dataset when trained with our method. The contribution probabilities pil and hence
the neighborhood scope increases as the training progresses and settles to an optimal value.

The convergence of HL to lower dimensional subspace in Theorem 1 shows that the expressivity of
a GCN exponentially decreases with an increase in the number of layers. This leads to information
loss since nodes that lie within the same connected component tend to share identical features,
making them indistinguishable.

In our analysis, we measure the convergence in terms of the angular region (θ) spanned by H
around U as shown in Figure 2. A low value of θ is indicative of feature vector collapsing onto
the lower-dimensional subspace U , resulting in decreased expressivity. Conversely, a high θ value
indicates feature expression in a greater number of dimensions, resulting in improved expressivity.
The findings in (Kipf & Welling (2016)) indicate that incorporating residual connections in a GCN
(ResGCN) yields improved performance with deeper structure compared to a vanilla GCN. We will
theoretically analyze ResGCN and show that the addition of residual connection widens the angular
region θ. Moreover, we observe that even in ResGCN, the region becomes more confined as the
number of layers increases. Our proposed framework addresses this issue and maintains a wider
region even with deeper layers by automatically inferring the relevant neighborhood scope.

If θL is the angle spanned by HL with the subspace U ,

tan θL =
dM(HL)

|PL|
, P = arg min

P∈U
||H−P||, θL = tan−1[

dM(HL)

|PL|
] (10)

A network with residual connections between each layer (ResGCN) is represented as:

H
(Res)
l = fl(H

(Res)
l−1) +H

(Res)
l−1 (11)

Lemma 1 If θ(Res)
l is the angle spanned by H

(Res)
l with the subspace U , then θ

(Res)
L ≥ θL

Corollary 1 The angular region narrows down with increase in layers L: θ(Res)
L−1 ≥ θ

(Res)
L

Lemma 1 suggests that ResGCN has better expressivity than a vanilla GCN with representations
covering a wider angular region. However, Corollary 1 suggests that with the increase in layers in
ResGCN, the features H(Res)

L increasingly collapse into the subspace U .

Next, we analyze the impact of the application of our neighborhood inference framework in a GCN.

Theorem 2 With the application of the Bayesian Neighborhood Adaptation (BNA) framework, if
θ
(BNA)
L is the angle spanned with the subspace U , then θ

(BNA)
L ≥ θ

(Res)
L ≥ θL.

Corollary 2 Beyond a certain number of layers lns, the angular region θ
(BNA)
L remains constant

even with further increase in the number of layers: θ(BNA)
L = θ

(BNA)
lns for L ≥ lns

Theorem 2 suggests that the application of the BNA framework further enhances the expressivity
of ResGCNs. Importantly, Corollary 2 suggests that by inferring the appropriate neighborhood for
message aggregation, the BNA framework avoids feature collapse and prevents information loss in
a deep GCN. These analyses are demonstrated in Figure 2 and empirically validated in Figure 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Node classification performance of the GNN variants on homophilic (Cora, Citeseer,
Pubmed) and heterophilic (Chameleon, Cornell, Texas, Wisconsin) graphs. The reported metric
is averaged accuracy with ± one standard deviation. The best result for each graph is highlighted in
bold, while the second-best result is underlined.

Baselines Cora Citeseer Pubmed Chameleon Cornell Texas Wisconsin
GCN 85.35±0.23 77.37±0.33 77.30±0.20 55.84±6.20 80.82±3.60 73.11±22.46 60.38±13.88

ResGCN 86.15±0.15 78.15±0.30 77.66±0.84 66.04±2.09 80.82±3.60 80.82±3.60 62.75±6.68
Ours+ResGCN 86.83±0.13 77.90±0.37 78.20±0.29 64.25±2.30 80.82±3.60 78.20±4.15 66.13±5.35

JKNet 86.20±0.10 77.68±0.35 77.25±0.23 52.43±2.84 74.43±8.30 70.00±5.49 62.13±6.20
Ours+JKNet 86.40±0.68 78.20±0.65 78.42±0.13 63.85±2.04 77.70±4.10 78.52±6.24 67.38±4.82

GAT 86.43±0.40 77.76±0.24 76.78±0.63 63.90±0.46 76.00±1.01 78.87±0.86 71.01±4.66
Ours+GAT 86.70±0.40 77.52±0.32 77.47±0.19 65.32±2.61 79.84±3.36 75.08±7.10 73.12±3.41

GCNII 87.53±0.30 77.63±0.21 79.96±0.17 58.97±2.76 87.70±5.15 76.07±5.35 80.37±5.86
Ours+GCNII 87.26±0.25 78.36±0.66 78.60±0.60 57.44±3.35 87.87±5.19 90.66±2.54 90.75±3.12
GPR-GCN - - - 67.48±0.40 91.36±0.70 92.92±0.61 93.75±2.37

ACM-GCN+ 85.63±0.13 75.20±0.29 75.73±0.40 74.62±1.79 92.46±2.34 91.80±4.21 94.87±2.20
Ours+ACM-GCN+ 84.76±0.76 74.73±0.33 74.33±0.82 74.38±1.69 93.61±2.13 94.10±3.53 95.75±1.79

Figure 4: The impact of increasing the depths (L/T) of GNN variants with and without our frame-
work on their expressivity. Although the depth increase degrades the performance of vanilla Res-
GCN, GAT, and ACM-GCN, the application of our framework stabilizes their performance even for
deep network structures.

5 EXPERIMENTS

We first investigate how the neighborhood scope expands during the inference. We also assess the
effectiveness our proposed framework by applying it to GNN variants for multi-class classification
tasks on benchmark homophilic and heterophilic graph datasets. Next, we examine the expressivity
as the depths of GNN variants increase, and evaluate the uncertainty estimates of the GNN variants.
We conduct an ablation study to show the contributions of the different components. We then assess
the scalability of our framework’s performance to large graph datasets. Finally, we analyze both
theoretically and empirically the computational cost of our framework. 1

5.1 NEIGHBORHOOD SCOPE ADAPTATION

Figure 3 demonstrates the mechanism of neighborhood scope adaptation during training over 300
epochs for the Pubmed dataset. The truncation was set to T = 10. During initial phase, the scope is
limited to 4 hops, with comparatively less contribution from each hop. As the training progresses,
our framework allows the contribution probabilities and hence the neighborhood scope to adapt to
the input. At 300th epoch, the expansion converges to 6 hops, and the contribution probabilities
become stable over training.

5.2 PERFORMANCE COMPARISON ON GNN VARIANTS

We evaluate the performance of GNN variants integrated with our framework to determine the opti-
mal neighborhood scopes for the task on the homophilic (Cora, Citeseer, Pubmed) (Sen et al. (2008))

1Implementation details are in the Appendix. Codes are provided.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: TSNE visualization of the learned node representations by ResGCN with and without our
framework for shallow (L = T = 4) and deep (L = T = 32/64) structure. The representations
of ResGCN converge in narrow curve-shaped regions for deep structures. This indicates that the
representations converge to a narrow subspace, which is consistent with Corollary 1. Applying our
framework (bottom row) addresses this issue, resulting in spread-out representations with deeper
network structure. This suggests that the application of our framework enhances the expressivity.

Table 2: Uncertainty calibration comparison between baseline GNN models, an ensemble of the
baseline models, and applying our framework in the baseline models. The reported metric is the
expected calibration error (ECE ↓). The best result is bolded.

Baselines Cora Citeseer Pubmed Chameleon Cornell Texas Wisconsin
GCN 0.14±0.03 0.27±0.03 0.17±0.02 0.11±0.03 0.46±0.06 0.49±0.09 0.30±0.13

GCN Ensemble 0.02 ± 0.01 0.21±0.02 0.04±0.01 0.04±0.01 0.51±0.02 0.57±0.02 0.25±0.03
Ours+GCN 0.04±0.02 0.12±0.05 0.08±0.03 0.05±0.01 0.48±0.05 0.15±0.03 0.13±0.05

GCNII 0.32±0.01 0.39±0.02 0.04±0.01 0.06±0.01 0.36±0.03 0.13±0.03 0.18±0.05
GCNII Ensemble 0.32±0.01 0.39±0.01 0.04±0.01 0.03±0.01 0.34±0.01 0.20±0.01 0.21±0.02

ACM-GCN+ 0.19±0.04 0.27±0.03 0.15±0.03 0.04±0.01 0.13±0.03 0.09±0.02 0.09±0.02
ACM-GCN+ Ensemble 0.17±0.01 0.28±0.01 0.16±0.01 0.05±0.01 0.12±0.02 0.11±0.03 0.12±0.02

Ours+ACM-GCN+ 0.09±0.03 0.13±0.02 0.14±0.01 0.04±0.01 0.10±0.05 0.07±0.01 0.06±0.01

and heterophilic (Chameleon, Cornell, Texas, Wisconsin) (Pei et al. (2020)) graphs by comparing
with grid search solutions for the variants.

For homophilic graphs, we perform both full-supervised (Citeseer, Cora) and semi-supervised
(Pubmed) node classification in Table 1. We integrate our inference framework with vanilla GCN,
ResGCN (Kipf & Welling (2016)) (GCN with residual skip connections), GAT (Veličković et al.
(2017)), JKNet (Xu et al. (2018)), GCNII (Chen et al. (2020)), GPR-GNN (Chien et al. (2021)), and
ACM-GCN+ (Luan et al. (2022)). The details of implementation are provided in the appendix. Ta-
ble 1 shows that the GNN variants with our framework achieve the best performance on four graph
datasets and the second best on the remaining three datasets. The results suggest that by jointly
inferring neighborhood scope and learning GNN parameters, we boost the overall performance of
the GNN models without incurring any computation overhead.

5.3 EXPRESSIVITY WITH DEEP GNN STRUCTURES

We evaluate the effects of our inference framework on the expressivity of GNN variants with in-
creasingly deep structures. We apply dropout regularization to the GNN variants in this analysis.
The performance over varying numbers of GNN layers is shown in Figure 4. The results show that
the overall performance of ResGCN, GAT, and ACM-GCN+ across the datasets suffer a decline
when the network depth L becomes large. However, combining our framework with these GNN
models to adapt the neighborhood scopes for the node feature learning, we mitigate the problem as
indicated by the solid flat curves, showing the robustness of the performance over the increasing
truncation level T .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In Figure 5, we assess expressivity by visualizing the node representations learned by ResGCN with
and without our framework. The t-SNE embeddings of the representations obtained from the last
layer of a shallow network (L = 4) and deep network (L = 32/64) are shown for the Cora and
Wisconsin datasets.2 The representations generated by ResGCN with shallow networks are well-
separated into clusters and are spread-out in the latent feature space. However, For deep ResGCN,
the cluster separation becomes less distinct, and the representations collapse into a curved-shaped
region. This is consistent with Corollary 1. The application of our framework (bottom row) results
in comparatively spread-out representations for shallow structure (T/L = 4), which is in accordance
with Theorem 2. However, the representations remain spread-out even for deep structures, indicating
improved expressivity as suggested by Corollary 2. This can be attributed to the property of our
framework that decouples the neighborhood scope from the truncation level (i.e., a pre-specified
network depth) and allows the ResGCN network depth to adapt as it learns node representations.

5.4 UNCERTAINTY QUANTIFICATION

We assess the uncertainty estimates of GNN variants, their combinations with our framework, and
GNN deep assembles. The baselines include the vanilla GCN and the two best performers from
Table 1, namely GCNII and ACM-GCN+. The ensemble of the baseline models consists of 10
models trained with different initializations. The metric for assessing uncertainty is expected cali-
bration error (ECE) (Guo et al. (2017)).3 Table 2 shows that compared to the baseline GNN models,
integrating our framework improves their uncertainty quantification on both homophilic and het-
erophilic datasets in most cases. By quantifying the uncertainty of adaptive neighborhood scopes
in training via Bayesian inference, our approach enhances uncertainty calibration in four cases and
delivers comparable results in the remaining three, compared to the GNN deep ensemble.

5.5 ABLATION STUDY

Table 3: Ablation study of our online inference framework for
neighborhood scope adaptation.

Dataset Cora Citeseer Pubmed
GCN 85.00±0.10 77.23±0.17 77.00±0.50

ResGCN 86.16±0.24 77.26±0.10 76.66±0.33
ResGCN+do 86.15±0.15 78.15±0.30 77.66±0.84
Ours+GCN 86.83±0.13 77.90±0.37 78.20±0.29

We analyze the contribution
of different modeling compo-
nents of our framework on
GCNs. ResGCN is the GCN
with residual connections be-
tween successive layers. The
results in Table 3 show that
residual connections is an ef-
fective technique, and with
dropout regularization (do) for
feature sampling ResGCN im-
prove the GCN’s performance and achieve the best on Citeseer. Furthermore, by adapting the neigh-
borhood scope with beta process, our framework achieves the overall best performance.

5.6 PERFORMANCE ON LARGE DATASETS

We evaluate baselines and our method on three large datasets: Flickr, ogb-arxiv on multi-class clas-
sification, and ogb-proteins on binary classification. The reported metrics are percentage accuracy
for multi-class classification and AUC-ROC for binary classification settings. The baselines rely on
an expensive grid-search approach to determine the neighborhood scope and use it to learn node
representations. In contrast, our efficient framework simultaneously infers the scope while learning
node representations. Table 4 demonstrates that applying our framework to the baselines results
in comparable or significantly better performance, showing that the performance of our framework
scales effectively to large datasets.

5.7 TRAINING TIME AND SPACE COMPLEXITY EVALUATION

For a constant maximum layer width, the time complexity of training a GNN model with depth L
is Ot = O(L|V|2 + |V|). Let S denote the number of Monte Carlo samples, our method is linearly

2More detailed expressivity assessments along with overfitting analysis are in Appendix.
3Analysis using PAvsPU metric is in Appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Performance of baselines and our method on large graph datasets. The metric reported
are percentage accuracy for Flickr & ogb-arxiv, and AUC-ROC for ogb-proteins. The best result
is highlighted in bold and the second-best is underlined. The last column shows the GPU memory
usage for one epoch (in Gigabytes) while training the baselines and our method (S = 3) on the
ogb-protein dataset.

Dataset Flickr ogb-arxiv ogb-proteins Memory (ogb-proteins)
GCN 51.44±0.13 71.74±0.29 0.7251±0.0025 9.19

ResGCN 51.38±0.11 72.86±0.16 0.7343±0.0016 9.88
Ours + ResGCN 51.73±0.21 72.79±0.30 0.7572±0.0041 10.06

JKNet 52.56±0.12 72.19±0.21 0.6966±0.0052 10.14
Ours + JKNet 52.24±0.28 72.88±0.09 0.7330±0.0068 10.41

GCNII 51.53±0.16 72.74±0.16 0.7414±0.0070 9.91
Ours + GCNII 51.48±0.14 73.06±0.40 0.7513±0.0054 10.07

scalable as SOt. The space complexity of training the GNN model is O(|V|2 + L|V|). For our
method, the space complexity is O(|V|2 + SL|V|).
We report the training times of the GNN variants combining with our framework in Table 5. For
the inference over neighborhood scopes, the number of samples of Z is set to S = 5. The results
align with our complexity analysis, showing that the training time of our method scales linearly with
the number of samples. Although it takes extra time for the joint inference in training to determine
the best settings of neighborhood scopes, it is more efficient without incurring any computation
overhead as caused by grid-search or cross-validation.

Table 5: Training times (in seconds) of GNN variants with and
without our framework for 100 epochs. The number of samples
for our method is set to S = 5.

Dataset Cora Citeseer Flickr ogb-arxiv
ResGCN 0.35 0.37 2.30 5.60

Ours + GCN 1.14 1.30 10.12 29.20
GCNII 0.60 0.62 2.84 6.65

Ours + GCNII 1.21 1.18 11.64 31.60

In the last column of Table
4, we report the GPU mem-
ory usage when training the
baseline models with and with-
out our framework on the ogb-
proteins dataset. The re-
sults demonstrate that inte-
grating our framework intro-
duces no significant increase
in memory usage. This aligns
with our complexity analysis,
which shows that for larger
graphs (i.e., large |V|), the first term in the space complexity O(|V|2 + SL|V|) dominates, while
the second term contributes minimally to the overall memory load. Since the first term is the same
for both the baselines and our approach, memory consumption remains effectively unchanged.

6 CONCLUSION

We propose a general automatic neighborhood scope adaption method compatible with various GNN
models and boosting the overall performance by improving their expressivity and uncertainty esti-
mation. It trades off minimal training efficiency for reducing computation overhead on empirical
search and validation. Our future work entails adopting our neighborhood adaptation strategy for
more complex GNN architectures, such as graph transformer networks (Yun et al. (2019)). An-
other future direction is relaxing the finite truncation constraint in the variational distributions by
incorporating the Russian roulette method (Xu et al. (2019)).

REFERENCES

ShadowKHopSampler. https://docs.dgl.ai.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

architectures via sparsified neighborhood mixing. In International Conference on Machine Learn-
ing (ICML), pp. 21–29. PMLR, 2019.

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran
Liu, Michal Valko, Petar Veličković, and Eva L Dyer. Half-hop: A graph upsampling approach
for slowing down message passing. In International Conference on Machine Learning, pp. 1341–
1360. PMLR, 2023.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Martin Blais, Amol Kapoor, Michal
Lukasik, and Stephan Günnemann. Is pagerank all you need for scalable graph neural networks.
In ACM KDD, MLG Workshop, 2019.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2464–2473, 2020.

Tamara Broderick, Michael I. Jordan, and Jim Pitman. Beta processes, stick-breaking and power
laws. Bayesian Analysis, 7(2):439–476, Jun 2012. ISSN 1936-0975. doi: 10.1214/12-ba715.
URL http://dx.doi.org/10.1214/12-BA715.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning (ICML), pp. 1725–
1735. PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=n6jl7fLxrP.

Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. In Advances in neural information
processing systems, volume 33, pp. 18648–18660, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2019.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Benjamin Gutteridge, Xiaowen Dong, Michael M Bronstein, and Francesco Di Giovanni. Drew: Dy-
namically rewired message passing with delay. In International Conference on Machine Learning,
pp. 12252–12267. PMLR, 2023.

Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neural networks with adaptive connection sam-
pling. In International Conference on Machine Learning (ICML), pp. 4094–4104. PMLR, 2020.

Matthew Hoffman and David Blei. Stochastic structured variational inference. In Proc. of the
Artificial Intelligence and Statistics (AISTATS), pp. 361–369, 2015.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational infer-
ence. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Kexin Huang, Cao Xiao, Lucas M Glass, Marinka Zitnik, and Jimeng Sun. Skipgnn: predicting
molecular interactions with skip-graph networks. Scientific Reports, 10(1):1–16, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

11

http://dx.doi.org/10.1214/12-BA715
https://openreview.net/forum?id=n6jl7fLxrP

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Junteng Jia and Austion R Benson. Residual correlation in graph neural network regression. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 588–598, 2020.

Kishan KC, Rui Li, and Mohammad Mahdi Gilany. Joint inference for neural network depth and
dropout regularization. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

KC Kishan, Rui Li, Feng Cui, and Anne R Haake. Predicting biomedical interactions with higher-
order graph convolutional networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 19(2):676–687, 2021.

Chang Li and Dan Goldwasser. Encoding social information with graph convolutional networks
forpolitical perspective detection in news media. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 2594–2604, 2019.

Meng Liu, Zhengyang Wang, and Shuiwang Ji. Non-local graph neural networks. IEEE transactions
on pattern analysis and machine intelligence, 44(12):10270–10276, 2021.

Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou
Huang, and Dinghao Wu. Local augmentation for graph neural networks. In International Con-
ference on Machine Learning, pp. 14054–14072. PMLR, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In Advances in
neural information processing systems, volume 35, pp. 1362–1375, 2022.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-based
semi-supervised learning. In Advances in Neural Information Processing Systems, volume 32,
2019.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Jishnu Mukhoti and Yarin Gal. Evaluating Bayesian deep learning methods for semantic segmenta-
tion. arXiv preprint arXiv:1811.12709, 2018.

Kenta Oono and Taiji Suzuki. On asymptotic behaviors of graph cnns from dynamical systems
perspective. arXiv preprint arXiv:1905.10947, 2019.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. 1998.

John Paisley, Aimee Zaas, Christopher W. Woods, Geoffrey S. Ginsburg, and Lawrence Carin. A
stick-breaking construction of the beta process. In Proceedings of the 27th International Confer-
ence on Machine Learning (ICML), pp. 2902–2911. JMLR. org, 2010.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 701–710, 2014.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2110–2119, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations (ICLR), 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International Conference on Machine Learning (ICML),
pp. 6861–6871. PMLR, 2019.

Kai Xu, Akash Srivastava, and Charles Sutton. Variational Russian roulette for deep Bayesian non-
parametrics. In International Conference on Machine Learning (ICML), pp. 6963–6972. PMLR,
2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462. PMLR, 2018.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International Conference on Machine Learning (ICML), pp. 40–48. PMLR,
2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–
983, 2018.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Fast-
gcn: Fast learning with graph convolutional networks via importance sampling. In International
Conference on Learning Representation (ICLR), 2020.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional
neural networks for semi-supervised classification. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5829–5836, 2019.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
neural information processing systems, 33:7793–7804, 2020.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOF OF LEMMA 1

Restating the notations and assumptions in the main text, for ease of notation we use N to denote
the number of nodes in the graph (N = |V|). For a symmetric adjacency matrix A, the eigenvectors
are perpendicular. Let λ1, . . . , λN are the eigenvalues of A sorted in ascending order, and let the
multiplicity of largest eigenvalue λN is M i.e λ1 < . . . , λN−M < λN−M+1 = · · · = λN . We
also assume that the adjacency matrix is normalized and possesses positive eigenvalues, with the
maximum eigenvalue capped at 1.

Let, {em}m=N−M+1,...,N be the orthonormal basis of the subspace U corresponding the the eigen-
values {λm}m=N−M+1,...,N = 1, and {em}m=1,...,N−M be the orthonormal basis for U⊥. Conse-
quently, H ∈ RN×O can be expressed as H =

∑N
m=1 em ⊗ wm where wm ∈ RO.

The difference between a normal multi-layer perception (MLP) layer and GCN layer lies in the
multiplication of the layer output with adjacency matrix A. And this repeated multiplication with A
at every layer is the cause of the collapse of node features into a subspace (Oono & Suzuki (2019)).
To analyze how this repeated multiplication affects a GCN with residual connections, in our analysis
we simplify a GCN layer to a multiplication of features H with the adjacency matrix A.

If θ is the angle made by HL with subspace U ,

tan θ =
dM(HL)

|P|
(12)

θ = tan−1[
dM(HL)

|P|
] (13)

For ResGCN, a layer is defined as:

H
(Res)
L = f(H

(Res)
L−1) +H

(Res)
L−1

Representing a layer by its adjacency matrix,

H
(Res)
L = AH

(Res)
L−1 +H

(Res)
L−1

H
(Res)
L = (A+ I)H

(Res)
L−1

Solving this recurrence, we get:

H
(Res)
L = (A+ I)LH

(Res)
0 (14)

Expanding Eqn. (14) in terms of {wm}, we get:

H
(Res)
L =

N∑
m=1

em ⊗ (λm + 1)Lwm

(15)
The distance from the subspace U is:

d2M(H
(Res)
L) =

N−M∑
m=1

||(λm + 1)Lwm||2

=

N−M∑
m=1

||(1 + 1

λm
)L(λm)Lwm||2

=

N−M∑
m=1

(1 +
1

λm
)2L||(λm)Lwm||2 (16)

Since, 0 < λm < 1, (1 +
1

λm
) > 2. Then,

=⇒ d2M(H
(Res)
L) ≥ 22Ld2M(HL)

=⇒ dM(H
(Res)
L) ≥ 2LdM(HL) (17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Similarly,

|P(Res)
L |2 =

N∑
m=N−M+1

||(λm + 1)Lwm||2

Since, λm = 1 for N −M + 1 ≤ m ≤ N,

|P(Res)
L |2 =

N∑
m=N−M+1

||2Lwm||2

= 22L
N∑

m=N−M+1

||wm||2

= 22L|PL|2

=⇒ |P(Res)
L | = 2L|PL| (18)

The angular region spanned is:

tan θ
(Res)
L =

dM(H
(Res)
L)

|P(Res)
L |

=⇒ tan θ
(Res)
L ≥ 2LdM(HL)

2L|PL|
=⇒ tan θ

(Res)
L ≥ tan θL (19)

=⇒ θ
(Res)
L ≥ θL (20)

A.1 COROLLARY 1

From equation (5) :

d2M(H
(Res)
L) =

N−M∑
m=1

(1 +
1

λm
)2L||(λm)Lwm||2

=

N−M∑
m=1

(1 +
1

λm
)2L(λm)2||(λm)L−1wm||2

=

N−M∑
m=1

(λm)2(1 +
1

λm
)2(1 +

1

λm
)2(L−1)||(λm)L−1wm||2

=

N−M∑
m=1

(λm + 1)2(1 +
1

λm
)2(L−1)||(λm)L−1wm||2

≤
N−M∑
m=1

22(1 +
1

λm
)2(L−1)||(λm)L−1wm||2; [Since, λm ≤ 1]

= 22 d2M(H
(Res)
L−1)

=⇒ dM(H
(Res)
L) ≤ 2 dM(H

(Res)
L−1) (21)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The angular region spanned for L layers is:

tan θ
(Res)
L =

dM(H
(Res)
L)

|P(Res)
L |

=⇒ tan θ
(Res)
L ≤

2 dM(H
(Res)
L−1)

2L|PL|

=⇒ tan θ
(Res)
L ≤

dM(H
(Res)
L−1)

2L−1|PL−1|
[Since, |PL−1| = |PL|]

=⇒ tan θ
(Res)
L ≤ tan θ

(Res)
L−1

=⇒ θ
(Res)
L ≤ θ

(Res)
L−1 (22)

B PROOF OF THEOREM 2

First, we prove a simple relation. For 0 ≤ π, λ ≤ 1

λπ + 1

λ+ 1
− π + 1

2

=
2(λπ + 1)− (λ+ 1)(π + 1)

2(λ+ 1)

=
(1− λ)(1− π)

2(λ+ 1)

≥ 0

=⇒ λπ + 1

λ+ 1
≥ π + 1

2
(23)

A layer in BNA-GCN is represented as:

H
(BNA)
L = f(H

(BNA)
L−1)⊗ ZL +H

(BNA)
L−1 (24)

Since Z is a random variable, we calculate the expectation as:

E[H(BNA)
L] = f(H

(BNA)
L−1)⊗ E[ZL] +H

(BNA)
L−1

= f(H
(BNA)
L−1)⊗ πL +H

(BNA)
L−1

Representing layer by the adjacency matrix, (dropping the expectation notation for convenience),

H
(BNA)
L = AH

(BNA)
L−1 ⊗ πL +H

(BNA)
L−1

= (AπL + 1)H
(BNA)
L−1

Solving this recurrence, we get:

H
(BNA)
L =

L∏
l=1

(Aπl + 1)H
(BNA)
0

Expanding in terms of wm, we get:

H
(BNA)
L =

N−M∑
m=1

L∏
l=1

(λmπl + 1)wm

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The distance from subspace U is:

d2M(H
(BNA)
L) =

N−M∑
m=1

||
L∏

l=1

(λmπl + 1)wm||2

=

N−M∑
m=1

[
L∏

l=1

(λmπl + 1)

]2

||wm||2

=

N−M∑
m=1

[
L∏

l=1

λmπl + 1

λm + 1

]2

||(λm + 1)Lwm||2

≥

[
L∏

l=1

πl + 1

2

]2 N−M∑
m=1

||(λm + 1)Lwm||2 [From Eqn. 23]

≥
∏L

l=1(πl + 1)2

22L
d2M(H

(Res)
L)

=⇒ dM(H
(BNA)
L) ≥

∏L
l=1(πl + 1)

2L
dM(H

(Res)
L) (25)

Similarly,

|P(BNA)
L |2 =

N∑
m=N−M+1

||
L∏

l=1

(λmπl + 1)wm||2

Since, λm = 1 for N −M + 1 ≤ m ≤ N,

=

N∑
m=N−M+1

||
L∏

l=1

(πl + 1)wm||2

=

L∏
l=1

(πl + 1)2
N∑

m=N−M+1

||wm||2

=

∏L
l=1(πl + 1)2

22L

N∑
m=N−M+1

22L||wm||2

=

∏L
l=1(πl + 1)2

22L
|PRes

L |2

=⇒ |P(BNA)
L | =

∏L
l=1(πl + 1)

2L
|PRes

L | (26)

The angular region spanned is:

tan θ
(BNA)
L =

dM(H
(BNA)
L)

|P(BNA)
L |

Substituting the values from Eqn. 25 and 26 and simplifying

=⇒ tan θ
(BNA)
L ≥

dM(H
(Res)
L)

|P(Res)
L |

=⇒ tan θ
(BNA)
L ≥ tan θ

(Res)
L (27)

=⇒ θ
(BNA)
L ≥ θ

(Res)
L (28)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B.1 COROLLARY 2

By the definition of lns, Zl = 0 for l > lns. From Eqn. (24), we have:

H
(BNA)
L = f(H

(BNA)
L−1)⊗ ZL +H

(BNA)
L−1

For l = lns + 1,

H
(BNA)
lns+1 = f(H

(BNA)
lns)⊗ Zlns+1 +H

(BNA)
lns

H
(BNA)
lns+1 = H

(BNA)
lns

Generalizing the relation:

H
(BNA)
l = H

(BNA)
lns for l > lns

Therefore,

θ
(BNA)
l = θ

(BNA)
lns for l > lns

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C ALGORITHMIC DESCRIPTION

The algorithm of our proposed framework is in Algorithm 1.

Algorithm 1 Training of our proposed method
Input G, D, S and prior parameters α, β.

1: Draw S samples of network structures {Zs}Ss=1 from q(Z,ν)
2: for s = 1, . . . , S do
3: Compute the number of layers lc from Zs using Eqn. 8.
4: Compute log p(Di|Zs,W) with lc layers
5: Compute ELBO using Eqn. 13.
6: Update {at, bt}l

c

t=1and {W}lct=1 using backpropagation.

D STRUCTURAL DIAGRAM OF THE PROPOSED FRAMEWORK

GC
layer

GC
layer

?

Figure 6: The block diagram of our proposed model with a potentially infinite number of hidden
layers in the GCN corresponds to a potentially infinite scope for message aggregation. In practice, a
sufficiently large number of hidden layers is set. The input to the network is a graph G with edges E
between entities V and feature matrix H. The gray-colored circles are the nodes with known labels
and blank circles are the nodes with unknown labels. The feature output from a GC layer is sampled
using the binary vector zl. The model also has a residual skip connection between the layers.

E INTEGRATING THE FRAMEWORK WITH THE GCN VARIANTS

To integrate our inference framework in vanilla GCN, we multiply the layer output with binary
vector zl and add a skip connection between the layers:

Hl = σ(ÂHl−1Wl)
⊗

zl +Hl−1, l ∈ {1, 2, . . .∞} (29)

The difference between GCN and GAT lies in the calculation of the attention coefficient for message
aggregation. However, since they share similar network structure, integrating our framework in
GAT is straightforward and is similar to GCN. Similarly JKNet and GCN also share similar network
structure and hence our framework is integrated in the same way. The aggregation layer in JKNet is
kept unchanged while integrating our framework.

GCNII had two additional components in the network, the initial residual connection and identity
mapping. A GCNII layer is defined as:

Hl =σ
((

(1− α)ÂHl−1 + αH1

)(
(1− βl)I+ βlWl

))
where, βl = log(λ/l + 1)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We have a couple of options to integrate our framework with GCNII. The first is just incorporating
an initial residual connection as follows (used for homophilic datasets):

Hl = σ(((1− αt)ÂHl−1 + αtH1)Wl)
⊗

zl +Hl−1 (30)

Secondly, we can also incorporate the identity mapping module as follows (used for heterophilic
datasets):

Hl =σ
((

(1− αt)ÂHl−1 + αlH1

)(
(1− βl)I+ βlWl

))⊗
zl (31)

where αt is the teleport probability similar to GCNII, a subsrcript t is introduced to differentiate if
from the prior parameter α.

F IMPLEMENTATION DETAILS

F.1 DATASETS

We use the publicly available datasets for experimentation which includes the three homophilic
citation graphs: Citeseer, Cora & Pubmed and four heterophilic graphs: Chameleon, Cornell, Texas,
and Wisconsin. The dataset details are in Table 6. The experiments are carried out on NVIDIA
A100-PCIE-40GB and NVIDIA RTX A5000 GPUs.

Table 6: Dataset details
Dataset #Nodes #Edges #Classes #Features

Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19717 44338 3 500

Chameleon 2277 36101 4 2325
Cornell 183 295 5 1703
Texas 183 309 5 1703

Wisconsin 251 499 5 1703
Flickr 89250 899756 7 500

ogb-arxiv 169343 1166243 40 128
ogb-proteins 132534 39561252 112 8

F.2 HYPERPARAMETER DETAILS FOR TABLE 1

F.2.1 HOMOPHILIC GRAPHS (CITESEER, CORA, PUBMED)

We used the standard fixed split for the homophilic graphs as introduced in (Yang et al. (2016)). The
general setup for the experiments (unless mentioned otherwise) including the width of hidden layers
(O), learning rate (lr), and activation function (act) are detailed in Table 7. The value of dropout
and learning rate is set as suggested in (Kipf & Welling (2016)). The hyperparameter search for the
layers are done in the range [2, 4, 6, 8, 10]. For dropedge, we tune the dropedge rate over [5%,
10%, 20%, 30%]. For JKNet, MaxPool is used as an aggregator function. In the case of GAT,
we faced an out-of-memory (OOM) error during model training when using the complete graph in
a single batch. To address this issue, we employed the ShaDowKHopSampler (Dgl) as per (Zeng
et al. (2021)), enabling mini-batch training. Each mini-batch was configured with a batch size of
32, and we sampled a maximum of 10 neighbors within a range of two hops. We report the mean
and variance of the accuracy metric over 4 random trials. Due to considerable metric variability
stemming from the datasets’ smaller size, we excluded low-accuracy outliers when calculating the
mean and variance for all the methods.

In addition to the general configuration, Table 8 presents the specific hyperparameter settings. For
GCNII and ACM-GCN+, the hyperparameters were configured following the recommendations in
the original implementation. In our framework, we fine-tuned the prior parameters α and β within
the ranges [2, 5, 10, 15] and [2, 4, 6], respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: General hyperparameter setup for baseline methods and our method for Table 1.
General hyperparameter setup

O 128
epochs 500

patience 100
lr 1e-2

dropout 0.5
act ReLU

optimizer Adam

Table 8: Implementation details of baselines and our method for the homophilic datasets (de and do
are the dropedge and dropout rates respectively).

Dataset Methods Hyperparameter details
GCN de = 0.3

ResGCN de = 0.3
GAT de = 0.3

JKNet de = 0.1
GCNII de = 0.05, α = 0.1, λ = 0.5

Cora ACM-GCN+ de = 0.2, do = 0.7
Ours+ResGCN de = 0.1, S = 5, α = 5, β = 2

Ours+GAT de = 0.0, S = 5, α = 5, β = 2
Ours+JKNet de = 0.2, S = 5, α = 5, β = 2
Ours+GCNII de = 0.0, S = 5, α = 5, β = 2, αt = 0.1

Ours + ACM-GCN+ de = 0.2, α = 10, β = 2,
GCN de = 0.2

ResGCN de = 0.2
GAT de = 0.1

JKNet de = 0.2
GCNII de = 0.1, α = 0.1, λ = 0.6

Citeseer ACM-GCN+ de = 0.2, do = 0.2
Ours+ResGCN de = 0.2, S = 5, α = 5, β = 2

Ours+GAT de = 0.0, S = 5, α = 5, β = 2
Ours+JKNet de = 0.1, S = 5, α = 5, β = 2
Ours+GCNII de = 0.0, S = 5, α = 2, β = 2, αt = 0.1

Ours + ACM-GCN+ de = 0.2, α = 10, β = 2,
GCN de = 0.3

ResGCN de = 0.3
GAT de = 0.05

JKNet de = 0.05
GCNII de = 0.1, α = 0.1, λ = 0.4

Pubmed ACM-GCN+ de = 0.2, do = 0.3
Ours+ResGCN de = 0.1, S = 5, α = 5, β = 2

Ours+GAT de = 0.0, S = 5, α = 5, β = 2
Ours+JKNet de = 0.1, S = 5, α = 2, β = 2
Ours+GCNII de = 0.0, S = 5, α = 5, β = 2, αt = 0.1

Ours + ACM-GCN+ de = 0.2, α = 10, β = 2,

F.2.2 HETEROPHILIC GRAPHS (CHAMELEON, CORNELL, TEXAS, WISCONSIN)

For heterophilic datasets, we adopt the 3:1:1 split for the train, validation and test sets respectively
as in (Luan et al. (2022)). The baselines except GPR-GCN were implemented following the hyper-
parameter settings in (Luan et al. (2022)). For GPR-GCN, the we adopted the results reported in
(Luan et al. (2022)). The hyperparameters setup when integrating our framework with the baselines
is detailed in Table 9.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Implementation details of baselines and our method for the heterophilic datasets (wd is the
weight decay rate).

Dataset Methods Hyperparameter details
Ours+ResGCN lr = 0.01, wd = 10−5, O = 64, T = 2, S = 5, α = 10, β = 2

Chameleon Ours+JKNet lr = 0.01, wd = 10−5, O = 64, T = 2, S = 5, α = 10, β = 2
Ours+GCNII lr = 0.01, wd = 5 ∗ 10−6, O = 64, T = 4, S = 10, αt = 0.1, λ = 0.5, α = 15, β = 2
Ours+GAT lr = 0.01, wd = 10−5, O = 64, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.004, wd = 10−3, O = 64, T = 1, S = 1, α = 10, β = 2
Ours+ResGCN lr = 0.1, wd = 5 ∗ 10−3, O = 64, T = 2, S = 5, α = 5, β = 2

Cornell Ours+JKNet lr = 0.1, wd = 10−3, O = 64, T = 2, S = 5, α = 5, β = 2
Ours+GCNII lr = 0.1, wd = 10−3, O = 64, T = 4, S = 10, αt = 0.5, λ = 0.5, α = 10, β = 2
Ours+GAT lr = 0.1, wd = 10−3, O = 64, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.01, wd = 10−3, O = 64, T = 1, S = 1, α = 5, β = 2
Ours+ResGCN lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2

Texas Ours+JKNet lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2
Ours+GCNII lr = 0.1, wd = 10−3, O = 64, T = 4, S = 10, αt = 0.5, λ = 0.5, α = 10, β = 2
Ours+GAT lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.05, wd = 10−3, O = 64, T = 1, S = 1, α = 5, β = 2
Ours+ResGCN lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2

Wisconsin Ours+JKNet lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2
Ours+GCNII lr = 0.01, wd = 10−3, O = 64, T = 8, S = 10, αt = 0.5, λ = 0.5, α = 10, β = 2
Ours+GAT lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.05, wd = 10−3, O = 64, T = 1, S = 1, α = 5, β = 2

F.2.3 HYPERPARAMETER DETAILS FOR TABLE 4

In Table 4, we evaluate the models on three large graphs: Flickr (Zeng et al. (2020)), ogb-arxiv
& ogb-proteins (Hu et al. (2020)). We follow original train/validation/test split as described in
the original papers. The general settings are as described in Table 7. Additional hyperparameter
details are provided in Table 10. For the ogb-arxiv dataset, empirically we found that replacing the
masking of node features with Zl by multiplying the batch-normalized features with the activation
probabilities of each layer πl results in better performance.

Table 10: Implementation details for the large graph datasets.
Dataset Methods Hyperparameter details

Ours+ResGCN S = 5, α = 5, β = 2
Flickr Ours+JKNet S = 5, α = 5, β = 2

Ours+GCNII S = 5, α = 5, β = 2, αt = 0.1
Ours+ResGCN S = 5, α = 5, β = 2

ogb-arxiv Ours+JKNet S = 3, α = 20, β = 2
Ours+GCNII S = 5, α = 25, β = 2, αt = 0.5

Ours+ResGCN S = 3, α = 25, β = 2
ogb-proteins Ours+JKNet S = 3, α = 25, β = 2

Ours+GCNII S = 3, α = 25, β = 2, αt = 0.1

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G OVERFITTING ANALYSIS

We analyze overfitting in the GCN variants with and without our framework in Figure 7. The results
suggest that the variants ResGCN, JKNet, and GAT trained with dropout suffer from overfitting
problems as indicated by the increasing value of their validation loss at higher number of epochs.
The issue is alleviated by integrating these variants with our framework. GCNII is already robust to
the overfitting problem. Application of our framework in GCNII does not have any significant effect
on the validation loss.

Figure 7: Validation loss for different GCN variants with and without the application of our frame-
work.

H UNCERTAINTY ANALYSIS

Figure 8: Evaluating the uncertainty estimation of models. The reported metric is PAvsPU (higher
values are preferable) plotted against increasing uncertainty thresholds.

In the main text, we evaluated uncertainty calibration of models using the ECE metric. For this study,
we performed semi-supervised learning on the homophilic datasets and full supervised learning on
the heterophilic datasets. The dataset splits are as defined in sections 6.2.1 and 6.2.2. Here, we
first detail the ECE metric and then extend this study by evaluating uncertainty calibration using the
PAvsPU metric (Mukhoti & Gal (2018); Hasanzadeh et al. (2020)).

H.1 EXPECTED CALIBRATION ERROR (ECE)

Expected Calibration Error (Guo et al. (2017)) approximates the difference between predictive confi-
dence and empirical accuracy. First, the predicted confidence p̂i is partitioned into I equally-spaced
bins (p̂i = max ŷi , ŷi is the softmax output). Then ECE is the weighted average of miscalibration

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

in each bin.

ECE =

I∑
i=1

|Bi|
N

|acc(Bi)− conf(Bi)| (32)

with the number of samples N , accuracy of the bin Bi

acc(Bi) =
1

|Bi|
∑
i∈Bi

1[yi = argmax{ŷi}]

and confidence of the bin Bi

conf(Bi) =
1

|Bi|
∑
i∈Bi

p̂i

H.2 ASSESSING UNCERTAINTY CALIBRATION USING THE PAvsPU (MUKHOTI & GAL
(2018); HASANZADEH ET AL. (2020)) METRIC

To quantify uncertainty, we calculate the entropy of the output softmax distribution. For calculat-
ing the metric, we first set an uncertainty threshold. Predictions with uncertainty values below the
threshold are classified as certain predictions, while those with uncertainty values above the thresh-
old are classified as uncertain predictions. The count of accurate and certain predictions made by
the model for a given dataset is denoted as nac. Similarly, the count of inaccurate and uncertain
predictions are denoted as niu. Finally, the metric PAvsPU is defined as:

PAvsPU = (nac + niu)/(nac + nau + nic + niu) (33)

where nau is the count of accurate and uncertain predictions and nic the count of inaccurate and
certain predictions. The PAvsPU metric assumes that the model has reliably estimated uncertainty
when the predictions are accurate and certain as well as inaccurate and uncertain. It measures the
proportion of predictions with reliable uncertainty estimation. Higher values of the metric indicates
reliable uncertainty estimation.

Figure 8 shows that our method combined with GCN and ACM-GCN+ outperform other baselines
in most cases.

I EXPRESSIVITY ANALYSIS WITH DEEP NETWORK STRUCTURES

In Figure 9, we visualize the impact of over-smoothing by plotting node representations learned by
GCN, ResGCN, and our method. The t-SNE embeddings of the representations obtained from the
last layer of shallow GCN networks (L = {2, 4}) and deep GCN networks (L = {32, 64}) are
shown. With vanilla GCN, the representations are organized in clusters and spread out in space
for shallow networks. However, for deep networks, the representations lose their organization and
collapse to a curved-shaped region. In ResGCNs, the cluster organization is maintained in deep
structures, however the separation between clusters becomes less distinct. Also, the representations
lie close together within a constricted curved-shaped region compared to that with shallow struc-
tures. This is in accordance with Lemma 1 and Corollary 1. The application of our framework (bot-
tom row) results in comparatively spread-out representations at the shallow structure (T/L = 4),
which is in accordance with Theorem 2. Furthermore, the representations remain spread-out even
at deep structures, indicating improved expressivity as stated in Corollary 1. This demonstrates the
effectiveness of our framework in enhancing the expressivity of GCNs.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 9: TSNE visualization of the learned node representations by GCN, ResGCN and our frame-
work for shallow (L = T = {2, 4}) and deep (L = T = {32, 64}) structures on the Cora dataset.
As observed in the top (GCN) and middle (ResGCN) rows, the representations converge in nar-
row curve-shaped regions for deep structures as compared to spread-out representations in shallow
structures. This indicates that the representations from GCN and ResGCN converge to a narrow
subspace with deep networks. Applying our framework (bottom row) addresses this issue, result-
ing in spread-out representations with deeper structures. This suggests that the application of our
framework enhances the expressivity of GCNs.

25

	Introduction
	Preliminaries and Related Works
	Message Aggregation Schemes
	Aggregation Schemes for Heterophilic Graphs
	Bayesian Methods for GNNs

	Bayesian Neighborhood Adaptation for GNNs
	Beta Process Prior over Infinite Neighborhood Scopes
	GNN models as a Likelihood
	Efficient Variational Approximation

	Expressivity Analysis
	Experiments
	Neighborhood Scope Adaptation
	Performance Comparison on GNN Variants
	Expressivity with Deep GNN Structures
	Uncertainty Quantification
	Ablation study
	Performance on Large Datasets
	Training Time and Space Complexity Evaluation

	Conclusion
	Proof of Lemma 1
	Corollary 1

	Proof of Theorem 2
	Corollary 2

	Algorithmic Description
	Structural Diagram of the Proposed Framework
	Integrating the Framework With the GCN Variants
	Implementation Details
	Datasets
	Hyperparameter Details for Table 1
	Homophilic Graphs (Citeseer, Cora, Pubmed)
	Heterophilic Graphs (Chameleon, Cornell, Texas, Wisconsin)
	Hyperparameter Details for Table 4

	Overfitting Analysis
	Uncertainty Analysis
	Expected Calibration Error (ECE)
	Assessing Uncertainty Calibration using the PAvsPU (Mukhoti2018:PAvsPU, Hasanzadeh2020:BBGDC) metric

	Expressivity Analysis with Deep Network Structures

