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ABSTRACT

Gaussian Process (GP) priors are widely used in spatial statistical models but suf-
fer from cubic computational complexity in Markov Chain Monte Carlo (MCMC),
limiting scalability. We propose a simulation-based inference (SBI) method using
a transformer-enhanced diffusion model tailored for spatial models with latent
GP priors. By leveraging transformers for sequence modeling and probabilistic
diffusion for inference, our approach enables efficient, amortized Bayesian infer-
ence. Unlike traditional MCMC, it avoids repeated costly computations, allowing
rapid exploration of spatial conditional distributions. Simulation experiments on
one- and two-dimensional models demonstrate superior scalability compared to
GP-based MCMC, making our method well-suited for large-scale applications in
spatial epidemiology and other domains. The accompanying code is available at
https://github.com/hermanFTT/SpatFormer.

1 INTRODUCTION

Spatial statistical models are widely used in environmental science and epidemiology to inform
policy, optimize interventions, and allocate resources to high-risk areas (Gelfand, 2012; Wang et al.,
2024). These models often rely on Gaussian Process (GP) priors (Rasmussen, 2003) to capture
spatial correlation structures. However, the cubic complexity of GP kernel operations presents a
major computational bottleneck, particularly in Bayesian inference settings that require Markov
Chain Monte Carlo (MCMC).

A common approach to modeling spatial fields is to discretize the study region into a grid, where
each cell represents a location at which the process is evaluated. As the resolution of this grid
increases – whether to capture fine-scale spatial variation or to accommodate larger study areas – the
number of locations grows, dramatically increasing the computational cost of GP-based inference.
MCMC, while essential for handling non-Gaussian likelihoods and hierarchical dependencies, scales
poorly with larger grids (Rue et al., 2009). Developing inference methods that efficiently scale with
grid resolution is therefore crucial for enabling the practical application of spatial models in large-
scale epidemiological and environmental studies.

In this paper, we tackle these shortcomings by exploring simulation-based inference (SBI) tech-
niques (Cranmer et al., 2020): a class of methods that utilize forward simulations from the model to
approximate posterior distributions when direct evaluation of the likelihood (or its gradient) is infea-
sible. Specifically, we leverage the capabilities of a recently developed amortised SBI method called
Simformer (Gloeckler et al., 2024b), which combines the expressive power of diffusion models
with the ability of transformers to handle sequence data. Our approach, called SpatFormer, adapts
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Simformer for inference problems offering a new framework for efficient, scalable, and amortized
nonparametric inference on spatial models with latent GP priors. Although approximate, the latter
is highly flexible and provides a light-weight alternative to MCMC methods in this context.

2 PRELIMINARIES

Problem setting. In applied fields like spatial disease mapping (Lawson, 2018), hierarchical
Bayesian generalized linear mixed models (GLMMs) offer a unified framework for modeling both
discrete and continuous outcomes, provided they belong to the exponential family of distributions.
This hierarchy is typically structured as follows:

θ ∼ p(θ), f | x, θ ∼ GP
(
µ(x),Kθ(x,x

′)
)
, y | f ∼ p

(
g−1(f)

)
.

Here, θ represents hyperparameters governed by a hyperprior distribution p(θ). The latent spatial
field f is modeled as a Gaussian Process (GP), which captures spatial correlations among input
locations x ∈ X . The observational model p incorporates a link function g (e.g., log or logistic) to
transform the latent process f onto a suitable scale for discrete or continuous responses. The GP is
specified by a mean function µ : X → R, often set to zero, and a covariance function Kθ : X×X →
R, parameterized by θ. The goal is to infer the predictive distribution: p(y∗ |x∗,xobs,yobs) =∫
p(y∗ | f∗)p(f∗ |x∗,xobs,yobs) df∗ where x∗ represents the new locations where predictions are

made, and f∗ is the corresponding latent GP realization. The predictive distribution is obtained by
integrating out the latent process, ensuring proper uncertainty quantification.

To perform inference, one typically discretizes the spatial domain X into a computational grid of
n locations, {x1, . . . ,xn}. For these n spatial points, the latent process f = [f(x1), . . . , f(xn)]

⊤

follows f ∼ N (µ,K), where µ = [µ(x1), . . . , µ(xn)]
⊤ and K ∈ Rn×n has entries Kθ(xi,xj).

Unless this kernel matrix is trivial (e.g., the identity), its factorization requires O(n3) operations
and must be recomputed for each new value of θ in MCMC. These costs become prohibitive as n
grows, particularly on large or dense spatial grids, motivating the use of amortized simulation-based
inference methods to circumvent repeated factorization, which we introduce next.

Simulation-based inference (SBI). SBI has emerged as a framework for inferring parameters
of mechanistic models with intractable likelihood functions, common in many fields such as epi-
demiology (Kypraios et al., 2017), particle physics (Brehmer, 2021), and radio propagation (Bharti
et al., 2022). Let {Pθ}θ∈Θ denote the family of distributions induced by the model with pa-
rameters θ. If the likelihood function p(· | θ) associated with Pθ cannot be evaluated point-wise,
then standard Bayesian inference becomes infeasible. However, if it is straightforward to simu-
late independent realisations y ∼ Pθ, then SBI methods can be used to approximate the posterior
p(θ |y) ∝ p(y | θ)p(θ).

Amortized SBI. A popular SBI method is neural posterior estimation (NPE) (Papamakarios &
Murray, 2016; Radev et al., 2022), which utilizes conditional density estimators, such as normaliz-
ing flows, to learn an approximate mapping from each data y to the posterior distribution p(θ |y).
NPE assumes that the posterior is a member of the conditional density model qϕ(θ |y), where ϕ con-
stitutes the learnable parameters. Given data pairs {(θi,yi)}mi=1 ∼ p(θ,y), generated by first sam-
pling from the prior θi ∼ p(θ) and then simulating from the model yi ∼ Pθi , qϕ can be trained by
minimizing the empirical loss ℓ(ϕ) = 1

m

∑m
i=1 qϕ(θi |yi) ≈ Eθ,y∼p(θ,y) [qϕ(θ |y)]. Once trained,

the NPE posterior qϕ̂(θ |yobs) can then be obtained by a simple forward pass of the observed data
yobs through the trained network. This property of NPEs makes them amortized, wherein inference
on a new dataset is obtained almost instantaneously, as opposed to MCMC inference where all the
computations need to be carried out again. However, NPEs cannot handle non-parametric infer-
ence wherein the input to the simulator (e.g. the spatial coordinate x) is function-valued and thus
∞-dimensional (Ramesh et al., 2022), as is the case with spatial models. Note that one could in
principle try to infer the hyperparameters θ and obtain the predictive distribution by marginalizing
over the posterior distribution, p(y |yobs) =

∫
p(y | θ)p(θ |yobs)dθ. But this fails to capture spatial

correlations between x and y, motivating our direct approach to the predictive density inference.

Simformer. Simformer (Gloeckler et al., 2024a) is a more flexible amortized SBI method that
accommodates inference in∞-dimensional parameter spaces, i.e., nonparametric inference. It is a
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score-based diffusion model that uses a transformer architecture as a time-conditional score estima-
tor sη(·,t), where η represents the weights vector of the score model. Unlike previous SBI methods
that use conditional density estimators for the posterior or likelihood, Simformer is trained on the
joint distribution of latent parameters and data p(θ,y). It can encode known causal relationships
in the attention mask of the transformer and make it possible to sample arbitrary conditionals of
the joint distribution p(θ,y). Each input sequence (θ,y) is processed by a data-specific tokenizer
(Gu et al., 2024). The transformer then transforms the tokenized inputs into a latent representation,
which is decoded by a linear layer to obtain the score estimate. This estimate is subsequently em-
ployed during the reverse diffusion process to sample the desired conditionals. Despite its flexibility,
Simformer cannot be readily applied to spatial models due to two reasons: (i) it does not capture
the characteristics of spatially correlated data as the training is not informed by data locations and
(ii) the standard reverse diffusion process in Simformer, with constant conditioning values, does not
account for observation noise in the data. We address both these problems in the next section.

3 THE PROPOSED METHOD: SPATFORMER

In order to use Simformer for inference of spatial models, we first design a tokenizer for capturing
the spatial structure between the data y and the coordinates x, and then implement a sampling
mechanism that models observation noise.

Designing the tokenizer. We used realizations f = [f(x1), . . . , f(xn)]
⊤ of GP priors to simulate

training data y = [y(x1), . . . , y(xn)]
⊤ ∼ p

(
g−1(f)). We then design a tokenizer that embeds

spatial coordinates x = [x1, ...,xn] alongside the observed data locations, seamlessly integrating
both into the training process.

Prior to being fed into the transformer architecture, the diffused sequences at time level t of the for-
ward diffusion process (see A.1)—yt = [yt(x1), . . . , yt(xn)] pass through a specifically designed
tokenizer which represents each variable in the sequence with three components: the spatial coordi-
nate that uniquely identifies the variable, a representation of the value of the variable, and a condition
state. The condition state is a binary variable that indicates whether the variable is conditioned upon
or not. The condition states of all variables, represented as CM ∈ {0, 1}n collectively form a mask
indicating observed and unobserved data locations. Adopting C

(i)
M = 1 for certain variables in the

sequence implies they remain uncorrupted during the forward diffusion, focusing inference on vari-
ables with C

(i)
M = 0 which result in the training of a conditional diffusion model. The tokenizer then

jointly embeds the values, coordinates, and the condition mask into a unified vector representation
in a continuous dimensional space. In our experiments, we just replicate values into vectors of a cho-
sen latent dimension for value embeddings and use learnable vector embeddings for the coordinates
and condition states. We embed the diffusion time with Fourier transforms to enable the transformer
to incorporate temporal information into the score estimates. A dense symmetric attention mask
AM enforces global attention, allowing all variables in the sequence to attend to each other.

The transformer takes as input the result embedding from the tokenizer and incorporates the defined
attention mask AM in the attention layers to produce the score. Condition masks CM can be set
during training if targeting specific conditionals. At noise level t, the forward diffusion generates a
partially noisy sample described by yCM

t = (1 −CM ) · yt +CM · y0, ensuring that the variables
we want to condition on remain unchanged. The score model sη(.,t) (transformer) is then trained via
time conditional denoising score-matching (Vincent, 2011) to minimize the loss

L(η) = ECM ,t,y0,yt

[
∥ (1−CM ).

(
sAM
η (yCM

t , t)−∇yt
log qt(yt |y0)

)
∥22
]

(1)

where sAM
η denotes the score model equipped with a specific attention mask AM , η represents the

weights vector of the score model and qt(yt |y0) = N (yt;µt(y0), σt(y0)) represents the forward
diffusion process at time step t. Figure 1 depicts the architecture and its essential elements.

Posterior sampling with observation noise. To address observation noise, we solve the reverse
diffusion process using the data yobs and the specified noise model p(. |yobs) at the observed lo-
cations. Once the model is trained, we leverage the uncertainty associated with the observed data
yobs, which contains missing values at specific locations indicated by the condition mask CM . This

3



Workshop at the 7th Symposium on Advances in Approximate Bayesian Inference (non-archival), 2025

Input

Diffusion
L

C

coordinates value condition state

Tr
an

sf
or
m
erAttention

Mask

Tokenization

Figure 1: SpatFormer’s architecture. The diffused inputs are simplified into a token representation
that includes spatial coordinates, value, and conditional state (latent (L) or conditioned (C)). This
sequence of tokens is then processed by a transformer architecture, where variable interactions are
managed using an attention mask. The transformer then returns a score estimate, which is used to
generate samples from the score-based diffusion model Alg 2.

uncertainty is used to generate the noisy data ỹ, which guides the sampling mechanism. The process
is as follows:

• Draw y
T
∼ q

T
(y

T
) ≈ N (0, I) from the diffusion process at the final time step T .

• Sample ỹobs ∼ p(. |yobs) and use ỹ
T
= (1 −CM ) · y

T
+CM · ỹobs as the initial state

to numerically solve the reverse diffusion equation (see Alg 2 ) instead of directly using
CM .yobs as is done in standard sampling with Simformer.

4 SIMULATION EXPERIMENTS

Implementation details. We assess the performance and applicability of SpatFormer through ex-
periments focused on Gaussian process inference. We conduct inference on continuous data {yi}ni=1,
on a regular one-dimensional grid of n = 100 points over the interval [0, 1]. The observations con-
sist of points spaced at irregular intervals subsampled from a single realization of a GP with zero
mean and a standardized radial basis function (RBF) kernel (equation 5). We vary the number of
observed data points to small percentages ( e.g., 6%, 10%) of the total number of grid points, aiming
to reconstruct the true function. Using Matérn kernel (equation 6) for the latent Gaussian field, we
simulate training data y according to the following hierarchical structure:

l ∼ U(0.1, 1), ϵ ∼ N+(0, 0.2), f |x, l ∼ GP
(
0,KMatérn

l,ν=2.5(x,x
′)
)
, y | f ∼ N

(
f , ϵ2I

)
(2)

The SpatFormer architecture employs variance exploding SDE for the diffusion process along with
a tokenizer that concatenates a 20-dimensional value and node ID embedding with a 10-dimensional
condition embedding. The resulting embeddings are processed by a transformer consisting of two
attention heads, each with an attention size of 10 across two layers, and a widening factor of 10 is
applied. Training is carried out over 25 epochs in simulated data y ∼ N

(
f , ϵ2I

)
, with each epoch

containing an inner loop of 5000 iterations. Random masks are applied for efficient training of arbi-
trary conditional of the joint distribution p(y). Once trained, we sample from the target conditionals
defined by the corresponding masks, following the process outlined earlier in 2. The training and
post-training inference times for various numbers of observed data points nobs are recorded. We
also conduct GP-based MCMC inference and record the running times for efficiency comparison.
Furthermore, we investigate how performance improves as the number of simulations (training data)
increases by evaluating the Maximum Mean Discrepancy (MMD) between the ground truth target
conditional distribution provided by MCMC and the inference results of the Simformer.

SpatFormer is computationally scalable. Figure 2 illustrates how inference time scales with the
grid size and the number of observed data, clearly highlighting the efficiency of the SpatFormer
compared to MCMC-based inference. Figure 5 shows that the model is not simulation-hungry; the
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distance from the ground truth distribution, measured by MMD, stabilises as the amount of training
data increases. Figure 3 (right) depicts the competitive inference results of the Simformer approach
for three sets of observed data points. GP-based MCMC inference requires re-running the expen-
sive inference process for each new observed data points, whereas the Simformer provides a single
network that can be queried to sample any conditional distribution induced by new observations, as
long as their locations align with the condition masks applied during training.
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(a) Runtime across grid sizes.

nobs MCMC SpatFormer

10 6.45× 103 3.2× 103

20 6.51× 103 3.41× 103

40 6.6× 103 3.6× 103

80 7.01× 103 3.7× 103

(b) Runtime for varying #observed data

Figure 2: Comparison of inference runtimes (in seconds) for MCMC and the combined
training/post-training inference time forSpatFormer. The figure (left) illustrates how runtime varies
with grid size. MCMC uses the HMC algorithm with 5, 000 iterations, including a 1, 000-step warm-
up, while the SpatFormer model generates 104 samples after being trained with 10000 simulations.
The table (right) presents average runtimes for different numbers of observed data points on a fixed
1D grid of size n = 100. Results highlight the superior scalability of SpatFormer over MCMC.

SpatFormer is able to model observation noise. The effects of our adjustments on the infer-
ence results for the specific task are illustrated by Figure 3. When the model lacks information
about spatial coordinates and the locations of observed data—either because the tokenizer does not
embed the coordinates during training or the embedding dimension is insufficiently expressive, the
Simformer fails to capture the variables’ dependencies, producing non-smooth samples with high
variability around unobserved locations. Integrating spatial components into the tokenizer while
maintaining the standard Simformer sampling procedure enables the model to capture the pattern
but tends to overfit the data, assuming no observation noise at the observed locations. By further
refining the sampling process, as described in the Methods section, the architecture can effectively
model observation noise while accurately capturing the intrinsic correlations across dimensions.
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Figure 3: Illustration of improvements in inference results on a one-dimensional grid (n=100). (Left)
The standard Simformer, uninformed by spatial coordinates, demonstrates poor accuracy and high
variability in unobserved locations. (Middle) The adjusted Simformer incorporates a tokenizer that
encodes spatial coordinates and observed data locations, enhancing inference quality but failing to
model noise at those locations. (Right) SpatFormer combines spatial tokenization with an adjusted
sampling operation that accounts for uncertainty around observed data points. The solid lines corre-
spond to the mean estimates, and the shaded areas indicate the 95% Bayesian credible intervals.
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SpatFormer efficiently scales to higher dimension. A similar experiment, as described above,
is conducted on a regular grid defined over a square with 20 segments along each coordinates (two-
dimensional), resulting in n = 400 grid cells. The Simformer effectively managed the computa-
tional burden and convergence issues that the MCMC method faced due to the high dimensionality
resulting from the number of grid points, further demonstrating its scalability. As the number of
observed points increases, the estimated mean becomes closer to the ground truth surface Figure 4.
Regions with sparse data points exhibit higher uncertainty, while areas informed by closely located
data points show reduced uncertainty.

Figure 4: Demonstration of the applicability of SpatFormer on a two-dimensional square grid sized
n=20×20. Inference is conducted using 4%, 8%, and 16% of the total grid points respectively,
aiming to reconstruct the ground truth surface. The mean surface estimates (top row) are based on
5000 posterior samples. The red scatter points indicate the observed locations. As the number of
observations increases, the uncertainty in the mean surface estimates (bottom row) decreases. While
a single MCMC run takes several days without guaranteed convergence, SpatFormer completes
training and inference in 6 hours and enables efficient sampling of arbitrary spatial conditionals.

1000 3000 6000 10000
#Simulations (m)

2500

2525

2550

To
ta

l r
un

tim
e 

(s
)

1000 3000 6000 10000
#Simulations (m)

0.08

0.09

0.10

0.11

M
M

D

Figure 5: (Left) Average total runtime of SpatFormer as a function of simulations (training dataset),
with the grid size (one-dimensional) fixed at n=100 and nobs = 10, drawing 104 samples. (Right)
Maximum mean discrepancy (measured using the RBF kernel) between the inferred conditional
distributions from SpatFormer (based on different amounts of simulated data) and the ground truth
distribution obtained with MCMC inference. SpatFormer maintains a relatively stable runtime, with
a slight improvement in performance (MMD) as the number of simulated data m increases.

5 CONCLUSION AND FUTURE WORK

This paper explores a novel framework for spatial statistical inference that involves Gaussian pro-
cess priors. The approach is an amortized SBI algorithm based on generative models (diffusion
models, transformers) equipped with a specifically designed tokenizer and an inference procedure
that accounts for noise in observation. The architecture can accommodate non-parametric inference,
and it exhibits strong performance and flexibility in managing inference over spatially correlated
structures, which have so far relied on MCMC algorithms. Its main advantages are that it enables
inference of multiple spatial conditional distributions at once, can learn from training experience to
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generalize to newly observed data (amortized inference), and scales efficiently compared to MCMC-
based approaches. Although we used Gaussian likelihood in our experiments, the method can be
applied to any other likelihood from the exponential family. However, because Spatformer is trained
on a discretization of a predefined grid, it cannot perform off-grid prediction.

Future work includes comparing our proposed method to two-stage approach like PriorVAE, Pri-
orCVAE (Semenova et al., 2022; 2023), in small-area estimation regime (Rao & Molina, 2015),
as well as to state-of-the-art scalable Bayesian GP models, such as KISS-GP (Wilson & Nickisch,
2015) and Vecchia approximation (Katzfuss & Guinness, 2021) , on real world large-scale spatial
grid problems.

ACKNOWLEDGMENTS

H.T acknowledges the support of Google DeepMind and the African Institute for Mathematical
Sciences (AIMS), South Africa, for the opportunity to conduct this research as a part of his MSc. AB
was supported by the Research Council of Finland grant no. 362534. E.S. acknowledges AIMS-SA
for an opportunity to teach and meet students. E.S. acknowledges supported in part by the AI2050
program at Schmidt Sciences (Grant [G-22-64476]).

REFERENCES

Ayush Bharti, Francois-Xavier Briol, and Troels Pedersen. A general method for calibrating stochas-
tic radio channel models with kernels. IEEE Transactions on Antennas and Propagation, 70(6):
3986–4001, 2022. doi: 10.1109/tap.2021.3083761.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Johann Brehmer. Simulation-based inference in particle physics. Nature Reviews Physics, 3(5):
305–305, 2021.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

Alan E Gelfand. Hierarchical modeling for spatial data problems. Spatial statistics, 1:30–39, 2012.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-in-
one simulation-based inference. arXiv preprint arXiv:2404.09636, 2024a.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H. Macke. All-in-
one simulation-based inference, 2024b.

Yuchao Gu, Xintao Wang, Yixiao Ge, Ying Shan, and Mike Zheng Shou. Rethinking the objectives
of vector-quantized tokenizers for image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7631–7640, 2024.

Matthias Katzfuss and Joseph Guinness. A general framework for vecchia approximations of gaus-
sian processes. Statistical Science, 36(1):124–141, 2021.

Theodore Kypraios, Peter Neal, and Dennis Prangle. A tutorial introduction to bayesian inference for
stochastic epidemic models using approximate bayesian computation. Mathematical Biosciences,
287:42–53, May 2017. ISSN 0025-5564. doi: 10.1016/j.mbs.2016.07.001.

Andrew B Lawson. Bayesian disease mapping: hierarchical modeling in spatial epidemiology.
Chapman and Hall/CRC, 2018.

George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with bayesian
conditional density estimation. Advances in neural information processing systems, 29, 2016.

Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow:
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A APPENDIX

We used JAX (Bradbury et al., 2018) as the primary framework. The code is optimized for parallel
computation across multiple cores and benefits from GPU acceleration. Experiments have been
conducted on a CUDA-capable machine equipped with two T4 GPU devices, each with 15 GiB of
memory.

Algorithm 1 SpatFormer training

1: Set attention mask AM ( causal statement in the input sequence )
2: repeat
3: set condition mask CM

4: simulate f0 ∼ GP (.) , yo ∼ p(u−1(fo))
5: t ∼ Uniform(0, T ) (sample diffusion time)
6: diffuse sample yt ∼ qt(yt |y0) (forward diffusion )
7: yCM

t = tokenize{(1−CM ) · yt +CM · y0 }
8: Take gradient descent step∇η ( denoising score-matching )

L(η) = ∥ (1−CM ).
(
sAM
η (yCM

t , t)−∇yt log qt(yt |y0)
)
∥22

9: until Convergence ( =0

Algorithm 2 SpatFormer inference

1: Initialize t← T , ỹ
T
∼ qT (ỹ) ≈ N (0, I)

2: ỹobs ∼ p(. |yobs) (observation noise model)
3: y = (1−CM ) · ỹ

T
+CM · ỹobs

4: repeat
5: z ∼ N (0, |∆t| I)
6: ∆y ←

[
f(y, t)− g2(t)Sη(y

CM , t)
]
∆t+ g(t)z

7: y ← y +∆y ( Euler-Maruyama numerical solver )
8: t← t+∆t
9: until t =0

A.1 SCORE-BASED DIFFUSION MODELS

In the forward process of a generative diffusion model, a real data point is gradually corrupted by
adding Gaussian noise at each time step, ultimately resulting in pure noise. In the limit of many
small time steps, the diffusion process that transforms an initial data distribution q0(x0) = p(x)
into a simpler distribution qT (xT ) = N (xT , 0, I) is defined as the solution to stochastic differential
equations (SDEs), dxt = f(xt, t)dt+g(t)dwt, with wt being a standard Wiener process, and f and
g representing the drift (controlling deterministic properties of the stochastic process) and diffusion
coefficients, respectively. Samples from the generative model are then generated by simulating the
corresponding reverse diffusion process dxt = [f(xt, t) + g(t)2∇xt log qt(xt)]dt+ g(t)dw̃t which
relies on the knowledge of the score function∇xt log qt(xt). The exact score is typically intractable
but can be estimated through time conditional denoising score-matching (Vincent, 2011). Given
that the conditional score is known, qt(xt |x0) = N (xt;µt(x0), σt(x0)), a score model sη(xt, t) is
trained to minimize the loss

L(θ) = Et∼U(0,T )︸ ︷︷ ︸
diffusion
time t

Ex0∼q0(x0)︸ ︷︷ ︸
data

sample x0

Ext∼qt(xt | x0)︸ ︷︷ ︸
diffused data

sample xt

[
λ(t) ∥ sη(xt, t)︸ ︷︷ ︸

neural
network

−∇xt
log qt(xt |x0)︸ ︷︷ ︸

score of diffused
data sample

∥22
]

(3)

where λ(t) denotes a positive weighting function and η represents the weights vector of the score
model (neural network architecture). After expectation, sη(xt, t) ≈ ∇xt

log qt(xt).
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A.2 TRANSFORMERS

Transformers are a type of neural network architecture primarily used in NLP that overcome the
limitations of feed-forward networks in effectively dealing with sequential inputs by incorporating
an attention mechanism to capture long-range dependencies in data. They operate by encoding
input sequences through three learnable linear projections: query (Q ), key ( K), and value ( V ),
where query represents the current elements, key helps compute attention scores, and value carries
the actual information. The process involves transforming input embeddings into Q, K, and V
using learned weight matrices, computing scaled attention scores via the dot product of Q and
K , normalizing these scores with softmax to obtain attention weights, and finally producing an
output as a weighted sum of the values (Vaswani, 2017) followed by feedforward neural networks
for processing.

Attention(Q,K, V ) = Softmax
(QK⊤
√
d

)
.V (4)

A.3 KERNELS

RBF kernel:

K(x, x′) = σ2 exp

(
−∥x− x′∥2

2l2

)
, (5)

Matérn Kernel ( ν = 2.5) :

K(x, x′) = σ2 2
1−ν

Γ(ν)

(√
2νd

l

)ν

Kν

(√
2νd

l

)
(6)

where: d = ∥x− x′∥ is the Euclidean distance between the two points, l is the length scale, ν is the
smoothness parameter, σ2 is the variance, Kν is the modified Bessel function of the second kind,
Γ(ν) is the gamma function.
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