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ABSTRACT

We consider the problem of learning personalized decision policies from observa-
tional bandit feedback data across multiple heterogeneous data sources. Moreover,
we examine the practical considerations of this problem in the federated setting
where a central server aims to train a policy on data distributed across the hetero-
geneous sources, or clients, without collecting any of their raw data. We present
a policy learning algorithm amenable to federation based on the aggregation of
local policies trained with doubly robust offline policy evaluation and learning
strategies. We provide a novel regret analysis for our approach that establishes a
finite-sample upper bound on a notion of global regret against a mixture distribu-
tion of clients. In addition, for any individual client, we establish a corresponding
local regret upper bound characterized by measures of relative distribution shift to
all other clients. Our analysis and supporting experimental results provide insights
into tradeoffs in the participation of heterogeneous data sources in policy learning.

1 INTRODUCTION

Offline policy learning from observational bandit feedback data is an effective approach for learning
personalized decision policies in applications where obtaining online, real-time data is impractical
(Swaminathan & Joachims, 2015; Kitagawa & Tetenov, 2018; Athey & Wager, 2021). Typically,
the observational data used in offline policy learning is assumed to originate from a single source
distribution. However, in practice, we often have the opportunity to leverage multiple datasets col-
lected from various experiments under different populations, environments, or logging policies. For
instance, a healthcare policymaker may have access to data from multiple hospitals that conduct dif-
ferent types of clinical trials on distinct patient populations. Learning from multiple heterogeneous
observational datasets, with their more diverse and extensive coverage of the decision space, may
lead to better personalized decision policies, assuming sufficient generalization across data sources.

However, several practical constraints, such as privacy concerns, legal restrictions, proprietary in-
terests, or competitive barriers, can hinder the consolidation of datasets across sources. Federated
learning (Kairouz et al., 2021) presents a potential solution to such obstacles by offering a framework
for training machine learning models in a decentralized manner, thereby minimizing systemic risks
associated with traditional, centralized machine learning. Federated learning techniques applied to
policy learning can enable platforms to learn targeted policies without centrally storing sensitive
information. It also has the potential to incentivize institutions to collaborate on developing policies
that are more generalizable across diverse environments without having to share sensitive data, such
as clinical patient data in hospitals.

In this work, we formally introduce the problem of learning personalized decision policies on obser-
vational bandit feedback data from multiple heterogeneous data sources. Moreover, we examine the
practical considerations of this problem in the federated setting where a central server aims to train
a policy on data distributed across the data sources, or clients, without collecting any of their raw
data. For this purpose, we provide a policy learning algorithm amenable to federation based on the
federated averaging algorithm with local model updates given by online cost-sensitive classification
oracles. We present a novel regret analysis that distinguishes between the global regret of the central
server and the local regret of a client. For both regret notions, we provide finite-sample upper bounds
characterized by expressions of client heterogeneity. We experimentally verify the effect of client
heterogeneity on regret, and we present design choices to overcome local performance degradation

1



Under review as a conference paper at ICLR 2024

due to distribution shift. Our analysis and supporting experimental results provide insights into the
tradeoffs in the participation of heterogeneous data sources in offline policy learning.

2 RELATED WORK

Offline Policy Learning Recent years have witnessed substantial progress in offline policy learn-
ing from observational bandit feedback data. Swaminathan & Joachims (2015); Kitagawa & Tetenov
(2018) established the framework for structured decision policy learning using offline policy evalu-
ation strategies. Athey & Wager (2021) achieved optimal regret rates under unknown propensities
through doubly robust estimators. Kallus (2018) found optimal weights for the target policy directly
from observational data. Zhou et al. (2023) extended this to the multi-action setting, while Zhan
et al. (2021a) considered adaptively collected observational data, ensuring optimal regret guarantees
even with diminishing propensities. Jin et al. (2022) relaxed the uniform overlap assumption to par-
tial overlap under the optimal policy. More relevant to our setting under heterogeneous data sources,
work by Agarwal et al. (2017); He et al. (2019); Kallus et al. (2021) leveraged data from multiple
historical logging policies, although assuming the same underlying populations and environments.
Lastly, we mention contextual bandit methods (Li et al., 2010) often utilize offline policy learning
oracles (Bietti et al., 2021; Krishnamurthy et al., 2021; Simchi-Levi & Xu, 2022; Carranza et al.,
2022), but for developing adaptive action-assignment algorithms in online policy learning.

Federated Learning Kairouz et al. (2021); Wang et al. (2019) offer comprehensive surveys on
federated learning and its challenges. Mohri et al. (2019) presented an agnostic supervised feder-
ated learning framework, introducing useful concepts like weighted Rademacher complexity and
skewness measures, which we use in our work. Wei et al. (2021) established excess risk bounds for
supervised federated learning under data heterogeneity. The impact of client heterogeneity in fed-
erated learning has been explored by Li et al. (2019; 2020); Karimireddy et al. (2020). Contextual
bandits in federated settings have been studied by Agarwal et al. (2020); Dubey & Pentland (2020);
Huang et al. (2021); Agarwal et al. (2023). However, offline policy evaluation and learning in fed-
erated settings remain relatively underexplored. Xiong et al. (2021) investigated federated methods
for estimating average treatment effects across heterogeneous data sources. Zhou et al. (2022) and
Shen et al. (2023) delved into federated offline policy optimization in full reinforcement learning
settings but with significant limitations, including relying on strong linear functional form assump-
tions with highly suboptimal rates and requiring a difficult saddle point optimization problem that
focuses more on policy convergence rather than establishing regret rates.

3 PRELIMINARIES

3.1 SETTING

We introduce the problem of offline policy learning from observational bandit feedback data across
multiple heterogeneous data sources. Throughout the paper, we refer to a heterogeneous data source
as a client and the central planner that aggregates client data/models as the central server.

Let X ⊂ Rp be the context space, A = {a1, . . . , ad} be the finite action space with d actions, and
Y ⊂ R be the reward space. A decision policy π : X → A is a mapping from the context space X
to actions A. We assume there is a central server and a finite set of clients C, with each client c ∈ C
possessing a local data-generating distribution Dc defined over X × Yd which governs how client
contexts Xc and client potential reward outcomes Y c(a1), . . . , Y

c(ad) are generated. Moreover, the
central server specifies a fixed distribution λ over the set of clients C describing how clients will be
sampled or aggregated1, which we will simply refer to as the client sampling distribution.

The central server seeks to train a decision policy that performs well on the global data-generating
mixture distribution defined by Dλ :=

∑
c∈C λcDc. At the same time, if there is a potential target

client of interest, the central server may not want this personalized policy to perform poorly on the
local distribution of this client, otherwise their locally trained policy may provide greater utility to
the client and thus their participation is disincentivized. In the following section, we introduce the
exact policy performance measures that capture these two potentially opposing objectives.

1Clients are sampled in the cross-device FL setting and aggregated in the cross-silo FL settings.
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3.2 OBJECTIVE

We consider the immediate reward gained by a client by taking actions according to any given
policy. Additionally, we extend this metric to a global version that captures the aggregate reward
gained from the mixture of clients under the client sampling distribution.

Definition 1. The local policy value under client c and the global policy value under client sampling
distribution λ of a policy π are, respectively,

Qc(π) := E
Zc∼Dc

[Y c(π(Xc))] and Qλ(π) := E
c∼λ

E
Zc∼Dc

[Y c(π(Xc))], (1)

where the expectations are taken with respect to the corresponding local data-generating distribu-
tions Zc = (Xc, Y c(a1), . . . , Y

c(ad)) ∼ Dc and the client sampling distribution c ∼ λ.

The performance of a policy is typically characterized by a notion of regret against an optimal policy
in a specified policy class Π ⊂ {π : X → A}, which we assume to be fixed throughout the paper.
We define local and global versions of regret based on their respective versions of policy values.

Definition 2. The local regret under client c and the global regret under client sampling distribution
λ of a policy π relative to the given policy class Π are, respectively,

Rc(π) := max
π′∈Π

Qc(π
′)−Qc(π) and Rλ(π) := max

π′∈Π
Qλ(π

′)−Qλ(π). (2)

The objective of the central server is to determine a policy in the specified policy class Π that mini-
mizes global regret. On the other hand, the central server also aims to characterize the corresponding
local regret of a target client under the obtained policy, since this quantity captures the client’s cor-
responding individual utility to a global policy.

3.3 DATA-GENERATING PROCESSES

We assume each client c ∈ C has a local observational data set {(Xc
i , A

c
i , Y

c
i )}

nc
i=1 ⊂ X × A × Y

consisting of nc ∈ N triples of contexts, actions, and rewards collected using a local experimental
stochastic policy ec : X → ∆(A) in the following manner. For the i-th data point of client c,

1. nature samples a context and potential outcomes vector (Xc
i , Y

c
i (a1), . . . , Y

c
i (ad)) ∼ Dc;

2. client c is assigned action Ac
i ∼ ec(·|Xc

i );
3. client c observes the realized outcome Y c

i = Y c
i (A

c
i ) ;

4. client c logs the data tuple (Xc
i , A

c
i , Y

c
i ) locally.2

We will let n :=
∑

c∈C nc denote the total sample size across clients. Note that although the coun-
terfactual reward outcomes Y c

i (a) for all a ∈ A\{Ac
i} exist in the local data-generating process,

they are not observed in the realized data. All clients only observe the outcomes associated to their
assigned treatments. For this reason, such observational data is also referred to as bandit feedback
data (Swaminathan & Joachims, 2015).

Given these data-generating processes, it will be useful to introduce the data-generating distributions
that also incorporate how actions are sampled. For each client c ∈ C, the local historical policy ec
induces a complete local data-generating distribution D̄c defined over X ×A×Yd that dictates how
the entire local contexts, actions, and potential reward outcomes for all actions were sampled in the
local data-generating process, i.e., (Xc

i , A
c
i , Y

c
i (a1), . . . , Y

c
i (ad)) ∼ D̄c. Given this construction

of the complete client distributions, we also introduce the complete global data-generating mixture
distribution defined by D̄λ :=

∑
c∈C λcD̄c.

3.4 DATA ASSUMPTIONS

We make the following standard assumptions on the data-generating process of any given client.

Assumption 1 (Local Ignorability). For any client c ∈ C, the complete local data-generating dis-
tribution (Xc, Ac, Y c(a1), . . . , Y

c(ad)) ∼ D̄c satisfies:
(a) Boundedness: The marginal distribution of D̄c on the set of potential outcomes Yd has

bounded support, i.e., there exists some Bc > 0 such that |Y c(a)| ≤ Bc for all a ∈ A.

2If ec(Ac
i |Xc

i ) = P(Ac
i |Xc

i ) is known, it also locally logged as it facilitates policy value estimation.
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(b) Unconfoundedness: Potential outcomes are independent of the observed action conditional
on the observed context, i.e., (Y c(a1), . . . , Y

c(ad)) ⊥⊥ Ac | Xc.
(c) Overlap: For any given context, every action has a non-zero probability of being sampled,

i.e., there exists some ηc > 0 such that ec(a|x) = P(Ac = a|Xc = x) ≥ ηc for any a ∈ A
and x ∈ X .

Note that the boundedness assumption is not essential and we only impose it for simplicity in our
analysis. With additional effort, we can instead rely on light-tail distributional assumptions such
as sub-Gaussian potential outcomes as in (Athey & Wager, 2021). Unconfoundedness ensures that
action assignment is as good as random after accounting for measured covariates, and it is necessary
to ensure valid policy value estimation using inverse propensity-weighted strategies. The uniform
overlap condition ensures that all actions are taken sufficiently many times to guarantee accurate
evaluation of any policy. This assumption may not be entirely necessary as recent work (Jin et al.,
2022) introduced an approach that does away with the uniform overlap assumption for all actions and
only relies on overlap for the optimal policy. However, in our work, we made the above assumptions
to simplify our analysis and maintain focus of our contributions on the effects of data heterogeneity
on policy learning. In any case, these assumptions are standard and they are satisfied in many
experimental settings such as randomized controlled trials or A/B tests.

Next, we also impose the following local data scaling assumption on each client.
Assumption 2 (Local Data Scaling). All local sample sizes asymptotically increase with the total
sample size, i.e., for each c ∈ C, nc = Ω(νc(n)) where νc is an increasing function of the total
samples size n.

This assumption states that, asymptotically, the total sample size cannot increase without increasing
across all data sources. We emphasize that this assumption is quite benign since νc could be any
slowly increasing function (e.g., an iterated logarithm) and the asymptotic lower bound condition
even allows step-wise increments. We only impose this assumption to ensure that the regret bounds
in our analysis scale with respect to the total sample size with sensible constants. However, it does
come at the cost of excluding scenarios in which a client always contributes O(1) amount of data
relative to the total data, no matter how much more total data is made available in aggregate, in
which case one may expect it is better to exclude any such client.

4 APPROACH

The approach for the central server is to use the available observational data to construct an appro-
priate estimator of the global policy value and use this estimator to find an optimal global policy.

4.1 NUISANCE PARAMETERS

We define the following functions which we refer to as nuisance parameters as they will be required
to be separately known or estimated in the policy value estimates.
Definition 3. The local conditional response and inverse conditional propensity functions of client
c ∈ C with complete local data-generating distribution (Xc, Ac, Y c(a1), . . . , Y

c(ad)) ∼ D̄c are
defined, respectively, for any x ∈ X and a ∈ A as

µc(x; a) := E[Y c(a)|Xc = x] and wc(x; a) := 1/P(Ac = a | Xc = x). (3)
For notational convenience, we let µc(x) = (µc(x; a))a∈A and wc(x) = (wc(x; a))a∈A.

In our estimation strategy, each client must estimate the conditional response and inverse conditional
propensity functions when they are unknown. Following the literature on double machine learning
Chernozhukov et al. (2018), we make the following high-level assumption on the estimators of these
local nuisance parameters.
Assumption 3. For any client c ∈ C, the local estimates µ̂c and ŵc of the nuisance parameters µc

and wc, respectively, trained on m local data points satisfy the following squared error bound:

E
[
∥µ̂c(X

c)− µc(X
c)∥22

]
· E
[
∥ŵc(X

c)− wc(X
c)∥22

]
≤ o(1)

m
, (4)

where the expectation is taken with respect to the marginal distribution of Dc over contexts.
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We emphasize that this is a standard assumption in the double machine learning literature, and we
can easily construct estimators that satisfy these rate conditions, given sufficient regularity on the
nuisance parameters (Zhou et al., 2023). They can be estimated with widely available out-of-the-box
regression and classification implementations. See Appendix F.1 for more details. Moreover, this
condition is general and flexible enough to allow one to trade-off the accuracies of estimating the
nuisance parameters. This is an important property in offline policy learning where distribution shift
in the batch data can complicate consistent reward estimation.

4.2 POLICY VALUE ESTIMATOR

For any client c ∈ C, we define the local augmented inverse propensity weighted (AIPW) score for
each a ∈ A to be

Γc(a) := µc(X
c; a) +

(
Y c(Ac)− µc(X

c; a)
)
wc(X

c; a)1{Ac = a}, (5)

where (Xc, Ac, Y c(a1), . . . , Y
c(ad)) ∼ D̄c. One can readily show that Qc(π) = ED̄c

[Γc(π(Xc))],
and therefore Qλ(π) = Eλ ED̄c

[Γc(π(Xc))] (see proof in Lemma 6). Accordingly, our procedure
is to estimate the local AIPW scores and aggregate them to form the global policy value estimator.
We assume we have constructed nuisance parameter estimates µ̂c and ŵc that satisfy Assumption 3.
Then, for each local data point (Xc

i , A
c
i , Y

c
i ) in the observational data set of client c ∈ C, we define

the approximate local AIPW score for each a ∈ A to be

Γ̂c
i (a) := µ̂c(X

c
i ; a) +

(
Y c
i − µ̂c(X

c
i ; a)

)
ŵc(X

c
i ; a)1{Ac

i = a}. (6)
Using these estimated scores, we can define the doubly robust global policy value estimate to be

Q̂λ(π) = E
c∼λ

[Q̂c(π)], where Q̂c(π) =
1

nc

nc∑
i=1

Γ̂c
i (π(X

c
i )). (7)

This estimator is a generalized aggregate version of the doubly robust policy value estimator intro-
duced in the standard offline policy learning setting (Zhou et al., 2023). It is doubly robust in the
sense that it is accurate as long as one of nuisance parameter estimates is accurate for each client.
Lastly, to ensure we can use the same data to estimate the nuisance parameters and construct the
policy value estimates, we utilize a cross-fitting strategy locally for each client. See Appendix F.2
for more details on the cross-fitting estimation strategy.

4.3 OPTIMIZATION OBJECTIVE

The objective of the central server is to find a policy that maximizes the global policy value estimate:
π̂λ = argmax

π∈Π
Q̂λ(π). (8)

Note that in the centralized setting, this optimization can be done using standard policy optimization
techniques (Athey & Wager, 2021) on the centrally accumulated heterogeneous datasets at once.
However, as we discussed previously, the centralized collection of datasets can present difficulties
in privacy sensitive settings. For this reason, we seek to provide an optimization procedure that is
amenable to federated settings to overcome these challenges. In the federated setting, the central
server does not have access to client raw data to estimate local policy values nor does it have access
to the local policy values; only model updates can be shared through the network. In Section 6, we
discuss an optimization procedure for parametric policy classes that manages these constraints.

5 REGRET BOUNDS

We establish regret bounds for the global policy solution π̂λ to the optimization objective above.
Refer to the Appendix for further detailed discussion and proofs of the statements in this section.

5.1 COMPLEXITY AND SKEWNESS

First, we introduce important quantities that appear in our regret bounds.

Policy Class Complexity The following quantity provides a measure of policy class complexity
based on a variation of the classical entropy integral introduced by Dudley (1967), and it is useful in
establishing a class-dependent regret bound. See Appendix B.1.1 for more details on its definition.
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Definition 4 (Entropy integral). Let H(π1, π2; x̃) :=
1
ñ

∑ñ
i=1 1{π1(x̃i) ̸= π2(x̃i)} be the Hamming

distance between any two policies π1, π2 ∈ Π given a covariate set x̃ ⊂ X of size ñ ∈ N. The
entropy integral of a policy class Π is

κ(Π) :=

∫ 1

0

√
logNH(ϵ2,Π)dϵ, (9)

where NH(ϵ
2,Π) is the maximal ϵ2-covering number of Π under the Hamming distance over covari-

ate sets of arbitrary size.

The entropy integral is constant for a fixed policy class, and rather weak assumptions on the class
are necessary to ensure it is finite such as sub-exponential growth on its Hamming covering number
(Zhou et al., 2023), which is satisfied by many policy classes including parametric and finite-depth
tree policy classes. In the binary action setting, the entropy integral of a policy class relates to its
VC-dimension with κ(Π) =

√
VC(Π), and for D-dimensional linear classes κ(Π) = O(

√
D ).

Client Skewness The following quantity measures how far the client sampling distribution is from
the empirical distribution of samples across clients defined by n̄ := (nc/n)c∈C . This quantity natu-
rally arises in the generalization bounds of weighted mixture distributions (Mansour et al., 2021).

Definition 5 (Skewness). The skewness of a given client sampling distribution λ is
s(λ∥n̄) := 1 + χ2(λ||n̄), (10)

where χ2(λ||n̄) is the chi-squared divergence of λ from n̄.

5.2 GLOBAL REGRET BOUND

The following result captures a root-n finite-sample bound for the global regret that parallels the
optimal regret bounds typically seen in the offline policy learning literature.

Theorem 1 (Global Regret Bound). Suppose Assumption 1, 2, and 3 hold. Then, with probability
at least 1− δ,

Rλ(π̂λ) ≤
(
c1κ(Π)+

√
c2 log(c2/δ)

)√
V · s(λ∥n̄)

n
+ op

(√
s(λ∥n̄)

n

)
, (11)

where c1 and c2 are universal constants and V = max
c∈C

sup
π∈Π

ED̄c

[
Γc(π(Xc))2

]
.

First, note that V captures a notion of the worst-case AIPW score variance across clients. Next, we
observe that root-n rate is moderated by a skewness term which can also scale with the total sample
size. For example, if λ = n̄ then s(λ∥n̄)/n = 1/n, and if λ = (1, 0, . . . , 0) then s(λ∥n̄)/n = 1/n1.
Thus, this skewness-moderated rate smoothly interpolates between the rates one expects from the
uniform weighted model and the single source model. Indeed, when clients are identical and λ = n̄,
we recover the bounds from standard policy learning (Zhou et al., 2023). From this observation, it
may seem that the best design choice for the client sampling distribution λ is the empirical sample
distribution n̄. However, as we observe in the next section, there are terms in the local regret bounds
that introduce trade-offs on the choice of λ when considering a specific target client.

5.3 LOCAL REGRET BOUND

In this next result, we capture the discrepancy in local and global regret due to client heterogeneity.
This result is helpful in understanding the extent at which the global and local regret minimization
objectives can be in conflict for a particular target client.

Theorem 2 (Local Regret Bound). Suppose Assumption 1 holds. Then, for any client c ∈ C,
Rc(π̂λ) ≤ U · TV(D̄c, D̄λ) +Rλ(π̂λ), (12)

where U = 3B/η with B = maxc∈C Bc and η = minc∈C ηc, and TV is the total variation distance.

The first term in this regret bound is inherently irreducible relative to the sample sizes and it is
due to distribution shift between the complete local client distribution D̄c and the complete global
mixture distribution D̄λ. Thus, we can observe how the design choice on the client distribution λ
must balance a trade-off to achieve low skewness and low expected distribution shift across sources.
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Skewing towards the target client will reduce the distribution shift term, but it will moderate the
rates in the global regret bound. In our experiments, we take a heuristic approach to obtain a skewed
λ, but this may be optimized as in (Mohri et al., 2019). The constant U in the distribution shift term
is defined by the constants in the boundedness and overlap assumptions stated in Assumption 1.3

The following result demonstrates how the distribution shift term can be further tensorized into
contributions due to distribution shift in the covariates, propensities, and potential outcomes.

Theorem 3 (Local Distribution Shift Bound). For any given client c ∈ C, suppose (Xc, Y⃗ c) ∼ Dc.
We let pXc denote the marginal distribution of Xc and let pY⃗ c|Xc denote the conditional distribution
of Y⃗ c given Xc. Then, the irreducible distribution shift term in the local regret bound can be further
bounded as

TV(D̄c, D̄λ) ≤ E
k∼λ

[√
KL(pXc ||pXk) +

√
KL(ec||ek) +

√
KL(pY⃗ c|Xc ||pY⃗ k|Xk)

]
, (13)

where TV is the total variation distance and KL is the Kullback-Leibler divergence.4

This result directly reveals the contribution to local regret from each possible source of distribution
shift. If we have prior knowledge that certain components of the data-generating distribution match,
then we can claim tighter bounds on the local regret of clients. In summary, the results we presented
provide insights into understanding the tradeoffs and value of information in heterogeneous client
participation in offline policy learning (see Appendix E for further discussion).

6 FEDERATED ALGORITHM

We present a federated algorithm for finding the optimal global policy π̂λ for the optimization prob-
lem stated in Section 4.3. The standard approach for federated learning is the federated averaging
(FedAvg) algorithm for parametric models (Konečnỳ et al., 2016; McMahan et al., 2017), which
works iteratively by selecting clients to participate in the training round, locally fine-tuning a para-
metric model on each client using their own data, and then aggregating local model parameters in
the central server via a weighted average. More developed federated algorithms (Li et al., 2019;
2020; Karimireddy et al., 2020) also follow this general framework. Therefore, to make standard
federated learning strategies suitable for policy optimization, we consider parametric policy classes
ΠΘ = {πθ : X → A | θ ∈ Θ}, and we construct an iterative parametric policy optimization
procedure for the local policy updates in a federated averaging procedure.

First, we observe that the local policy optimization procedure argmaxθ∈Θ Q̂c(π) is equivalent
to cost-sensitive multi-class classification (CSMC) (Beygelzimer et al., 2009; Dudik et al., 2011),
where the actions are the labels and the AIPW scores are the negative costs for the labels. Therefore,
we are able to conduct iterative local policy model updates using widely available online CSMC
oracle methods which are often used in policy learning for contextual bandit applications (Agarwal
et al., 2014; Bietti et al., 2021). CSMC methods are based on consistent reductions to binary classifi-
cation (Beygelzimer et al., 2008) or multiple regressions Agarwal et al. (2017) such that the optimal
model for the reduced problem leads to an optimal cost-sensitive classifier.

Our federated training procedure works as follows (see Algorithms 1, 2 and 3):
1. Cross-fitted AIPW: Prior to policy learning, each client uses a cross-fitting strategy on their

local observational data to estimate local nuisance parameters for constructing their local
AIPW score estimates. The client then forms a local dataset of contexts and label costs,
where the costs are negative AIPW scores. See Algorithm 3 in Appendix F for more details.

2. FedAvg-CSMC server-side: The central server initializes a global model and executes Fe-
dAvg on the clients, iteratively sending global parameters to clients and updating the global
model using a weighted average of the received local model updates. See Algorithm 1.

3. FedAvg-CSMC client-side: Each time a client receives global parameters, they initialize
their local model with the global parameters and use an online CSMC oracle to update the
local model on their data for a fixed number of steps. See Algorithm 2.

3In Appendix D.3, we provide an alternate bound that does not rely on bounded AIPW scores and instead
is scaled by the worst-case AIPW variance, which may be smaller and also appears in our global regret bound.

4Note that the last two terms in the expectation of this inequality are conditional KL divergences on pXc .
See Appendix D.2 for more details.
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Algorithm 1 FedAvg-CSMC: Server-Side
Require: clients C, client distribution λ

1: Initialize global model parameters θg
2: for each round t = 1, 2, . . . do
3: Sample a subset of clients S ⊂ C
4: for each client c ∈ S in parallel do
5: Send global parameters θg to client c
6: Await local updates θc from client c
7: end for
8: Update global parameters:

θg ←
∑

c∈S λcθc/
∑

c∈S λc

9: end for

Algorithm 2 FedAvg-CSMC: Client-Side
Require: local steps T , local batch size B,

local data {(Xc
i , Γ̂

c
i (a1), . . . , Γ̂

c
i (ad))}nc

i=1

1: Receive global parameters θg from server
2: Initialize local parameters θc ← θg
3: for t = 1, . . . , T do
4: B ← sample a batch of B local examples
5: Update local parameters using CSMC oracle:

θc ← CSMC(θc,B)
6: end for
7: Send local parameters θc to server

Figure 1: Cost-sensitive multi-class classification federated averaging algorithm.

Note that achieving the optimal policy is necessary to achieve the stated regret bounds. FedAvg-
CSMC is guaranteed to converge to the optimal policy if the optimization problem is concave at
least, which is only the case for special class of policies such as linear policy classes. However, the
stated optimization problem is generally non-concave. Nevertheless, it is still possible to formulate
a regret bound for nearly optimal policies under general policy classes. The regret bounds would
be modified to include an additive term that captures the policy value optimality gap. Under an
appropriate choice of policy class and corresponding optimization procedure, this optimality gap
can be insignificant or of the same order of magnitude as the other terms in the regret bounds,
especially under moderately to highly heterogeneous environments.

7 EXPERIMENTS

For our experiments, we compare empirical local and global regret bounds across different exper-
imental settings involving homogeneous and heterogeneous clients. First, we describe the experi-
mental setup common to all of our experiments.

For the local CSMC optimization procedure, we employ the cost-sensitive one-against-all (CSOAA)
implementation in Vowpal Wabbit (Langford et al., 2023). This method performs separate online
regressions of costs on contexts for each action, and at inference time, it selects the action with
the lowest predicted cost. For the parametric policy class, we consider the class induced by linear
scores πθ(x) = argmaxa∈A⟨θa, x⟩ for θ ∈ Θ = Rd×p, and we use the CSOAA implementation
with online linear multiple regresssion of costs on contexts. For the environments, we consider
the client set C = [C] where C = 5, context space X = [−1, 1]p for p = 10, and action set
A = {a1, . . . , ad} with d = 4. For any client c ∈ C, we consider the following data-generating
process: Xc ∼ Normal(0, Ip), Ac ∼ Uniform(A), and Y c(a) ∼ Normal(µc(X

c; a), σ2) for all
a ∈ A, where the choice of reward functions µc(X

c, a) are specified in each experiment below.
Thus, any heterogeneities we impose between clients will be solely in their outcome distributions.
We found this to be the clearest choice to show empirical differences. We will be evaluating how
the different regrets scale with total sample size. Therefore, for a given total sample size n ∈ N,
each client c ∈ C is allocated a local sample sample size determined by some function nc = νc(n).
To illustrate the benefits of federation under sample size heterogeneity, we will have client c = 1
contribute significantly less data than the others with n1 = ν1(n) = ⌊log n⌋ and all other clients
will evenly distribute the rest of the total sample size. Therefore, we will focus on the regret profile
of client c = 1. Clearly, this entire data-generating process satisfies Assumptions 1, 2, and 3. For
our results, we consider a training sample size grid in the range up to N samples, where N = 1K
for the homogeneous experiments and N = 10K for the heteregeneous experiments (due to slower
convervence). For each sample size n in our grid, we sample nc = νc(n) training samples from
each client distribution D̄c we constructed. Moreover, we sample an additional 10K test samples
for each client. We train the global model using our FedAvg-CSMC algorithm on all clients. For
baseline comparison, we also train a local model with the same number n of total samples from D̄c.

Homogeneous Clients First, we consider the homogeneous setting where all clients are identical.
For every c ∈ C, we set µc(x; a) = ⟨θa, x⟩ + h(x) where the θa are sufficiently separated random
vectors in Θ = [−1, 1]p and h(x) = −1{x1 > 0} ·maxa′∈A⟨θa′ , x⟩ is step-wise constant function
to make the reward function non-linear and thus misspecified under a linear model class.
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(a) Homogeneous clients, λ= n̄ (b) Heterogeneous clients, λ= n̄ (c) Heterogeneous clients, λ= n̄+ε̄

Figure 2: Empirical regret curves for simulation experiments. Local regrets are for client 1.

In order to be able to compute the empirical global and local regret on the test data, we first learn
the best policy by generating 100K noise-free data samples and directly using the CSMC oracle on
the contexts and negative rewards as costs. Figure 2a plots the local regret R1(π̂λ) of the globally
trained policy (green) and the global regret Rλ(π̂λ) of the globally trained policy (orange), all using
the empirical mixture λ = n̄. For comparison, we also plot the local regret R1(π̂1) of the locally
trained policy (blue). The bands show the one standard deviation from the regrets over five different
seed runs. As expected, each of these curves is nearly identical since the global and local regrets
are identical in this scenario. What is interesting to notice here, however, is that although π̂λ only
used n1 = ⌊log n⌋ samples from client 1, R1(π̂λ) has the same profile as R1(π̂1) using n samples
from client 1. This reinforces the fact that federated learning can succesfully leverage data across
clients to efficiently learn a policy that matches the performance of a locally trained policy with
significantly more data.

Heterogeneous Clients Next, we consider a setting where one client is different than all other
clients. For client c = 1, we set µ1(x; a) = sin(⟨θa, x⟩) and for every other client c ∈ C\{1}, we
set µc(x; a) = ⟨θa, x⟩+ h(x) exactly as in the homogeneous setting. The idea behind this choice is
that since the sine function is nearly linear in a neighborhood near the zero value of the argument,
there is a wide range of contexts where the best action parameter aligns with the context vectors in
the same way it does for the step-wise linear reward. Therefore, there is distribution shift between
client 1 and all other clients, but there is some amount of similarity that can be exploited.

We run a similar set of experiments as in the homogeneous setting. We compute the empirical
global and local regret on the test data. The best local policies are again learned using 100K noise-
free samples from the local distributions and directly using the CSMC oracle on the contexts and
negative rewards as costs. The optimal global policy is obtained by combining all 100K noise-free
samples and applying the CSMC oracle directly to this data, with each sample receiving a weight
λc during training corresponding to its client source. Figure 2b plots the same type of regret curves
as in the homogeneous experiment with λ = n̄. We observe that R1(π̂λ) significantly suffers from
distribution shift. In fact, π̂1 performs better than π̂λ at a sufficiently large sample size. Figure 2c
plots similar regret curves, but instead with the global policy trained with a skewed client sampling
distribution λ = n̄+ ε̄ where ε̄c = −n̄c/2 for c ̸= 1 and ε̄1 = (1− n̄1)/2. Here, we observe that π̂λ

still suffers some amount in terms of local regret, but not to such an extent that π̂1 beats it. Moreover,
the local regret shift decreases with larger sample size. The idea is that this skewness upscales the
distribution of client 1 to diminish the amount of distribution shift of D̄1 from D̄λ especially at larger
total sample sizes, at the cost of negatively affecting the other more homogeneous clients. To see
how the other clients are affected by this design choice modification to favor client 1, refer to the
results in Appendix G. The takeaway there is that the other clients have less distribution shift from
the average so their performance degradation is lesser under λ = n̄, but their performance further
degrades under the skewed client sampling distribution λ = n̄+ ε̄.

8 CONCLUSION

We studied the problem of offline policy learning from observational bandit feedback data across
multiple heterogeneous data sources. Moreover, we considered the practical aspects of this problem
in a federated setting to address privacy concerns. We presented a novel regret analysis and support-
ing experimental results that demonstrate tradeoffs of client heterogeneity on policy performance. In
Appendix H, we provide additional discussion on limitations of our work and potential future work.
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A AUXILIARY RESULTS

The following known results will be used in our regret bound proofs. See Chapter 2 of Koltchinskii
(2011) for discussions of these results.

Lemma 1 (Hoeffding’s inequality). Let Z1, . . . , Zn be independent random variables with Zi ∈
[ai, bi] almost surely. For all t > 0, the following inequality holds

P

(∣∣∣∣ n∑
i=1

Zi − E [Zi]

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma 2 (Talagrand’s inequality). Let Z1, . . . , Zn be independent random variables in Z . For any
class of real-valued functions H on Z that is uniformly bounded by a constant U > 0 and for all
t > 0, the following inequality holds

P

(∣∣∣∣ sup
h∈H

∣∣∣ n∑
i=1

h(Zi)
∣∣∣− E

[
sup
h∈H

∣∣∣ n∑
i=1

h(Zi)
∣∣∣]∣∣∣∣ ≥ t

)
≤ C exp

(
− t

CU
log

(
1 +

Ut

D

))
,

where C is a universal constant and D ≥ E
[
suph∈H

∑n
i=1 h

2(Zi)
]
.

Lemma 3 (Ledoux-Talagrand contraction inequality). Let Z1, . . . , Zn be independent random vari-
ables in Z . For any class of real-valued functions H on Z and any L-Lipschitz function φ, the
following inequality holds

E

[
sup
h∈H

∣∣∣∣ n∑
i=1

ϵi(φ ◦ h)(Zi)

∣∣∣∣
]
≤ 2LE

[
sup
h∈H

∣∣∣∣ n∑
i=1

ϵih(Zi)

∣∣∣∣
]
,

where ϵ1, . . . , ϵn are independent Rademacher random variables.

Lastly, we state an auxiliary inequality that serves as a typical candidate for the quantity denoted
by D above in Talagrand’s inequality. This result follows as a corollary of the Ledoux-Talagrand
contraction inequality and a symmetrization argument. We provide a proof for completeness.

Lemma 4. Let Z1, . . . , Zn be independent random variables in Z . For any class of real-valued
functions H on Z and any L-Lipschitz function φ, the following inequality holds

E

[
sup
h∈H

n∑
i=1

(φ ◦ h)(Zi)

]
≤ sup

h∈H

n∑
i=1

E
[
(φ ◦ h)(Zi)

]
+ 4LE

[
sup
h∈H

∣∣∣∣ n∑
i=1

ϵih(Zi)

∣∣∣∣
]
,

where ϵ1, . . . , ϵn are independent Rademacher random variables.

Proof. We have that

E

[
sup
h∈H

n∑
i=1

(φ ◦ h)(Zi)

]
− sup

h∈H

n∑
i=1

E
[
(φ ◦ h)(Zi)

]
(14)

= E

[
sup
h∈H

n∑
i=1

(φ ◦ h)(Zi)− sup
h∈H

n∑
i=1

E
[
(φ ◦ h)(Zi)

]]
(15)

≤ E

[
sup
h∈H

∣∣∣∣ n∑
i=1

(φ ◦ h)(Zi)−
n∑

i=1

E
[
(φ ◦ h)(Zi)

]∣∣∣∣
]

(16)

= E

[
sup
h∈H

∣∣∣∣ n∑
i=1

(
(φ ◦ h)(Zi)− E

[
(φ ◦ h)(Zi)

])∣∣∣∣
]

(17)

≤ 2E

[
sup
h∈H

∣∣∣∣ n∑
i=1

ϵi(φ ◦ h)(Zi)

∣∣∣∣
]

(18)

≤ 4LE

[
sup
h∈H

∣∣∣∣ n∑
i=1

ϵih(Zi)

∣∣∣∣
]
. (19)

Inequality equation 16 follows from the triangle inequality, inequality equation 18 follows from a
standard symmetrization argument (see Koltchinskii (2011)), and inequality equation 19 follows
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from the Ledoux-Talagrand contraction inequality (see Lemma 3). The result follows by moving the
second term in Equation equation 14 to the right-hand side in the last inequality.

B COMPLEXITY AND HETEROGENEITY MEASURES

In this section, we introduce important quantities of policy class complexity and client heterogeneity
that appear in our analysis. All throughout, we let n =

∑
c∈C nc be the total sample size across

clients, nC = (nc)c∈C the vector of sample sizes across clients, and n̄ = (nc/n)c∈C the empirical
distribution over clients.

B.1 POLICY CLASS COMPLEXITY

B.1.1 HAMMING DISTANCE & ENTROPY INTEGRAL

We provide additional details on the definition of the entropy integral introduces in Section 5.1.
Definition 6 (Hamming distance, covering number, and entropy integral). Consider a policy class
Π and a multi-source covariate set x = {xc

i | c ∈ C, i ∈ [nc]} ⊂ X across clients C with client
sample sizes nC . We define the following:

(a) the Hamming distance between any two policies π1, π2 ∈ Π given multi-source covariate set x
is

H(π1, π2;x) :=
1∑

c∈C nc

∑
c∈C

nc∑
i=1

1{π1(x
c
i ) ̸= π2(x

c
i )};

(b) an ϵ-cover of Π under the Hamming distance given covariate set x is any policy set S such that
for any π ∈ Π there exists some π′ ∈ S such that H(π, π′;x) ≤ ϵ;

(c) the ϵ-covering number of Π under the Hamming distance given covariate set x is
NH(ϵ,Π;x) := min{|S| | S ∈ SH(ϵ,Π;x)},

where SH(ϵ,Π;x) is the set of all ϵ-covers of Π with respect to H(·, ·;x);

(d) the ϵ-covering number of Π under the Hamming distance is
NH(ϵ,Π) := sup{NH(ϵ,Π;x) | x ∈ XC},

where XC is the set of all covariate sets in X across clients C with arbitrary sample sizes;

(e) the entropy integral of Π is

κ(Π) :=

∫ 1

0

√
logNH(ϵ2,Π)dϵ.

B.1.2 ℓλ,2 DISTANCE

Consider the function class
FΠ := {Q(·, π) : Ω → R | π ∈ Π},

where
Q(ωc

i ;π) := γc
i (π(x

c
i ))

for any covariate-score vector ωc
i = (xc

i , γ
c
i ) ∈ Ω = X × Rd and π ∈ Π, where γc

i (a) is the a-th
coordinate of the score vector γc

i .
Definition 7 (ℓλ,2 distance and covering number). Consider a policy class Π, function class FΠ,
and a multi-source covariate-score set ω = {ωc

i | c ∈ C, i ∈ [nc]} ⊂ Ω across clients C with client
sample sizes nC and client distribution λ. We define:

(a) the ℓλ,2 distance with respect to function class FΠ between any two policies π1, π2 ∈ Π given
covariate-score set ω is

ℓλ,2(π1, π2;ω) =

√√√√√ ∑
c∈C
∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;π1)−Q(ωc
i ;π2)

)2
supπa,πb∈Π

∑
c∈C

∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)2 ;
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(b) an ϵ-cover of Π under the ℓλ,2 distance given covariate-score set ω is any policy set S such that
for any π ∈ Π there exists some π′ ∈ S such that ℓλ,2(π, π′;ω) ≤ ϵ;

(c) the ϵ-covering number of Π under the ℓλ,2 distance given covariate-score set ω is
Nℓλ,2

(ϵ,Π;ω) := min{|S| | S is an ϵ-cover of Π w.r.t. ℓλ,2(·, ·;ω)}.

The following lemma relates the covering numbers of the two policy distances we have defined.

Lemma 5. Let ω = {ωc
i | c ∈ C, i ∈ [nc]} ⊂ Ω be a multi-source covariate-score set across clients

C with client sample sizes nC and client distribution λ. For any ϵ > 0,
Nℓλ,2

(ϵ,Π;ω) ≤ NH(ϵ
2,Π).

Proof. Fix ϵ > 0. Without loss of generality, we assume NH(ϵ
2,Π) < ∞, otherwise the result

trivially holds. Let S0 = {π1, . . . , πN0
} be a corresponding Hamming ϵ2-cover of Π.

Consider any arbitrary π ∈ Π. By definition, there exists a π′ ∈ S0 such that for any multi-source
covariate set x̃ = {x̃c

i | c ∈ C, i ∈ [ñc]} with any given sample sizes ñc > 0 the following holds:

H(π, π′; x̃) =
1

ñ

∑
c∈C

ñc∑
i=1

1{π(x̃c
i ) ̸= π′(x̃c

i )} ≤ ϵ2,

where ñ =
∑

c∈C ñc. Using this pair of policies π, π′ we generate an augmented data set ω̃ from
ω as follows. Let m be a positive integer and define ω̃ to be a collection of multiple copies of all
covariate-score tuples ωc

i ∈ ω, where each ωc
i appears

ñc
i :=


m · λ2

c

n2
c

(
Q(ωc

i ;π)−Q(ωc
i ;π

′)
)2

supπa,πb

∑
c∈C

∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)2


times in ω̃. Therefore, the client sample sizes in this augmented data set are ñc =
∑nc

i=1 ñ
c
i and the

total sample size is ñ =
∑

c∈C
∑nc

i=1 ñ
c
i . The total sample size is bounded as

ñ =
∑
c∈C

nc∑
i=1


m · λ2

c

n2
c

(
Q(ωc

i ;π)−Q(ωc
i ;π

′)
)2

supπa,πb

∑
c∈C
∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)2


≤
∑
c∈C

nc∑
i=1

 m · λ2
c

n2
c

(
Q(ωc

i ;π)−Q(ωc
i ;π

′)
)2

supπa,πb

∑
c∈C
∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)2 + 1


≤

m ·
∑

c∈C
∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;π)−Q(ωc
i ;π

′)
)2

supπa,πb

∑
c∈C

∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)2 + n ≤ m+ n.

Then, we have

H(π, π′; ω̃) =
1

ñ

∑
c∈C

ñc∑
i=1

1{π(xc
i ) ̸= π′(xc

i )}

=
1

ñ

∑
c∈C

nc∑
i=1

ñc
i · 1{π(xc

i ) ̸= π′(xc
i )}

≥ 1

ñ

∑
c∈C

nc∑
i=1

m · λ2
c

n2
c

(
Q(ωc

i ;π)−Q(ωc
i ;π

′)
)2

supπa,πb

∑
c∈C
∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)21{π(xc
i ) ̸= π′(xc

i )}

=
m

ñ

∑
c∈C

nc∑
i=1

λ2
c

n2
c

(
Q(ωc

i ;π)−Q(ωc
i ;π

′)
)2

supπa,πb

∑
c∈C
∑nc

i=1
λ2
c

n2
c

(
Q(ωc

i ;πa)−Q(ωc
i ;πb)

)2
≥ m

m+ n
ℓ2λ,2(π, π

′;ω).
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This implies that

ℓλ,2(π, π
′;ω) ≤

√
m+ n

m
H(π, π′; ω̃) ≤

√
1 +

n

m
· ϵ.

Letting m → ∞ yields ℓλ,2(π, π
′;ω) ≤ ϵ. This establishes that for any π ∈ Π, there exists a

π′ ∈ S0 such that ℓλ,2(π, π′;ω) ≤ ϵ, and thus Nℓλ,2
(ϵ,Π;ω) ≤ NH(ϵ

2,Π).

B.1.3 WEIGHTED RADEMACHER COMPLEXITY

Our learning bounds will rely on the following notion of weighted Rademacher complexity intro-
duced in Mohri et al. (2019).

Definition 8 (Weighted Rademacher complexity). Suppose there is a set of clients C, with each
client c ∈ C having a data-generating distribution Pc defined over a space Ω. Moreover, the clients
have fixed sample sizes nC = (nc)c∈C and there is a distribution λ over the set of clients C. For
each client c ∈ C, let W c

1 , . . . ,W
c
nc

be independent random variables sampled from Pc, and let
W = {W c

i | c ∈ C, i ∈ [nc]} represent the collection of samples across all clients.

The empirical weighted Rademacher complexity of a function class F on Ω given multi-source data
W under mixture weights λ and sample sizes nC is

Rλ,nC (F ;W ) := E

[
sup
f∈F

∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εcif(W
c
i )

∣∣∣∣ ∣∣∣W
]
,

where the expectation is taken with respect to the collection of independent Rademacher random
variables ϵ = {εci | c ∈ C, i ∈ [nc]}. Additionally, the weighted Rademacher complexity of F under
mixture weights λ and sample sizes nC is

Rλ,nC (F) := E

[
sup
f∈F

∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εcif(W
c
i )

∣∣∣∣
]
,

where the expectation is taken with respect to the multi-source random variables W and the inde-
pendent Rademacher random variables ϵ.

B.2 CLIENT HETEROGENEITY

B.2.1 CLIENT DISTRIBUTION SKEWNESS

An important quantity that arises in our analysis is∑
c∈C

λ2
c

n̄c
= E

c∼λ

[
λc

n̄c

]
,

which captures a measure of the imbalance of the client distribution λ relative to the empirical client
distribution n̄. The following result makes this interpretation more clear:∑

c∈C

λ2
c

n̄c
=
∑
c∈C

λ2
c

n̄c
+
∑
c∈C

n̄c − 2
∑
c∈C

λc + 1

=
∑
c∈C

(
λ2
c

n̄c
+

n̄2
c

n̄c
− 2λcn̄c

n̄c

)
+ 1

=
∑
c∈C

(λc − n̄c)
2

n̄c
+ 1

= χ2(λ||n̄) + 1.

where χ2(λ||n̄) is the chi-squared divergence from n̄ to λ. Following Mohri et al. (2019), we call
this quantity the skewness.

Definition 9 (Skewness). The skewness of a given distribution λ over clients is
s(λ∥n̄) := 1 + χ2(λ||n̄),

where χ2(λ||n̄) is the chi-squared divergence of λ from n̄.
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B.2.2 CLIENT DISTRIBUTION SHIFT

In Section 3.3, we defined D̄c to be the complete local data-generating distribution of client c ∈
C and D̄λ =

∑
c∈C λcD̄c to the complete global data-generating distribution as a mixture of all

other complete client data-generating distributions. As we will observe in the local regret bounds,
client heterogeneity will be captured by the distribution shift of the local distributions to the global
distribution. In particular, the distribution shift of a local distribution D̄c from the global distribution
D̄λ will be captured by their total variation distance TV(D̄c, D̄λ) and also their KL divergence
KL(D̄c||D̄λ). We will also introduce an alternate bound that will capture the distribution shift with
their chi-squared divergence χ2(D̄c||D̄λ). See Appendix D for these results.

C BOUNDING GLOBAL REGRET

C.1 PRELIMINARIES

C.1.1 FUNCTION CLASSES

As mentioned in Appendix B.1.2, the function class we will be considering in our analysis is
FΠ := {Q(·;π) : Ω → R | π ∈ Π}, (20)

where
Q(ωc

i ;π) := γc
i (π(x

c
i )), (21)

for any covariate-score vector ωc
i = (xc

i , γ
c
i ) ∈ Ω = X × Rd and π ∈ Π, where γc

i (a) is the a-th
coordinate of the score vector γc

i . It will also be useful to consider the Minkowski difference of FΠ

with itself,
∆FΠ := FΠ −FΠ = {∆(·;πa, πb) : Ω → R | πa, πb ∈ Π}, (22)

where
∆(ωc

i ;πa, πb) := Q(ωc
i ;πa)−Q(ωc

i ;πb) = γc
i (πa(x

c
i ))− γc

i (πb(x
c
i )), (23)

for any ωc
i = (xc

i , γ
c
i ) ∈ Ω and πa, πb ∈ Π.

C.1.2 POLICY VALUE ESTIMATORS

Augmented Inverse Propensity Weighted Scores We use propensity-weighted scores to estimate
policy values. For any c ∈ C, consider the available observable samples (Xc

i , A
c
i , Y

c
i ) taken from the

partially observable counterfactual sample Zc
i = (Xc

i , A
c
i , Y

c
i (a1), . . . , Y

c
i (ad)) ∼ D̄c, for i ∈ [nc].

As discussed in Section 4.2, using this data, we considered construction of the oracle local AIPW
scores

Γc
i (a) = µc(X

c
i ; a) +

(
Y c
i (A

c
i )− µc(X

c
i ; a)

)
wc(X

c
i ; a)1{Ac

i = a}
for each a ∈ A. Similarly, we discussed the construction of the approximate local AIPW scores

Γ̂c
i (a) = µ̂c(X

c
i ; a) +

(
Y c
i (A

c
i )− µ̂c(X

c
i ; a)

)
ŵ(Xc

i ; a)1{Ac
i = a}

for each a ∈ A, given fixed estimates µ̂c and ŵc of µc and wc, respectively. In practice, we use
cross-fitting to make the estimates fixed and independent relative to the data on which they are
evaluated. Note that only this second set of scores can be constructed from the observed data. The
first set is “constructed” for analytic purposes in our proofs.

Policy Value Estimates and Policy Value Difference Estimates Using the local data
and the constructed AIPW scores, we let W c

i = (Xc
i ,Γ

c
i (a1), . . . ,Γ

c
i (ad)) and Ŵ c

i =

(Xc
i , Γ̂

c
i (a1), . . . , Γ̂

c
i (ad)) for each i ∈ [nc]. We define the oracle and approximate policy value

estimates of Qλ(π), respectively, as

Q̃λ(π) =
∑
c∈C

λc

nc

nc∑
i=1

Γc
i (π(X

c
i )) =

∑
c∈C

λc

nc

nc∑
i=1

Q(W c
i ;π),

Q̂λ(π) =
∑
c∈C

λc

nc

nc∑
i=1

Γ̂c
i (π(X

c
i )) =

∑
c∈C

λc

nc

nc∑
i=1

Q(Ŵ c
i ;π),
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for any π ∈ Π, where we use the function class defined in Equation 21 for the alternate representa-
tions that we will use throughout our proofs for notational convenience. It will also be very useful
to define the following corresponding policy value difference quantities:

∆λ(πa, πb) := Qλ(πa)−Qλ(πb),

∆̃λ(πa, πb) := Q̃λ(πa)− Q̃λ(πb) =
∑
c∈C

λc

nc

nc∑
i=1

∆(W c
i ;πa, πb),

∆̂λ(πa, πb) := Q̂λ(πa)− Q̂λ(πb) =
∑
c∈C

λc

nc

nc∑
i=1

∆(Ŵ c
i ;πa, πb),

for any πa, πb ∈ Π, where we use the function class defined in Equation equation 23 for the alternate
representations that we will use throughout our proofs for notational convenience.

Unbiased Estimates The following result can be used to readily show that the oracle estimators
for the local and global policy values are unbiased.

Lemma 6. Suppose Assumption 1 holds. For any π ∈ Π,
E

Zc∼D̄c

[Γc(π(Xc))] = Qc(π)

and
E

c∼λ
E

Zc∼D̄c

[Γc(π(Xc))] = Qλ(π),

where Zc = (Xc, Ac, Y c(a1), . . . , Y
c(ad)) ∼ D̄c.

Proof. First, observe that for any a ∈ A,
Γc(a) = µc(X

c; a) + (Y c(Ac)− µc(X
c; a))wc(X

c; a)1{Ac = a}
= µc(X

c; a) + (Y c(a)− µc(X
c; a))wc(X

c; a)1{Ac = a}
due to the indicator in the definition, and so for any (Xc, Ac, Y c(a1), . . . , Y

c(ad)) ∼ D̄c,
EAc,Y⃗ c [Γ

c(a) | Xc] = µc(X
c; a) + EAc,Y⃗ c [(Y

c(a)− µc(X
c; a))wc(X

c; a)1{Ac = a} | Xc]

= µc(X
c; a) + EY⃗ c [Y

c(a)− µc(X
c; a) | Xc] · EAc [wc(X

c; a)1{Ac = a} | Xc]

= µc(X
c; a) + EY⃗ c [Y

c(a)− µc(X
c; a) | Xc] · wc(X

c; a)ec(X
c; a)

= µc(X
c; a) + EY⃗ c [Y

c(a) | Xc]− µc(X
c; a)

= EY⃗ c [Y
c(a) | Xc] .

The second equality follows from the unconfoundedness assumption stated in Assumption 1. This
immediately implies that

E
Zc∼D̄c

[Γc(π(Xc))] = E
Zc∼D̄c

[∑
a∈A

1{π(Xc) = a}Γc(a)

]

= EXc

[∑
a∈A

1{π(Xc) = a}EAc,Y⃗ c [Γ
c(a) | Xc]

]

= EXc

[∑
a∈A

1{π(Xc) = a}EAc,Y⃗ c [Y
c(a) | Xc]

]
= EXc

[
EAc,Y⃗ c [Y

c(π(Xc)) | Xc]
]

= E
Zc∼D̄c

[Y c(π(Xc)]

= Qc(π),

and
E

c∼λ
E

Zc∼D̄c

[Γc(π(Xc))] = E
c∼λ

[Qc(π)] = Qλ(π).

18



Under review as a conference paper at ICLR 2024

C.1.3 DATA-GENERATING DISTRIBUTIONS AND SUFFICIENT STATISTICS

As introduced in the problem setting in Section 3.1, each client has a data-generating distribu-
tion Dc defined over the joint space X × Yd of contexts and potential outcomes. Moreover, the
historical policy ec : X → ∆(A) induces the complete data-generating distribution D̄c defined
over the joint space X × A × Yd of contexts, actions, and potential outcomes such that sampling
(Xc, Ac, Y c(a1), . . . , Y

c(ad)) ∼ D̄c is defined as sampling (Xc, Y c(a1), . . . , Y
c(ad)) ∼ Dc and

Ac ∼ ec(·|Xc).

Note that, by construction, the contexts and AIPW scores are sufficient statistics for the correspond-
ing oracle and approximate estimators of the policy values. Moreover, our results will mostly depend
on properties of the sufficient statistics (e.g., AIPW score range and variance). Therefore, it will be
useful for notational simplicity in our analysis to define the distribution of the sufficient statistics.
For any Zc = (Xc, Ac, Y c(a1), . . . , Y

c(ad)) ∼ D̄c, let
W c = (Xc,Γc(a1), . . . ,Γ

c(ad))

be the sufficient statistic of contexts and oracle AIPW scores, and we denote its induced distribution
as D̃c defined over Ω = X × Rd.
Remark. For simplicity, without loss of generality, when proving results that only involve the con-
texts and AIPW scores, we will assume the data is sampled from the distributions of the sufficient
statistics, e.g., W c ∼ D̃c. When we have a discussion involving constructing the AIPW scores from
the observable data, we will be more careful about the source distributions and typically assume the
data is sampled from the complete data-generating distributions, e.g., Zc ∼ D̄c.

C.1.4 PROOF SKETCH

We describe our general proof strategy. The standard approach for proving finite-sample regret
bounds in offline policy learning is to establish uniform concentration bounds around a proper no-
tion of empirical complexity, which is then further bounded by class-dependent vanishing rates,
as seen in (Athey & Wager, 2021; Zhou et al., 2023). Typically, this complexity notion involves
the Rademacher complexity of an appropriate policy value-based function class. However, this is
not applicable to our scenario where the data may not come from the same source distribution. In
our proof, we draw inspiration from the work on empirical risk bounds in multiple-source super-
vised learning settings, particularly (Mohri et al., 2019), to identify the suitable notion of complex-
ity—namely, the weighted Rademacher complexity of the policy value function class FΠ. While
Mohri et al. (2019) provided a starting framework for a multiple-source analysis in supervised learn-
ing, the proof techniques for establishing class-dependent uniform concentration results in offline
policy learning are typically more involved than those for empirical risk bounds in supervised learn-
ing. Our bounds necessitate more complex Dudley-type chaining arguments with applications of
Talagrand’s inequalities with some multiple-source modifications mediated by skewness.

To begin, we split the global regret in terms of an oracle regret term of policy value differences and
an approximation error term. Let π∗

λ = argmaxπ∈Π Qλ(π). We can decompose the regret incurred
by the global policy π̂λ = argmaxπ∈Π Q̂λ(π) as follows:

Rλ(π̂λ) = Qλ(π
∗
λ)−Qλ(π̂λ)

=
(
Qλ(π

∗
λ)−Qλ(π̂λ)

)
−
(
Q̂λ(π

∗
λ)− Q̂λ(π̂λ)

)
+
(
Q̂λ(π

∗
λ)− Q̂λ(π̂λ)

)
= ∆λ(π

∗
λ, π̂λ)− ∆̂λ(π

∗
λ, π̂λ) +

(
Q̂λ(π

∗
λ)− Q̂λ(π̂λ)

)
≤ ∆λ(π

∗
λ, π̂λ)− ∆̂λ(π

∗
λ, π̂λ)

≤ sup
πa,πb∈Π

|∆λ(πa, πb)− ∆̂λ(πa, πb)|

≤ sup
πa,πb∈Π

|∆λ(πa, πb)− ∆̃λ(πa, πb)|+ sup
πa,πb∈Π

|∆̃λ(πa, πb)− ∆̂λ(πa, πb)|.

The first inequality holds by definition of the global policy, the second inequality by a straightfor-
ward worst-case supremum bound, and the last inequality by the triangle inequality.

The first oracle term in the last inequality will be bounded by the weighted Rademacher complexity
of ∆FΠ. Then, using a Dudley chaining argument, the weighted Rademacher complexity will be
bounded by a measure of policy class complexity and vanishing rates with respect to the total sample
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size. We emphasize that we were able to establish rates with respect to the total sample size, rather
than some other more moderate quantity of the sample sizes, such as the average or the minimum.
The second term in the last inequality will be bounded by a decomposition of the approximation
terms which will be shown to be asymptotically vanishing faster than the rate bounds of the oracle
regret with high probability. Establishing these bounds requires the use of Assumption 2 to ensure
there is enough data across clients. Altogether, these results will provide a rate bound on the global
regret that scales with the total sample size and is mediated by client skewness.

In a later section, we establish bounds for the notion of local regret, unique to our problem setting.
This insight arises from recognizing the mismatch between global server-level performance and lo-
cal client-level performance. We derive a local regret bound dependent on measures of distribution
shift between clients, providing valuable insights into the value of information in heterogeneous
client participation and how exactly heterogeneity affects policy performance for any given client.
This exact quantification is highlighted in our Theorem 2 that decomposes the sources of hetero-
geneity at the population, environment, and treatment level. We also point to Theorem 3 for an
alternative local regret bound that does not require bounded inverse propensity weighted scores.

C.2 BOUNDING WEIGHTED RADEMACHER COMPLEXITY

First, to simplify our analysis, we can easily bound the weighted Rademacher complexity of ∆FΠ

by that of FΠ as follows.

Lemma 7.
Rλ,nC (∆FΠ) ≤ 2Rλ,nC (FΠ)

Proof.

Rλ,nC (∆FΠ) = E

[
sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εci∆(W c
i ;πa, πb)

∣∣∣∣∣
]

= E

[
sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εci

(
Q(W c

i ;πa)−Q(W c
i ;πb)

)∣∣∣∣∣
]

≤ E

[
sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εciQ(W c
i ;πa)

∣∣∣∣∣+
∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εciQ(W c
i ;πb)

∣∣∣∣∣
]

= 2E

[
sup
π∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εciQ(W c
i ;π)

∣∣∣∣∣
]

= 2Rλ,nC (FΠ).

Therefore, we can simply focus on bounding the weighted Rademacher complexity of FΠ.

Proposition 1. Suppose Assumptions 1 and 2 hold. Then,

Rλ,nC (FΠ) ≤ (14 + 6κ(Π))

√
Vλ,nC

n
+ o

(√
s(λ∥n̄)

n

)
,

where

Vλ,nC = sup
πa,πb∈Π

∑
c∈C

λ2
c

n̄c
E

W c∼D̃c

[
∆2(W c;πa, πb)

]
.

Proof. We follow a chaining argument to bound the weighted Rademacher complexity of FΠ.

Constructing the policy approximation chain. First, for each client c ∈ C, let W c
1 , . . . ,W

c
nc

be
nc independent random variables sampled from D̃c, where each W c

i = (Xc
i , Γ⃗

c
i ) ∈ Ω = X × Rd.

Additionally, let W = {W c
i | c ∈ C, i ∈ [nc]} represent the corresponding collection of samples

across all clients.

20



Under review as a conference paper at ICLR 2024

Next, set K = ⌈log2 n⌉. We will construct a sequence {Ψk : Π → Π}Kk=0 of policy approximation
operators that satisfies the following properties. For any k = 0, . . . ,K,

(P1) maxπ∈Π ℓλ,2(Ψk+1(π),Ψk(π);Z) ≤ ϵk := 2−k

(P2) |{Ψk(π) | π ∈ Π}| ≤ Nℓλ,2
(ϵk,Π;Z)

We use the notational shorthand that ΨK+1(π) = π for any π ∈ Π. We will construct the policy
approximation chain via a backward recursion scheme. First, let Πk denote the smallest ϵk-covering
set of Π under the ℓλ,2 distance given data Z. Note, in particular, that |Π0| = 1 since the ℓλ,2
distance is never more than 1 and so any single policy is enough to 1-cover all policies in Π. Then,
the backward recursion is as follows: for any π ∈ Π,

1. define ΨK(π) = argminπ′∈ΠK
ℓλ,2(π, π

′;W );

2. for each k = K − 1, . . . , 1, define Ψk(π) = argminπ′∈Πk
ℓλ,2(Ψk+1(π), π

′;W );

3. define Ψ0(π) ≡ 0.

Note that although Ψ0(π) is not in Π, it can still serve as a 1-cover of Π since the ℓλ,2 distance is
always bounded by 1. Before proceeding, we check that each of the stated desired properties of the
constructed operator chain is satisfied:

(P1) Pick any π ∈ Π. Clearly, Ψk+1(π) ∈ Π. Then, by construction of Πk, there exists a
π′ ∈ Πk such that ℓλ,2(Ψk+1(π), π

′;W ) ≤ ϵk. Therefore, by construction of Ψk(π), we
have ℓλ,2(Ψk+1(π),Ψk(π);W ) ≤ ℓλ,2(Ψk+1(π), π

′;W ) ≤ ϵk.

(P2) By construction of Ψk, we have that Ψk(π) ∈ Πk for every π ∈ Π. Therefore,
|{Ψk(π) | π ∈ Π}| ≤ |Πk| = Nℓλ,2

(ϵk,Π;W ).

Thus, the constructed chain satisfies the desired properties. Next, we observe that since Ψ0(π) ≡ 0,
we have that Q(W c

i ; Ψ0(π)) = 0 and
Q(W c

i ;π) = Q(W c
i ;π)−Q(W c

i ; Ψ0(π))

= Q(W c
i ;π)−Q(W c

i ; ΨK(π)) +

K∑
k=1

Q(W c
i ; Ψk(π)−Q(W c

i ; Ψk−1(π))

= ∆(W c
i ;π,ΨK(π)) +

K∑
k=1

∆(W c
i ; Ψk(π),Ψk−1(π))

Therefore, we can decompose the weighted Rademacher complexity of FΠ as follows:

Rλ,nC (FΠ) =E

[
sup
π∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εci∆(W c
i ;π,ΨK(π))

∣∣∣∣∣
]

+ E

[
sup
π∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εci

( K∑
k=1

∆(W c
i ; Ψk(π),Ψk−1(π))

)∣∣∣∣∣
]

We will obtain bounds separately for these two terms, which we refer to as the negligible regime
term and the effective regime term, respectively.

Bounding the negligible regime. For convenience, we denote

Bλ,nC (W ) := sup
πa,πb∈Π

∑
c∈C

nc∑
i=1

λ2
c

n2
c

∆2(W c
i ;πa, πb)

and Bλ,nC := E [Bλ,nC (W )].
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Given any realization of independent Rademacher random variables ϵ = {εci | c ∈ C, i ∈ [nc]} and
multi-source data W , by the Cauchy-Schwarz inequality,∣∣∣∣∑
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Then, by Jensen’s inequality,
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Bounding the effective regime. For any k ∈ [K], let

tk,δ =
√
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where τk,δ > 0 is some constant to be specified later. By Hoeffding’s inequality (in Lemma 1),
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Here, we used the fact that ϵk−1 = 2ϵk. Setting
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and applying a union bound over the policy space, we obtain
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By a further union bound over k ∈ [K], we obtain
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Therefore, given multi-source data W , with probability at least 1− δ, we have
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Next, we turn this high-probability bound into a bound on the conditional expectation. First, let
FR(· | W ) be the cumulative distribution of the random variable
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For any non-negative integer l, let ∆l =
√
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√
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√
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Since R is non-negative, we can compute and upper bound the conditional expectation of R given
W as follows:
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Taking the expectation with respect to W and using Jensen’s inequality, we obtain

E

[
sup
π∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

εci

( K∑
k=1

∆(W c
i ; Ψk(π),Ψk−1(π))

)∣∣∣∣∣
]

≤ (14 + 6κ(Π))E
[√

Bλ,nC (W )

]
≤ (14 + 6κ(Π))

√
Bλ,nC .

Refining the upper bound. One could easily bound Bλ,nC using worst-case bounds on the AIPW
element. Instead, we use Lemma 4 to get a more refined bound on Bλ,nC .
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for c ∈ C and i ∈ [nc] and the function class H = {∆(·;πa, πb) | πa, πb ∈ Π}. We also identify
the Lipschitz function φ : u 7→ u2 defined over the set U ⊂ R containing all possible outputs of
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Therefore, U ⊂ [−sλ,nC , sλ,nC ], and thus, for any u, v ∈ U , we have that

|φ(u)− φ(v)| = |u2 − v2| = |u+ v| · |u− v| ≤ 4Usλ,nC |u− v| .
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Therefore, L = 4Usλ,nC is a valid Lipschitz constant for φ. Then, through these identifications,
Lemma 4 guarantees the following upper bound
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Before proceeding, note that by the local data size scaling assumption stated in Assumption 2,
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Combine results. Thus, combining the bounds for the negligible and effective regime and includ-
ing the refined bound, we have
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This gives an upper bound on Rλ,nC (FΠ) in terms of itself. To decouple this dependence, we
express
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for some constants A1, A2, and we split this inequality into the following two exhaustive cases.
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In this case, we can bound the second term in the right-hand side of inequality equation 26 to get
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last equality holds by the skewness identity in established in Appendix B.2.1. Plugging this into
inequality equation 27, we get
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. We can plug this asymptotic bound into

inequality equation 25 to arrive at the desired result,
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C.3 BOUNDING ORACLE REGRET

Proposition 2. Suppose Assumptions 1 and 2 hold. Then, with probability at least 1− δ,
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where c1 and c2 are universal constants.

26



Under review as a conference paper at ICLR 2024

Proof. First, for each client c ∈ C, let W c
1 , . . . ,W

c
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be nc independent random variables sampled
from D̃c, where each W c
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represent the corresponding collection of samples across all clients.
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Therefore, we can follow a symmetrization argument to upper bound the expected oracle regret in
terms of a Rademacher complexity, namely the weighted Rademacher complexity. Let W ′ be an
independent copy of W and let ϵ = {εci | c ∈ C, i ∈ [nc]} be a set of independent Rademacher
random variables. Then,
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The first equalities and inequalities follow from standard symmetrization arguments, and the last
inequality follows from Lemma 7. Next, we use this bound on the expectation of the oracle regret
and Talagrand’s inequality (Lemma 2), to establish a high-probability bound on the oracle regret.
In particular, we identify the set of independent random variables W̃ = {W̃ c
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as discussed in the proof of Proposition 1. Lastly, to use Talagrand’s inequality, we set the constant
D (specified in Lemma 2) to be
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By Lemma 4, this choice of D meets the required condition to use in Talagrand’s inequality. In
particular, we identify φ : u 7→ u2 defined over the set U containing all possible outputs of any
function in H given any realization of W̃ c

i for any c ∈ C as input. The uniform bound established
above on realizable outputs of h given input W̃ c
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and

D = sup
πa,πb∈Π

∑
c∈C

nc∑
i=1

E
[
h2(W̃ c

i ;πa, πb)
]
+ 8Uλ,n̄E

[
sup

πa,πb∈Π

∣∣∣∣∑
c∈C

nc∑
i=1

εcih(W̃
c
i ;πa, πb)

∣∣∣∣
]

= sup
πa,πb∈Π

∑
c∈C

nc∑
i=1

λ2
c

n2
c

E
[(
E [∆(W c

i ;πa, πb)]−∆(W c
i ;πa, πb)

)2]
+ 8Uλ,nCE

[
sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

nc∑
i=1

λc

nc
εci
(
E [∆(W c

i ;πa, πb)]−∆(W c
i ;πa, πb)

)∣∣∣∣∣
]

= sup
πa,πb∈Π

∑
c∈C

nc∑
i=1

λ2
c

n2
c

(
E
[
∆2(W c

i ;πa, πb)
]
− E [∆(W c

i ;πa, πb)]
2
)

+ 8Uλ,nCE

[
sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

nc∑
i=1

λc

nc
εci
(
E [∆(W c

i ;πa, πb)]−∆(W c
i ;πa, πb)

)∣∣∣∣∣
]

≤ sup
πa,πb∈Π

∑
c∈C

nc∑
i=1

λ2
c

n2
c

E
[
∆2(W c

i ;πa, πb)
]
+ 16Uλ,nCE

[
sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

nc∑
i=1

λc

nc
εci∆(W c

i ;πa, πb)

∣∣∣∣∣
]

≤ sup
πa,πb∈Π

∑
c∈C

λ2
c

nc
E
[
∆2(W c

i ;πa, πb)
]
+ 16Uλ,nCRλ,nC (∆FΠ)

≤ sup
πa,πb∈Π

∑
c∈C

λ2
c

nc
E
[
∆2(W c

i ;πa, πb)
]
+ 32Uλ,nCRλ,nC (FΠ)

=
Vλ,nC

n
+ 128URλ,nC (FΠ)sλ,nC .

Therefore, with this setup, Talagrand’s inequality guarantees that with probability at least 1− δ

sup
πa,πb∈Π

∣∣∆λ(πa, πb)− ∆̃λ(πa, πb)
∣∣

≤ E
[

sup
πa,πb∈Π

∣∣∆λ(πa, πb)− ∆̃λ(πa, πb)
∣∣]+ t

= 4Rλ,nC (FΠ) +
√
CD log(C/δ) + CUλ,nC log(C/δ)

≤ 4Rλ,nC (FΠ) +

√
C

(
Vλ,nC

n
+ 128URλ,nC (FΠ)sλ,nC

)
log (C/δ) + 4CUsλ,nC log (C/δ)

≤ 4Rλ,nC (FΠ) +

√
C log(C/δ)

Vλ,nC

n
+
√
128UC log(C/δ)Rλ,nC (FΠ)sλ,nC + 4UC log(C/δ)sλ,nC

≤

(
(56 + 24κ(Π))

√
Vλ,nC

n
+ o

(√
s(λ∥n̄)

n

))
+

√
C log(C/δ)

Vλ,nC

n

+

√√√√O

(√
s(λ∥n̄)

n

)
o

(√
s(λ∥n̄)

n

)
+ o

(√
s(λ∥n̄)

n

)

≤
(
56 + 24κ(Π) +

√
C log(C/δ)

)√Vλ,nC

n
+ o

(√
s(λ∥n̄)

n

)

≤
(
c1κ(Π) +

√
c2 log(c2/δ)

)√Vλ,nC

n
+ o

(√
s(λ∥n̄)

n

)
,

where c1 = 24 and c2 is any constant such that 56+
√
C log(C/δ) ≤

√
c2 log(c2/δ). Here, we used

the bounds previously established in the proof of Proposition 1 that Rλ,nC (FΠ) ≤ O
(√

s(λ∥n̄)/n
)

and sλ,nC ≤ o
(√

s(λ∥n̄)/n
)
.
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C.4 BOUNDING APPROXIMATE REGRET

Proposition 3. Suppose Assumptions 1, 2, and 3 hold. Then,

sup
πa,πb∈Π

|∆̃λ(πa, πb)− ∆̂λ(πa, πb)| ≤ op

(√
s(λ∥n̄)

n

)

Proof. Recall that {(Xc
i , A

c
i , Y

c
i )}

nc
i=1 is the data collected by client c ∈ C as described in Section

3.3. We assume each client estimates the local nuisance parameters using a cross-fitting strategy,
as discussed in Algorithm 3. Under this strategy, each client c ∈ C divides their local dataset
into K folds, and for each fold k, the client estimates µc and wc using the rest K − 1 folds. Let
kc : [nc] → [K] denote the surjective mapping that maps a data point index to its corresponding
fold containing the data point. We let µ̂−kc(i)

c and ŵ
−kc(i)
c denote the estimators of µc and ec fitted

on the K − 1 folds of client c other than kc(i).

As discussed Section 4, recall the oracle AIPW scores
Γc
i (a) = µ(Xc

i ; a) +
(
Y c
i − µ(Xc

i ; a)
)
wc(X

c
i ; a)1{Ac

i = a}
and approximate AIPW scores

Γ̂c
i (a) = µ̂−kc(i)

c (Xc
i ; a) +

(
Y c
i − µ̂−kc(i)

c (Xc
i ; a)

)
ŵ−kc(i)

c (Xc
i ; a)1{Ac

i = a}
for any a ∈ A, where kc(i) is the fold corresponding to data point i of client c. One can verify that
the difference between the oracle and approximate AIPW scores can be expressed as

Γ̂c
i (a)− Γc

i (a) = Γc′
i (a) + Γc′′

i (a) + Γc′′′
i (a),

where

Γc′
i (a) =

(
µ̂−kc(i)
c (Xc

i ; a)− µc(X
c
i ; a)

) (
1− wc(X

c
i ; a)1{Ac

i = a}
)
,

Γc′′
i (a) =

(
Y c
i (a)− µc(X

c
i ; a)

) (
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

)
1{Ac

i = a},

Γc′′′
i (a) =

(
µc(X

c
i ; a)− µ̂−kc(i)

c (Xc
i ; a)

)(
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

)
1{Ac

i = a}.

This induces the following decomposition of the approximate regret:

∆̂λ(πa, πb)− ∆̃λ(πa, πb) = S1(πa, πb) + S2(πa, πb) + S3(πa, πb),

where

S1(πa, πb) =
∑
c∈C

λc

nc

nc∑
i=1

Γc′
i (πa(X

c
i ))− Γc′

i (πb(X
c
i )),

S2(πa, πb) =
∑
c∈C

λc

nc

nc∑
i=1

Γc′′
i (πa(X

c
i ))− Γc′′

i (πb(X
c
i )),

S3(πa, πb) =
∑
c∈C

λc

nc

nc∑
i=1

Γc′′′
i (πa(X

c
i ))− Γc′′′

i (πb(X
c
i )).

We further decompose S1 and S2 by folds as follows:

S1(πa, πb) =

K∑
k=1

Sk
1 (πa, πb),

S2(πa, πb) =

K∑
k=1

Sk
2 (πa, πb),
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where

Sk
1 (πa, πb) =

∑
c∈C

λc

nc

∑
{i|kc(i)=k}

Γc′
i (πa(X

c
i ))− Γc′

i (πb(X
c
i )),

Sk
2 (πa, πb) =

∑
c∈C

λc

nc

∑
{i|kc(i)=k}

Γc′′
i (πa(X

c
i ))− Γc′′

i (πb(X
c
i )),

for each k ∈ [K]. To determine a bound on the approximate regret, we will establish high probability
bounds for the worst-case absolute value over policies of each term in this decomposition. For
convenience, for any policy π, we will denote π(x; a) = 1{π(x) = a}.

Bounding S1: We wish to bound supπa,πb∈Π |S1(πa, πb)|. We first bound supπa,πb∈Π

∣∣Sk
1 (πa, πb)

∣∣
for any k ∈ [K].

First, note that since µ̂
−kc(i)
c is estimated using data outside fold kc(i), when we condition on the

data outside fold kc(i), µ̂
−kc(i)
c is fixed and each term in S1(πa, πb) is independent. This allows us

to compute
E [Γc′

i (πa(X
c
i ))− Γc

i (πb(X
c
i ))]

=
∑
a∈A

E
[(
πa(X

c
i ; a)− πb(X

c
i ; a)

) (
µ̂−kc(i)
c (Xc

i ; a)− µc(X
c
i ; a)

) (
1− wc(X

c
i ; a)1{Ac

i = a}
)]

=
∑
a∈A

E
[
E
[(
πa(X

c
i ; a)− πb(X

c
i ; a)

) (
µ̂−kc(i)
c (Xc

i ; a)− µc(X
c
i ; a)

) (
1− wc(X

c
i ; a)1{Ac

i = a}
) ∣∣∣ Xc

i

]]
=
∑
a∈A

E
[(
πa(X

c
i ; a)− πb(X

c
i ; a)

) (
µ̂−kc(i)
c (Xc

i ; a)− µc(X
c
i ; a)

)
E
[
1− wc(X

c
i ; a)1{Ac

i = a}
∣∣∣ Xc

i

]]
= 0

Therefore,
K sup

πa,πb∈Π

∣∣Sk
1 (πa, πb)

∣∣
≤ sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc/K

∑
{i|kc(i)=k}

Γc′
i (πa(X

c
i ))− Γc′

i (πb(X
c
i ))

∣∣∣∣∣
= sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc/K

∑
{i|kc(i)=k}

(
Γc′
i (πa(X

c
i ))− Γc′

i (πb(X
c
i ))
)
− E [Γc′

i (πa(X
c
i ))− Γc′

i (πb(X
c
i ))]

∣∣∣∣∣.
Identifying Γc′

i with Γc
i and sample sizes nC/K with nC , the right-hand side in the above inequality

is effectively an oracle regret and so we can apply Proposition 2 to obtain that with probability at
least 1− δ,
K sup

πa,πb∈Π

∣∣Sk
1 (πa, πb)

∣∣
≤ sup

πa,πb∈Π

∣∣∣∣∑
c∈C

λc

nc/K

∑
{j|ki(j)=k}

(
Γc′
i (πa(X

c
i ))− Γc′

i (πb(X
c
i ))
)
− E [Γc′

i (πa(X
c
i ))− Γc′

i (πb(X
c
i ))]

∣∣∣∣
≤ CΠ,δ

√√√√ supπa,πb∈Π

∑
c∈C

λ2
c

n̄c
E
[(
Γc′
i (πa(Xc

i ))− Γc′
i (πb(Xc

i ))
)2 | µ̂−kc(i)

c

]
n/K

+ o

(√
s(λ∥n̄)
n/K

)

≤ CΠ,δ

√
K sup

πa,πb∈Π

∑
c∈C

λ2
c

nc
E
[(
Γc′
i (πa(Xc

i ))− Γc′
i (πb(Xc

i ))
)2 | µ̂−kc(i)

c

]
+ o

(√
s(λ∥n̄)

n

)

≤ CΠ,δ (1/η − 1)

√
2K

∑
c∈C

λ2
c

nc
E
[
||µ̂−kc(i)

c (Xc
i )− µc(Xc

i )||22 | µ̂−kc(i)
c

]
+ o

(√
s(λ∥n̄)

n

)
,

where CΠ,δ = c1κ(Π)+
√
c2 log(c2/δ) for some universal constants c1 and c2, and η = minc∈C ηc

for ηc in the overlap assumption stated in in Assumption 1. The last inequality follows from a
uniform bound on Γc′

i (πa(X
c
i ))− Γc

i (πb(X
c
i )) and the overlap assumption.
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By the assumption on finite sample error bounds for the nuisance functions stated in Assumption 3,
for every c ∈ C

E
[
||µ̂−kc(i)

c (Xc
i )− µc(X

c
i )||2 | µ̂−kc(i)

c

]
≤ gc (αKnc)

(αKnc)
ζµ

,

where αK = 1−K−1, gc is some decreasing function, and 0 < ζµ < 1. Then,∑
c∈C

λ2
c

nc
E
[
||µ̂−kc(i)

c (Xc
i )− µc(X

c
i )||2 | µ̂−kc(i)

c

]
≤
∑
c∈C

λ2
c

nc

gc(αKnc)

(αKnc)ζµ

≤ maxc∈C gc(αKnc)

α
ζµ
K ·minc∈C n

ζµ
c

∑
c∈C

λ2
c

nc

≤ maxc∈C gc(αKnc)

α
ζµ
K ·minc∈C n

ζµ
c

s(λ∥n̄)
n

.

By the local data size scaling assumption in Assumption 2, for any c ∈ C, we have that nc =
Ω(νc(n)) where νc is an increasing function. In other words, there exists a constant τ > 0 such
that nc ≥ τνc(n) for sufficiently large n. Then, since gc is decreasing, gc(αKnc) < gc(ταKνc(n))
for sufficiently large n. Moreover, since νc is increasing and ταK > 0, ν̃c = ταKνc is also
increasing, and since gc is decreasing, the composition g̃c = gc ◦ ν̃c is decreasing. Therefore,
gc(αKnc) is asymptotically bounded by a decreasing function g̃c of n. This observation and the fact
that the maximum of a set of decreasing functions is itself decreasing imply that maxc∈C gc(αKnc)
is asymptotically bounded by the decreasing function g̃ defined by g̃(n) = maxc∈C g̃c(n). In other
words,

max
c∈C

gc(αKnc) ≤ g̃(n) ≤ o(1).

Additionally, since nc = Ω(νc(n)) and ζµ > 0, we also have that
1

minc∈C n
ζµ
c

≤ o(1).

These two observations imply∑
c∈C

λ2
c

nc
E
[
||µ̂−kc(i)

c (Xc
i )− µc(X

c
i )||2 | µ̂−kc(i)

c

]
≤ maxc∈C gc(αKnc)

α
ζµ
K ·minc∈C n

ζµ
c

s(λ∥n̄)
n

≤ o

(
s(λ∥n̄)

n

)
.

Therefore,
sup

πa,πb∈Π

∣∣Sk
1 (πa, πb)

∣∣
≤ CΠ,δ (1/η − 1)

√
2

K

∑
c∈C

λ2
c

nc
E
[
||µ̂−kc(i)

c (Xc
i )− µc(Xc

i )||22 | µ̂−kc(i)
c

]
+ o

(√
s(λ∥n̄)

n

)

≤ CΠ,δ (1/η − 1)

√
2

K
· o
(
s(λ∥n̄)

n

)
+ o

(√
s(λ∥n̄)

n

)
≤ o

(√
s(λ∥n̄)

n

)
,

and

sup
πa,πb∈Π

|S1(πa, πb)| ≤
K∑

k=1

sup
πa,πb∈Π

∣∣Sk
1 (πa, πb)

∣∣ ≤ o

(√
s(λ∥n̄)

n

)
.

Bounding S2: The bound for supπa,πb∈Π |S2(πa, πb)| follows the same argument as that of S1. We
first bound supπa,πb∈Π

∣∣Sk
2 (πa, πb)

∣∣ for any k ∈ [K].

First, note that since ŵ
−kc(i)
c is estimated using data outside fold kc(i), when we condition on the

data outside fold kc(i), ŵ
−kc(i)
c is fixed and each term in S2(πa, πb) is independent. This allows us
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to compute
E [Γc′′

i (πa(X
c
i ))− Γc′′

i (πb(X
c
i ))]

= E

[∑
a∈A

(πa(X
c
i ; a)− πb(X

c
i ; a)) (Y

c
i (a)− µc(X

c
i ; a))

(
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

)
1{Ac

i = a}

]
= E

[
(πa(X

c
i ;A

c
i )− πb(X

c
i ;A

c
i )) (Y

c
i (A

c
i )− µc(X

c
i ;A

c
i ))
(
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

)]
= E

[
E
[
(πa(X

c
i ;A

c
i )− πb(X

c
i ;A

c
i )) (Y

c
i (A

c
i )− µc(X

c
i ;A

c
i ))
(
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

) ∣∣∣ Xc
i , A

c
i

]]
= E

[
(πa(X

c
i ;A

c
i )− πb(X

c
i ;A

c
i ))E

[
Y c
i (A

c
i )− µc(X

c
i ;A

c
i ) | Xc

i , A
c
i

] (
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

)]
= 0

Therefore, we can follow the exact same argument as above, eliciting Proposition 2, to obtain that
with probability at least 1− δ,

K sup
πa,πb∈Π

∣∣Sk
2 (πa, πb)

∣∣
≤ sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc/K

∑
{i|kc(i)=k}

Γc′′
i (πa(X

c
i ))− Γc′′

i (πb(X
c
i ))

∣∣∣∣∣
= sup

πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc/K

∑
{i|kc(i)=k}

(
Γc′′
i (πa(X

c
i ))− Γc′′

i (πb(X
c
i ))
)
− E [Γc′′

i (πa(X
c
i ))− Γc′′

i (πb(X
c
i ))]

∣∣∣∣∣
≤ sup

πa,πb∈Π

∣∣∣∣∑
c∈C

λc

nc/K

∑
{j|ki(j)=k}

(
Γc′′
i (πa(X

c
i ))− Γc′′

i (πb(X
c
i ))
)
− E [Γc′′

i (πa(X
c
i ))− Γc′′

i (πb(X
c
i ))]

∣∣∣∣
≤ CΠ,δ

√√√√ supπa,πb∈Π

∑
c∈C

λ2
c

n̄c
E
[(
Γc′′
i (πa(Xc

i ))− Γc′′
i (πb(Xc

i ))
)2 | ŵ−kc(i)

c

]
n/K

+ o

(√
s(λ∥n̄)
n/K

)

≤ CΠ,δ

√
K sup

πa,πb∈Π

∑
c∈C

λ2
c

nc
E
[(
Γc′′
i (πa(Xc

i ))− Γc′′
i (πb(Xc

i ))
)2 | ŵ−kc(i)

c

]
+ o

(√
s(λ∥n̄)

n

)

≤ CΠ,δ

√
4BK

∑
c∈C

λ2
c

nc
E
[
||ŵ−kc(i)

c (Xc
i )− wc(Xc

i )||22 | ŵ−kc(i)
c

]
+ o

(√
s(λ∥n̄)

n

)
,

where CΠ,δ = c1κ(Π)+
√
c2 log(c2/δ) for some universal constants c1 and c2, and B = maxc∈C Bc

for the bounds Bc on the outcomes defined in Assumption 1. The last inequality follows from a
uniform bound on Γc′′

i (πa(X
c
i ))− Γc′′

i (πb(X
c
i )).

We follow the exact same argument as above to get∑
c∈C

λ2
c

nc
E
[
||ŵ−kc(i)

c (Xc
i )− wc(X

c
i )||2 | ŵ−kc(i)

c

]
≤ o

(
s(λ∥n̄)

n

)
.

Therefore,
sup

πa,πb∈Π

∣∣Sk
2 (πa, πb)

∣∣
≤ CΠ,δ

√
4B

K

∑
c∈C

λ2
c

nc
E
[
||ŵ−kc(i)

c (Xc
i )− wc(Xc

i )||22 | ŵ−kc(i)
c

]
+ o

(√
s(λ∥n̄)

n

)

≤ CΠ,δ

√
4B

K
· o
(
s(λ∥n̄)

n

)
+ o

(√
s(λ∥n̄)

n

)

≤ o

(√
s(λ∥n̄)

n

)
,
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and

sup
πa,πb∈Π

|S2(πa, πb)| ≤
K∑

k=1

sup
πa,πb∈Π

∣∣Sk
2 (πa, πb)

∣∣ ≤ o

(√
s(λ∥n̄)

n

)
.

Bounding S3: Next, we bound the contribution from S3. We have that

sup
πa,πb∈Π

|S3(πa, πb)|

= sup
πa,πb∈Π

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

Γc′′′
i (πa(X

c
i ))− Γc′′′

i (πb(X
c
i ))

∣∣∣∣∣
≤ 2

∣∣∣∣∣∑
c∈C

λc

nc

nc∑
i=1

∑
a∈A

(
µc(X

c
i ; a)− µ̂−kc(i)

c (Xc
i ; a)

)(
ŵ−kc(i)

c (Xc
i ; a)− wc(X

c
i ; a)

)∣∣∣∣∣
≤ 2

√√√√∑
c∈C

λc

nc

nc∑
i=1

∥∥µc(Xc
i )− µ̂

−kc(i)
c (Xc

i )
∥∥2
2

√√√√∑
c∈C

λc

nc

nc∑
i=1

∥∥ŵ−kc(i)
c (Xc

i )− wc(Xc
i )
∥∥2
2

≤ 2

√∑
c∈C

λc
gc(αKnc)

(αKnc)ζµ

√∑
c∈C

λc
gc(αKnc)

(αKnc)ζw

≤ 2

α
(ζµ+ζw)/2
K

√
max
c∈C

λc

n
ζµ
c

∑
c∈C

gc(αKnc)

√
max
c∈C

λc

nζw
c

∑
c∈C

gc(αKnc)

=
2

α
(ζµ+ζw)/2
K

∑
c∈C

gc(αKnc)

√
max
c∈C

λ2
c

n
ζµ+ζw
c

≤ 2

α
(ζµ+ζw)/2
K

∑
c∈C

gc(αKnc)

√
max
c∈C

λ2
c

nc

≤ 2

α
(ζµ+ζw)/2
K

∑
c∈C

gc(αKnc)

√∑
c∈C

λ2
c

nc

≤ 2

α
(ζµ+ζw)/2
K

∑
c∈C

gc(αKnc)

√
s(λ∥n̄)

n
.

As discussed earlier, gc(αKnc) is asymptotically bounded by a decreasing function of n. Since
the sum of decreasing functions is decreasing,

∑
c∈C gc(αKnc) is asymptotically bounded by a

decreasing function g̃ in n. In other words,
∑

c∈C gc(αKnc) ≤ g̃(n) ≤ o(1). Therefore,

sup
πa,πb∈Π

|S3(πa, πb)| ≤
2

α
(ζµ+ζw)/2
K

· o(1) ·
√

s(λ∥n̄)
n

≤ o

(√
s(λ∥n̄)

n

)
.

Putting all the above bounds together, we have

sup
πa,πb∈Π

|∆̃λ(πa, πb)− ∆̂λ(πa, πb)| ≤ sup
πa,πb∈Π

|S1(πa, πb) + S2(πa, πb) + S3(πa, πb)|

≤ sup
πa,πb∈Π

|S1(πa, πb)|+ sup
πa,πb∈Π

|S2(πa, πb)|+ sup
πa,πb∈Π

|S3(πa, πb)|

≤ o

(√
s(λ∥n̄)

n

)
.
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C.5 PROOF OF THEOREM 1

Theorem 1 (Global Regret Bound). Suppose Assumption 1, 2, and 3 hold. Then, with probability
at least 1− δ,

Rλ(π̂λ) ≤
(
c1κ(Π)+

√
c2 log(c2/δ)

)√
V · s(λ∥n̄)

n
+ op

(√
s(λ∥n̄)

n

)
, (11)

where c1 and c2 are universal constants and V = max
c∈C

sup
π∈Π

ED̄c

[
Γc(π(Xc))2

]
.

Proof. Let π∗
λ = argmaxπ∈Π Qλ(π). Using the results of Propositions 2 and 3, with probability at

least 1− δ, we have
Rλ(π̂λ) = Qλ(π

∗
λ)−Qλ(π̂λ)

=
(
Qλ(π

∗
λ)−Qλ(π̂λ)

)
−
(
Q̂λ(π

∗
λ)− Q̂λ(π̂λ)

)
+
(
Q̂λ(π

∗
λ)− Q̂λ(π̂λ)

)
= ∆λ(π

∗
λ, π̂λ)− ∆̂λ(π

∗
λ, π̂λ) +

(
Q̂λ(π

∗
λ)− Q̂λ(π̂λ)

)
≤ ∆λ(π

∗
λ, π̂λ)− ∆̂λ(π

∗
λ, π̂λ)

≤ sup
πa,πb∈Π

|∆λ(πa, πb)− ∆̂λ(πa, πb)|

≤ sup
πa,πb∈Π

|∆λ(πa, πb)− ∆̃λ(πa, πb)|+ sup
πa,πb∈Π

|∆̃λ(πa, πb)− ∆̂λ(πa, πb)|

≤

((
c1κ(Π) +

√
c2 log(c2/δ)

)√Vλ,nC

n
+ o

(√
s(λ∥n̄)

n

))
+ op

(√
s(λ∥n̄)

n

)

≤
(
c1κ(Π) +

√
c2 log(c2/δ)

)√Vλ,nC

n
+ op

(√
s(λ∥n̄)

n

)
,

where c1 and c2 are universal constants. Lastly, we decompose the weighted variance term by

Vλ,nC = sup
πa,πb∈Π

∑
c∈C

λ2
c

n̄c
E

Zc∼D̄c

[(
Γc(πa(X

c))− Γc(πb(X
c))
)2]

≤ max
c∈C

sup
πa,πb∈Π

E
Zc∼D̄c

[(
Γc(πa(X

c))− Γc(πb(X
c))
)2] ·∑

c∈C

λ2
c

n̄c

≤ 4 ·max
c∈C

sup
π∈Π

E
Zc∼D̄c

[Γc(π(Xc))] ·
∑
c∈C

λ2
c

n̄c

= 4V · s(λ∥n̄).
We absorb the factor of

√
4 into the universal constants to get the desired result.

D BOUNDING LOCAL REGRET

D.1 PROOF OF THEOREM 2

Theorem 2 (Local Regret Bound). Suppose Assumption 1 holds. Then, for any client c ∈ C,
Rc(π̂λ) ≤ U · TV(D̄c, D̄λ) +Rλ(π̂λ), (12)

where U = 3B/η with B = maxc∈C Bc and η = minc∈C ηc, and TV is the total variation distance.
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Proof. Let π∗
c = argmaxπ∈Π Qc(π). Then,

Rc(π̂λ) = Qc(π
∗
c )−Qc(π̂λ)

= Qc(π
∗
c )−Qc(π̂λ)∓Qλ(π

∗
c )±Qλ(π̂λ)

=
(
Qc(π

∗
c )−Qλ(π

∗
c )
)
+
(
Qλ(π̂λ)−Qc(π̂λ)

)
+
(
Qλ(π

∗
c )−Qλ(π̂λ)

)
≤ 2 sup

π∈Π
|Qc(π)−Qλ(π)|+

(
Qλ(π

∗
c )−Qλ(π̂λ)

)
≤ 2 sup

π∈Π
|Qc(π)−Qλ(π)|+

(
Qλ(π

∗
λ)−Qλ(π̂λ)

)
= 2 sup

π∈Π
|Qc(π)−Qλ(π)|+Rλ(π̂λ).

By Lemma 6, we can express the the local policy value as
Qc(π) = E

Z∼D̄c

[Γ(π(X))]

where (Γ(a1), . . . ,Γ(ad)) are the constructed AIPW scores from a context-action-outcomes sample
Z = (X,A, Y (a1), . . . , Y (ad)) ∼ D̄c. In addition, the global policy value can be expressed as

Qλ(π) = E
Z∼D̄λ

[Γ(π(X))] .

where (Γ(a1), . . . ,Γ(ad)) are the constructed AIPW scores from a context-action-outcomes sample
Z = (X,A, Y (a1), . . . , Y (ad)) such that c ∼ λ and then Z ∼ D̄c. Therefore,

sup
π∈Π

|Qc(π)−Qλ(π)| = sup
π∈Π

∣∣∣ E
Z∼D̄c

[Γ(π(X))]− E
Z∼D̄λ

[Γ(π(X))]
∣∣∣ (29)

By the boundedness and overlap assumption in Assumption 1, one can easily verify the uniform
bound

|Γc(a)| ≤ Bc + 2Bc/ηc ≤ 3Bc/ηc ≤ 3B/η =: U

for any constructed AIPW score Γc(a) for any a ∈ A and any client c ∈ C. Therefore, Equation
equation 29 is equivalent to the integral probability metric distance (Sriperumbudur et al., 2009)
between D̄c and D̄λ under uniformly bounded test functions

{Q(T (·);π) | π ∈ Π} ⊂ FU
∞ := {f | ∥f∥∞ ≤ U},

where T (X,A, Y (a1), . . . , Y (ad)) = (X,Γ(a1), . . . ,Γ(ad)). Thus,

sup
π∈Π

|Qc(π)−Qλ(π)| = sup
π∈Π

∣∣∣ E
Z∼D̄c

[
Q(T (Z);π)

]
− E

Z∼D̄λ

[
Q(T (Z);π)

]∣∣∣
≤ sup

f∈FU
∞

∣∣∣ E
Z∼D̄c

[
f(Z)

]
− E

Z∼D̄λ

[
f(Z)

]∣∣∣
= U · TV(D̄c, D̄λ).

The last equality holds by the definition of the total variation distance as an integral probability
metric with uniformly bounded test functions.

D.2 DISTRIBUTION SHIFT BOUND

First, we state some important properties of the KL divergence.
Lemma 8. The KL divergence has the following properties.

• Tensorization Property: Let P =
∏m

i=1 Pi and Q =
∏m

i=1 Qi be two product distributions.
Then,

KL(P||Q) =

m∑
i=1

KL(Pi||Qi).

• Chain Rule: Let PXY = PXPY |X and QXY = QXQY |X be two distributions for a pair
of random variables X,Y . Then,

KL(PXY ||QXY ) = KL(PX ||QX) + KL(PY |X ||QY |X | PX)

where
KL(PY |X ||QY |X | PX) = E

X∼PX

[
KL(PY |X ||QY |X)

]
.
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Then, we can use these properties to additively separate the sources of distribution shift in our local
regret bound.

Theorem 3 (Local Distribution Shift Bound). For any given client c ∈ C, suppose (Xc, Y⃗ c) ∼ Dc.
We let pXc denote the marginal distribution of Xc and let pY⃗ c|Xc denote the conditional distribution
of Y⃗ c given Xc. Then, the irreducible distribution shift term in the local regret bound can be further
bounded as

TV(D̄c, D̄λ) ≤ E
k∼λ

[√
KL(pXc ||pXk) +

√
KL(ec||ek) +

√
KL(pY⃗ c|Xc ||pY⃗ k|Xk)

]
, (13)

where TV is the total variation distance and KL is the Kullback-Leibler divergence.5

Proof. For any c ∈ C, the joint probability density function of D̄c factorizes as
pXc,Ac,Y⃗ c(x, a, y) = pXc(x)ec(a|x)pY⃗ c|Xc,Ac(y|x, a) = pXc(x)ec(a|x)pY⃗ c|Xc(y|x)

for any (x, a, y) ∈ X × A × Yd, where the last equality holds by the unconfoundedness property
stated in Assumption 1. Next, let Σ be the σ-field over X × A × Yd on which the D̄c are defined.
We have that

TV(D̄c, D̄λ) = sup
A⊂Σ

∣∣D̄c(A)− D̄λ(A)
∣∣

= sup
A∈Σ

∣∣D̄c(A)−
∑
c∈C

λcD̄k(A)
∣∣

= sup
A∈Σ

∣∣∑
c∈C

λc

(
D̄c(A)− D̄k(A)

) ∣∣
≤ sup

A∈Σ

∑
c∈C

λc

∣∣D̄c(A)− D̄k(A)
∣∣

≤
∑
c∈C

λc sup
A∈Σ

∣∣D̄c(A)− D̄k(A)
∣∣

= E
k∼λ

[
TV(D̄c, D̄k)

]
≤ E

k∼λ

[√
KL(D̄c||D̄k)

]
,

where the last inequality holds by Pinsker’s inequality. Moreover,
KL(D̄c||D̄k) = KL(pXc,Ac,Y⃗ c ||pXk,Ak,Y⃗k

)

= KL(pXc ||pXk) + KL(ecpY⃗ c|Xc ||ekpY⃗ k|Xk | pXc)

= KL
(
pXc ||pXk

)
+KL

(
ec||ek | pXc

)
+KL

(
pY⃗ c|Xc ||pY⃗ k|Xk | pXc

)
= KL

(
pXc ||pXk

)
+KL

(
ec||ek

)
+KL

(
pY⃗ c|Xc ||pY⃗ k|Xk

)
,

where the first equality holds by the chain rule of the KL divergence and the second equality holds
by the tensorization property of KL divergence. In the last inequality, for the sake of brevity, we just
get rid of the explicit marker representing conditional KL divergence. It is understood that when the
distributions are conditional distributions, their KL divergence is a conditional KL divergence.

D.3 ALTERNATIVE LOCAL REGRET BOUND

We provide an alternative local regret bound that is applicable in scenarios where the AIPW score
variance is significantly less than the AIPW score range.

Theorem 4. Suppose Assumption 1 holds. Then, for any c ∈ C,

Rc(π̂λ) ≤
√
4V · χ2(D̄c||D̄λ) +Rλ(π̂λ),

where V = maxc∈C supπ∈Π ED̄c
[Γc(π(Xc))].

5Note that the last two terms in the expectation of this inequality are conditional KL divergences on pXc .
See Appendix D.2 for more details.
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Proof. As shown in Theorem 2,
Rc(π̂λ) ≤ 2 sup

π∈Π
|Qc(π)−Qλ(π)|+Rλ(π̂λ).

Thus, we seek a new bound on the first term due to distribution shift.

Let pc(z) and pλ(z) for any z ∈ X × A × Yd be the joint probability density functions of D̄c and
D̄λ, respectively. Additionally, for any c ∈ C and any Z ∼ D̄c, let f(Z;π) = Γc(π(Xc)). Then, we
can do the following calculations to get

sup
π∈Π

|Qc(π)−Qλ(π)| = sup
π∈Π

∣∣∣∣ E
Zc∼D̄c

[Γc(π(Xc))]− E
c∼λ

E
Zc∼D̄c

[Γc(π(Xc))]

∣∣∣∣
= sup

π∈Π

∣∣∣∣ E
Z∼D̄c

[f(Z;π)]− E
Z∼D̄λ

[f(Z;π)]

∣∣∣∣
= sup

π∈Π

∣∣∣∣∫ f(z;π)pc(z)dz −
∫

f(z;π)pλ(z)dz

∣∣∣∣
= sup

π∈Π

∣∣∣∣∣
∫

f(z;π)
√

pλ(z)

(
pc(z)− pλ(z)√

pλ(z)

)
dz

∣∣∣∣∣
≤ sup

π∈Π

√∫
f(z;π)2pλ(z)dz ·

∫
(pc(z)− pλ(z))2

pλ(z)
dz

= sup
π∈Π

√
E

Z∼D̄λ

[f(Z;π)2] · χ2(D̄c||D̄λ)

≤ sup
π∈Π

√
max
c∈C

E
Z∼D̄c

[Γc(π(Xc))2] · χ2(D̄c||D̄λ)

=
√
V · χ2(D̄c||D̄λ).

Thus, we get the desired result.

Compare the distribution shift term in this alternate result to the distribution shift term U ·
TV(D̄c, D̄λ) in the local regret bound we established in Theorem 2. The alternate bound is use-
ful in that it does not rely on bounded AIPW scores, and instead is scaled by the maximum variance
of the AIPW scores, which may be smaller than the range and it also appears in our global regret
bound. Therefore, it is a more natural bound in this sense. However, the chi-squared divergence does
not have a chain rule that would allow us to additively separate the sources of distribution shift in this
bound, as we did in Proposition 3. The reason for this limitation is that the chi-squared divergence
cannot be bounded by the KL divergence to leverage its chain rule as we did for the TV distance. In
this sense, this alternate bound is not useful for elucidating the contributions of distribution shift in
the local regret bound.

E VALUE OF INFORMATION

The local regret bound result in Theorem 2 is useful to capture the value of information provided by
the central server. Suppose a given client c ∈ C has agency to decide whether to participate in the
federated system including all other clients. If we consider the client as a local regret-minimizing
agent, we can use the dominant terms in the appropriate local regret bounds to model the expected
utility of the client. In particular, using prior results of standard offline policy learning (Zhou et al.,
2023) and our findings in Theorems 1 and 2, the value of information provided by the central server
can be modeled as the comparison of the client’s utility (as captured by the negative local regret)
with and without participation

Vc(λ) = C0κ(Π)
√
Vc/nc − C1κ(Π)

√
V s(λ∥n̄)/n− U · TV(D̄c, D̄λ),

where C0, C1 are universal constants and Vc = supπ∈Π E[Γc(π(Xc))2] is the local AIPW variance.
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Then, we say it is more valuable for client c to participate in federation if Vc(λ) > 0. One can easily
show that this condition is satisfied if and only if

TV(D̄c, D̄λ) < αrc/U ∧ s(λ∥n̄) < β2r2c/r
2

for some α + β ≤ 1, where rc = C0κ(Π)
√
Vc/nc is the local regret bound of the locally trained

model and r = C1κ(Π)
√
V/n is the global regret bound of the globally trained model under no

skewness. The α and β factors indicate a trade-off between distribution shift and skewness of the
two conditions. If there is low distribution shift, the skewness can be large.

Thus, we see how the design choice on the client distribution must balance a scaled trade-off to
achieve relative low skewness and relative low expected distribution shift. Indeed, in the experiments
in Section 7 we see how a skewed client distribution can help improve the local regret guarantees
of a heterogeneous client. We observe from the first condition that the client distribution shift must
must be smaller than the local regret of the locally trained model relative to a scaled range of the
data. Intuitively, this states that the client will not benefit from federation if the regret they suffer
due to their distribution shift from the global mixture distribution is greater than the relative local
regret from just training locally. The second condition states that the skewness must be less than the
local regret relative to the global regret. Large relative variance or small relative sample size are the
primary factors that can lead small relative regret and therefore tight limitations on skewness budget.
Overall, all of these conditions can be satisfied under sufficiently low expected distribution shift from
the global distribution, low client distribution skewness, comparable AIPW variance across clients,
and large global sample size relative to the local sample size.

However, it should be noted that this analysis simplifies the setting by considering only a single
client that unilaterally decides to participate in the federation, without considering the choices of
other clients. A more comprehensive analysis would assess the value of information provided by
the central server in an equilibrium of clients with agency to participate. Game-theoretic aspects
are crucial in this context, necessitating an understanding of client behavior and incentives in fed-
erated settings. Recent research has started to delve into game-theoretic considerations in federated
supervised learning. Donahue & Kleinberg (2021) provided valuable insights into the behavior of
self-interested, error-minimizing clients forming federated coalitions to learn supervised models.
Moreover, designing incentive mechanisms in federated learning has been identified as a significant
research area (Zhan et al., 2021b). This work aims to understand the optimal ways to incentivize
clients to share their data. Applying these concepts to our setting would offer valuable insights on
the incentives and behavior that motivate clients to participate in federated policy learning systems.

F ADDITIONAL ALGORITHM DETAILS

F.1 NUISANCE PARAMETER ESTIMATION

Our results rely on efficient estimation of Qλ(π) for any policy π, which in turn relies on efficient
estimation of Qc(π). We leverage ideas of double machine learning (Chernozhukov et al., 2018)
to guarantee efficient policy value estimation given only high-level conditions on the predictive
accuracy of machine learning methods on estimating the nuisance parameters of doubly robust policy
value estimators. In this work, we use machine learning and cross-fitting strategies to estimate
the nuisance parameters locally. The nuisance parameter estimates must satisfy the conditions of
Assumption 3. Under these conditions, extensions of the results of (Chernozhukov et al., 2018;
Athey & Wager, 2021) would imply that the doubly robust local policy value estimates Q̂c(π) for
any policy π are asymptotically efficient for estimating Qc(π).

The conditions and estimators that guarantee these error assumptions have been extensively studied
in the estimation literature. These include parametric or smoothness assumptions for non-parametric
estimation. The conditional response function µc(x; a) = ED̄c

[Y c(a)|Xc = x] can be estimated
by regressing observed rewards on observed contexts. The inverse conditional propensity function
wc(x; a) = 1/PD̄c

(Ac = a|Xc = x) can be estimated by estimating the conditional propensity
function ec(x; a) = PD̄c

(Ac = a|Xc = x) and then taking the inverse. Under sufficient regularity
and overlap assumptions, this gives accurate estimates. We can take any flexible approach to esti-
mate these nuisance parameters. We could use standard parametric estimation methods like logistic
regression and linear regression, or we could use non-parametric methods like classification and
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regression forests to make more conservative assumptions on the true models. Lastly, we note that
if it is known that some clients have the same data-generating distribution, it should be possible to
learn the nuisance parameters across similar clients.

In our experiments, we decided to estimate the µc with linear regression and ec with logistic regres-
sion. We used the sklearn Python package to fit the nuisance parameters. The true expected rewards
are non-linear but the propensities are simple uniform probabilities. So our experiments emulate the
scenario where accurate estimation of µc is not perfectly possible but accurate estimation of ec is
easy, thus leveraging the properties of double machine learning for policy value estimation.

F.2 CROSS-FITTED AIPW ESTIMATION

Once the nuisance parameters are estimated, they can be used for estimating AIPW scores. Refer
to Algorithm 3 for the pseudocode on how we conduct the cross-fitting strategy for AIPW score
estimation. Under this strategy, each client c ∈ C divides their local dataset into K folds, and for
each fold k, the client estimates µc and wc using the rest K − 1 folds. During AIPW estimation for
a single data point, the nuisance parameter estimate that is used in the AIPW estimate is the one that
was not trained on the fold that contained that data point. This cross-fitting estimation strategy is
described in additional detail in (Zhou et al., 2023).

Algorithm 3 Cross-fitted AIPW: Client-Side
Require: local data {(Xc

i , A
c
i , Y

c
i )}nc

i=1, number of folds K
1: Partition local data into K folds
2: Define surjective mapping kc : [nc]→ [K] of point index to corresponding fold index
3: for k = 1, . . . ,K do
4: Fit estimators µ̂−k

c and ŵ−k
c using rest of data not in fold k

5: end for
6: for i = 1, . . . , nc do
7: for a ∈ A do
8: Γ̂c

i (a)← µ̂
−kc(i)
c (Xc

i ; a) +
(
Y c
i − µ̂

−kc(i)
c (Xc

i ; a)
)
· ŵ−kc(i)

c (Xc
i ; a) · 1{Ac

i = a}
9: end for

10: end for

F.3 IMPLEMENTATION DETAILS

The local optimization problems we face in our formulation in Section 6 are equivalent to cost-
sensitive multi-class classification (CSMC). There are many off-the-shelf methods available for such
problem. We rely on implementations that can do fast online learning for parametric models in
order to be able to do quick iterated updates on the global models at each local client and send
these models for global aggregation. So we make use of the cost-sensitive one-against-all (CSOAA)
implementation for cost-sensitive multi-class classification in the Vowpal Wabbit library (Langford
et al., 2023). This implementation performs separate online regressions of costs on contexts for each
action using stochastic gradient descent updates. At inference time, to make an action prediction,
the action whose regressor gives the lowest predicted cost is chosen.

The idea behind this method is that if the classifiers admit regression functions that predict the costs,
i.e., πθ(x) = argmaxa∈A fθ(x; a) for some fθ ∈ FΘ such that f∗(x; a) ∈ FΘ where f∗(x; a) =
E[Γc(a)|Xc = x], then efficient regression oracles will return an (near) optimal model (Agarwal
et al., 2017). If realizability does not hold one may need to use more computationally expensive
CSMC optimization techniques (Beygelzimer et al., 2009). For example, we could use the weighted
all pairs (WAP) algorithm (Beygelzimer et al., 2008) that does

(
d
2

)
pairwise binary classifications and

predicts the action that receives majority predictions. Unlike the CSOAA implementation, the WAP
method is always consistent in that an optimal model for the reduced problem leads to an optimal
cost-sensitive prediction classifier. In our experiments, the rewards are non-linear so realizability
does not exactly hold. Yet, we still observe good performance with the CSOAA regression-based
algorithm.
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(a) Heterogeneous Clients, λ = n̄ (b) Heterogeneous Clients, λ = n̄+ ε̄

Figure 3: Empirical regret curves for simulation experiments. Local regrets are for client 2.

G ADDITIONAL EXPERIMENTAL RESULTS

We follow up on the simulations with heterogeneous clients in Section 7. Here, we observe the regret
performance for one of the other clients that have less distribution shift from the average. Figure 3a
plots the local regret for client 2 of the globally trained policy (green) and the global regret of the
globally trained policy (orange), all using the empirical mixture λ = n̄. For comparison, we also
plot the local regret for client 2 of the locally trained policy (blue). The bands show the one standard
deviation from the regrets over five different runs. As expected, we see that the other clients have
less distribution shift so the local regret of the global policy nearly matches the global regret, similar
to what was observed in the homogeneous experiments but with some level of degradation. Indeed,
the local distributions nearly match the global distribution, by construction. In Figure 3b we plot
the same type of regret curves, but instead with the global policy trained with the skewed mixture.
We see that their performance degrades. This is in contrast to what we observe for client 1 where
the skewed mixture improved performance. This is because, we are increasing distribution shift as
measured by TV(D̄c, D̄λ). This is another indicator that our theoretical regret guarantees may be
tight.

H ADDITIONAL DISCUSSION

H.1 POLICY VALUE ESTIMATION

One might inquire on the need forpolicy value estimation using propensity-weighted strategies, espe-
cially under realizability assumptions, when we can just estimate the conditional response function
over the class of regressors. One of the issues is the fact that the data was collected under the histor-
ical policy which may not necessarily be the target optimal policy so estimating the reward function
may lead to policies that are optimal for locations in the decision space where the reward function
was able to have been well estimated given the historical data, but the guarantees on data sampled on
the optimal target policy may not be as robust. However, there is another another practical reason.
(Kitagawa & Tetenov, 2018; Athey & Wager, 2021) provide a good discussion on why separating
the assumptions for the nuisance parameters and the class of policies is helpful, and in some cases
necessary, component of a comprehensive analysis of policy learning. For one, since the nuisance
components are inherent quantities of the distributions are not in control by the central learner, it is
a prudent choice to make the least functional form assumptions on these parameters. In contrast, the
class of policies Π is specified by the central learner and can be used to impose restrictions on the
type of policies. For example, for privacy reasons, the central server can impose restrictions on what
covariates can be used to learn a policy, such as personally identifiable information. This used in
conjunction with federated learning strategies can leverage the use of high-capacity flexible models
to learn nuisance parameters locally under no restrictions, but then the central server can impose
restrictions on the type of models used for policy evaluation and learning.
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H.2 LIMITATIONS & FUTURE WORK

There are various limitations to our present work that require further consideration. We discuss some
of these limitations throughout the main paper. We provide a more exhaustive list here.

• We make certain assumptions on the data-generating process which may not always be
satisfied. Throughout the paper, we discussed how some of these assumptions may be re-
laxed with additional investigations, such as relaxing the boundedness and uniform overlap
assumption in the data-generating distributions.

• In this work, nuisance parameters are estimated locally. If it is known that some clients have
the same data-generating distribution, it should be possible to learn the nuisance parameters
across similar clients.

• Although our framework offers a great leap towards privacy-preserving policy learning,
we did not consider additional differential privacy considerations in this work. It would be
worthwhile to explore the effects of differential privacy on our regret analysis and empirical
results.

• Our optimization procedure depended on access to efficient online cost-sensitive classifica-
tion methods. There are many fast implementations that are widely available, but these are
restricted to particular parametric classes. However, in many policy learning scenarios, es-
pecially in public policy where decisions must be audited, simple tree-based policy classes
are preferable. Research on developing efficient federated tree-based policy learning algo-
rithms would be highly valuable for this problem setting. In general, further research needs
to be conducted on developing federated methods for learning on general policy classes
beyond simple parametric policies, including tree-based policies, finite policies, and neural
policies.

• We assumed the mixture distribution λ is known. We could extend our work to a more
agnostic setting where this mixture distribution is optimized. We could take a more prin-
cipled approach such as the minimax framework proposed in (Mohri et al., 2019). This
would also have implications on robustness and fairness of the global policy.

• The local regret bounds for each client were found to depend on an irreducible term due to
distribution shift. Can this irreducible regret be quantified in a federated manner to allow
servers to determine if any given client benefits from federation?

• In Section E, we discussed the value of information provided by the central server to an
individual client in the scenario where all clients are assumed to be participating in federa-
tion. A more complete analysis would consider the value of information in an equilibrium
where all clients have agency to participate, rather than just one client.

• Lastly, we leave open the question of whether the bounds we establish are regret optimal.
Mohri et al. (2019) discuss how similar skewness-based bounds for distributed supervised
learning are optimal. Moreover, in the homogeneous setting, our results immediately re-
duce to the regret optimal results obtained in (Athey & Wager, 2021; Zhou et al., 2023).
Thus, there is good indication that our bounds are regret optimal. We leave establishing
lower bounds for future work.
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