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ABSTRACT

The neighborhood scope (i.e., number of hops) where graph neural networks
(GNNs) aggregate information to characterize a node’s statistical property is crit-
ical to GNNs’ performance. Two-stage approaches, training and validating GNNs
for every pre-specified neighborhood scope to search for the best setting, is a
daunting and time-consuming task and tends to be biased due to the search space
design. How to adaptively determine proper neighborhood scopes for the aggre-
gation process for both homophilic and heterophilic graphs remains largely un-
explored. We thus propose to model the GNNs’ message-passing behavior on a
graph as a stochastic process by treating the number of hops as a beta process. This
Bayesian framework allows us to infer the most plausible neighborhood scope for
messsage aggregation simultaneously with the optimization of GNN parameters.
Our theoretical analysis show the scope inference improves the expressivity of
GNN models. Experiments on benchmark homophilic and heterophilic datasets
show that the proposed method is compatible with state-of-the-art GNN variants,
improving their performance and providing well-calibrated predictions.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling (2016)) and its variants have shown success in
modeling graph-structured data arising in various fields, such as computational biology (Huang
et al. (2020); Kishan et al. (2021)), social information analysis (Li & Goldwasser (2019); Qiu et al.
(2018)), recommender systems (Ying et al. (2018)), etc. Due to the locality assumption, multiple
GNN layers needed to be stacked up in the network structures in order to expand neighborhood scope
for message aggregation. Substantial research efforts focus on enhancing the aggregation schemes
for homophilic and heterophilic graphs, resulting in GNN variants showing significant performance
improvements (Xu et al. (2018); Veličković et al. (2017); Rong et al. (2020); Chen et al. (2020);
Chien et al. (2021); Luan et al. (2022); Zeng et al. (2021)). Although the neighborhood scope where
GNNs aggregate information is also vital to their performance, the state-of-the-art GNN variants
still rely on traditional two-stage approaches to search for the best setting. Since these empirical
approaches involve training and validating GNN models for each single candidate configuration of
neighborhood scope, it is a daunting task and tend to be biased. Moreover, since the validation error
is a noisy quantity, it is necessary to devote large quantities of data to the validation set to obtain a
reasonable signal-to-noise ratio.

Recent research efforts mainly focus on designing aggregation schemes for effective message pass-
ing to improve GNNs’ performance. Regularization-based methods (Rong et al. (2020); Hasanzadeh
et al. (2020)), introduce regularization techniques that randomly drop edges or neural connections
between layers during training. Connection-based methods (Xu et al. (2018); Chen et al. (2020))
incorporate additional residual connections between GNN layers. Another group of methods (Abu-
El-Haija et al. (2019); Wu et al. (2019)) aggregate messages from multiple hops in a single neural
layer by using higher powers of the adjacency matrix. GAT (Veličković et al. (2017)) enables the pri-
oritization of specific nodes during message aggregation in a pre-specified neighborhood scope. The
performance of some approaches rely on an implicit assumption of graph homophily (McPherson
et al. (2001)) (i.e., nodes belonging to the same class tend to form edges) and they may not per-
form well on heterophilic graphs (i.e., nodes with distinct features are more likely connected) (Zhu
et al. (2020); Liu et al. (2021)). Aggregation schemes (Chien et al. (2021); Luan et al. (2022); Zhu
et al. (2020)) tailored for heterophilic settings allow GNN variants to achieve state-of-the-art perfor-
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Figure 1: Illustration of our proposed neighborhood adaptation strategy. Left: The feature of a
given node (black-colored) is generated by aggregating messages from neighbors located multiple
hops away. The direction of message passing is indicated by arrows. The nodes in each hop l are
assigned a contribution probability (πl) indicating their contribution in aggregation (color-coded).
Right: Visualizing stick-breaking construction of a beta process. The sticks on top are random
draws from a beta process, representing the probabilities over the number of hops. The bottom
shows the conjugate Bernoulli process over node feature dimensions. Filled circles (blue) indicate a
random draw of 1 confirming the selection of a particular feature.

mance. Besides effective aggregation schemes, proper neighborhood scopes for message passing is
also critical for GNNs’ superior performance (Huang et al. (2020); Abu-El-Haija et al. (2019); Per-
ozzi et al. (2014)). Small neighborhood scopes limit GNNs at capturing long-range information in
the graph, whereas overly large neighborhood scopes tend to degrade model expressivity and incur
expensive computation. It remains an open question how to automatically determine proper neigh-
borhood scope for both homophilic and heterophilic graphs without numerous rounds of training
and validating different GNN candidate structures.

To address this challenge, we propose a neighborhood scope adaptation strategy based on non-
parametric Bayesian inference. This general framework allows us to infer the most plausible neigh-
borhood scope for message aggregation simultaneously with learning node representations. Specifi-
cally, we model the expansion of the neighborhood as a stochastic process by defining a beta process
prior over the number of hops. The beta process induces a probability for the neighboring nodes in
each hop to quantify their contribution to the aggregation. Based on the hop-wise probabilities,
we randomly sample a fraction of the node features by masking them with a binary vector gener-
ated from a conjugate Bernoulli process. Such a strategy further prioritizes the nodes’ contribution
within the neighborhood scope, leading to customized message aggregation. To assess the effective-
ness of our proposed framework, we showcase its versatility on state-of-the-art GCN variants, and
demonstrate its ability to boost their performance on both homophilic and heterophilic datasets. We
also provide theoretical and empirical analysis of its ability to improve expressivity in deep network
structures. Moreover, we show that our framework leads to well-calibrated predictions via reliable
uncertainty estimation.

Our contributions are as follows: i) We propose a general Bayesian inference strategy that automat-
ically determines neighborhood scopes for message passing. ii) We introduce an efficient stochastic
variational approximation to simultaneously infer neighborhood scopes and learn node represen-
tations. iii) Our theoretical and empirical analyses show that our framework can enhance GNNs’
expressivity. iv) We demonstrate the adaptive neighborhood scope inference improves state-of-the-
art GNN performance on both homophilic and heterophilic graphs.

2 PRELIMINARIES AND RELATED WORKS

We denote a graph with G with vertices (nodes), edges, and node features denoted by (V, E ,X). The
adjacency matrix with added self-connections is denoted by A ∈ R|V|×|V| and Â is it’s normalized
form. Hl denotes the lth hidden layer in a neural network (H0 = X), with Wl being its parameters.
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GCN (Kipf & Welling (2016)) proposed a neural network with a graph convolution layers. A GNN
with a single hidden layer is represented as:

Y = σ(Â σ(ÂXW0)W1) (1)

where σ is the activation function. Multiplication by adjacency matrix Â denotes message aggre-
gation from the immediate neighborhood. Eqn. (1) highlights that stacking multiple layers in a
GNN model involves repeated multiplication with Â, expanding the neighborhood scope with each
additional layer. Therefore, specifying the number of layers implicitly assumes the locality i.e. it
incorporates lth-hop neighbors for message aggregation when the network consists of l layers. Sub-
sequent research has aimed to improve upon this basic aggregation scheme, as outlined below.

2.1 MESSAGE AGGREGATION SCHEMES

Dropedge (Rong et al. (2020)) proposes to randomly drop a fraction of the edges and train GNNs
with the resulting sparse graph to reduce noise in the graph structure. Residual connections be-
tween layers are employed to enhance GNN models’ performance while preserving locality. JKNet
(Xu et al. (2018)) aggregates the information from all hidden layers before feeding it into the out-
put layer. Such aggregation helps maintain the local information of each layer when propagating
towards the output layer. PPNP (Gasteiger et al. (2019)) proposes a message aggregation scheme
based on the personalized PageRank algorithm (Page et al. (1998)), allowing message passing from
larger neighborhood. GCNII (Chen et al. (2020)) extends GCNs with an initial residual connection
and identity mapping, resulting in stable and better performance with deeper structures. In addition,
utilizing higher powers of the adjacency matrix for aggregation from broader neighborhoods is also
an effective strategy. The GNN variant proposed in (Wu et al. (2019)) widens the scope from im-
mediate neighbors to the ones lying multiple hops away in a single layer and effectively expand the
neighborhood scope for aggregation. Mixhop, (Abu-El-Haija et al. (2019)), employs multiple heads
in a single layer to aggregate and combine messages from neighbors lying at higher hops. GAT
(Veličković et al. (2017)) incorporates an attention mechanism into GNNs by assigning attention co-
efficients to graph edges based on connected nodes’ feature vectors. (Liu et al. (2022)) proposes to
augment the neighborhood scopes of nodes with a lower degree by generating neighbors for effective
aggregation. Half-hop (Azabou et al. (2023)) adds slow nodes at each edge. DRew (Gutteridge et al.
(2023)) proposes layer dependent rewiring and delay mechanism to slow down message passing.

2.2 AGGREGATION SCHEMES FOR HETEROPHILIC GRAPHS

Some aggregation approaches assume graph homophily and perform poorly on heterophilic graphs
(Pei et al. (2020); Bojchevski et al. (2020; 2019)). Since the connected nodes often exhibit signif-
icantly different properties in heterophilic graphs, a new design of effective message aggregation
becomes necessary (Jia & Benson (2020)). To address this challenge, H2GCN (Zhu et al. (2020))
proposes ego embedding and higher order neighborhood aggregation, allowing for significant per-
formance improvements on heterophilic graphs. GPR-GNN (Chien et al. (2021)) associates message
aggregation in each step with a learnable weight, allowing it to adapt to the homophily or heterophily
structure of the input graph. ACM-GCN (Luan et al. (2022)) proposes adaptive channel mixing and
achieves state-of-the-art results on benchmark heterophilic datasets. However, all these methods rely
on two-stage empirical approaches, such as grid-search, to determine the best neighborhood scope
(the number of propagation steps in H2GCN and GPR-GNN or the number of graph convolutional
layers in ACM-GCN) for the input graph.

2.3 BAYESIAN METHODS FOR GNNS

DropConnect (Hasanzadeh et al. (2020)), as a Bayesian approach to GNNs, extends Dropedge by
selectively dropping out edges and convolutional channels at different layers and neurons, providing
more flexibility. Both DropEdge and dropout (Srivastava et al. (2014)) can be viewed as special cases
of DropConnect. Bayesian-GCNN (Zhang et al. (2019)) considers the input graph as a specific real-
ization from a parametric family of random graphs and performs inference of the joint posterior of
the random graph parameters and the node labels. G3NN (Ma et al. (2019)) defines a random graph
model where the distribution of random graphs also depends on the node features and labels, cap-
turing their interactions for more flexible modeling, and infers missing labels in a semi-supervised
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learning setting. VGCN (Elinas et al. (2020)) defines a probability distribution over the adjacency
matrix to capture the topological structures of input graphs, enhancing model performance under
adversarial perturbations of the input graph structure. Our method differs fundamentally from these
approaches. While they define priors and conduct inference over the properties of input graphs, such
as features, structure, and labels, we propose a general neighborhood scope inference strategy as an
alternative to the empirical methods that require experimenting with different scope configurations
to find the optimal settings.

3 BAYESIAN NEIGHBORHOOD ADAPTATION FOR GNNS

We propose to model the expansion of neighborhood scope as a beta process and jointly perform
node feature sampling with its conjugate Bernoulli process. Theoretical analysis shows our frame-
work improves GNN models’ expressivity.

3.1 BETA PROCESS PRIOR OVER INFINITE NEIGHBORHOOD SCOPES

We model the number of hops for message aggregation as a beta process(Paisley et al. (2010);
Broderick et al. (2012)). Specifically, we utilize stick-breaking construction of the beta process as
follows:

πl =

l∏
j=1

νj , νl ∼ Beta(α, β) (2)

where νl are sequentially drawn from a beta distribution. Additionally, πl denotes the contribution
probability assigned to neighbors at the l-th hop level. Theoretically, the process assigns a proba-
bility to neighbors at infinite hop levels, potentially enabling message aggregation from an infinite
scope, as demonstrated in Figure 1. πl can be interpreted as a contribution of nodes lying at l-th hop
during message aggregation. To sample features of a node at the l-th hop level, we introduce the
Bernoulli variable zol ∼ Bernoulli(πl). Thus, if zol = 1, it indicates that the o-th feature of a node
at the l-hop level will be included for message aggregation. We thus perform joint inference over
the contribution probabilities of hops with a beta process and feature sampling using its conjugate
Bernoulli process (KC et al. (2021)) by formulating the prior over Z as:

p(Z,ν|α, β) = p(ν|α, β)p(Z|ν) =
∞∏
l=1

Beta(νl|α, β)
O∏

o=1

Bernoulli(zol|πl) (3)

where α and β are hyperparameters. Specifically, large α and small β encourage aggregation from
a broader neighborhood.

3.2 GNN MODELS AS A LIKELIHOOD

Since GNNs aggregate messages from l-th hop neighbors via the l-th layer, we thus sample features
of a node at the l-th hop level by multiplying the output from the l-th layer with the binary mask zl.
Following this framework, a GNN layer is specified as:

Hl = σ(ÂHl−1Wl)
⊗

zl +Hl−1, l ∈ {1, 2, . . .∞} (4)

where Wl ∈ RO×O denotes the weight matrix of layer l, O is the dimensionality of the feature
vector (i.e. the number of neurons in a hidden layer), and σ is the activation function. The output
of layer l is multiplied element-wisely by a binary vector zl where its element zol ∈ {0, 1}. The
residual connections feed the outputs from the last activated GNN layer to the output layer. What’s
more, they also improve GNNs’ performance with deep structures (Kipf & Welling (2016)).

Let D = {X,Y} where Y = {yn} denoting the node labels in a graph G with feature matrix X.
For the node classification, we express the likelihood as:

p(D|Z,W,G) =
|V|∏
n=1

p(yn|ŷn), Ŷ = f(HL) (5)
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where f(·) denotes the output layer with softmax activation and Ŷ = {ŷn} is the estimated outputs.
Z is a binary matrix whose l-th column is zl, W denotes the set of weight matrices, and HL is the
output from the last activated layer.

The marginal likelihood obtained by marginalizing out Z in the product of Eqn. (3) and Eqn. (5) is:

p(D|W,G, α, β) =
∫

p(D|Z,W,G)p(Z,ν|α, β)dZdν (6)

3.3 EFFICIENT VARIATIONAL APPROXIMATION

Due to the non-linearity of neural networks in the likelihood P (D|Z,W,G) and L → ∞ (Eqn. (3)),
exact computation of the marginal likelihood in Eqn. (6) is intractable. We propose a stochastic
variational inference (Hoffman et al. (2013); Hoffman & Blei (2015)) to approximate the marginal
likelihood.

By specifying a truncation level T to denote the maximum number of layers for the variational
distribution, we have

q(Z,ν|{at}Tt=1, {bt}Tt=1) = q(ν)q(Z|ν) =
T∏

t=1

Beta(νt|at, bt)
O∏

o=1

ConBer(zot|πt) (7)

where ConBer(zot|πt) denotes a concrete Bernoulli distribution (Maddison et al. (2016); Jang et al.
(2016)). The concrete Bernoulli presents a continuous relaxation of the binary variables generated
from the Bernoulli process. This reparameterization trick allows optimization through gradient de-
scent. The lower bound for the log marginal likelihood in Eqn. (6) (ELBO) is:

log p(D|W,G, α, β) ≥ Eq(Z,ν)][log p(D|Z,W)]− KL[q(ν)||p(ν)]− KL[q(Z|ν)||p(Z|ν)] (8)
Eqn. (8) is the optimization objective for our proposed framework. The first term in the left-hand
side fits the model to the data and the rest two terms are regularization derived from the prior. The
expectation is estimated with Monte Carlo sampling.

4 EXPRESSIVITY ANALYSIS

Figure 2: (left) Visualization of the convergence
of feature vector H in the subspace U . P and
dM(H) are the projection and the perpendicular
distance of H from the subspace respectively. θ
is the size of the angular region spanned by H
around the U . (right) Visualization of the angu-
lar regions spanned by vanilla GCN (grey), Res-
GCN (blue), and BNA-GCN (purple) around the
subspace U (denoted by the dark line).

For ease of notation, we use N to denote the
number of nodes in the graph (N = |V|). For
a symmetric adjacency matrix A, the eigenvec-
tors are perpendicular. Let λ1, . . . , λN are the
eigenvalues of A sorted in ascending order, and
let the multiplicity of largest eigenvalue λN is
M i.e λ1 < . . . , λN−M < λN−M+1 = · · · =
λN . We also assume that the adjacency matrix
is normalized and possesses positive eigenval-
ues, with the maximum eigenvalue capped at 1.

Let, {em}m=N−M+1,...,N be the orthonormal
basis of the subspace U corresponding to the
eigenvalues {λm}m=N−M+1,...,N = 1, and
{em}m=1,...,N−M be the orthonormal basis for
U⊥. Consequently, H ∈ RN×O can be ex-
pressed as H =

∑N
m=1 em ⊗ wm where wm ∈

RO.

Theorem 1 (Oono & Suzuki (2019)) Let
dM(H) denote the perpendicular distance be-
tween the representations H and the subspace
U , then the output representations from Lth

layer (HL) in a GCN exponentially converges to the subspace U .
dM(HL) ≤ λLH0; dM(H) = min

P∈U
||H−P|| (9)

λ = max
m∈{1,..,N−M}

λm

5
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Figure 3: Evolution of neighborhood scope and contribution probabilities over the number of epochs
for the Pubmed dataset when trained with our method. The contribution probabilities pil and hence
the neighborhood scope increases as the training progresses and settles to an optimal value.

The convergence of HL to lower dimensional subspace in Theorem 1 shows that the expressivity of
a GCN exponentially decreases with an increase in the number of layers. This leads to information
loss since nodes that lie within the same connected component tend to share identical features,
making them indistinguishable.

In our analysis, we measure the convergence in terms of the angular region (θ) spanned by H
around U as shown in Figure 2. A low value of θ is indicative of feature vector collapsing onto
the lower-dimensional subspace U , resulting in decreased expressivity. Conversely, a high θ value
indicates feature expression in a greater number of dimensions, resulting in improved expressivity.
The findings in (Kipf & Welling (2016)) indicate that incorporating residual connections in a GCN
(ResGCN) yields improved performance with deeper structure compared to a vanilla GCN. We will
theoretically analyze ResGCN and show that the addition of residual connection widens the angular
region θ. Moreover, we observe that even in ResGCN, the region becomes more confined as the
number of layers increases. Our proposed framework addresses this issue and maintains a wider
region even with deeper layers by automatically inferring the relevant neighborhood scope.

If θL is the angle spanned by HL with the subspace U ,

tan θL =
dM(HL)

|PL|
, P = arg min

P∈U
||H−P||, θL = tan−1[

dM(HL)

|PL|
] (10)

A network with residual connections between each layer (ResGCN) is represented as:

H
(Res)
l = fl(H

(Res)
l−1 ) +H

(Res)
l−1 (11)

Lemma 1 If θ(Res)
l is the angle spanned by H

(Res)
l with the subspace U , then θ

(Res)
L ≥ θL

Corollary 1 The angular region narrows down with increase in layers L: θ(Res)
L−1 ≥ θ

(Res)
L

Lemma 1 suggests that ResGCN has better expressivity than a vanilla GCN with representations
covering a wider angular region. However, Corollary 1 suggests that with the increase in layers in
ResGCN, the features H(Res)

L increasingly collapse into the subspace U .

Next, we analyze the impact of the application of our neighborhood inference framework in a GCN.

Theorem 2 With the application of the Bayesian Neighborhood Adaptation (BNA) framework, if
θ
(BNA)
L is the angle spanned with the subspace U , then θ

(BNA)
L ≥ θ

(Res)
L ≥ θL.

Corollary 2 Beyond a certain number of layers lns, the angular region θ
(BNA)
L remains constant

even with further increase in the number of layers: θ(BNA)
L = θ

(BNA)
lns for L ≥ lns

Theorem 2 suggests that the application of the BNA framework further enhances the expressivity
of ResGCNs. Importantly, Corollary 2 suggests that by inferring the appropriate neighborhood for
message aggregation, the BNA framework avoids feature collapse and prevents information loss in
a deep GCN. These analyses are demonstrated in Figure 2 and empirically validated in Figure 5.
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Table 1: Node classification performance of the GNN variants on homophilic (Cora, Citeseer,
Pubmed) and heterophilic (Chameleon, Cornell, Texas, Wisconsin) graphs. The reported metric
is averaged accuracy with ± one standard deviation. The best result for each graph is highlighted in
bold, while the second-best result is underlined.

Baselines Cora Citeseer Pubmed Chameleon Cornell Texas Wisconsin
GCN 85.35±0.23 77.37±0.33 77.30±0.20 55.84±6.20 80.82±3.60 73.11±22.46 60.38±13.88

ResGCN 86.15±0.15 78.15±0.30 77.66±0.84 66.04±2.09 80.82±3.60 80.82±3.60 62.75±6.68
Ours+ResGCN 86.83±0.13 77.90±0.37 78.20±0.29 64.25±2.30 80.82±3.60 78.20±4.15 66.13±5.35

JKNet 86.20±0.10 77.68±0.35 77.25±0.23 52.43±2.84 74.43±8.30 70.00±5.49 62.13±6.20
Ours+JKNet 86.40±0.68 78.20±0.65 78.42±0.13 63.85±2.04 77.70±4.10 78.52±6.24 67.38±4.82

GAT 86.43±0.40 77.76±0.24 76.78±0.63 63.90±0.46 76.00±1.01 78.87±0.86 71.01±4.66
Ours+GAT 86.70±0.40 77.52±0.32 77.47±0.19 65.32±2.61 79.84±3.36 75.08±7.10 73.12±3.41

GCNII 87.53±0.30 77.63±0.21 79.96±0.17 58.97±2.76 87.70±5.15 76.07±5.35 80.37±5.86
Ours+GCNII 87.26±0.25 78.36±0.66 78.60±0.60 57.44±3.35 87.87±5.19 90.66±2.54 90.75±3.12
GPR-GCN - - - 67.48±0.40 91.36±0.70 92.92±0.61 93.75±2.37

ACM-GCN+ 85.63±0.13 75.20±0.29 75.73±0.40 74.62±1.79 92.46±2.34 91.80±4.21 94.87±2.20
Ours+ACM-GCN+ 84.76±0.76 74.73±0.33 74.33±0.82 74.38±1.69 93.61±2.13 94.10±3.53 95.75±1.79

Figure 4: The impact of increasing the depths (L/T ) of GNN variants with and without our frame-
work on their expressivity. Although the depth increase degrades the performance of vanilla Res-
GCN, GAT, and ACM-GCN, the application of our framework stabilizes their performance even for
deep network structures.

5 EXPERIMENTS

We first investigate how the neighborhood scope expands during the inference. We also assess the
effectiveness our proposed framework by applying it to GNN variants for multi-class classification
tasks on benchmark homophilic and heterophilic graph datasets. Next, we examine the expressivity
as the depths of GNN variants increase, and evaluate the uncertainty estimates of the GNN variants.
We conduct an ablation study to show the contributions of the different components. We then assess
the scalability of our framework’s performance to large graph datasets. Finally, we analyze both
theoretically and empirically the computational cost of our framework. 1

5.1 NEIGHBORHOOD SCOPE ADAPTATION

Figure 3 demonstrates the mechanism of neighborhood scope adaptation during training over 300
epochs for the Pubmed dataset. The truncation was set to T = 10. During initial phase, the scope is
limited to 4 hops, with comparatively less contribution from each hop. As the training progresses,
our framework allows the contribution probabilities and hence the neighborhood scope to adapt to
the input. At 300th epoch, the expansion converges to 6 hops, and the contribution probabilities
become stable over training.

5.2 PERFORMANCE COMPARISON ON GNN VARIANTS

We evaluate the performance of GNN variants integrated with our framework to determine the opti-
mal neighborhood scopes for the task on the homophilic (Cora, Citeseer, Pubmed) (Sen et al. (2008))

1Implementation details are in the Appendix. Codes are provided.
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Figure 5: TSNE visualization of the learned node representations by ResGCN with and without our
framework for shallow (L = T = 4) and deep (L = T = 32/64) structure. The representations
of ResGCN converge in narrow curve-shaped regions for deep structures. This indicates that the
representations converge to a narrow subspace, which is consistent with Corollary 1. Applying our
framework (bottom row) addresses this issue, resulting in spread-out representations with deeper
network structure. This suggests that the application of our framework enhances the expressivity.

Table 2: Uncertainty calibration comparison between baseline GNN models, an ensemble of the
baseline models, and applying our framework in the baseline models. The reported metric is the
expected calibration error (ECE ↓). The best result is bolded.

Baselines Cora Citeseer Pubmed Chameleon Cornell Texas Wisconsin
GCN 0.14±0.03 0.27±0.03 0.17±0.02 0.11±0.03 0.46±0.06 0.49±0.09 0.30±0.13

GCN Ensemble 0.02 ± 0.01 0.21±0.02 0.04±0.01 0.04±0.01 0.51±0.02 0.57±0.02 0.25±0.03
Ours+GCN 0.04±0.02 0.12±0.05 0.08±0.03 0.05±0.01 0.48±0.05 0.15±0.03 0.13±0.05

GCNII 0.32±0.01 0.39±0.02 0.04±0.01 0.06±0.01 0.36±0.03 0.13±0.03 0.18±0.05
GCNII Ensemble 0.32±0.01 0.39±0.01 0.04±0.01 0.03±0.01 0.34±0.01 0.20±0.01 0.21±0.02

ACM-GCN+ 0.19±0.04 0.27±0.03 0.15±0.03 0.04±0.01 0.13±0.03 0.09±0.02 0.09±0.02
ACM-GCN+ Ensemble 0.17±0.01 0.28±0.01 0.16±0.01 0.05±0.01 0.12±0.02 0.11±0.03 0.12±0.02

Ours+ACM-GCN+ 0.09±0.03 0.13±0.02 0.14±0.01 0.04±0.01 0.10±0.05 0.07±0.01 0.06±0.01

and heterophilic (Chameleon, Cornell, Texas, Wisconsin) (Pei et al. (2020)) graphs by comparing
with grid search solutions for the variants.

For homophilic graphs, we perform both full-supervised (Citeseer, Cora) and semi-supervised
(Pubmed) node classification in Table 1. We integrate our inference framework with vanilla GCN,
ResGCN (Kipf & Welling (2016)) (GCN with residual skip connections), GAT (Veličković et al.
(2017)), JKNet (Xu et al. (2018)), GCNII (Chen et al. (2020)), GPR-GNN (Chien et al. (2021)), and
ACM-GCN+ (Luan et al. (2022)). The details of implementation are provided in the appendix. Ta-
ble 1 shows that the GNN variants with our framework achieve the best performance on four graph
datasets and the second best on the remaining three datasets. The results suggest that by jointly
inferring neighborhood scope and learning GNN parameters, we boost the overall performance of
the GNN models without incurring any computation overhead.

5.3 EXPRESSIVITY WITH DEEP GNN STRUCTURES

We evaluate the effects of our inference framework on the expressivity of GNN variants with in-
creasingly deep structures. We apply dropout regularization to the GNN variants in this analysis.
The performance over varying numbers of GNN layers is shown in Figure 4. The results show that
the overall performance of ResGCN, GAT, and ACM-GCN+ across the datasets suffer a decline
when the network depth L becomes large. However, combining our framework with these GNN
models to adapt the neighborhood scopes for the node feature learning, we mitigate the problem as
indicated by the solid flat curves, showing the robustness of the performance over the increasing
truncation level T .
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In Figure 5, we assess expressivity by visualizing the node representations learned by ResGCN with
and without our framework. The t-SNE embeddings of the representations obtained from the last
layer of a shallow network (L = 4) and deep network (L = 32/64) are shown for the Cora and
Wisconsin datasets.2 The representations generated by ResGCN with shallow networks are well-
separated into clusters and are spread-out in the latent feature space. However, For deep ResGCN,
the cluster separation becomes less distinct, and the representations collapse into a curved-shaped
region. This is consistent with Corollary 1. The application of our framework (bottom row) results
in comparatively spread-out representations for shallow structure (T/L = 4), which is in accordance
with Theorem 2. However, the representations remain spread-out even for deep structures, indicating
improved expressivity as suggested by Corollary 2. This can be attributed to the property of our
framework that decouples the neighborhood scope from the truncation level (i.e., a pre-specified
network depth) and allows the ResGCN network depth to adapt as it learns node representations.

5.4 UNCERTAINTY QUANTIFICATION

We assess the uncertainty estimates of GNN variants, their combinations with our framework, and
GNN deep assembles. The baselines include the vanilla GCN and the two best performers from
Table 1, namely GCNII and ACM-GCN+. The ensemble of the baseline models consists of 10
models trained with different initializations. The metric for assessing uncertainty is expected cali-
bration error (ECE) (Guo et al. (2017)).3 Table 2 shows that compared to the baseline GNN models,
integrating our framework improves their uncertainty quantification on both homophilic and het-
erophilic datasets in most cases. By quantifying the uncertainty of adaptive neighborhood scopes
in training via Bayesian inference, our approach enhances uncertainty calibration in four cases and
delivers comparable results in the remaining three, compared to the GNN deep ensemble.

5.5 ABLATION STUDY

Table 3: Ablation study of our online inference framework for
neighborhood scope adaptation.

Dataset Cora Citeseer Pubmed
GCN 85.00±0.10 77.23±0.17 77.00±0.50

ResGCN 86.16±0.24 77.26±0.10 76.66±0.33
ResGCN+do 86.15±0.15 78.15±0.30 77.66±0.84
Ours+GCN 86.83±0.13 77.90±0.37 78.20±0.29

We analyze the contribution
of different modeling compo-
nents of our framework on
GCNs. ResGCN is the GCN
with residual connections be-
tween successive layers. The
results in Table 3 show that
residual connections is an ef-
fective technique, and with
dropout regularization (do) for
feature sampling ResGCN im-
prove the GCN’s performance and achieve the best on Citeseer. Furthermore, by adapting the neigh-
borhood scope with beta process, our framework achieves the overall best performance.

5.6 PERFORMANCE ON LARGE DATASETS

We evaluate baselines and our method on three large datasets: Flickr, ogb-arxiv on multi-class clas-
sification, and ogb-proteins on binary classification. The reported metrics are percentage accuracy
for multi-class classification and AUC-ROC for binary classification settings. The baselines rely on
an expensive grid-search approach to determine the neighborhood scope and use it to learn node
representations. In contrast, our efficient framework simultaneously infers the scope while learning
node representations. Table 4 demonstrates that applying our framework to the baselines results
in comparable or significantly better performance, showing that the performance of our framework
scales effectively to large datasets.

5.7 TRAINING TIME AND SPACE COMPLEXITY EVALUATION

For a constant maximum layer width, the time complexity of training a GNN model with depth L
is Ot = O(L|V|2 + |V|). Let S denote the number of Monte Carlo samples, our method is linearly

2More detailed expressivity assessments along with overfitting analysis are in Appendix.
3Analysis using PAvsPU metric is in Appendix.
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Table 4: Performance of baselines and our method on large graph datasets. The metric reported
are percentage accuracy for Flickr & ogb-arxiv, and AUC-ROC for ogb-proteins. The best result
is highlighted in bold and the second-best is underlined. The last column shows the GPU memory
usage for one epoch (in Gigabytes) while training the baselines and our method (S = 3) on the
ogb-protein dataset.

Dataset Flickr ogb-arxiv ogb-proteins Memory (ogb-proteins)
GCN 51.44±0.13 71.74±0.29 0.7251±0.0025 9.19

ResGCN 51.38±0.11 72.86±0.16 0.7343±0.0016 9.88
Ours + ResGCN 51.73±0.21 72.79±0.30 0.7572±0.0041 10.06

JKNet 52.56±0.12 72.19±0.21 0.6966±0.0052 10.14
Ours + JKNet 52.24±0.28 72.88±0.09 0.7330±0.0068 10.41

GCNII 51.53±0.16 72.74±0.16 0.7414±0.0070 9.91
Ours + GCNII 51.48±0.14 73.06±0.40 0.7513±0.0054 10.07

scalable as SOt. The space complexity of training the GNN model is O(|V|2 + L|V|). For our
method, the space complexity is O(|V|2 + SL|V|).
We report the training times of the GNN variants combining with our framework in Table 5. For
the inference over neighborhood scopes, the number of samples of Z is set to S = 5. The results
align with our complexity analysis, showing that the training time of our method scales linearly with
the number of samples. Although it takes extra time for the joint inference in training to determine
the best settings of neighborhood scopes, it is more efficient without incurring any computation
overhead as caused by grid-search or cross-validation.

Table 5: Training times (in seconds) of GNN variants with and
without our framework for 100 epochs. The number of samples
for our method is set to S = 5.

Dataset Cora Citeseer Flickr ogb-arxiv
ResGCN 0.35 0.37 2.30 5.60

Ours + GCN 1.14 1.30 10.12 29.20
GCNII 0.60 0.62 2.84 6.65

Ours + GCNII 1.21 1.18 11.64 31.60

In the last column of Table
4, we report the GPU mem-
ory usage when training the
baseline models with and with-
out our framework on the ogb-
proteins dataset. The re-
sults demonstrate that inte-
grating our framework intro-
duces no significant increase
in memory usage. This aligns
with our complexity analysis,
which shows that for larger
graphs (i.e., large |V|), the first term in the space complexity O(|V|2 + SL|V|) dominates, while
the second term contributes minimally to the overall memory load. Since the first term is the same
for both the baselines and our approach, memory consumption remains effectively unchanged.

6 CONCLUSION

We propose a general automatic neighborhood scope adaption method compatible with various GNN
models and boosting the overall performance by improving their expressivity and uncertainty esti-
mation. It trades off minimal training efficiency for reducing computation overhead on empirical
search and validation. Our future work entails adopting our neighborhood adaptation strategy for
more complex GNN architectures, such as graph transformer networks (Yun et al. (2019)). An-
other future direction is relaxing the finite truncation constraint in the variational distributions by
incorporating the Russian roulette method (Xu et al. (2019)).
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APPENDIX

A PROOF OF LEMMA 1

Restating the notations and assumptions in the main text, for ease of notation we use N to denote
the number of nodes in the graph (N = |V|). For a symmetric adjacency matrix A, the eigenvectors
are perpendicular. Let λ1, . . . , λN are the eigenvalues of A sorted in ascending order, and let the
multiplicity of largest eigenvalue λN is M i.e λ1 < . . . , λN−M < λN−M+1 = · · · = λN . We
also assume that the adjacency matrix is normalized and possesses positive eigenvalues, with the
maximum eigenvalue capped at 1.

Let, {em}m=N−M+1,...,N be the orthonormal basis of the subspace U corresponding the the eigen-
values {λm}m=N−M+1,...,N = 1, and {em}m=1,...,N−M be the orthonormal basis for U⊥. Conse-
quently, H ∈ RN×O can be expressed as H =

∑N
m=1 em ⊗ wm where wm ∈ RO.

The difference between a normal multi-layer perception (MLP) layer and GCN layer lies in the
multiplication of the layer output with adjacency matrix A. And this repeated multiplication with A
at every layer is the cause of the collapse of node features into a subspace (Oono & Suzuki (2019)).
To analyze how this repeated multiplication affects a GCN with residual connections, in our analysis
we simplify a GCN layer to a multiplication of features H with the adjacency matrix A.

If θ is the angle made by HL with subspace U ,

tan θ =
dM(HL)

|P|
(12)

θ = tan−1[
dM(HL)

|P|
] (13)

For ResGCN, a layer is defined as:

H
(Res)
L = f(H

(Res)
L−1 ) +H

(Res)
L−1

Representing a layer by its adjacency matrix,

H
(Res)
L = AH

(Res)
L−1 +H

(Res)
L−1

H
(Res)
L = (A+ I)H

(Res)
L−1

Solving this recurrence, we get:

H
(Res)
L = (A+ I)LH

(Res)
0 (14)

Expanding Eqn. (14) in terms of {wm}, we get:

H
(Res)
L =

N∑
m=1

em ⊗ (λm + 1)Lwm

(15)
The distance from the subspace U is:

d2M(H
(Res)
L ) =

N−M∑
m=1

||(λm + 1)Lwm||2

=

N−M∑
m=1

||(1 + 1

λm
)L(λm)Lwm||2

=

N−M∑
m=1

(1 +
1

λm
)2L||(λm)Lwm||2 (16)

Since, 0 < λm < 1, (1 +
1

λm
) > 2. Then,

=⇒ d2M(H
(Res)
L ) ≥ 22Ld2M(HL)

=⇒ dM(H
(Res)
L ) ≥ 2LdM(HL) (17)
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Similarly,

|P(Res)
L |2 =

N∑
m=N−M+1

||(λm + 1)Lwm||2

Since, λm = 1 for N −M + 1 ≤ m ≤ N,

|P(Res)
L |2 =

N∑
m=N−M+1

||2Lwm||2

= 22L
N∑

m=N−M+1

||wm||2

= 22L|PL|2

=⇒ |P(Res)
L | = 2L|PL| (18)

The angular region spanned is:

tan θ
(Res)
L =

dM(H
(Res)
L )

|P(Res)
L |

=⇒ tan θ
(Res)
L ≥ 2LdM(HL)

2L|PL|
=⇒ tan θ

(Res)
L ≥ tan θL (19)

=⇒ θ
(Res)
L ≥ θL (20)

A.1 COROLLARY 1

From equation (5) :

d2M(H
(Res)
L ) =

N−M∑
m=1

(1 +
1

λm
)2L||(λm)Lwm||2

=

N−M∑
m=1

(1 +
1

λm
)2L(λm)2||(λm)L−1wm||2

=

N−M∑
m=1

(λm)2(1 +
1

λm
)2(1 +

1

λm
)2(L−1)||(λm)L−1wm||2

=

N−M∑
m=1

(λm + 1)2(1 +
1

λm
)2(L−1)||(λm)L−1wm||2

≤
N−M∑
m=1

22(1 +
1

λm
)2(L−1)||(λm)L−1wm||2; [Since, λm ≤ 1]

= 22 d2M(H
(Res)
L−1 )

=⇒ dM(H
(Res)
L ) ≤ 2 dM(H

(Res)
L−1 ) (21)
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The angular region spanned for L layers is:

tan θ
(Res)
L =

dM(H
(Res)
L )

|P(Res)
L |

=⇒ tan θ
(Res)
L ≤

2 dM(H
(Res)
L−1 )

2L|PL|

=⇒ tan θ
(Res)
L ≤

dM(H
(Res)
L−1 )

2L−1|PL−1|
[Since, |PL−1| = |PL|]

=⇒ tan θ
(Res)
L ≤ tan θ

(Res)
L−1

=⇒ θ
(Res)
L ≤ θ

(Res)
L−1 (22)

B PROOF OF THEOREM 2

First, we prove a simple relation. For 0 ≤ π, λ ≤ 1

λπ + 1

λ+ 1
− π + 1

2

=
2(λπ + 1)− (λ+ 1)(π + 1)

2(λ+ 1)

=
(1− λ)(1− π)

2(λ+ 1)

≥ 0

=⇒ λπ + 1

λ+ 1
≥ π + 1

2
(23)

A layer in BNA-GCN is represented as:

H
(BNA)
L = f(H

(BNA)
L−1 )⊗ ZL +H

(BNA)
L−1 (24)

Since Z is a random variable, we calculate the expectation as:

E[H(BNA)
L ] = f(H

(BNA)
L−1 )⊗ E[ZL] +H

(BNA)
L−1

= f(H
(BNA)
L−1 )⊗ πL +H

(BNA)
L−1

Representing layer by the adjacency matrix, (dropping the expectation notation for convenience),

H
(BNA)
L = AH

(BNA)
L−1 ⊗ πL +H

(BNA)
L−1

= (AπL + 1)H
(BNA)
L−1

Solving this recurrence, we get:

H
(BNA)
L =

L∏
l=1

(Aπl + 1)H
(BNA)
0

Expanding in terms of wm, we get:

H
(BNA)
L =

N−M∑
m=1

L∏
l=1

(λmπl + 1)wm
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The distance from subspace U is:

d2M(H
(BNA)
L ) =

N−M∑
m=1

||
L∏

l=1

(λmπl + 1)wm||2

=

N−M∑
m=1

[
L∏

l=1

(λmπl + 1)

]2

||wm||2

=

N−M∑
m=1

[
L∏

l=1

λmπl + 1

λm + 1

]2

||(λm + 1)Lwm||2

≥

[
L∏

l=1

πl + 1

2

]2 N−M∑
m=1

||(λm + 1)Lwm||2 [From Eqn. 23]

≥
∏L

l=1(πl + 1)2

22L
d2M(H

(Res)
L )

=⇒ dM(H
(BNA)
L ) ≥

∏L
l=1(πl + 1)

2L
dM(H

(Res)
L ) (25)

Similarly,

|P(BNA)
L |2 =

N∑
m=N−M+1

||
L∏

l=1

(λmπl + 1)wm||2

Since, λm = 1 for N −M + 1 ≤ m ≤ N,

=

N∑
m=N−M+1

||
L∏

l=1

(πl + 1)wm||2

=

L∏
l=1

(πl + 1)2
N∑

m=N−M+1

||wm||2

=

∏L
l=1(πl + 1)2

22L

N∑
m=N−M+1

22L||wm||2

=

∏L
l=1(πl + 1)2

22L
|PRes

L |2

=⇒ |P(BNA)
L | =

∏L
l=1(πl + 1)

2L
|PRes

L | (26)

The angular region spanned is:

tan θ
(BNA)
L =

dM(H
(BNA)
L )

|P(BNA)
L |

Substituting the values from Eqn. 25 and 26 and simplifying

=⇒ tan θ
(BNA)
L ≥

dM(H
(Res)
L )

|P(Res)
L |

=⇒ tan θ
(BNA)
L ≥ tan θ

(Res)
L (27)

=⇒ θ
(BNA)
L ≥ θ

(Res)
L (28)
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B.1 COROLLARY 2

By the definition of lns, Zl = 0 for l > lns. From Eqn. (24), we have:

H
(BNA)
L = f(H

(BNA)
L−1 )⊗ ZL +H

(BNA)
L−1

For l = lns + 1,

H
(BNA)
lns+1 = f(H

(BNA)
lns )⊗ Zlns+1 +H

(BNA)
lns

H
(BNA)
lns+1 = H

(BNA)
lns

Generalizing the relation:

H
(BNA)
l = H

(BNA)
lns for l > lns

Therefore,

θ
(BNA)
l = θ

(BNA)
lns for l > lns
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C ALGORITHMIC DESCRIPTION

The algorithm of our proposed framework is in Algorithm 1.

Algorithm 1 Training of our proposed method
Input G, D, S and prior parameters α, β.

1: Draw S samples of network structures {Zs}Ss=1 from q(Z,ν)
2: for s = 1, . . . , S do
3: Compute the number of layers lc from Zs using Eqn. 8.
4: Compute log p(Di|Zs,W) with lc layers
5: Compute ELBO using Eqn. 13.
6: Update {at, bt}l

c

t=1and {W}lct=1 using backpropagation.

D STRUCTURAL DIAGRAM OF THE PROPOSED FRAMEWORK

GC
layer

GC
layer

?

Figure 6: The block diagram of our proposed model with a potentially infinite number of hidden
layers in the GCN corresponds to a potentially infinite scope for message aggregation. In practice, a
sufficiently large number of hidden layers is set. The input to the network is a graph G with edges E
between entities V and feature matrix H. The gray-colored circles are the nodes with known labels
and blank circles are the nodes with unknown labels. The feature output from a GC layer is sampled
using the binary vector zl. The model also has a residual skip connection between the layers.

E INTEGRATING THE FRAMEWORK WITH THE GCN VARIANTS

To integrate our inference framework in vanilla GCN, we multiply the layer output with binary
vector zl and add a skip connection between the layers:

Hl = σ(ÂHl−1Wl)
⊗

zl +Hl−1, l ∈ {1, 2, . . .∞} (29)

The difference between GCN and GAT lies in the calculation of the attention coefficient for message
aggregation. However, since they share similar network structure, integrating our framework in
GAT is straightforward and is similar to GCN. Similarly JKNet and GCN also share similar network
structure and hence our framework is integrated in the same way. The aggregation layer in JKNet is
kept unchanged while integrating our framework.

GCNII had two additional components in the network, the initial residual connection and identity
mapping. A GCNII layer is defined as:

Hl =σ
((

(1− α)ÂHl−1 + αH1

)(
(1− βl)I+ βlWl

))
where, βl = log(λ/l + 1)
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We have a couple of options to integrate our framework with GCNII. The first is just incorporating
an initial residual connection as follows (used for homophilic datasets):

Hl = σ(((1− αt)ÂHl−1 + αtH1)Wl)
⊗

zl +Hl−1 (30)

Secondly, we can also incorporate the identity mapping module as follows (used for heterophilic
datasets):

Hl =σ
((

(1− αt)ÂHl−1 + αlH1

)(
(1− βl)I+ βlWl

))⊗
zl (31)

where αt is the teleport probability similar to GCNII, a subsrcript t is introduced to differentiate if
from the prior parameter α.

F IMPLEMENTATION DETAILS

F.1 DATASETS

We use the publicly available datasets for experimentation which includes the three homophilic
citation graphs: Citeseer, Cora & Pubmed and four heterophilic graphs: Chameleon, Cornell, Texas,
and Wisconsin. The dataset details are in Table 6. The experiments are carried out on NVIDIA
A100-PCIE-40GB and NVIDIA RTX A5000 GPUs.

Table 6: Dataset details
Dataset #Nodes #Edges #Classes #Features

Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19717 44338 3 500

Chameleon 2277 36101 4 2325
Cornell 183 295 5 1703
Texas 183 309 5 1703

Wisconsin 251 499 5 1703
Flickr 89250 899756 7 500

ogb-arxiv 169343 1166243 40 128
ogb-proteins 132534 39561252 112 8

F.2 HYPERPARAMETER DETAILS FOR TABLE 1

F.2.1 HOMOPHILIC GRAPHS (CITESEER, CORA, PUBMED)

We used the standard fixed split for the homophilic graphs as introduced in (Yang et al. (2016)). The
general setup for the experiments (unless mentioned otherwise) including the width of hidden layers
(O), learning rate (lr), and activation function (act) are detailed in Table 7. The value of dropout
and learning rate is set as suggested in (Kipf & Welling (2016)). The hyperparameter search for the
layers are done in the range [2, 4, 6, 8, 10]. For dropedge, we tune the dropedge rate over [5%,
10%, 20%, 30%]. For JKNet, MaxPool is used as an aggregator function. In the case of GAT,
we faced an out-of-memory (OOM) error during model training when using the complete graph in
a single batch. To address this issue, we employed the ShaDowKHopSampler (Dgl) as per (Zeng
et al. (2021)), enabling mini-batch training. Each mini-batch was configured with a batch size of
32, and we sampled a maximum of 10 neighbors within a range of two hops. We report the mean
and variance of the accuracy metric over 4 random trials. Due to considerable metric variability
stemming from the datasets’ smaller size, we excluded low-accuracy outliers when calculating the
mean and variance for all the methods.

In addition to the general configuration, Table 8 presents the specific hyperparameter settings. For
GCNII and ACM-GCN+, the hyperparameters were configured following the recommendations in
the original implementation. In our framework, we fine-tuned the prior parameters α and β within
the ranges [2, 5, 10, 15] and [2, 4, 6], respectively.
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Table 7: General hyperparameter setup for baseline methods and our method for Table 1.
General hyperparameter setup

O 128
epochs 500

patience 100
lr 1e-2

dropout 0.5
act ReLU

optimizer Adam

Table 8: Implementation details of baselines and our method for the homophilic datasets (de and do
are the dropedge and dropout rates respectively).

Dataset Methods Hyperparameter details
GCN de = 0.3

ResGCN de = 0.3
GAT de = 0.3

JKNet de = 0.1
GCNII de = 0.05, α = 0.1, λ = 0.5

Cora ACM-GCN+ de = 0.2, do = 0.7
Ours+ResGCN de = 0.1, S = 5, α = 5, β = 2

Ours+GAT de = 0.0, S = 5, α = 5, β = 2
Ours+JKNet de = 0.2, S = 5, α = 5, β = 2
Ours+GCNII de = 0.0, S = 5, α = 5, β = 2, αt = 0.1

Ours + ACM-GCN+ de = 0.2, α = 10, β = 2,
GCN de = 0.2

ResGCN de = 0.2
GAT de = 0.1

JKNet de = 0.2
GCNII de = 0.1, α = 0.1, λ = 0.6

Citeseer ACM-GCN+ de = 0.2, do = 0.2
Ours+ResGCN de = 0.2, S = 5, α = 5, β = 2

Ours+GAT de = 0.0, S = 5, α = 5, β = 2
Ours+JKNet de = 0.1, S = 5, α = 5, β = 2
Ours+GCNII de = 0.0, S = 5, α = 2, β = 2, αt = 0.1

Ours + ACM-GCN+ de = 0.2, α = 10, β = 2,
GCN de = 0.3

ResGCN de = 0.3
GAT de = 0.05

JKNet de = 0.05
GCNII de = 0.1, α = 0.1, λ = 0.4

Pubmed ACM-GCN+ de = 0.2, do = 0.3
Ours+ResGCN de = 0.1, S = 5, α = 5, β = 2

Ours+GAT de = 0.0, S = 5, α = 5, β = 2
Ours+JKNet de = 0.1, S = 5, α = 2, β = 2
Ours+GCNII de = 0.0, S = 5, α = 5, β = 2, αt = 0.1

Ours + ACM-GCN+ de = 0.2, α = 10, β = 2,

F.2.2 HETEROPHILIC GRAPHS (CHAMELEON, CORNELL, TEXAS, WISCONSIN)

For heterophilic datasets, we adopt the 3:1:1 split for the train, validation and test sets respectively
as in (Luan et al. (2022)). The baselines except GPR-GCN were implemented following the hyper-
parameter settings in (Luan et al. (2022)). For GPR-GCN, the we adopted the results reported in
(Luan et al. (2022)). The hyperparameters setup when integrating our framework with the baselines
is detailed in Table 9.
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Table 9: Implementation details of baselines and our method for the heterophilic datasets (wd is the
weight decay rate).

Dataset Methods Hyperparameter details
Ours+ResGCN lr = 0.01, wd = 10−5, O = 64, T = 2, S = 5, α = 10, β = 2

Chameleon Ours+JKNet lr = 0.01, wd = 10−5, O = 64, T = 2, S = 5, α = 10, β = 2
Ours+GCNII lr = 0.01, wd = 5 ∗ 10−6, O = 64, T = 4, S = 10, αt = 0.1, λ = 0.5, α = 15, β = 2
Ours+GAT lr = 0.01, wd = 10−5, O = 64, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.004, wd = 10−3, O = 64, T = 1, S = 1, α = 10, β = 2
Ours+ResGCN lr = 0.1, wd = 5 ∗ 10−3, O = 64, T = 2, S = 5, α = 5, β = 2

Cornell Ours+JKNet lr = 0.1, wd = 10−3, O = 64, T = 2, S = 5, α = 5, β = 2
Ours+GCNII lr = 0.1, wd = 10−3, O = 64, T = 4, S = 10, αt = 0.5, λ = 0.5, α = 10, β = 2
Ours+GAT lr = 0.1, wd = 10−3, O = 64, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.01, wd = 10−3, O = 64, T = 1, S = 1, α = 5, β = 2
Ours+ResGCN lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2

Texas Ours+JKNet lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2
Ours+GCNII lr = 0.1, wd = 10−3, O = 64, T = 4, S = 10, αt = 0.5, λ = 0.5, α = 10, β = 2
Ours+GAT lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.05, wd = 10−3, O = 64, T = 1, S = 1, α = 5, β = 2
Ours+ResGCN lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2

Wisconsin Ours+JKNet lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 5, β = 2
Ours+GCNII lr = 0.01, wd = 10−3, O = 64, T = 8, S = 10, αt = 0.5, λ = 0.5, α = 10, β = 2
Ours+GAT lr = 0.1, wd = 10−3, O = 32, T = 2, S = 5, α = 10, β = 2

Ours+ACM-GCN+ lr = 0.05, wd = 10−3, O = 64, T = 1, S = 1, α = 5, β = 2

F.2.3 HYPERPARAMETER DETAILS FOR TABLE 4

In Table 4, we evaluate the models on three large graphs: Flickr (Zeng et al. (2020)), ogb-arxiv
& ogb-proteins (Hu et al. (2020)). We follow original train/validation/test split as described in
the original papers. The general settings are as described in Table 7. Additional hyperparameter
details are provided in Table 10. For the ogb-arxiv dataset, empirically we found that replacing the
masking of node features with Zl by multiplying the batch-normalized features with the activation
probabilities of each layer πl results in better performance.

Table 10: Implementation details for the large graph datasets.
Dataset Methods Hyperparameter details

Ours+ResGCN S = 5, α = 5, β = 2
Flickr Ours+JKNet S = 5, α = 5, β = 2

Ours+GCNII S = 5, α = 5, β = 2, αt = 0.1
Ours+ResGCN S = 5, α = 5, β = 2

ogb-arxiv Ours+JKNet S = 3, α = 20, β = 2
Ours+GCNII S = 5, α = 25, β = 2, αt = 0.5

Ours+ResGCN S = 3, α = 25, β = 2
ogb-proteins Ours+JKNet S = 3, α = 25, β = 2

Ours+GCNII S = 3, α = 25, β = 2, αt = 0.1
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G OVERFITTING ANALYSIS

We analyze overfitting in the GCN variants with and without our framework in Figure 7. The results
suggest that the variants ResGCN, JKNet, and GAT trained with dropout suffer from overfitting
problems as indicated by the increasing value of their validation loss at higher number of epochs.
The issue is alleviated by integrating these variants with our framework. GCNII is already robust to
the overfitting problem. Application of our framework in GCNII does not have any significant effect
on the validation loss.

Figure 7: Validation loss for different GCN variants with and without the application of our frame-
work.

H UNCERTAINTY ANALYSIS

Figure 8: Evaluating the uncertainty estimation of models. The reported metric is PAvsPU (higher
values are preferable) plotted against increasing uncertainty thresholds.

In the main text, we evaluated uncertainty calibration of models using the ECE metric. For this study,
we performed semi-supervised learning on the homophilic datasets and full supervised learning on
the heterophilic datasets. The dataset splits are as defined in sections 6.2.1 and 6.2.2. Here, we
first detail the ECE metric and then extend this study by evaluating uncertainty calibration using the
PAvsPU metric (Mukhoti & Gal (2018); Hasanzadeh et al. (2020)).

H.1 EXPECTED CALIBRATION ERROR (ECE)

Expected Calibration Error (Guo et al. (2017)) approximates the difference between predictive confi-
dence and empirical accuracy. First, the predicted confidence p̂i is partitioned into I equally-spaced
bins (p̂i = max ŷi , ŷi is the softmax output). Then ECE is the weighted average of miscalibration
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in each bin.

ECE =

I∑
i=1

|Bi|
N

|acc(Bi)− conf(Bi)| (32)

with the number of samples N , accuracy of the bin Bi

acc(Bi) =
1

|Bi|
∑
i∈Bi

1[yi = argmax{ŷi}]

and confidence of the bin Bi

conf(Bi) =
1

|Bi|
∑
i∈Bi

p̂i

H.2 ASSESSING UNCERTAINTY CALIBRATION USING THE PAvsPU (MUKHOTI & GAL
(2018); HASANZADEH ET AL. (2020)) METRIC

To quantify uncertainty, we calculate the entropy of the output softmax distribution. For calculat-
ing the metric, we first set an uncertainty threshold. Predictions with uncertainty values below the
threshold are classified as certain predictions, while those with uncertainty values above the thresh-
old are classified as uncertain predictions. The count of accurate and certain predictions made by
the model for a given dataset is denoted as nac. Similarly, the count of inaccurate and uncertain
predictions are denoted as niu. Finally, the metric PAvsPU is defined as:

PAvsPU = (nac + niu)/(nac + nau + nic + niu) (33)

where nau is the count of accurate and uncertain predictions and nic the count of inaccurate and
certain predictions. The PAvsPU metric assumes that the model has reliably estimated uncertainty
when the predictions are accurate and certain as well as inaccurate and uncertain. It measures the
proportion of predictions with reliable uncertainty estimation. Higher values of the metric indicates
reliable uncertainty estimation.

Figure 8 shows that our method combined with GCN and ACM-GCN+ outperform other baselines
in most cases.

I EXPRESSIVITY ANALYSIS WITH DEEP NETWORK STRUCTURES

In Figure 9, we visualize the impact of over-smoothing by plotting node representations learned by
GCN, ResGCN, and our method. The t-SNE embeddings of the representations obtained from the
last layer of shallow GCN networks (L = {2, 4}) and deep GCN networks (L = {32, 64}) are
shown. With vanilla GCN, the representations are organized in clusters and spread out in space
for shallow networks. However, for deep networks, the representations lose their organization and
collapse to a curved-shaped region. In ResGCNs, the cluster organization is maintained in deep
structures, however the separation between clusters becomes less distinct. Also, the representations
lie close together within a constricted curved-shaped region compared to that with shallow struc-
tures. This is in accordance with Lemma 1 and Corollary 1. The application of our framework (bot-
tom row) results in comparatively spread-out representations at the shallow structure (T/L = 4),
which is in accordance with Theorem 2. Furthermore, the representations remain spread-out even
at deep structures, indicating improved expressivity as stated in Corollary 1. This demonstrates the
effectiveness of our framework in enhancing the expressivity of GCNs.
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Figure 9: TSNE visualization of the learned node representations by GCN, ResGCN and our frame-
work for shallow (L = T = {2, 4}) and deep (L = T = {32, 64}) structures on the Cora dataset.
As observed in the top (GCN) and middle (ResGCN) rows, the representations converge in nar-
row curve-shaped regions for deep structures as compared to spread-out representations in shallow
structures. This indicates that the representations from GCN and ResGCN converge to a narrow
subspace with deep networks. Applying our framework (bottom row) addresses this issue, result-
ing in spread-out representations with deeper structures. This suggests that the application of our
framework enhances the expressivity of GCNs.
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