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ABSTRACT

Recently, a series of works in computer vision have shown promising results on
various image and video understanding tasks using self-attention. However, due
to the quadratic computational and memory complexities of self-attention, these
works either apply attention only to low-resolution feature maps in later stages of
a deep network or restrict the receptive field of attention in each layer to a small
local region. To overcome these limitations, this work introduces a new global
self-attention module, referred to as the GSA module, which is efficient enough
to serve as the backbone component of a deep network. This module consists of
two parallel layers: a content attention layer that attends to pixels based only on
their content and a positional attention layer that attends to pixels based on their
spatial locations. The output of this module is the sum of the outputs of the two
layers. Based on the proposed GSA module, we introduce new standalone global
attention-based deep networks that use GSA modules instead of convolutions to
model pixel interactions. Due to the global extent of the proposed GSA module,
a GSA network has the ability to model long-range pixel interactions throughout
the network. Our experimental results show that GSA networks outperform the
corresponding convolution-based networks significantly on the CIFAR-100 and
ImageNet datasets while using less parameters and computations. The proposed
GSA networks also outperform various existing attention-based networks on the
ImageNet dataset.

1 INTRODUCTION

Self-attention is a mechanism in neural networks that focuses on modeling long-range dependencies.
Its advantage in terms of establishing global dependencies over other mechanisms, e.g., convolution
and recurrence, has made it prevalent in modern deep learning. In computer vision, several recent
works have augmented Convolutional Neural Networks (CNNs) with global self-attention modules
and showed promising results for various image and video understanding tasks (Bello et al., | 2019;
Chen et al.| 2018 |Huang et al.,[2019; |Shen et al., 2018} Wang et al., 2018} [Yue et al., |2018). For
brevity, in the rest of the paper, we refer to self-attention simply as attention.

The main challenge in using the global attention mechanism for computer vision tasks is the large
spatial dimensions of the input. An input image in a computer vision task typically contains tens
of thousands of pixels, and the quadratic computational and memory complexities of the attention
mechanism make global attention prohibitively expensive for such large inputs. Because of this,
earlier works such as Bello et al.| (2019); Wang et al.| (2018) restricted the use of global attention
mechanism to low-resolution feature maps in later stages of a deep network. Alternatively, other
recent works such as [Hu et al.| (2019); [Ramachandran et al.| (2019); [Zhao et al.| (2020) restricted
the receptive field of the attention operation to small local regions. While both these strategies are
effective at capping the resource consumption of attention modules, they deprive the network of the
ability to model long-range pixel interactions in its early and middle stages, preventing the attention
mechanism from reaching its full potential.

Different from the above works, Chen et al.|(2018)); Huang et al.|(2019); Shen et al.[(2018));|Yue et al.
(2018) made the global attention mechanism efficient by either removing the softmax normalization
on the product of queries and keys and changing the order of matrix multiplications involved in
the attention computation (Chen et al., 2018 |Shen et al.| 2018 [Yue et al., 2018) or decomposing
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one global attention layer into a sequence of multiple axial attention layers (Huang et al.| [2019).
However, all these works use content-only attention which does not take the spatial arrangement
of pixels into account. Since images are spatially-structured inputs, an attention mechanism that
ignores spatial information is not best-suited for image understanding tasks on its own. Hence, these
works incorporate attention modules as auxiliary modules into standard CNNss.

To address the above issues, we introduce a new global self-attention module, referred to as the
GSA module, that performs attention taking both the content and spatial positions of the pixels into
account. This module consists of two parallel layers: a content attention layer and a positional
attention layer, whose outputs are summed at the end. The content attention layer attends to all the
pixels at once based only on their content. It uses an efficient global attention mechanism similar to
Chen et al.| (2018)); [Shen et al.[(2018)) whose computational and memory complexities are linear in
the number of pixels. The positional attention layer computes the attention map for each pixel based
on its own content and its relative spatial positions with respect to other pixels. Following the axial
formulation (Ho et al.| 2019; |Huang et al.| 2019), the positional attention layer is implemented as a
column-only attention layer followed by a row-only attention layer. The computational and memory
complexities of this axial positional attention layer are O(N+/N) in the number of pixels.

The proposed GSA module is efficient enough to act as the backbone component of a deep network.
Based on this module, we introduce new standalone global attention-based deep networks, referred
to as global self-attention networks. A GSA network uses GSA modules instead of convolutions to
model pixel interactions. By virtue of the global extent of the GSA module, a GSA network has the
ability to model long-range pixel interactions throughout the network. Recently, Wang et al.| (2020)
also introduced standalone global attention-based deep networks that use axial attention mechanism
for both content and positional attentions. Different from Wang et al.| (2020), the proposed GSA
module uses a non-axial global content attention mechanism that attends to the entire image at once
rather than just a row or column. Our experimental results show that GSA-ResNet, a GSA network
that adopts ResNet (He et al., [2016)) structure, outperforms the original convolution-based ResNet
and various recent global or local attention-based ResNets on the widely-used ImageNet dataset.

MAJOR CONTRIBUTIONS

* GSA module: We introduce a new global attention module that is efficient enough to act as
the backbone component of a deep network. Different from Wang et al.| (2018); [Yue et al.
(2018); |Chen et al.| (2018); [Shen et al.| (2018)); [Huang et al.| (2019), the proposed module
attends to pixels based on both content and spatial positions. Different from |Zhao et al.
(2020); Hu et al.| (2019); Ramachandran et al.|(2019), the proposed module attends to the
entire input rather than a small local neighborhood. Different from Wang et al.| (2020), the
proposed GSA module uses a non-axial global content attention mechanism that attends to
the entire image at once rather than just a row or column.

* GSA network: We introduce new standalone global attention-based networks that use
GSA modules instead of spatial convolutions to model pixel interactions. This is one of
the first works (Wang et al.| (2020) being the only other work) to explore standalone global
attention-based networks for image understanding tasks. Existing global attention-based
works insert their attention modules into CNNs as auxiliary blocks at later stages of the
network, and existing standalone attention-based networks use local attention modules.

* Experiments: We show that the proposed GSA networks outperform the corresponding
CNNs significantly on the CIFAR-100 and ImageNet datasets while using less parame-
ters and computations. We also show that the GSA networks outperform various existing
attention-based networks including the latest standalone global attention-based network
of Wang et al.[(2020) on the ImageNet dataset.

2 RELATED WORKS

2.1 AUXILIARY VISUAL ATTENTION

Wang et al.| (2018) proposed the non-local block, which is the first adaptation of the dot-product
attention mechanism for long-range dependency modeling in computer vision. They empirically
verified its effectiveness on video classification and object detection. Follow-up works extended it to
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different tasks such as generative adversarial image modeling (Zhang et al., 2019; Brock et al.,|2019),
video person re-identification (Liao et al.l |2018), image de-raining (L1 et al., |2018) etc. Several
recent works focused on mitigating the high computational cost of [Wang et al.| (2018)). [Chen et al.
(2018); |Shen et al.| (2018)) utilized the associative property of matrix multiplication to reduce the
complexity from quadratic to linear. [Huang et al.| (2019) proposed to decompose global attention
into row attention and column attention to save resources.

Recently, a series of works (Sun et al.| 20195 |Carion et al.}[2020) have used Transformers (Vaswani
et al., 2017) for various computer vision applications. These works first use a deep CNN to extract
semantic features, and then use a Transformer to model interactions among the high-level semantic
features. For example, |Carion et al.|(2020) used a Transformer to model object-level interactions for
object detection, and [Sun et al.| (2019) used a Transformer to model inter-frame dependencies for
video representation learning.

All these methods use attention modules as auxiliary modules to enhance long-range dependency
modeling of a CNN, and relegate most of the feature extraction work to the convolution operation.
In contrast, a GSA network uses attention as the primitive operation instead of spatial convolution.

2.2 BACKBONE VISUAL ATTENTION

Bello et al.| (2019) were the first to test attention as a primitive operation for computer vision tasks.
However, they used the costly non-local block (Wang et al., 2018)) which prevented them from
fully replacing convolutional layers. Ramachandran et al.| (2019)), Hu et al.| (2019) and |Zhao et al.
(2020) solved this problem by limiting the receptive field of attention to a local neighborhood. In
contrast to these works, the proposed GSA network uses global attention throughout the network
and is still efficient. Recently, Wang et al.[(2020) used axial decomposition to make global attention
efficient. Different from them, the proposed GSA network uses a non-axial global content attention
mechanism which is better than axial mechanism as later shown in the experiments.

3 GLOBAL SELF-ATTENTION NETWORK

3.1 GLOBAL SELF-ATTENTION MODULE

Let F' €¢ RWHXdin and Fo ¢ RWHXdout | respectively, denote the (spatially) flattened input and
output feature maps of the proposed GSA module. Here, W, H represent the spatial dimensions,
and d;,, d,y,; represent the channel dimensions. Each pixel in the output feature map is generated
by aggregating information from every pixel in the input feature map based on their content and
spatial positions. Let K = [k;;] € RWHXde Q = [¢;;] € RVEXdk and V' = [v;;] € RWH Xdout
respectively denote the matrices of keys, queries, and values generated using three 1 X 1 convolutions
on the input feature map F. Here, d) denotes the number of channels used for keys and queries.
Each row in these matrices corresponds to one input pixel. The proposed GSA module (see Fig.
consists of two parallel layers: a content attention layer and a positional attention layer.

3.1.1 CONTENT ATTENTION LAYER

This layer uses the keys, queries, and values to generate new features F'¢ = | fj] € RWHxdou
using the following content-based global attention operation:
Fe=Q((p(K")V), (D

where K " denotes the matrix transpose of K, and p denotes the operation of applying softmax
normalization for each row separately. This attention operation can be interpreted as first aggre-
gating the pixel features in V' into dj global context vectors using the weights in p (K T), and
then redistributing the global context vectors back to individual pixels using the weights in (). The
computational and memory complexities of this operation are O(N) in the number of pixels.

This attention operation is similar to the attention operation used in (Chen et al.| (2018)); Shen et al.
(2018) except that it does not use softmax normalization on queries. Normalizing the queries con-
strains the output features to be convex combinations of the global context vectors. As these con-
straints could restrict the expressive power of the attention mechanism, we remove the softmax
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Figure 1: Proposed GSA module: The keys, queries, and values (generated using 1 x 1 convolutions)
are processed by the content attention and positional attention layers in parallel. The positional
attention layer is split into column-only and row-only positional attention layers, which use learned
relative position embeddings R° and R" as keys. Finally, the outputs of the content and positional
attention layers are summed to generate the output of the GSA module. Here, BN denotes batch
normalization (loffe & Szegedy,[2015)), and PA stands for positional attention.

normalization on queries. This allows the output features to span the entire subspace of the dj,
global context vectors. When we experimented with softmax normalization on the queries, the top-1
accuracy on the ImageNet validation dataset decreased significantly (1%).

3.1.2 POSITIONAL ATTENTION LAYER

The content attention layer does not take the spatial positions of pixels into account, and hence, is
equivariant to pixel shuffling. So, on its own, it is not best-suited for tasks that deal with spatially-
structured data such as images. Inspired by Bello et al.| (2019); Ramachandran et al.|(2019); |[Shaw
et al. (2018), we address this issue by using a positional attention layer that computes the attention
map for a pixel based on its own content and its relative spatial positions with respect to its neighbors.
For each pixel, our positional attention layer attends to its L x L spatial neighbors. Inspired by
the axial formulation (Ho et al.,|2019; [Huang et al.l [2019), we implement this attention layer as a
column-only attention layer followed by a row-only attention layer. In a column-only attention layer,
an output pixel only attends to the input pixels along its column, and in a row-only attention layer,
an output pixel only attends to the input pixels along its row. Note that a column-only attention layer
followed by a row-only attention layer effectively results in information propagation over the entire
L x L neighborhood.

Let A = {—£3%,.0,.., Z51} be a set of L offsets, and R® = [r§] € RF*? denote the matrix of
L learnable relative position embeddings corresponding to L spatial offsets § € A along a column.
Let VS = [Vatsp) € RE*dout be the matrix consisting of the values at the L column neighbors of
pixel (a,b). Let fS, denote the output of the column-only positional attention layer at pixel (a, b).
Then, our column-only positional attention mechanism, which uses the relative position embeddings
R as keys, can be described using

Jop = (QabRCT) b 2

where qq; is the query at pixel (a,b). Since each pixel only attends to L column neighbors, the
computational and memory complexities of this column-only positional attention layer are O(N L),
where N is the number of pixels. Similarly, a row-only positional attention layer with O(N L) com-
putational and memory complexities can be defined using L learnable relative position embeddings
R" = [r§] € REXdk corresponding to the L row neighbors. In the case of global axial attention,
the neighborhood spans the entire column or row resulting in O(N+/N) computational and memory
complexities.

The final output feature map of the GSA module is the sum of the outputs of the content and posi-
tional attention layers.

3.2 GSA NETWORKS

A GSA network is a deep network that uses GSA modules instead of spatial convolutions to model
pixel interactions. Table [I| shows how a GSA network differs from various recent attention-based
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Table 1: Properties of recent attention-based networks

Attention module

Method Global Content Positional Attention + CNN combination

‘Wang et al.|(2018)) v v

Chen et al.| (2018) v v Few attention modules are inserted in

Yue et al.| (2018) v N between residual blocks

Shen et al.|(2018) v v

Huang et al.|(2019) v v

Carion et al.| (2020) v v v Attention modules are added at the end

Sun et al.[(2019) v v v

Bello et al.|(2019) v v v Convolution layers are augmented with
attention modules in parallel

Hu et al.|(2019) v v

Ramachandran et al.|(2019) v v Convolution layers are replaced by

Zhao et al.|(2020) v v attention modules

Wang et al.| (2020) v v v

This work v v v

networks. All existing works except Wang et al.| (2020) either insert their attention modules into
CNNss as auxiliary blocks (Bello et al.,[2019;/Chen et al., 2018;|Huang et al.,|2019;|Shen et al., 2018;
‘Wang et al.,[2018}; Yue et al.;, 2018 |Carion et al., 2020; [Sun et al., 2019) at later stages of the network
or constrain their attention mechanism to small local regions (Hu et al.| | 2019; Ramachandran et al.,
2019; |Zhao et al., [2020). In contrast, a GSA network replaces spatial convolution layers in a deep
network with a global attention module and has the ability to model long-range pixel interactions
throughout the network. While [Wang et al.| (2020) also introduces a global attention module as an
alternative for spatial convolution, their module uses axial attention mechanism for both content and
positional attention. In contrast, the proposed GSA module uses a non-axial global content attention
mechanism that attends to the entire image at once rather than just a row or column.

3.3 JUSTIFICATIONS

The proposed GSA module uses a direct global attention operation for content attention and an axial
attention mechanism for positional attention.

Why not axial content attention? Axial attention is a mechanism that approximates direct global
attention with column-only attention followed by row-only attention. In the proposed global content
attention layer, two pixels (4, j) and (p, ¢) interact directly based only on their content. In contrast,
in a column-followed-by-row axial content attention layer, pixels (7, ) and (p,¢) would interact
through pixel (p, j), and hence, their interaction would be undesirably controlled by the content at
(p,j). Therefore, the proposed direct global attention is better than axial mechanism for content
attention. This is also verified by the experimental results in Table 2| which show that the proposed
GSA module that uses direct global content attention is significantly better than axial attention.

Why not direct global positional attention? It is important to attend to pixels based on relative
positions (instead of absolute positions) to maintain translation equivariance. In the case of content
attention, each pixel has a unique key, and hence, we can multiply keys and values first to make
the attention mechanism efficient. This is not possible in the case of positional attention since the
key at a pixel varies based on its relative position with respect to the query pixel. Hence, we use
axial mechanism to make positional attention efficient. While axial attention is not good for content
attention (as explained above), it is suitable for positional attention. The relative position between
pixels (¢, 7) and (p, q) is strongly correlated to the relative positions between pixels (i, j) and (p, j),
and between pixels (p, ¢) and (p, j). So, routing position-based interaction between (i, j) and (p, q)
through (p, j) works fine.
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Figure 2: Comparison between ResNet-{38, 50, 101} structure-based CNNs and GSA networks.
GSA networks clearly outperform CNNs while using less parameters, computations, and runtime.

4 EXPERIMENTS

Model Unless specified otherwise, we use GSA-ResNet-50, a network obtained by replacing all
3 X 3 convolution layers in ResNet-50 (He et al.| [2016) with the proposed GSA module. We use
an input size of 224 x 224, and for reducing the spatial dimensions, we use 2 x 2 average pooling
layers (with stride 2) immediately after the first GSA module in the second, third and fourth residual
groups. The number of channels for K, Q,V in each GSA module are set to be the same as the
corresponding input features. We use a multi-head attention mechanism (Ramachandran et al.,[2019;
Vaswani et al.,|2017) with 8 heads in each GSA module. The relative position embeddings are shared
across all heads within a module, but not across modules. All 1 x 1 convolutions and GSA modules
are followed by batch normalization (loffe & Szegedy, [2015).

Training and evaluation All models are trained and evaluated on the training and validation sets
of the ImageNet dataset (Russakovsky et al., 2015)), respectively. They are trained from scratch for
90 epochs using stochastic gradient descent with momentum of 0.9, cosine learning rate schedule
with base learning rate of 0.1, weight decay of 10~%, and mini-batch size of 2048. We use standard
data augmentations such as random cropping and horizontal flipping. Following recent attention-
based works (Ramachandran et al.l [2019; [Zhao et al., 2020; |[Wang et al., 2020), we also use label
smoothing regularization with coefficient 0.1. For evaluation, we use a single 224 x 224 center
crop. While computing FLOPs, multiplications and additions are counted separately. For reporting
runtime, we measure inference time for a single image on a TPUv3 accelerator.

4.1 COMPARISON WITH THE CONVOLUTION OPERATION

Figure [2| compares ResNet-{38,50,101} structure-based CNNs and GSA networks. The GSA net-
works outperform CNNss significantly while using less parameters, computations and runtime. These
results clearly shows the superiority of the proposed global attention module over the widely-used
convolution operation. With increasing popularity of attention-based models, we hope that hardware
accelerators will be further optimized for attention-based operations and GSA networks will become
much more faster than CNNs in the near future.

4.2 COMPARISON WITH AXIAL ATTENTION

The GSA module uses a global content attention mechanism that attends to the entire image at once.
To validate the superiority of this attention mechanism over axial attention, in Table 2] we compare
the proposed GSA module with a global attention module that attends based on both content and
positions similar to Ramachandran et al.| (2019) but in an axial fashion. The GSA module clearly
outperforms the axial alternative. Also, the performance of our axial positional attention alone is
comparable to the axial attention that uses both content and positions suggesting that axial mecha-
nism is not able to take advantage of content-only interactions (see Section [3.3|for justification).
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Table 2: Comparison of the proposed GSA module with axial attention

Attention module Top-1acc. Top-5acc. Parameters FLOPs Runtime
Proposed GSA module 78.5 93.9 18.1 M 72G  31.7ms
Axial content and positional attention 71.5 93.6 18.1 M 73G  325ms
Only axial positional attention 77.4 93.5 16.8 M 64G 282ms

Table 3: Comparison of GSA networks (3 x 3 convolutions replaced with GSA modules) with recent
attention-based approaches. Note that |\Wang et al.| (2020) is the conv-stem version since GSA-Net
uses a conv stem. M-ResNet-50 is a modified ResNet-50 which halves the number of input and
output channels of all residual blocks and scales the number of filters in every layer by 1.125

Structure Method Top-1acc. Top-5acc. Params FLOPs Runtime
ResNet-50 Chen et al.|(2018) 77.0 93.5 - - -
Shen et al.| (2018) 71.3 93.6 262M 99G -
Hu et al.|(2019) 71.3 93.6 233M 8.6G -
Ramachandran et al.|(2019) 77.6 - 18.0M 70G 1319 ms
Yue et al.[(2018) 77.7 93.6 - - -
Bello et al.| (2019) 71.7 93.8 258M 83G 34.9 ms
Zhao et al.[(2020) 78.2 939 205M 6.6 G -
This work 78.5 939 18.1M 72G 31.7 ms
ResNet-101 Hu et al.| (2019) 78.5 943 420M 160G -
Bello et al.|(2019) 78.7 944 454M 161G  619ms
This work 79.6 945 304M 122G 57.2 ms
M-ResNet-50  |Wang et al.[(2020) 71.5 - 124M 56G 41.4 ms
This work 78.2 939 127M 6.0 G 31.1 ms

4.3 COMPARISON WITH EXISTING ATTENTION-BASED APPROACHES

Table [3|compares GSA networks with recent attention-based networks. The GSA networks achieve
better performance than existing global and local attention-based networks while using similar or
less number of parameters and FLOPs, except when compared to [Zhao et al.| (2020); |[Wang et al.
(2020) which use slightly fewer FLOPs. Compared to local attention-based works (Hu et al.| [ 2019;
Ramachandran et al.,|2019;|Zhao et al.,[2020), the proposed GSA network takes advantage of global
attention throughout the network and produces better results. Compared to |Shen et al.| (2018); |Yue
et al.| (2018)); Bello et al.| (2019); |Chen et al.| (2018)) which insert a few attention modules as auxil-
iary blocks into a CNN, the proposed GSA network uses global attention through out the network.
Compared to|Wang et al.|(2020), the proposed GSA network uses a non-axial global content atten-
tion which is better than axial mechanism. To report runtime for other methods, we measure single
image inference time on a TPUv3 accelerator using the code provided by the corresponding authors.

4.4 ABLATION STUDIES
4.4.1 IMPORTANCE OF INDIVIDUAL COMPONENTS

As described in Section 3] a GSA module consists of three components: a content attention layer,
a column-only positional attention layer, and a row-only positional attention layer. Table [4| shows
the results for different variants of the proposed GSA module obtained by removing one or more
of its components. As expected, the module with all three components performs the best and the
content-only attention performs poorly (7.7% drop in the top-1 accuracy) since it treats the entire
image as a bag of pixels. This clearly shows the need for positional attention that is missing in
many existing global attention-based works (Chen et al., [2018; Wang et al., 2018} |Yue et al.,[2018).
Interestingly, for positional attention, column-only attention performs better than row-only attention
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Table 4: Comparison of different variants of Table 5: Effect of replacing convolutions with
the proposed GSA module GSA modules (indicated using v') at different
Attention component Accuracy stages of ResNet-50
Content Col. Row Top-1 Top-5 Residual group Accuracy

v v v 78.5 93.9 1 2 3 4 Top-1 Top-5 Runtime

v v 77.4 935 v v v v 78.5 93.9 31.7ms

v v 76.2 92.7 v v Vv 78.7 94.1 28.5ms

v v 75.4 902 v v 78.5 94.1 245ms

v 77.7 93.7 232 ms

v 72.6 90.8
v 70.2 89.4 ResNet-50 CNN 76.9 93,5 22.6ms
v 70.8 89.5 ResNet-101 CNN 78.7 944 393 ms

(row3 vs row4 and row5 vs row6) suggesting that modeling pixel interactions along the vertical
dimension is more important than the horizontal dimension for categories in the ImageNet dataset.

4.4.2 WHERE IS GLOBAL ATTENTION MOST HELPFUL?

Our default GSA-ResNet-50 replaces spatial convolution with the proposed global attention module
in all residual groups of ResNet-50. Table[5|shows how the performance varies when global attention
replaces spatial convolution only in certain residual groups. Starting from the last residual group, as
we move towards the earlier stages of the network, replacing convolution with attention improves
the performance consistently until the second residual group. Replacing convolutions in the first
residual group results in a slight drop in the performance. These results show that the global attention
mechanism is helpful throughout the network except in the first few layers. This is an expected
behavior since the first few layers of a deep network typically focus on learning low-level features.
It is worth noting that by replacing convolutions with the proposed GSA modules in the second, third
and fourth residual blocks of ResNet-50, we are able to achieve same top-1 accuracy as convolution-
based ResNet-101 while being significantly faster.

4.5 RESULTS ON CIFAR-100 (KRIZHEVSKY & HINTON, 2009)

Similar to the ImageNet dataset, the proposed GSA networks outperform the corresponding CNNs
significantly on the CIFAR-100 dataset while using less parameters, computations, and runtime.
Improvements in the top-1 accuracy with ResNet-{38, 50, 101} structures are 2.5%, 2.7% and 1.6%,
respectively. Please refer to Fig. [3|and Table [f]in the Appendix for further details.

5 CONCLUSIONS

In this work, we introduced a new global self-attention module that takes both the content and
spatial locations of the pixels into account. This module consists of parallel content and positional
attention branches, whose outputs are summed at the end. While the content branch attends to all the
pixels jointly using an efficient global attention mechanism, the positional attention branch follows
axial formulation and performs column-only attention followed by row-only attention. Overall, the
proposed GSA module is efficient enough to be the backbone component of a deep network. Based
on the proposed GSA module, we introduced GSA networks that use GSA modules instead of
spatial convolutions. Due to the global extent of the proposed GSA module, these networks have the
ability to model long-range pixel interactions throughout the network. We conducted experiments
on the CIFAR-100 and ImageNet datasets, and showed that GSA networks clearly outperform their
convolution-based counterparts while using less parameters and computations. We also showed that
GSA networks outperform various recent local and global attention-based networks. In the near
future, we plan to extend this work to other computer vision tasks.
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A CIFAR-100 EXPERIMENTS

All the models are trained and evaluated on the training and test splits of CIFAR-100, respectively.
They are trained for 10K steps starting from ImageNet pretrained weights using stochastic gradient
descent with momentum of 0.9, weight decay of 10—, and mini-batch size of 128. We use an initial
learning rate of 5 x 103 and reduce it by a factor of 10 after every 3K steps. For both training and
evaluation, we use 224 x 224 input images.

Fig. [3| compares ResNet-{38,50,101} structure-based CNNs and GSA networks on the CIFAR-100
dataset. Similar to ImageNet results, GSA networks outperform CNNs significantly on the CIFAR-
100 dataset while using less parameters, computations, and runtime. Table[§|reports all the numbers
corresponding to the plots in Fig. 2]and Fig. 3]
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Figure 3: Comparison between ResNet-{38, 50, 101} structure-based CNNs and GSA networks.
GSA networks clearly outperform CNNs while using less parameters, computations, and runtime.
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Table 6: Comparison between CNNs and GSA networks

ImageNet CIFAR-100
Structure Operation Top-1 acc.  Top-5 acc. Top-1acc. Params FLOPs Runtime
ResNet-38 Convolution 75.9 92.9 80.8 19.6M 64G 17.2ms
GSA (+1.9)77.8 93.6 (+2.5)833 142M 59G 247 ms
ResNet-50  Convolution 76.9 93.5 812 256M 82G 22.6ms
GSA (+1.6) 78.5 939 (+2.7)839 18.1M 72G  31.7ms
ResNet-101  Convolution 78.7 94.4 828 445M 156G 393 ms
GSA (+0.9) 79.6 945 (+1.6)844 304M 122G 572ms

B MATHEMATICAL IMPLEMENTATION DETAILS

This section presents mathematical implementation details of the Global Self-Attention (GSA) mod-
ule to supplement the high-level description in Section 3 of the paper.

For conciseness and better resemblance of the actual implementation, this section uses the Einstein
notatiorﬂ Note that both TensorFlow |Abadi et al.| (2015) and PyTorch |Paszke et al.| (2019) pro-
vide direct support for the Einstein notation, through tf.einsum() and torch.einsum(),
respectively. Therefore, there are direct TensorFlow/PyTorch transcriptions for all equations in this
section.

Assume the input X is a rank-3 tensor of shape h x w X d, for h the height, w the width, and d the
number of channels.

KQV layer The first step is to compute the keys K, queries (), and values V from X using 3
separate 1 x 1 (i.e. point-wise) convolution layers. Then, the module splits K, Q,V each into n
equal-size slices along the channel dimension for the n attention heads. An efficient implementation
fuses the two steps into

Krynk = W,;ffk)Xxyd;

Quynie = WiH Xaya, (3)
Vigno = Win) Xaya,

where W) W (@) W (V) are the corresponding weights, x, i are the spatial dimensions, n is the
head dimension, and d, k, v are the channels dimensions for the input, the keys and queries, and the
values, respectively.

Content attention As Section 3 of the paper describes, within each head the module uses matrix
multiplication to implement content attention. The actual implementation parallelizes the process
across all heads by computing

K = o(K),
anv = Kwynkvanlh (4)
Ya:Cynv = Qa:ynkcnlmn

where o represents softmax along the spatial dimensions (z, y).

Positional attention The positional attention layer consists of a column-only attention sub-layer,
a batch normalization layer, and a row-only attention sub-layer. Since the column-only and row-
only sub-layers are symmetric, this section only presents the implementation for the column-only
sub-layer.

"The Einstein notation is a compact convention for linear algebra operations Albert Einstein devel-
oped. https://en.wikipedia.org/wiki/Einstein_notation|provides a reference. https:
//ajcr.net/Basic-guide-to-einsum/ gives an intuitive tutorial.
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The layer maintains a relative position embedding matrix R € R(*~1*k for h, the image height
and k the number of channels. Each of the 2h — 1 rows corresponds to a possible vertical relative
shift, from —(h — 1) to h — 1. The first step is to re-index this matrix from using relative shifts to
absolute shifts. To achieve this goal, the module creates a re-indexing tensor I where

Liir=1 ifi—ax=r & |i—2| <L,
I;;r =0, otherwise,

(&)

where L is the maximum relative shift to attend to. The default version of GSA sets L = max{h, w}
so that the positional attention is global.

Then, the module computes the position embedding tensor whose indices are the absolute shifts as

Pxik = IzirRrk- (6)

Now, the output of the column-only attention sub-layer is

Smyin = Qa:ynkpzika
H
Y, = Sa:yin‘/iynﬂw

TYynv

)

After obtaining Y, the module applies batch normalization to it and uses it as the input to the
row-only sub-layer to generate YV as the final output of the positional attention layer.

Final fusion After computing the outputs of the content and positional attention layers, the final
output is simply
V=Y%+v". ®)

Comparison to competing approaches The implementation of the GSA module only consists of
8 Einstein-notation equations and 5 other equations, each of which corresponds to one line of code
in TensorFlow or PyTorch. The implementation is substantially simpler in comparison to competing
approaches Ramachandran et al.| (2019); |Zhao et al.| (2020) using local attention which requires
custom kernels.
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