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ABSTRACT

The intuitive connection to robustness and convincing empirical evidence have
made the flatness of the loss surface an attractive measure of generalizability for
neural networks. Yet it suffers from various problems such as computational dif-
ficulties, reparametrization issues, and a growing concern that it may only be an
epiphenomenon of optimization methods. We provide empirical evidence that un-
der the cross-entropy loss once a neural network reaches a non-trivial training
error, the flatness correlates (via Pearson Correlation Coefficient) well to the clas-
sification margins, which allows us to better reason about the concerns surround-
ing flatness. Our results lead to the practical recommendation that when assessing
generalizability one should consider a margin-based measure instead, as it is com-
putationally more efficient, provides further insight, and is highly correlated to
flatness. We also use our insight to replace the misleading folklore that small-
batch methods generalize better because they are able to escape sharp minima.
Instead we argue that large-batch methods did not have enough time to maximize
margins and hence generalize worse.

1 INTRODUCTION

Understanding under which conditions a neural network will generalize from seen to unseen data is
crucial, as it motivates design choices and principles which can greatly improve performance. Com-
plexity or generalization measures are used to quantify the properties of a neural network which lead
to good generalization. Currently however, established complexity measures such as VC-Dimension
(Vapnik, 1998) or Rademacher Complexity (Bartlett & Mendelson, 2002) do not correlate with the
generalizability of neural networks (e.g. see Zhang et al. (2016)). Hence many recommendations,
such as reducing model complexity, early stopping, or adding explicit regularization are also not
applicable or necessary anymore. Therefore, there is an ongoing effort to devise new complexity
measures that may guide recommendations on how to obtain models that generalize well.

A popular approach is to consider the flatness of the loss surface around a neural network. Hochre-
iter & Schmidhuber (1997) used the minimum description length (MDL) argument of Hinton &
Van Camp (1993) to claim that the flatness of a minimum can also be used as a generalization
measure. Motivated by this new measure Hochreiter & Schmidhuber (1997), and more recently
Chaudhari et al. (2019), developed algorithms with explicit regularization intended to converge to
flat solutions. Keskar et al. (2016) then presented empirical evidence that flatness relates to improved
generalizability and used it to explain the behavior of stochastic gradient descent (SGD) with large
and small-batch sizes. Other works since have empirically corroborated that flatter minima general-
ize better (e.g. Jiang et al. (2019); Li et al. (2018); Bosman et al. (2020)).

There are however various issues that are still unresolved, which makes using flatness for construct-
ing practical deep learning recommendations difficult. For one, flatness is computationally expen-
sive to compute. The most common way to compute the flatness is via the Hessian, which grows
quadratically in the number of parameters; this becomes too large when used with modern networks
containing millions of parameters. It is also not clear to what extent flatness is a true measure of
generalizability, capable of discerning which neural network will or will not generalize. Dinh et al.
(2017) showed that reparametrizations affect flatness and a flat model can be made arbitrarily sharp
without changing any of its generalization properties. In addition Probably Approximately Correct
(PAC-Bayes) bounds that bound the generalizability in terms of the flatness are also either affected
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by rescaling, impossible to evaluate or loose (Neyshabur et al., 2017; Arora et al., 2018; Petzka
et al., 2020). While there have been solutions attempting to prevent issues around reparametrization
(Liang et al., 2019; Tsuzuku et al., 2019), it remains to establish whether flatness is an epiphe-
nomenon of stochastic gradient descent or other complexity measures as Achille et al. (2018) and
Jastrzebski et al. (2018) are suggesting. This motivates investigating possible correlations to more
well-understood measures of generalization that may help alleviate issues surrounding flat minima,
while allowing flat minima to be used when appropriate.

In this paper we will demonstrate a correlation to classification margins, which are a well-understood
generalization measure. Margins represent the linearized distance to the decision boundaries of the
classification region (Elsayed et al., 2018). An immediate consequence of such a relationship is that
to assess generalizability, we could now simply use a computationally cheap and more robust margin
based complexity measure. Our contributions will demonstrate further practical implications of the
relationship between margins and flatness which open doors to valuable future work such as a better
understanding of why and when a model generalizes and more principled algorithm design.

• We prove that under certain conditions flatness and margins are strongly correlated. We
do so by deriving the Hessian trace for the affine classifier. Based on its form, we derive
an expression in terms of classification margins which we show correlates well with the
Hessian trace, with increasing training accuracy for various neural network architectures.
By being able relate the two complexity measures, we are now able to provide various
practical recommendations, and offer different perspectives on phenomena that may not be
explainable without such a view. These are shown in the following contributions.

• We use our insight to replace the misleading folklore that, unlike large-batch methods,
small-batch methods are able to escape sharp minima (Keskar et al., 2016). We instead
employ a margin perspective and use our empirical results along with recent results by
Banburski et al. (2019) and Hoffer et al. (2017) to argue that a large batch method was
unable to train long enough to maximize the margins. With our explanation, we help re-
frame the small and large-batch discussion and build further intuition.

• We show that once a neural network is able to correctly predict the label of every element
in the training set it can be made arbitrarily flat by scaling the last layer. We are motivated
by the relationship to margins which suffer from the same issue. We highlight this scaling
issue because, in some instances, it may still be beneficial for algorithm design to be guided
by convergence to flat regions. Hence, we need to account for scaling issues which make it
difficult to use flatness to assess whether a network generalizes better than another.

Other works have made connections between flatness and well-behaved classification margins via
visualizations (see Huang et al. (2019); Wang et al. (2018)), but they have not demonstrated a quan-
tifiable relationship. Further work has used both the classification margins and flatness to construct
PAC-Bayes bounds (Neyshabur et al., 2017; Arora et al., 2018), and have related flatness to increased
robustness (Petzka et al., 2020; Borovykh et al., 2019) however they did not show when and to what
extent these quantities are related.

We structure the paper as follows. In Section 2, we discuss both our notation and our motivation
choosing the cross-entropy loss and the Hessian trace as the flatness measure and provide further
background on the classification margins. In Section 3, we present our contribution showing a
strong correlation between the margins and flatness by deriving. In Section 4, we combine recent
results based on classification margins to offer a different perspective on the misleading folklore on
why larger-batch methods generalize worse. In Section 5, we highlight that networks can be made
arbitrarily flat. Lastly, we offer our thoughts and future work in the Section 6.

2 PROBLEM SETTING

We first define the basic notation that we use for a classification task. We let X represent the input
space and Y = {1, ..., C} the output space where C are the number of possible classes. The network
architecture is given by φ : Θ × X → R|Y| where Θ is the corresponding parameter space. We
measure the performance of a parameter vector by defining some loss function ` : RC × Y → R.
If we have have a joint probability distribution D relating input and output space then we would
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like to minimize the expected loss LD(θ) = E(x,y)∼D[`(φ(θ, x), y)]. Since we usually only have
access to some finite dataset D, we denote the empirical loss by L̃D(θ) = 1

|D|
∑|D|
i=1 `(φ(θ, xi), yi).

If LD and L̃D are close, then we would say a model generalizes well, as we were able to train on
a finite dataset and extrapolate to the true distribution. We will use the cross-entropy loss which is
given by `(φ(θ, x), y) = − log(Sy(φ(θ, x))) where the softmax function S : RC → RC is given by
S(a)i = eai∑C

j=1 e
aj

(see Goodfellow et al. (2016)).

The choice of the cross-entropy function as the loss function has a significant impact on how the flat-
ness measure behaves. Unlike the multiclass mean squared error (MMSE), exponential type losses
such as the cross-entropy loss on neural networks have been shown to include implicit regularization
which leads to margin maximizing solutions for neural networks (Banburski et al., 2019). Also, var-
ious properties for flat minima which have been proven for the MMSE loss by Mulayoff & Michaeli
are not applicable to the cross-entropy loss, further highlighting the fundamental differences be-
tween the loss functions. While the MMSE loss has shown some promise for many classification
tasks (Hui & Belkin, 2020) the cross-entropy loss is still the loss which is most used and was primar-
ily used for the empirical evidence around flat minima (Keskar et al., 2016; Chaudhari et al., 2019),
which motivates our choice.

The qualitative description of a flat region was given by Hochreiter & Schmidhuber (1997) as “a
large connected region in parameter space where the error remains approximately constant". We
measure the flatness by the trace of the Hessian of the loss with respect to the parameters (in short
the Hessian trace) denoted by Tr(Hθ(L̃D(θ)) (Dinh et al., 2017). Since the Hessian is symmetric,
the Hessian trace is equivalent to the sum of its eigenvalues which for a fixed parameter space is
proportional to the expected increase of the second order approximation of the loss around a fixed
minimum θ in a random direction θ′ with θ′ ∼ N (θ, I). Since we apply flatness arguments only
close to minima, we assume that all eigenvalues are positive and that the Hessian trace is a good
measure of flatness Sagun et al. (2017). Even though the Hessian is only an approximation of
flatness, the Hessian is often preferred as it allows us to reason about various directions in parameter
space via its eigenvectors and eigenvalues (see Sagun et al. (2017); Chaudhari et al. (2019)) and
alleviates the issue of infinitely long but sharp ridges making a minimum infinitely flat (Dinh et al.,
2017; Freeman & Bruna, 2016). The Hessian has also been linked to feature robustness via its use
in the second order approximation of the loss (e.g. Petzka et al. (2020); Borovykh et al. (2019)) and
is a promising quantity to relate to the margins.

As we are working with non-linear functions it is intractable to compute exact distances to the de-
cision boundary, therefore we use a measure which is related to the linearized distance as described
in Elsayed et al. (2018). Under this view, larger margins are better because the data is further from
the decision boundary. Specifically, we define the margins as in Neyshabur et al. (2017): for some
vector v ∈ RC and label y we let the margin of v be γ(v, y) = |vy − maxj 6=y vj |. Since we use
the margin in different contexts we define the output margins γ(φ(θ, x), y) and the margins of the
model output after the softmax layer γ(S(φ(θ, x)), y). Due to the intuition of margins relating to the
regularity of the classification regions, they have been proven and shown to be a good generalization
measure for linear networks (Langford & Shawe-Taylor, 2003) and later for neural networks (see
Bartlett et al. (2017); Jiang et al. (2018; 2019)) when correctly adjusted. Due to results by Banburski
et al. (2019) and Soudry et al. (2018), Poggio et al. (2019) claimed that a large part of the mystery
around generalizability has been solved, since standard optimization methods are maximizing the
margin instead of memorizing data.

3 THE MARGIN AND HESSIAN TRACE RELATIONSHIP

3.1 THE AFFINE CROSS-ENTROPY HESSIAN TRACE

Generally, it is difficult to derive a closed form solution of the Hessian trace due to the non-linear
nature of neural networks. To gain insight into what may determine the flatness or sharpness of
a solution we consider an affine prediction function for which we derive the following simple and
insightful expression for the Hessian trace:
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Proposition 3.1 (Affine Cross-Entropy Hessian Trace (ACEHT)). Assume an affine predictor given
by φ((θ, b), x) = θx+ b where (θ, b) ∈ RC×d × RC = Θ. Then the trace of the Hessian under the
cross-entropy loss assuming our predictor function is:

Tr(H(`(φ((θ, b), x), y))) = (|x|2 + 1)(1−
C∑
j=1

S2
j (φ(Θ, x))

= (|x|2 + 1)(1− |S(φ(Θ, x))|2).

The derivation is in Appendix C. We immediately observe that the trace of the Hessian is a product
of both the size of the input and 1 − η(S(φ(θ, x))) where η(S(φ(θ, x))) =

∑C
j=1 S

2
j (φ(Θ, x)),

where we can view 1 − η(S(φ(θ, x))) as a confidence measure. In the visualization provided in
Figure 1 we clearly see that 1 − η(S(φ(θ, x))) is only zero when the predictor predicts one class
with probability 1, regardless of whether it is the correct class or not. When the model is least
confident, namely when every entry is predicted with probability 1/C, then 1 − η(S(φ(θ, x)))
is also highest. Hence, in the affine case with a cross-entropy loss the Hessian trace can be
seen as an indication of the model confidence in its prediction. This confidence interpretation
is also connected to classification margins by observing that Sy ≥ γ(S(φ(θ, x)), y) and hence
(1 −

∑C
j=1 S

2
j (φ(Θ, x)) ≤ 1 − S2

y((φ(Θ, x))) ≤ 1 − γ2(S(φ(θ, x)), y). Therefore, if the margins
are large then the region will also be flat. The intuition for this is that the error in the upper bound
becomes smaller as Sy becomes larger, i.e. when the model predicts correctly and confidently. We
will also provide evidence for a converse, i.e. a flat minimum has large margins, in the following
experimental sections. Finally, we note that without the expression in Proposition 3.1 we would not
have been able to derive the upper bound 1− γ2(S(φ(θ, x)), y) without guesswork.
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Figure 1: To visualize how 1− η(S(φ(θ, x))) represents the confidence of a model’s prediction we
plot 1− η(a) for all a ∈ R3 such that a is a valid probability distribution over three classes (i.e. for
all the elements of the standard 2-simplex). Since there are only two free variables, x and y in the
plot represent a by a = [x, y, 1− x− y]. We see that 1− η(a) is only zero when a = ei for some i,
namely when a model would be most confident. We also note that 1− η(a) is largest when a model
would be least confident in its prediction–i.e. when a = [1/3, 1/3, 1/3].

3.2 EXTENSION TO THE NON-LINEAR CASE

Now we will attempt to extend the derivation of the previous section to the non-linear case. This
is a challenging undertaking so we will resort to numerical evidence. To extend the results from
the affine case we will consider both the ACEHT and the upper bound ACEHT (S(φ(θ, x)))) ≤
|x|(1 − γ2(S(φ(θ, x)), y)) to which we refer as the "margin bound". We will compare both quan-
tities to the empirically derived Hessian trace. To compute the empirical Hessian trace we use the
PyHessian package (Yao et al., 2019) which implements Hutchinson’s method (Bai et al., 1996;
Avron & Toledo, 2011).

To compare the quantities we will compare them in terms of their distributions over the data.
Specifically, let (X,Y ) ∼ D and fix θ then we compute the Pearson Correlation Coefficient (r-
value) (Lee Rodgers & Nicewander, 1988) between the random variables Tr(H(`(φ(θ,X)), Y ))
and ACEHT (S(φ(θ,X))) and similarly for the margin bound. The choice of the r-value is natural
because in the affine case the ACEHT and the Hessian trace are equivalent, therefore a linear rela-
tionship should be expected. Our method is also more general than just comparing some statistic,
such as the average (which is generally used for flatness measures), of the above random variables.
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For example, while the smallest margin over the dataset is commonly used a generalization measure
(Bartlett et al., 2017; Jiang et al., 2019; Neyshabur et al., 2017), Jiang et al. (2018) showed that
higher moments of the distribution are a much better predictor for generalizability as we will also
see in Section 4.

Figure 2 is an examples of such a fit for an affine predictor. While the high r-value of 0.97 confirms
our analytic results, we also observe that the fit is not perfect, as would be expected due to the exact
relationship. The inaccuracies are due to the numerical methods used and become more pronounced
the higher the Hessian trace is. To avoid outliers heavily impacting the linear regression model in the
non-linear case, we will use the SciPy function LocalOutlierFactor (Breunig et al., 2000) to remove
outliers before fitting the line. With this we prevent hand picking points to skew the results and will
also stabilize our results.

Figure 2: We consider the affine predictor φ((θ, b), x) = θtx+ b with arbitrarily chosen parameters
(θ, b) on 1, 000 randomly sampled datapoints from the MNIST dataset. Each scatter point represents
a datapoint for which we compute the ACEHT and the empirical Hessian trace. The linear relation-
ship between the ACEHT distribution and empirical Hessian trace both confirms our derivation of
the ACEHT and provides a baseline for the numerical methods used for the empirical Hessian trace.

3.2.1 EMPIRICAL EVIDENCE

We present our results using the convolutional neural network LeNet on the MNIST dataset as they
are representative of what we have observed on other architectures, hyperparameters, and datsets
(see Appendix B). Our results use stochastic gradient descent with a fixed learning rate and batch
size to achieve an appropriate performance on the classification task. Because of the computational
difficulty of computing the empirical Hessian trace for every single element in the input data, we
consider 1,000 randomly selected datapoints from the training-set. To highlight the computational
difficulty of using even very optimized numerical tools, such as PyHessian, we note that it takes us
roughly 1,5 hours to compute the Hessian trace for the whole MNIST dataset while it only takes 5
seconds for the margins.

In Figure 3 we present the plots related to the correlation of the empirical Hessian trace to the
ACEHT and margin bound over the randomly sampled datapoints. Figures 3a and 3b show that for
most of training, the correlation is between 0.8 and 1. Combining Figures 3a and 3c it can be seen
that the r-value increases with the model training accuracy. Furthermore, the datapoint which are
incorrectly predicted do not show a correlation.

With that we confirm the intuition that indeed, flatter solution are more robust and have larger mar-
gins. While we have found flatness and margins to be highly correlated in scenarios in which others
have identified flatness to be a good generalization measure (Jiang et al., 2019; Keskar et al., 2016;
Chaudhari et al., 2019), it may just be that this is also an epiphenomenon of stochastic gradient
descent or some other process and there may be situations in which the relationship does not hold.
However, our general advice to consider margins more is not impacted by this. In the scenario where
generalizability and flatness have been linked, we have also shown that margins and flatness are cor-
related, hence it is advantageous to use margins instead due to computational reasons or for more
complete intuition. The only situation in which it is more likely that margins and flatness are not
correlated is when flatness has not yet been linked to generalizability. In such a situation it may also
be better to use the better understood margin measure instead of using a flatness measure to assess
generalizability. In the next section we will consider the first case, where we examine a general
scenario in which flatness has been used to reason about generalizability and offer a more insightful
margin perspective.
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(a) ACEHT to HT (b) SM Bound to HT (c) Training Accuracy

(d) Initialization (e) Step 5000 (f) Final Step (10,000)

Figure 3: We observe how ACEHT and the softmax margin (SM) bound relate, via the Pearson
Correlation Coefficient, to the observed Hessian trace (HT) of LeNet trained on MNIST. In Figures
3a 3b we see that for correctly classified datapoints (orange) the empirical Hessian trace correlates
well with the ACEHT and SM bound. In Figure 3c we observe that the increase in correlation occurs
with an increase in training accuracy. To demonstrate the evolution of the distributions throughout
training we plot the ACEHT and empirical HT distribution against each other in Figures 3d 3e 3f. We
observe that while the most apparent outliers were removed, some still skew the linear regression.

4 PERSPECTIVE ON LARGE AND SMALL-BATCH METHODS

We now show how our results lead to a better understanding of phenomena which have been mis-
leadingly attributed to flat minima. To do so, we consider the experiments which rekindled the
debate around flat minima by Keskar et al. (2016), where flatness was used to explain why small-
batch methods tend to generalize better than large-batch methods. The idea was that small-batch
methods converge to flatter minima due to them being able to "escape" sharp minima more easily.
However, it has been shown that the minima of both methods appear to be in the same attractive
basin (Sagun et al., 2017; Freeman & Bruna, 2016; Draxler et al., 2018), meaning that small-batch
methods do not seem to escape any attractive basin but are merely in a different area of the same
attractive basin. While the results gave credence to flatter minima generalizing better, flatter minima
do not seem to provide the full picture for why large-batch methods tend to do worse and we believe
that an explanation in terms of the margins is more illuminating.

4.1 EXPERIMENT SETUP

We will replicate the experiment by Keskar et al. (2016) for a fully connected network with batch-
normalized layers on the MNIST dataset as described in Appendix A. We chose the large-batch size
to be 4096 and the small-batch size to be 256. To have a fair comparison, we use the same seed
and take 10,000 gradient steps for both methods, instead of basing the stopping time on epochs.
We also used stochastic gradient descent without Momentum. With our setup we observe a similar
phenomenon as Keskar et al. (2016) in Table 1. The small and large-batch method both attain
the same training accuracy and comparable training loss. However, the small-batch method is at a
considerably flatter minimum and generalizes better than the large-batch method. We will now show
that instead of considering the flatness, it would be more insightful to consider margins to explain
the difference in generalizability.

While the upper bound of ACEHT is in terms of the softmax margins, we consider the output mar-
gins in this section. The reason is that most margin based generalization measures use the output
margins. Another more practical reason is that towards the end of training, the softmax margins are
all very close to 1 making it difficult to visualize and observe the distribution. We also do not use a
normalized version of the margins (such as Bartlett et al. (2017); Jiang et al. (2018)). Our reasoning
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is that because we use the same architecture, the same dataset, and train in a similar manner the
margin distributions will be comparable.

Loss Accuracy Trace
Batch Size Training Test Training Test Training

256 2.1× 10−5 7.28× 10−2 1.0 0.9834 1.01
4096 3.4× 10−5 9.45× 10−2 1.0 0.9794 6.62

Table 1: The results of our trained fully connected network with batch-normalized layers on MNIST
optimized with SGD and a 0.1 learning rate. The results reflect the observations made by Keskar
et al. (2016). I.e. the small-batch method has a smaller Hessian trace and generalizes better.

4.2 A MARGIN PERSPECTIVE ON LARGE AND SMALL-BATCH SIZES

In Figure 4 we see that the output margins and the Hessian trace are correlate as expected from
Section 3. We can also roughly see that the small-batch method has fewer low margins than the large-
batch methods. To emphasize this difference we consider Figure 4c where we plot the histogram and
box-plot of the output margin distribution for both the large-batch and small-batch method. We also
display the skewness of each, which is the third moment centered around the mean. The box-plots
and the skewness confirm that the small-batch method is dominated by large margins indicating
better generalizability (as discussed in Bartlett et al. (2017); Jiang et al. (2018)). The idea with a
left-skewed margin distribution is that the tail with low margin datapoints is mostly compromised of
outliers and will not massively affect the robustness to input perturbations. This soft-margin SVM
perspective is in contrast to hard-margin SVMs where the margin is defined to be the minimum of all
the distances to the decision boundary (Shalev-Shwartz & Ben-David, 2014). If a hard-margin view
was adopted, then the small-batch method would be predicted to generalize worse, because it has the
smallest margin as we see in Figure 4c. However, the distribution of the small-batch method is also
more left skewed, which would point to this minimum being an outlier rather than being indicative
of generalizability.

We now want to explain why the small-batch method generalizes well. As observed in Jastrzębski
et al. (2017) a smaller batch-size is similar to a larger learning-rate, hence at every step the process
will advance further than a large batch-method would. It has already been noted by Hoffer et al.
(2017) that training longer leads the large-batch method to generalize just as well as the small-batch
method because it had time to "catch up", even though the decrease in training loss may be barely
noticeable. We have also seen that SGD converges to margin maximizing solutions by Banburski
et al. (2019). Therefore, a method that is able to train or advance further, will also be closer to a
margin maximizing solution. We therefore expect that large-batch methods not having had enough
time to maximize margins is the driving force behind the large vs small-batch phenomenon.

(a) Batch Size: 256 (b) Batch Size: 4096 (c) Box-Plot

Figure 4: We plot both small-batch method (orange) and large-batch method (blue). In Figures
4a and 4b we plot the output margins against the Hessian trace for each datapoint. We observe a
strong relationship between the Hessian trace and the output margins. In Figure 4c we plot both the
histogram and box-plot and display the skewness (the third standardized moment) for both the large
and small-batch method’s margin distributions. We observe that the distribution of the small-batch
method is more left skewed which would indicate better generalizability independent of the flatness.
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5 BECOMING FLATTER WITH INCREASING MARGINS

Reparametrization problems such as shown by Dinh et al. (2017) are neither a new phenomenon
nor should they necessarily discourage the design of algorithms which attempt to find flat minima.
Rather they inform on what aspects of a generalization measure need to be adjusted to allow them to
be used in a practical setting. For SVMs, the problem of scaling the hyperplane normal to increase
margins of correctly classified points is solved by scaling the normal to make it a unit vector, trans-
forming the functional margin into the geometric margin (Shalev-Shwartz & Ben-David, 2014). In
the case of neural networks, it is also known that scaling the last layer leads to an increase in the
margins for data which has been correctly predicted (Neyshabur et al., 2017). This scaling issues
has been successfully addressed (see Bartlett et al. (2017); Elsayed et al. (2018); Jiang et al. (2018)).
Due to the relationship to the classification margins it is natural to ask if flatness suffers from a
similar problem. We confirm this with the following Proposition:
Proposition 5.1. For a given neural network φ let Tα : Θ → Θ be such that for all x ∈ X and
θ ∈ Θ we have φ(Tα(θ), x) = αφ(θ, x). Now assume that θ′ ∈ Θ and a datapoint (x′, y′) for which
argmaxk∈{1,...,C}(φ(θ, x′))k = y′ then

∀s, t ∈ {1, ..., dim(Θ)} lim
α→∞

∂θs∂θt`(φ(Tα(θ′), x′), y′) = 0. (1)

The proof is in the Appendix D. From the Proposition we immediately derive the following Corol-
lary:
Corollary 5.2. Assume that φ and θ predict every datapoint in a set D correctly then

∀s, t ∈ {1, ..., dim(Θ)} lim
α→∞

∂θs∂θtLD(Tα(θ)) = 0. (2)

Due to the Corollary, if a network has achieved full training accuracy, then the network is equivalent
under the Tα transformation to an arbitrarily flat network. We note that there exists such a Tα trans-
form for most networks. Scaling the last layer is one simple instance of such a transform. Another
is that for fully connected and convolutional networks with ReLU non-linearities we observe that
by the non-negative homogeneity scaling each layer also results in a valid Tα transformation. The
crucial property of the Tα map is that it does not change the relative order of the model outputs
and therefore, given two networks which have achieved full training accuracy we can not determine
which network should generalize better based solely on the flatness of the local-geometry. We note
that Banburski et al. (2019) mentioned such an issue but they did not discuss it in the context of flat
minima and their arguments relied on further structure which we believe is less illuminating than
our presentation and proofs.

6 CONCLUSIONS

In this paper, we have related flatness to the classification margins in a principled manner, in contrast
to other works that have made a more intuitive or less quantifiable connection (Huang et al., 2019;
Wang et al., 2018; Neyshabur et al., 2017; Petzka et al., 2020). Our results lead to the immediate
practical recommendation of using margins instead of the computationally expensive flatness to
assess generalizability. We also use our results to replace the misleading notion that small-batch
methods generalize better because they "escape" sharp minima, instead arguing that small-batch
methods have more time to maximize margins. We were also motivated by the flatness and margin
relationship to highlight that neural networks can be made arbitrarily flat. This implies that the
generalizability of two networks can not be distinguished based on flatness and hence needs to be
addressed to make flatness a viable generalization measure. Based on our results, future work may
assess whether flatness is an epiphenomenon of the optimization methods, because now recent work
on margins (e.g. Banburski et al. (2019); Soudry et al. (2018)) can be applied to reason about
flatness. Furthermore, by relating properties of the parameter space (flatness) to properties of the
input space (margin) there is now an opportunity to further explore results such as by Sagun et al.
(2017), where they found that the Hessian, with respect to the parameters of a neural network upon
convergence, has as many positive eigenvalues as the number of classes in the dataset used. Overall,
our results enable more principled discussion on how flatness may contribute to generalizability.
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A APPENDIX: NETWORK ARCHITECTURE AND DATASETS

A.1 NETWORK ARCHITECTURE

We implement the convolutional neural network LeNet-5 as described in LeCun et al. (1998). Our
fully connected neural network with batch normalized layers (FCNBN) is inspired by Keskar et al.
(2016). It has a 784-dimensional (MNIST) or 1024-dimensional (CIFAR10) input layer followed
by three batch-normalized Ioffe & Szegedy (2015) layers with ReLU non-linearities and a 10-
dimensional output layer.

A.2 DATASETS

Dataset # Training Points # Test Points Features # Classes
MNIST (LeCun et al., 1998) 60,000 10,000 28× 28 10
CIFAR10 (Krizhevsky et al., 2009) 50,000 10,000 32× 32 10

Table 2: The datasets used for this paper.

B APPENDIX: FLATNESS AND MARGIN CORRELATION

Here we present further evidence of the flatness and margin correlation discussed in Section 3. Like
in Section 3 we have used appropriate learning rates and batch sizes to get a reasonable performance
for the task, and have observed our results to hold for different hyperparameters. One instance where
we demonstrate two different batch-sizes is for the Fully Connected Network with Batch Normaliza-
tion on MNIST (Section B.1) where we present results for a batch size of 256 and 4096. We again
only consider 1,000 randomly selected datapoints from the training-set due to the computational
difficult of computing the Hessian trace. If the network achieves full training accuracy and there are
no incorrectly classified datapoints, we set the r-value to zero.

Overall, we observe the same results as in Section 3 and a correlation between 0.8 and 1. As before,
the correlation increases with increasing training accuracy for correctly predicted datapoints.

11



Under review as a conference paper at ICLR 2021

B.1 FULLY CONNECTED NETWORK WITH BATCH NORMALIZATION ON MNIST

B.1.1 BATCH SIZE: 256

(a) ACEHT to HT (b) SM Bound to HT (c) Training Accuracy

(d) Initialization (e) Step 5000 (f) Final Step (10,000)

B.1.2 BATCH SIZE: 4096

(a) ACEHT to HT (b) SM Bound to HT (c) Training Accuracy

(d) Initialization (e) Step 5000 (f) Final Step (10,000)

B.2 LENET ON CIFAR10

(a) ACEHT to HT (b) SM Bound to HT (c) Training Accuracy

(d) Initialization (e) Step 5000 (f) Final Step (10,000)
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B.2.1 FULLY CONNECTED NETWORK WITH BATCH NORMALIZATION ON CIFAR10

(a) ACEHT to HT (b) SM Bound to HT (c) Training Accuracy

(d) Initialization (e) Step 5000 (f) Final Step (10,000)

C APPENDIX: DERIVATIVES OF THE CROSS-ENTROPY LOSS

C.1 GENERAL FORM

For the general form we consider the cross-entropy loss for a predictor function which is scaled
by some scalar α. Specifically, we assume an arbitrary input-output pair (x, y) ∈ X × Y and will
compute the partial derivatives with respect to the parameters θ of the predictor function αφ(θ, x).
Since the equations can become very long we will declutter the notation by letting S = S(αφ(θ, x)),
φ = φ(θ, x) and for two d-dimensional vectors x, y ∈ Rd we write 〈x, y〉 =

∑d
i=1 xiyi. We also

denote elementwise multiplication by � and let Φ be a matrix such that (Φ)ij = φj .
Lemma C.1. The first partial derivative of the cross-entropy loss with respect to an element θi is:

∂θi`(αφ(θ, x), y) = −α(∂θiφy −
C∑
l=1

∂θiφlSl(φ))

= −α(∂θiφy − 〈∂θiφ, S〉).

Proof.
∂θi`(αφ, y) = ∂θi − log(Sy)

= − 1

Sy
∂θiSy (3)

With some manipulation we compute ∂θiSy:

∂θiSy =
∂θie

αφy∑C
k=1 e

αφk

− eαφy

(
∑C
k=1 e

αφk)2

C∑
l=1

∂θie
αφl

= α∂θiφy
eαφy∑C
k=1 e

αφk

− α eαφy∑C
k=1 e

αφk

C∑
l=1

eαφl∑C
k=1 e

αφk

∂θiφl

= Syα(∂θiφy −
C∑
l=1

∂θiφlSl). (4)

Combining Equations 3 and 4 we obtain Lemma C.1:

∂θi`(αφ, y) = −α(∂θiφy −
C∑
l=1

∂θiφlSl).
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Lemma C.2. The second partial derivative of the cross-entropy loss with respect to elements θs and
θt is:

∂θt∂θs`(αφ(θ, x), y) = −α(∂θt∂θsφy − 〈∂θt∂θsφ, S〉 − 〈∂θsφ, αS � (∂θtφ− (∂θtΦ)S)〉).

Proof. Differentiating the first order derivative given by Lemma C.1 we obtain by the multi-variable
chain rule:

∂θt∂θs`(αφ, y) = −α(∂θt∂θsφy − 〈∂θt∂θsφ, S〉 − 〈∂θsφ, ∂θtS〉). (5)

To compute ∂θtS in Equation 5 we use Equation 4 and obtain:

(∂θtS)i = ∂θtSi

= Siα(∂θtφi − 〈∂θtφ, S〉),

which after some simplification reduces to:

∂θtS(φ) = αS � (∂θtφ− (∂θtΦ)S). (6)

Combining Equations 5 and 6 we obtain Lemma C.2:

∂θt∂θs`(αφ, y) = −α(∂θt∂θsφy − 〈∂θt∂θsφ, S〉 − 〈∂θsφ, αS � (∂θtφ− (∂θtΦ)S)〉).

C.2 AFFINE CROSS-ENTROPY HESSIAN TRACE

We now present the proof of Proposition 3.1:

Proof. Throughout the proof we make use of Lemma C.2 and let α = 1. We also notice that any
second derivative with respect to φ((θ, b), x) is zero since φ is an affine classifier.

We first consider the derivatives with respect to elements of θ where we use θi,j to denote the element
in the ith row and jth column of the matrix θ. Notice that ∂θi,jφ = xjei which we write as xij . The
second order derivatives are given by:

∂θi,j∂θs,t`(φ, y) = 〈xst , S � (xij − xjSi1)〉
= −xt(Ss((xij)s − xjSi)),

when computing the trace we only compute the elements on the diagonal and hence we get:

∂θi,j∂θi,j `(φ, y) = xj(Si(xj − xjSi))
= x2jSi(1− Si)

Now we consider derivatives with respect to elements of b and notice that ∂biφ = ei. For the second
derivative we then get:

∂bi∂bj `(φ, y) = 〈ej , S � (ei − eiSi)〉
= δijSi(1− Si).

Finally, summing up the diagonal of the total Hessian we get:

Tr(H(l(Θ, x, y))) = (|x|2 + 1)(1−
∑
j

S2
j )

where we used the fact that
∑
i Si = 1.
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D APPENDIX: SCALING PROOF

To prove Proposition 5.1 we first prove the following lemma:
Lemma D.1. Assume that the argmax of φ is the correct class y and is unique then for k ∈ N, k ≥ 1
and i 6= y:

lim
α→∞

αkSi(αφ) = 0 (7)

Proof. Let y be such that φy = maxk∈{1,...,C}φk. For i 6= y we have:

lim
α→∞

αk
eαφi∑C
k=1 e

αφk

= lim
α→∞

αk

eα(φy−φi) +
∑C
k=1,k 6=y e

α(φk−φi)

= lim
α→∞

k!

(φy − φi)keα(φy−φi) +
∑C
k=1,k 6=y(φk − φi)keα(φk−φi)

where the last line follows from applying L’Hopital’s rule k times. Since we assumed that y is the
only y ∈ {1, ..., N} such that φy = maxk∈{1,...,N φk, we have that φk < φy for all k 6= y. Hence,
as α→∞ we have eα(φk−φy) → 0. Therefore:

lim
α→∞

k!eα(φi−φy)

(φy − φi)k +
∑C
k=1,k 6=y(φk − φi)keα(φk−φy)

= 0

We are now ready to prove Proposition 5.1:

Proof. We first show that the term −α2〈∂θiφ, S � (∂θtφ− 〈∂θtΦ, S〉)〉) always goes to zero. Ex-
panding we get:

α2

(
C∑
l=1

∂θiφl(Sl(∂θtφl −
C∑
k=1

∂θtφkSk))

)

= α2∂θiφySy(∂θtφl −
C∑
k=1

∂θtφkSk) + α2

 C∑
l=1,l 6=y

∂θiφl(Sl(∂θtφl −
C∑
k=1

∂θtφkSk))



We now show that each term in the sum goes to zero. Consider l 6= y:

|α2
C∑
k=1

∂θiφlSl(∂θtφl − ∂θtφkSk)| ≤ α2Sl

C∑
k=1

|∂θiφl(∂θtφl − ∂θtφkSk)|by the Triangle Inequality and 0 ≤ Sl ≤ 1

≤ α2SlC

We let M =
∑C
k=1 |∂θiφl(∂θtφl − ∂θtφkSk)| and note that M < ∞ for all 0 < α < ∞ since

0 ≤ Sk ≤ 1, ∂θiφl, ∂θtφl, ∂θtφk are constants, and it is a finite sum. By Lemma D.1 as α→∞ we
have α2SlC → 0 and hence α2

∑C
k=1 ∂θiφlSl(∂θtφl − ∂θtφkSk)→ 0.

We now consider l = y:

|α2∂θiφySy(∂θtφy −
C∑
k=1

∂θtφkSk)| ≤ α2|∂θiφy|Sy

|∂θtφy − ∂θtφySy)|+
C∑

k=1,k 6=y

|∂θtφkSk|
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α2|∂θtφy − ∂θtφySy)| = |∂θt |α2T |
∑C
s=1,s6=y e

αφs∑C
m=1 e

αφm

|

= |∂θt |α2
C∑

s=1,s 6=y

Ss since Ss > 0

and using similar arguments and Lemma D.1 follows that this term is zero in the limit.

It is also obvious that α2
∑C
k=1,k 6=y |∂θtφkSk| goes to zero.

We are left with showing that α(∂θt∂θiφy − 〈∂θt∂θiφ, S〉 goes to zero, this is only guaranteed when
y is the true label). We will use the same method as above:

|α(∂θt∂θiφy − 〈∂θt∂θiφ, S〉)| ≤ α(|∂θt∂θiφy − ∂θt∂θiφySy|+
C∑

l=1,l 6=y

|∂θt∂θiφlSl|)

and the result follows using again Lemma D.1.
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