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ABSTRACT

Visually-rich document information extraction (VIE) is a vital aspect of document
understanding, wherein Semantic Entity Recognition (SER) plays a significant
role. However, the study of few-shot SER on visually-rich documents remains
largely unexplored despite its considerable potential for practical applications. To
address this issue, we propose a simple yet effective Plug-and-Play Tag-guided
method for few-shot Semantic Entity Recognition (PPTSER) on visually-rich
documents. PPTSER is a pluggable method building upon off-the-shelf multi-
modal pre-trained models. It leverages the semantics of the tags to guide the SER
task. In essence, PPTSER reformulates SER into entity typing and span detection,
handling both tasks simultaneously via cross-attention. Experimental results illus-
trate that PPTSER outperforms fine-tuning baseline and existing few-shot meth-
ods, especially in low-data regimes. With full training data, PPTSER achieves
comparable or superior performance to fine-tuning baseline. Specifically, on the
FUNSD benchmark, our method improves the performance of LayoutLMv3 in
1-shot, 3-shot and 5-shot scenarios by 15.61%, 2.13%, and 2.01%, respectively.
On the XFUND-zh benchmark, it improves the performance of LayoutLMv3 by
3.73%, 6.16%, and 4.01%, respectively. Overall, PPTSER demonstrates promis-
ing generalizability, effectiveness, and plug-and-play nature for few-shot SER on
visually-rich documents. The codes will be available.

1 INTRODUCTION

Information extraction from visually-rich documents (VIE) is a process that concentrates on extract-
ing pertinent information from various sources such as scanned images, documents, and PDF files.
It effectively leverages layout and visual cues to decode the content enclosed within these documents
(Xu et al., 2020). As an important part of VIE, Semantic Entity Recognition (SER) aims to extract
entity spans from the visually-rich document. SER has been hailed as a significant advancement in
the realm of document intelligence, and it has found widespread applications in numerous sectors.

Historically, the development of SER heavily relied on heuristic algorithms (Simon et al., 1997;
Schuster et al., 2013). However, the advent of multi-modal pre-trained models (Xu et al., 2020; Li
et al., 2021c; Gu et al., 2021; Huang et al., 2022b; Yu et al., 2023) has ushered in a rapid evolution
in SER methodologies. These models, pre-trained on a large corpus of scanned documents in a
self-supervised manner, have significantly enhanced the comprehension ability of SER.

Despite the remarkable achievements of the multi-modal pre-trained models, they often rely on
extensive data for fine-tuning. However, acquiring a large volume of well-annotated SER data poses
significant challenges such as: (1) Acquiring such data necessitates substantial financial resources
and time. Annotators are required to label a multitude of OCR detection boxes in the document,
adhering to meticulously designed guidelines. Identification of content within a box and accurately
assigning labels to them are also tedious tasks. (2) The availability of data is often restricted due
to privacy concerns. In scenarios involving sensitive information, such as invoices and insurance
documents, data accessibility is severely limited due to the confidential nature of this information.

Despite the scarce research (Cheng et al., 2020; Yao et al., 2021; Wang & Shang, 2022) on few-shot
Semantic Entity Recognition for visually-rich documents (few-shot SER), results have shown limi-
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Figure 1: (a) The illustration of the traditional fine-tuning method, where Doc. Tok. refers to Doc-
ument Tokens. (b) The overview of our PPTSER method. PPTSER replaces the last self-attention
block with an improved attention block, which has less modules and parameters. And it eliminates
the need for an extra classifier layer compared to traditional fine-tuning.

tations in terms of generality and performance, and were limited to the specific application scenario.
This paper, inspired by the comprehension capabilities of pre-trained models and the selective focus
nature of the attention mechanism, introduces a novel approach called PPTSER, a Plug-and-Play
Tag-guided method for few-shot Semantic Entity Recognition on visually-rich documents. The
underlying principle of PPTSER consists of two main components: (1) Semantic Understanding
and Alignment: Words related to SER tags are used as a prompt and are concatenated with the
document’s text tokens. This combined input is then fed into a multi-modal pre-trained model. The
motivation behind is that the pre-trained model is expected to understand the semantics of both the
document tokens and the tag-related prompt, thereby bringing the hidden states of the tokens and
tag-related words for a specific entity type closer together. (2) A New Improved Attention Mech-
anism: The attention weight obtained from the last attention block between the tag-related prompt
and document tokens is directly used as the probability of tokens belonging to different tags. Differ-
ent heads of the attention mechanism could identify different spans, which is perfectly suited for the
SER task that deals with numerous entity spans. By fully exploiting the weighted focus nature of the
attention mechanism, the model eliminates the value transform layer, feed-forward layer in the last
attention block, and does not require a separate classifier layer compared to traditional fine-tuning
methods (as depicted in Figure 1), As a result, the total parameter is reduced.

Extensive experiments are conducted to show the effectiveness of PPTSER on several commonly-
used SER benchmarks, which cover multiple languages, under different few-shot and the full train-
ing settings, and with different mainstream multi-modal pre-trained models.

The main contributions of this paper can be summarized as follows:

• We introduce PPTSER, a simple yet powerful plug-and-play tag-guided approach for few-
shot SER. To the best of our knowledge, we are the first to propose a pluggable method that
has demonstrated effectiveness on various pre-trained models and languages.

• Through the efficient utilization of the built-in self-attention mechanism within the pre-
trained model, our method demonstrate advantages in terms of parameters to some degree,
as compared to the traditional fine-tuning approaches.

• Experimental results show the superiority of our method over the traditional fine-tuning ap-
proaches in both few-shot and full-training-set scenarios. Moreover, PPTSER outperforms
existing few-shot SER methods, thereby highlighting its overall efficacy.

2 RELATED WORKS

SER on Visually-rich Documents. The majority of research on SER focused on neural network
based methods. While some early works leveraged textual features (Chiu & Nichols, 2016), image
features (Guo et al., 2019), or combined them with layout features (Yu et al., 2021; Wang et al.,
2021a) to address this issue, the emergence of multi-modal pre-trained models has revolutionized
SER. These models are jointly pre-trained on a large scale unlabeled document dataset with textual,
layout and even visual cues, so they have potentials to better understand a structured document.
LayoutLM (Xu et al., 2020) was the first to combine textual and positional features of OCR boxes
during the pre-training stage. Later, LayoutLMv2 (Xu et al., 2021a) and LayoutLMv3 (Huang et al.,
2022b) further integrated visual features into the pre-training process using different architectures.
Moreover, Wang et al. (2022a) advanced the model architecture with a language-agnostic layout
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transformer in their work, LiLT. Alongside the advancements in model structures, other works (Ap-
palaraju et al., 2021; Li et al., 2021b;a; Hong et al., 2022; Luo et al., 2023) have focused on the
various pre-training tasks to facilitate the fusion of textual, layout, and visual image features at pre-
training stage. While these advancements have improved SER capabilities to some extent, their
few-shot learning abilities are yet to be thoroughly explored and understood.

Few-shot SER on Visually-rich Documents. Unlike SER, few-shot SER is not fully explored
yet. Cheng et al. (2020) proposed a solution inspired by graph-matching techniques (Zanfir &
Sminchisescu, 2018). They represented documents as graphs, with each node corresponding to
an OCR-scanned box. For an unseen document, the type for entities was determined by comparing
the relationships in the graph of unseen document with those in the graphs of support documents.
Yao et al. (2021) also adopt a graph-matching approach to tackle this challenge. However, the type
of entities was determined based on the relationships in different forms with more complex solvers.
Taking a different way, Wang & Shang (2022) introduced a novel labeling scheme for SER. They
reshaped SER as a generative task, and used LayoutReader (Wang et al., 2021b) to generate SER
labels by predicting the next token. Although these studies preliminary explored few-shot SER, they
lacked generality and plug-and-play adaptability, and their performances in general scenes require
further exploration and improvement.

Few-shot NER in Plain Texts. While few-shot SER on visually-rich documents has only seen
limited exploration, there has been extensive research on few-shot Named Entity Recognition (NER)
in plain texts (Wang et al., 2022b; Das et al., 2022; Ma et al., 2022a; Cheng et al., 2023). However,
only a few of these studies have considered the scenario where only limited data in the target domain
is available. Huang et al. (2022a) proposed using the NER tag as a prompt and employing contrastive
learning to address this issue. On the other hand, Ma et al. (2022b) reformulated few-shot NER as a
Language Modeling task and used the pre-trained Masked Language Model head to predict a word
that is related to the entity type for each token in the text. These works solely relied on textual
information to tackle the NER problem, making them potentially unsuitable for the SER task, which
often involves visually-rich documents. Moreover, they primarily addressed NER in sentences with
few entity spans, while SER aims to extract entities from an entity-rich document with multiple text
lines. In addition, their performance on multiple languages remains unexplored.

3 METHOD

3.1 TASK FORMULATION

SER is usually formulated as a sequence labeling task. For given tokens from the document x =
[xi], i = 1, 2, ..., n, SER aims to assign a label yi ∈ C for each token xi, where C is the SER label
space. Subsequently, entity spans would be analyzed from the labeled tokens according to a specific
scheme, such as BIO (Ramshaw & Marcus, 1995) and IO (Tjong Kim Sang & De Meulder, 2003).

In this paper, we primarily focus on the In-Label-Space setting for few-shot SER. Specifically, the
multi-modal model pre-trained is firstly fine-tuned on a small number of M annotated documents,
denoted as Dtrain, with label space C. After fine-tuning, the model is directly evaluated on a test set
Dtest with the same label space C as Dtrain. This task presents a significant challenge as the model
needs to learn the SER task with only a limited number of training samples.

It is crucial to note that in the context of few-shot SER, the few-shot setting of N-way K-shot in-
dicates that there are K documents containing entities of a specific type across N categories, as
visually-rich documents are annotated at document level. Furthermore, a single document often con-
tains entity spans of distinct types, leading to potential overlaps between the support sets for different
entity types across N categories. Consequently, the number of annotated documents M < N ×K.

3.2 PPTSER

The fundamental concept and flow chart of PPTSER is shown in Figure 2. The method begins
with the construction of a prompt based on SER tags. This prompt is then concatenated with the
document tokens and jointly encoded using a unified pre-trained model. Within the transformer
architecture of our model, attention weights between document tokens and the tag-related prompt
are computed in hierarchical attention blocks. We use the attention weight between the tag-related

3



Under review as a conference paper at ICLR 2024

�̃�ଵ
�̃�ଶ
…
�̃�

𝑥ଵ 𝑥ଶ 𝑥ଷ … 𝑥

Ground
Truth

MaxPool &
Slice

Loss

𝑥ଵ
𝑥ଶ
𝑥ଷ
…
𝑥
�̃�ଵ
�̃�ଶ
…
�̃�

𝑥ଵ 𝑥ଶ 𝑥ଷ … 𝑥 �̃�ଵ �̃�ଶ … �̃�

Multi-head Self-attention

𝒙𝒊: tokens from the document

𝒄𝒋: label type for the SER task

𝒄: prompt related to the type 𝒄𝒋

𝑯𝒕ି𝟏:hidden states from the 
second last block

𝒄𝟏,  𝒄𝟐 , … , 𝒄𝒎𝒙𝟏,  𝒙𝟐 ,𝒙𝟑, … ,𝒙𝒏

Hierarchical Attention Blocks

Other Embeddings⨁

Positional Embedding


Other Embeddings

Text 
Embedding

Multi-modal Pre-trained Model



Matrix 
Multiplication

Query Key

The Last Attention Block

Transform 
Layer

𝑯𝒕ି𝟏

Transform 
Layer

Cutline

Figure 2: The overall architecture of PPTSER. The presence and format of Other Embeddings vary
depending on the pre-trained model type. In this architecture, the tokens extracted from documents
and the tag-related prompt are concatenated and subsequently encoded with the pre-trained model.
The attention weight, obtained from the last attention block between tokens and the prompt, is then
used to ascertain whether the tokens correspond to the respective label type.

prompt and document tokens, which can be considered as a form of cross-attention, obtained from
the last attention block as the probability distribution of tokens belonging to different SER entity
types. Finally, the loss between the cross-attention weight and the ground truth is calculated, which
is used to train and optimize the model.

3.2.1 TAG-RELATED PROMPT CONSTRUCTION AND TARGET GENERATION

For an SER task with the label space C, we need to construct tag-related words c̃i for each ci ∈ C,
and then the tag-related prompt C̃ = {c̃i}, i = 1, 2, ...m is built. In PPTSER, we simply use the tag
names as the tag-related words.

To ensure consistency with other traditional fine-tuning methods and enable PPTSER to accu-
rately identify the boundaries of entity spans, we employ BIO tagging scheme in our method.
However, when dealing with an SER task involving entity types E = {ei|e0 = Other}, i =
0, 1, 2, ...,m (where Other represents the entities that are not of interest), the label space would
be C = {e0, Bei , Iei}, and the prompt would be C̃ = {e0, beginning of ei, inner of ei}, where
i = 1, 2, ...,m. In such scenario, the prompt C̃ becomes not only semantically redundant but also
excessively long, potentially impeding the effective semantic learning of the document tokens.

Therefore, we propose a reframing of the SER task with a BIO tagging scheme into two separate
tasks: entity typing and span detection. Entity typing focuses on assigning an entity type for each
token in the document, while span detection aims to identify whether tokens are at the beginning or
interior of an entity span.

To further clarify, let’s consider an SER task using BIO tagging scheme with a predefined entity
type set E = {ei|e0 = Other}, i = 0, 1, 2, ...,m. For entity typing, the label space and the tag-
related prompt would be Cent. = {cent.i |cent.i = ei} and C̃ent. = {c̃ent.i |c̃ent.i = cent.i },where i =
0, 1, 2, ...,m; And for span detection, the label space and the prompt would be Cdet. = {cdet.1 , cdet.2 }
and C̃det. = {c̃det.1 , c̃det.2 }, where Cdet. = C̃det. = {beginning, inner}; Then the full label space
and the full tag-related prompt would be C = Cent.∪Cdet. = {cent.i , cdet.j } and C̃ = C̃ent.∪C̃det. =

{c̃ent.i , c̃det.j }, where i = 0, 1, 2, ...,m; j = 1, 2. For a token with an entity type of ei(i ̸= 0) located
at the beginning/inner of an entity span, the corresponding labels would be ci for entity typing
and beginning/inner for span detection. However, for the token with an entity type of Other, we
assign −1 as the span detection label, indicating that the specific location of it within an entity span is
irrelevant and the loss for span detection is ignored here. Consequently, we can formulate the entity
typing target yent. = [yent.i ] and the span detection target ydet. = [ydet.i ], where i = 1, 2, ..., n.
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Figure 3: (a) PPTSER at training stage. Losses of entity typing and span detection are computed sep-
arately and then combined for the overall loss calculation. (b) PPTSER at inference stage. Grouped
predictions of entity typing and span detection are utilized to analyse the entity spans.

It is worth emphasizing that while entity typing and span detection are distinct tasks, our PPTSER
framework handles them simultaneously. And prompts for them C̃ent. and C̃det. are encoded in
parallel, allowing them to benefit from each other during the learning process.

3.2.2 CROSS-ATTENTION WITHIN THE PRE-TRAINED MODEL

Once the tag-related prompt C̃ is constructed, it is concatenated with the document tokens x =
[xi], i = 1, 2, ..., n, forming the encoder input x′ = x

⊕
C̃ = [xi, c̃

ent.
j , c̃det.k ], i = 1, 2, ..., n; j =

0, 1, 2, ...,m; k = 1, 2. Then, x′ is encoded in the pre-trained model. Let’s denote the hidden states
from the second last block as Ht−1:

Ht−1 = [ht−1
i , h̃t−1

j , h̃t−1
k ] (1)

where ht−1
i , h̃t−1

j , h̃t−1
k are the hidden states for x, C̃ent., C̃det., correspondingly.

Then, Ht−1 is partitioned into multiple segments Ht−1
i along the channel dimension, where queries

Qt
i as well as keys Kt

i of head i are transformed. Here, i = 1, 2, ..., l represents different heads for
the attention mechanism. And the self-attention weight of different heads is computed as follows:

(W t
i )att. = Qt

i(K
t
i )

T (2)
where (W t

i )att. is a matrix with the shape of (n+m+3)×(n+m+3). From this matrix, we extract
a sub-matrix (W t

i )
′

att. that takes the prompt as queries and the document tokens as keys, which
possesses the shape of (m+3)× n. (W t

i )
′

att. can be viewed as a form of cross-attention within the
self-attention, which depicts the relationship between the tag-related prompt and document tokens.

We hypothesize that distinct heads of the attention mechanism enable the prompt to focus on distinct
entity spans, which is suitable for the entity-rich scenario in visually-rich documents. We select the
maximum weight across heads to get a summary relationship between the prompt and tokens:

(W t)
′

att. = max
i∈{1,2,...,l}

(W t
i )

′

att. (3)

Further, (W t)
′

att. is partitioned into two components, namely (W t)ent.att. and (W t)det.att. as shown in
Figure 3(a). These components use the hidden states of C̃ent. and C̃det. as queries, and possess the
shape of (m+1)×n and 2×n, correspondingly. (W t)ent.att. and (W t)det.att. represent the probability
distribution for document tokens belonging to distinct tags. The loss is then calculated as follows:

Loss = Lent. + αLdet.

= [− 1

n

n∑
i=1

exp(went.
pi )∑m

j=0 exp(w
ent.
ji )

] + α[− 1

n

n∑
i=1

exp(wdet.
qi )∑2

j=1 exp(w
det.
ji )

]
(4)

where Lent. and Ldet. are the losses for entity typing and span detection, went.
ij and wdet.

ij are ele-
ments in (W t)ent.att. and (W t)det.att. , and yent.i = cent.p , ydet.i = cdet.q . Besides, α is the ratio factor to
balance the losses, and we set α = 0.1 for models with segment-level positional embeddings and
α = 1.5 for models with word-level positional embeddings.

3.2.3 DECODING DURING THE INFERENCE STAGE

The inference stage is shown in Figure 3(b). We first apply the argmax operation on (W t)ent.att. and
(W t)det.att. along distinct prompt words to get the predicted tag with the highest probability:

ŷent.i = argmax
j∈{0,1,2...,m}

went.
ji (5)
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ŷdet.i = argmax
j∈{1,2}

wdet.
ji (6)

Then the prediction with BIO tagging scheme ŷ = {ŷi}, i = 1, 2, ..., n is formulated as follows:

ŷi =


Bŷent.

i
, ŷent.i ̸= Other, ŷdet.i = beginning

Iŷent.
i

, ŷent.i ̸= Other, ŷdet.i = inner

Other , ŷent.i = Other

(7)

Finally, the entity spans are analysed from ŷ according to the BIO tagging scheme. It’s worth noting
that, during this analysing, we assign the entity type Other to those spans that do not adhere to the
BIO tagging scheme, specifically those entity spans that begin with the token predicted as ŷdet.i =
inner. This operation, aimed at enhancing prediction accuracy, is utilized across all methods we
implemented, including PPTSER and the methods we used for a fair comparison.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We conducted experiments on several widely used SER benchmarks, including
FUNSD (Jaume et al., 2019), CORD (Park et al., 2019) and XFUND (Xu et al., 2022). FUNSD
is a benchmark specifically designed for form understanding, consisting of 199 noisy scanned doc-
uments related to market reports, commercials, and more. CORD focuses on receipt understanding
and includes annotation at two levels: coarse-grained annotations such as menu and total, as well as
fine-grained annotations like menu.unitprice and menu.price. This benchmark provides an official
split of training, validation and test sets, and we strictly follow the procedure by selecting the model
weight that achieved the best performance on the validation set for testing on the test set. XFUND
is a document understanding benchmark covering multiple languages. In this article, our primary
focus is on the Chinese subset of XFUND, denoted as XFUND-zh.

Few-shot Settings. We evaluated PPTSER on 1-shot, 3-shot, 5-shot, 7-shot and the full training
set scenarios. Since the aforementioned benchmarks do not provide official divisions for few-shot
scenarios, we established our own few-shot divisions following the procedure described in A.1.
We aimed to select as few samples as possible while meeting the required sample numbers, which
aligns with the real-world application. Due to the inherent instability of experiments with few-shot
setting, we generated 5 divisions for each scenario using different random seeds, and we performed
experiments on each division with 2 distinct random seeds. Hence, our experiment result is the
average of 10 runs, ensuring the reliability and credibility of our findings.

4.2 COMPARISONS WITH EXISTING FINE-TUNING METHODS

Setup. The foundation for our method is built upon several widely used multi-modal pre-trained
models, incorporating different combinations of modalities as input. This includes BROS (Hong
et al., 2022) and LiLT (Wang et al., 2022a) with textual and layout input, and LayoutLMv2 (Xu
et al., 2021a) and LayoutLMv3 (Huang et al., 2022b) with textual, layout and image input. Since
BROS only supports English, we only tested it on FUNSD and CORD. For testing on XFUND-zh,
we used LayoutXLM (Xu et al., 2021b), which is the multilingual version of LayoutLMv2.

Results. Table 1 showcases the results of PPTSER compared to traditional fine-tuning methods. The
results clearly demonstrate that our PPTSER outperforms traditional fine-tuning methods across all
tested scenarios and benchmarks. This underscores the superior performance of PPTSER in diverse
language contexts with various base models.

Overall, both PPTSER and the fine-tuning method demonstrate improved performance as the train-
ing data increases. However, our PPTSER consistently outperforms previous fine-tuning methods
across all few-shot settings, particularly when the training data is exceptionally scarce. In the 1-shot
scenario on FUNSD, where only a single annotated document is available, PPTSER achieves the
gains of +6.31% with BROS, +3.04% with LiLT, +3.95% with LayoutLMv2 and the highest gain
of +15.62% with LayoutLMv3. This highlights the suitability of our PPTSER for few-shot scenar-
ios. Furthermore, it’s worth noting that even when trained with the full training data, our PPTSER
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Table 1: F1 score (%) of PPTSER and traditional Fine-tuning methods. F1 score in Bold is better
between our PPTSER and Fine-tuning. FT refers to Fine-tuning methods.

Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)
FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 48.08 54.39 ↑6.31 52.60 55.64 ↑3.04 48.22 52.17 ↑3.95 46.37 61.98 ↑15.61

3-shot 64.34 67.70 ↑3.36 67.64 69.17 ↑1.52 61.66 63.64 ↑1.98 74.73 76.86 ↑ 2.13

5-shot 67.77 70.64 ↑2.87 73.29 75.26 ↑1.97 65.86 67.49 ↑1.63 79.52 81.53 ↑ 2.01

7-shot 68.21 71.96 ↑3.75 73.39 75.71 ↑2.32 66.55 68.83 ↑2.28 79.84 81.60 ↑ 1.76

Full Data 83.83 83.91 ↑0.08 88.95 89.07 ↑0.12 83.52 83.72 ↑0.20 91.15 92.01 ↑ 0.86

CORD

1-shot 66.28 68.48 ↑2.20 70.04 75.57 ↑5.54 69.61 69.97 ↑0.36 70.35 74.19 ↑ 3.84

3-shot 79.02 79.61 ↑0.59 81.64 83.83 ↑2.19 80.63 81.66 ↑1.03 82.05 85.27 ↑ 3.22

5-shot 84.04 84.37 ↑0.34 85.52 87.06 ↑1.54 84.32 84.53 ↑0.21 85.83 87.77 ↑ 1.94

7-shot 83.68 84.09 ↑0.42 85.35 87.73 ↑2.38 84.76 85.31 ↑0.55 86.94 88.48 ↑ 1.54

Full Data 95.72 95.75 ↑0.03 95.80 96.04 ↑0.25 95.20 95.63 ↑0.44 96.34 96.39 ↑ 0.05

XFUND-zh

1-shot - - 60.10 67.64 ↑7.54 60.28 68.26 ↑7.98 52.92 56.65 ↑ 3.73

3-shot - - 72.61 74.17 ↑1.56 74.37 77.20 ↑2.83 69.08 75.24 ↑ 6.16

5-shot - - 77.40 79.40 ↑2.00 81.43 82.34 ↑0.91 75.25 79.26 ↑ 4.01

7-shot - - 80.47 81.38 ↑0.91 82.25 83.66 ↑1.41 77.85 80.97 ↑ 3.12

Full Data - - 90.47 90.61 ↑0.14 90.25 90.79 ↑0.54 91.61 92.19 ↑ 0.58

still achieves comparable performance to the fine-tuning method, and even outperforms it in certain
scenarios. For example, we observe a gain of +0.86% on FUNSD with LayoutLMv3. This full
data setting is often overlooked in other few-shot research, further underscoring the superiority of
our approach when dealing with varying amounts of available data. For more experimental results,
please refer to A.4.1.

Our findings demonstrate that PPTSER is highly adaptive to different amounts of training data with
distinct base models, making it an effective method for addressing the SER problem.

4.3 COMPARISONS WITH EXISTING FEW-SHOT METHODS

Table 2: F1 score (%) of PPTSER and other Few-shot methods. F1 score in Bold is the best, and
that with underline is the second best.

Modality Text Text + Layout Text + Layout + Image

Methodology EntLM
(NAACL 22)

COPNER
(COLING 22)

LASER
(ACL 22)

COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 24.32 19.37 38.47 55.15 55.64 51.19 61.98
3-shot 34.94 31.21 44.88 68.66 69.17 75.84 76.86
5-shot 39.55 35.13 49.31 73.43 75.26 77.55 81.53
7-shot 41.41 37.31 52.56 73.35 75.71 78.53 81.60

Full Data 67.42 64.58 69.23 87.74 89.07 91.26 92.01

CORD-Lv1

1-shot 74.29 68.61 66.80 86.97 90.50 86.98 90.02
3-shot 83.68 82.25 76.09 94.16 94.79 94.03 95.13
5-shot 87.11 86.08 82.23 94.86 96.21 95.74 96.21
7-shot 87.31 86.74 83.61 95.04 96.13 96.06 96.51

Full Data 95.93 95.90 96.56 99.21 99.42 99.45 99.45

CORD

1-shot 57.86 54.52 - 70.05 75.57 67.33 74.19
3-shot 71.68 71.32 - 81.27 83.83 80.07 85.27
5-shot 77.74 78.98 - 84.80 87.06 85.30 87.77
7-shot 78.63 78.63 - 85.76 87.73 86.87 88.48

Full Data 93.50 94.16 - 95.74 96.04 95.79 96.39

XFUND-zh

1-shot 26.38 23.29 - 48.76 67.64 54.26 56.71
3-shot 37.22 37.49 - 64.59 74.17 71.27 75.24
5-shot 43.54 44.36 - 69.03 79.40 76.37 79.26
7-shot 46.62 46.90 - 74.44 81.38 79.29 80.97

Full Data 66.20 67.11 - 89.17 90.61 91.99 92.19

Setup. We selected the PPTSER models that performed better under different modality settings, de-
noted as PPTSERLiLT and PPTSERLMv3, and compared them with previous few-shot methods. For
a comprehensive comparison, we re-implemented LASER (Wang & Shang, 2022) on our few-shot
divisions. However, LASER can only handle the coarse-level typing for CORD (CORD-Lv1) and
is limited to English language. Given that research on few-shot SER is rather limited, we selected
two other few-shot NER methods for comparisons. Specifically, We chose COPNER (Huang et al.,
2022a) and EntLM (Ma et al., 2022b) due to their similar in-label-space setting with ours. Consid-
ering COPNER can also be used as a pluggable method, we also implemented it with LayoutLMv3
and LiLT, denoted as COPNERLiLT and COPNERLMv3.
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Table 3: Performances (%) of PPTSER on
CORD benchmark using distinct strategies. Pre.
and Rec. are the abbreviations for Precision and
Recall. And Avg. Diff. refers to the average dif-
ference of the corresponding metrics compared
to those in entity typing & span detection.

PPTSER
entity typing &
span detection

plain BIO
prompt

Pre. Rec. F1 Pre. Rec. F1

1-shot 75.35 75.80 75.57 73.92 74.66 74.28
3-shot 83.85 83.82 83.83 82.44 82.37 82.41
5-shot 87.03 87.08 87.06 86.50 86.01 86.25
7-shot 87.74 87.72 87.73 86.64 86.35 86.49
Full Data 96.06 96.03 96.04 95.58 95.00 95.29

Avg. Diff. - - - -0.99 -1.21 -1.10
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Figure 4: F1 score (%) of PPTSER on CORD
benchmark with different settings when obtain-
ing the attention weight from different blocks.

Results. The overall experimental results are presented in Table 2. The results clearly demonstrate
that PPTSER outperforms existing few-shot NER and few-shot SER methods by a large margin.
Surprisingly, COPNER shows some degree of pluggability when equipped with multi-modal pre-
trained models, but PPTSER still outperforms it in all settings across each benchmark. For more
experimental results, please refer to A.4.2.

In summary, our PPTSER surpasses existing few-shot NER and few-shot SER methods on various
visually-rich documents, showcasing its effectiveness in handling few-shot SER challenge.

5 ANALYSIS

We have conducted extensive analyses of our PPTSER to ensure its effectiveness and rationality. For
convenience, experiments are conducted on CORD benchmark using PPTSER building upon LiLT.

Origin of Attention Weights. To determine the source of superiority in PPTSER, we investigated
whether it stems from our meticulous design or from the reduction of over-fitting achieved through
the parameter reduction. We conducted experiments to obtain the attention weights from distinct
blocks. In addition to the default 12th block, we also extracted attention weights from the 7th ∼
11th block, and the experimental results are illustrated in Figure 4. It is shown that our design to
obtain attention weight from the last block outperforms those to obtain it from other blocks, which
has greatly assured the effectiveness of our design. For the detailed metrics, please refer to A.4.3.

Effectiveness of Decoupling Strategies. Table 3 shows the comparisons of utilizing different
frameworks. In this context, entity typing & span detection refers to our design to decouple the
SER task into entity typing and span detection, while plain BIO prompt refers to the direct usage of
C̃ = {e0, beginning of ei, inner of ei} as the prompt, focusing solely on entity typing. The result
shows that decoupling SER as entity typing & span detection and processing them in parallel avoids
interfering with the language modeling for the document tokens and gets better performance.

Prompt Engineering. We also evaluated our PPTSER with different types of prompts. Table 4
shows the results of testing PPTSER with various prompt types, including unrelated words, such as
apple and orange, which are irrelevant to the SER task, random embeddings that uses randomly
initialized tensors as the word embeddings for the prompt and our default tag name. We observe our
default setting yields the highest score, indicating that the pre-trained model does learn the semantics
of the prompt to some extent, and the semantics of tags could guide the SER task. This suggests that
careful selection and crafting of prompts can significantly impact the performance of the model.

Aggregation of Attention Weights. Table 5 shows the performances of different strategies to ag-
gregate the attention weights across distinct attention heads. In this context, max and mean refer to
the maximum and average value across attention weighs of distinct heads, while single head refers
to utilizing only a single head of the attention weights to generate the final probability. The results
indicate that the max operation demonstrates the best performance, which aligns with our hypothesis
that different attention heads focus on entities with different semantics, as shown in Figure 5.
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Table 4: Performances (%) of PPTSER on CORD benchmark using different prompts. Avg. Diff.
refers to the average difference of the corresponding metrics compared to those in tag names.

PPTSER
tag names unrelated words random embeddings

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

1-shot 75.35 75.80 75.57 70.58 71.03 70.80 71.32 71.54 71.43
3-shot 83.85 83.82 83.83 82.83 82.54 82.69 83.24 82.90 83.07
5-shot 87.03 87.08 87.06 85.84 85.72 85.78 86.47 86.11 86.29
7-shot 87.74 87.72 87.73 86.44 86.40 86.42 87.09 86.81 86.95
Full Data 96.06 96.03 96.04 96.27 96.24 96.26 95.75 95.70 95.72

Avg. Diff. - - - -1.61 -1.70 -1.66 -1.23 -1.48 -1.35

Table 5: Performances (%) of PPTSER on CORD benchmark using different aggregation strategies
for attention heads. Avg. Diff. refers to the average difference of the corresponding metrics compared
to those in max.

PPTSER
max mean single head

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

1-shot 75.35 75.80 75.57 74.16 74.69 74.43 74.92 75.51 75.21
3-shot 83.85 83.82 83.83 83.04 83.06 83.05 84.07 83.77 83.92
5-shot 87.03 87.08 87.06 86.61 86.67 86.64 86.97 86.99 86.98
7-shot 87.74 87.72 87.73 86.76 86.71 86.74 87.30 87.19 87.24
Full Data 96.06 96.03 96.04 96.23 96.18 96.21 96.08 96.03 96.06

Avg. Diff. - - - -0.64 -0.63 -0.63 -0.14 -0.19 -0.17

Figure 5: Illustration of different entity regions that were focused on by different attention heads on
CORD benchmark. Different colored boxes represent the areas of focus of different attention heads.

Parameter Efficiency. The parameter comparisons of our PPTSER methods and traditional Fine-
tuning are presented in Table 6. As the parameters might vary across different models and bench-
marks, we offer a comprehensive breakdown of the results from the methods we have tested. The
results illustrate that our PPTSER has fewer parameters in comparison to traditional fine-tuning
methods. For a more detailed analysis, please refer to A.5.

Table 6: Parameters of our PPTSER and traditional Fine-tuning methods. The metric in Bold indi-
cates the method with fewer parameters. FT refers to Fine-tuning method.

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours
FUNSD 108.91M 103.59M 130.17M 123.81M 200.29M 194.38M 125.33M 119.42M
CORD 108.95M 103.59M 130.22M 123.81M 200.33M 194.38M 125.96M 119.42M
XFUND-zh - 103.59M 130.17M 123.81M 200.29M 194.38M 125.33M 119.42M

6 CONCLUSION

In this paper, we introduced PPTSER, an innovative and efficient strategy for few-shot entity recog-
nition in visually-rich documents using a plug-and-play, tag-guided approach. This was accom-
plished by redefining the SER task as a dual-function operation of entity typing and span detection,
and utilizing prompts related to SER tags along with attention weight as the target probability dis-
tributions. Our results demonstrate that PPTSER is both effective and versatile in a variety of data
settings, from few-shot to full data scenarios. In the future, we plan to further investigate the ca-
pabilities of PPTSER across a range of VIE tasks, including Entity Linking. In addition, we aim
to explore the potential of PPTSER in other few-shot scenarios, particularly those outside of the
In-Label-Space setting. It is our hope that our work will spark further research and advancements in
the realm of Few-shot SER.
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A APPENDIX

Our Appendix is organized in the following manner:

• In A.1, we describe the algorithm to generate the few-shot divisions for our experiments.
• In A.2, we discuss some implementation details of our PPTSER and other few-shot meth-

ods with which we conducted comparisons.
• In A.3, we supply an example to better demonstrate how our PPTSER processes a visually-

rich document.
• In A.4, we provide more detailed experimental results of our main experiments.
• In A.5, we offer a further analysis on the parameter count of our PPTSER and the traditional

fine-tuning methods.

12



Under review as a conference paper at ICLR 2024

A.1 FEW-SHOT DIVISIONS GENERATION

To cater to the real-world application scenarios, we have organized our few-shot divisions from the
full training set as Algorithm 1. Our goal was to randomly select the minimum number of documents
that satisfy the N-way K-shot requirement of there are K documents containing entities of a specific
type across N categories.

It is worth noticing that in the context of few-shot SER on visually-rich documents, the few-shot
setting of N-way K-shot signifies that there are K documents containing entities of a specific type
across N categories, instead of there are K entity spans for each of N entity types for the setting of
few-shot NER on plain texts.

Algorithm 1: Few-shot Divisions Generation

Input: Novel Dataset with the label space C = {c1, c2, ..., cN}, full training set Dfull

Output: N-way K-shot few-shot training set Dtrain

1 Dtrain = {}
2 Number of documents that contain entities of ci in Dfull: Q = {c1 : 0, c2 : 0, ..., cN : 0}
3 Document set that contain entities of ci in Dfull: R = {c1 : {}, c2 : {}, ..., cN : {}}
4 for doci in Dfull do
5 for cj in C do
6 if doci contain entities of cj then
7 Q[cj ] += 1
8 R[cj ].append(doci)
9 end

10 end
11 end
12 Q′ = sorted(Q, key = lambda x : x[1])

= {c′1 : n1, c
′
2 : n2, ..., c

′
N : nN} (n1 ≤ n2 ≤ ... ≤ nN )

13 Number of documents that contain entities of ci in Dtrain: S = {c1 : 0, c2 : 0, ..., cN : 0}
14 for c′i in keys of Q′ do
15 for S[c′i] < K do
16 if R[c′i] is empty then
17 break
18 end
19 Randomly select a document doccandidate from R[c′i]
20 R[c′j ].pop(doccandidate)

21 if doccandidate /∈ Dtrain then
22 Dtrain.append(doccandidate)
23 for cj ∈ C do
24 if doccandidate contain entities of cj then
25 S[cj ] += 1
26 end
27 end
28 else
29 continue
30 end
31 end
32 end
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A.2 IMPLEMENTATION DETAILS

A.2.1 IMPLEMENTATION DETAILS OF PPTSER

We used one NVIDIA 3090 to fine-tune our model with AdamW optimizer. The learning rate is
5e−5 with a warm up ratio of 0.1, and we fine-tuned the model for 2000 iterations with a batch size
of 8 by default. Besides the default augmentation strategies for images adopted in LayoutLMv2 and
LayoutLMv3, we did not employ any additional augmentation strategies.

A.2.2 MODIFICATION ON FEW-SHOT NER METHOD FOR VISUALLY-RICH DOCUMENTS

In Section 4.3, we mentioned that we adapted two methods originally used for few-shot NER on
plain text for few-shot SER on visually-rich documents. We will briefly introduce these modifica-
tions.

COPNER (Huang et al., 2022a). The COPNER method employs contrastive learning, feeding
both entity label semantics and sentences into a plain text pre-trained language model. This ap-
proach uses the hidden state output of the pre-trained model to calculate a contrastive loss between
sentence tokens and label semantics, then determining the entity type of tokens. However, the orig-
inal COPNER could only determine if a token belonged to an entity category, without recognizing
boundaries between entities. Therefore, we also improved it with the entity typing and span detec-
tion framework introduced in our paper. That is, while determining the entity type of tokens, we
also input the tokens beginning and inner into the pre-trained model. The model’s output hidden
state is then used to calculate a contrastive loss between sentence tokens and these beginning and
inner tokens.

Besides, we retained this core process but replaced the original language model pre-trained on pure
text with a multi-modal pre-trained model. Experiments show that our use of multi-head cross-
attention methods is more suitable for SER tasks on visually-rich documents, especially in Chinese
contexts.

EntLM (Ma et al., 2022b). EntLM treats NER as a task of Language Modeling. For testing a
few-shot NER dataset on plain text, it first selects a related word for each entity type. Then, using
the pre-trained Masked Language Modeling head of BERT, it predicts the probability distribution
of each sentence token over these related words, thereby determining the probability distribution of
tokens across different entity types.

The selection of related words relies on the distant data obtained from BOND (Liang et al., 2020),
which uses BERT and the corpora from Wikipedia to create rough annotations for the NER test
set. However, in the realm of visually-rich documents, such distant data is not provided by BOND,
and due to the relative abstract expression of SER tags from natural language expressions and the
difference between structured documents and natural language expressions, it’s not feasible to obtain
rough annotations using corpora from Wikipedia with BERT. Therefore, we directly use the ground
truth annotations from the SER test set as distant data to find related words associated with entity
types in the SER dataset. Although the experimental results on EntLM might be artificially high
due to some exposure to the entity distribution in the test set, our proposed method significantly
outperforms others that only accept text modality inputs, such as EntLM.

In summary, methods for few-shot NER on plain text may not necessarily transition well to the task
of few-shot SER on visually-rich documents. The notable performance of our proposed method in
few-shot SER on visually-rich documents further highlights the innovation and contribution of our
research.
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A.3 EXAMPLE WHEN APPLY PPTSER

To more intuitively demonstrate our method, we provide an example from FUNSD dataset when
apply our PPTSER method.

The FUNSD dataset includes three meaningful entity types: header, question, and answer,
with all other uninteresting entities categorized as other. Hence, the entity type set is E =
{other, header, question, answer}. The label spaces for entity typing and span detection
are Cent. = {other, header, question, answer} and Cdet. = {beginning, inner}, respec-
tively. We directly use the label’s names as tag-related prompts, with the prompts for entity
typing and span detection being C̃ent. = ”other header question answer” and C̃det. =
”beginning inner”. These prompts are then concatenated to form the full tag-related prompt
C̃ = ”other header question answer beginning inner”.

Consider an example from the FUNSD dataset shown in Figure 6, with the document content
”... CASE TYPE: Asbestos ... 82504862”, where ”...” indicates omitted parts. Here, ”CASE
TYPE:” belongs to the entity type of question, ”Asbestos” to the entity type of answer, and
”82504862” to other. Assuming the tokenizer splits the document into ”CASE”, ”TYPE:”, ”As-
bestos”, and ”82504862”, their labels for entity typing and span detection would be yent. =
[question, question, answer, other] and ydet. = [beginning, inner, beginning,−1].

other

header

question

answer

Figure 6: Illustration of a sample from FUNSD dataset. Different colored boxes represent the entities
of distinct kinds. Zoom in for better view.

Subsequently, ”CASE”, ”TYPE:”, ”Asbestos”, and ”82504862” as document tokens are con-
catenated with the full tag-related prompt, and form the encoder input x′ = ”CASE TY PE :
Asbestos 82504862 other header question answer beginning inner”. Then, x′ is input into
the multi-modal pre-trained model to obtain the multi-head attention weight and the aggregated
attention weight from the last layer, as shown in Figure 7.
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Figure 7: Example of a FUNSD sample running on PPTSER. In the image, bolded words in Text
Embeddings indicate they are part of the prompt. In the Multi-head Self-attention section, the
brightness of the color represents the magnitude of the value. In the Ground Truth, q, a, b, i and o
respectively stand for the question, answer, beginning, inner and other categories.

During training stage, as shown in Figure 8(a), the aggregated attention weight is split into at-
tention weights between ”other header question answer” and document tokens, as well as
”beginning inner” and document tokens, which are then used to calculate the losses for entity
typing and span detection, respectively, culminating in a combined total loss.

During testing stage, as shown in Figure 8(b), we select the document tokens with the highest prob-
ability for ”other header question answer” and ”beginning inner” as ŷent. and ŷdet., then
combine them to get the predictions under BIO tagging scheme ŷ following the procedure in Sec-
tion 3.2.2. And the entity spans are finally analysed from ŷ.
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Figure 8: Example of a FUNSD sample running on PPTSER at Training stage and Inference stage.
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A.4 DETAILED EXPERIMENTAL RESULTS

This section presents additional performance metrics obtained from the main experiments.

A.4.1 DETAILED RESULTS OF COMPARISONS WITH EXISTING FINE-TUNING METHODS

Table 7(a) and Table 7(b) present the precision and recall of PPTSER compared to the traditional
fine-tuning method. The results demonstrate that PPTSER consistently outperforms the traditional
fine-tuning method in most cases, leading to improved overall performance in terms of F1 scores.

Table 7: Precision and Recall of PPTSER and Traditional Fine-tuning methods.

(a) Precision (%) of our PPTSER and Traditional Fine-tuning methods. Precision in Bold is better between
PPTSER and Fine-tuning. FT refers to Fine-tuning methods.

Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 49.17 52.50 51.07 50.91 44.15 46.91 42.67 56.27
3-shot 63.07 64.31 65.65 67.24 60.67 60.65 72.66 75.18
5-shot 66.31 68.10 71.11 72.95 63.45 64.36 77.29 79.53
7-shot 69.24 71.06 72.49 74.14 65.94 66.79 79.22 81.31

Full Data 83.42 83.67 88.62 88.89 83.54 83.59 91.41 91.96

CORD

1-shot 64.92 68.04 69.31 75.35 68.08 69.73 70.03 74.02
3-shot 78.75 79.26 81.63 83.85 79.92 81.35 81.97 85.09
5-shot 83.86 84.23 85.62 87.03 83.84 84.42 85.76 87.71
7-shot 83.56 83.76 85.39 87.74 84.40 85.09 86.92 88.37

Full Data 95.72 95.88 95.82 96.06 94.95 95.64 96.34 96.39

XFUND-zh

1-shot - - 59.03 64.90 59.17 67.04 46.64 54.59
3-shot - - 71.33 71.54 73.17 75.21 62.73 72.36
5-shot - - 75.09 77.07 79.21 79.96 69.39 76.57
7-shot - - 77.34 77.70 79.68 80.22 72.03 77.95

Full Data - - 87.92 88.17 88.60 88.95 89.09 91.04

(b) Recall (%) of our PPTSER and Traditional Fine-tuning methods. Recall in Bold is better between PPTSER
and Fine-tuning. FT refers to Fine-tuning methods.

Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 49.75 57.89 54.39 61.77 53.64 59.15 53.14 70.07
3-shot 65.82 71.50 69.81 71.35 62.82 67.01 76.94 78.64
5-shot 69.32 73.43 75.61 77.76 68.50 70.97 81.92 83.65
7-shot 67.54 72.94 74.33 77.38 67.23 71.04 80.51 81.91

Full Data 84.26 84.15 89.30 89.26 83.51 83.85 90.91 92.05

CORD

1-shot 67.70 68.95 70.79 75.80 71.23 70.22 70.67 74.35
3-shot 79.30 79.96 81.65 83.82 81.36 81.98 82.14 85.45
5-shot 84.21 84.52 85.43 87.08 84.81 84.63 85.91 87.84
7-shot 83.79 84.43 85.32 87.72 85.12 85.54 86.97 88.59

Full Data 95.72 95.61 95.78 96.03 95.45 95.62 96.34 96.40

XFUND-zh

1-shot - - 61.54 70.68 61.46 69.68 61.21 59.24
3-shot - - 74.22 77.22 75.88 79.46 77.24 78.58
5-shot - - 79.99 82.02 83.88 85.02 82.27 82.23
7-shot - - 83.97 85.44 85.03 87.43 84.76 84.30

Full Data - - 93.18 93.20 91.96 92.72 94.27 93.37
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A.4.2 DETAILED RESULTS OF COMPARISONS WITH EXISTING FEW-SHOT METHODS

We also present a detailed comparison of PPTSER with other few-shot methods, including precision
and recall metrics in Table 8(a) and Table 8(b). Similar to the F1 score, models enhanced with
PPTSER usually demonstrate superior performance compared to both few-shot NER and few-shot
SER methods.

Table 8: Precision and Recall of PPTSER and other Few-shot methods.

(a) Precision (%) of PPTSER and other Few-shot methods. Precision in Bold is the best, and that with
underline is the second best.

Modality Text Text + Layout Text + Layout + Image

Methodology EntLM
(NAACL 22)

COPNER
(COLING 22)

LASER
(ACL 22)

COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 22.85 18.67 36.61 53.79 50.91 49.01 56.27
3-shot 33.39 30.97 46.71 67.26 67.24 73.54 75.18
5-shot 37.23 32.57 46.80 71.40 72.95 75.40 79.53
7-shot 40.29 35.43 51.17 72.81 74.14 78.63 81.31

Full Data 67.53 63.39 69.08 87.45 88.89 91.45 91.96

CORD-Lv1

1-shot 73.23 67.42 65.56 86.93 90.62 86.80 90.05
3-shot 82.85 81.37 75.43 94.39 94.97 93.99 95.14
5-shot 86.87 85.87 82.07 94.94 96.38 95.65 96.20
7-shot 86.65 86.54 83.54 95.12 96.25 96.05 96.53

Full Data 95.93 95.83 96.50 99.23 99.43 99.45 99.45

CORD

1-shot 57.45 51.22 - 70.27 75.35 67.14 74.02
3-shot 71.42 67.26 - 81.48 83.85 79.89 85.09
5-shot 77.70 74.59 - 84.92 87.03 85.13 87.71
7-shot 78.51 75.69 - 85.86 87.74 86.83 88.37

Full Data 93.56 92.33 - 95.75 96.06 95.79 96.39

XFUND-zh

1-shot 27.02 23.98 - 49.49 64.90 53.37 54.59
3-shot 35.94 35.72 - 64.69 71.54 69.98 72.36
5-shot 43.18 42.93 - 68.21 77.07 73.48 76.57
7-shot 45.13 44.66 - 72.61 77.70 76.42 77.95

Full Data 64.75 65.59 - 87.23 88.17 91.10 91.04

(b) Recall (%) of PPTSER and other Few-shot methods. Recall in Bold is the best, and that with underline is
the second best.

Modality Text Text + Layout Text + Layout + Image

Methodology EntLM
(NAACL 22)

COPNER
(COLING 22)

LASER
(ACL 22)

COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 28.01 21.53 41.05 56.72 61.77 54.43 70.07
3-shot 37.56 32.12 46.55 70.17 71.35 78.32 78.64
5-shot 42.42 38.28 52.14 75.59 77.76 79.83 83.65
7-shot 42.79 39.57 54.08 73.92 77.38 78.45 81.91

Full Data 67.31 65.81 69.41 88.04 89.26 91.06 92.05

CORD-Lv1

1-shot 75.38 69.90 68.12 87.01 90.38 87.16 89.99
3-shot 84.54 83.17 76.77 93.95 94.61 94.06 95.12
5-shot 87.35 86.30 82.42 94.78 96.04 95.84 96.23
7-shot 87.99 86.97 83.71 94.96 96.00 96.07 96.50

Full Data 95.94 95.97 96.62 99.19 99.42 99.45 99.45

CORD

1-shot 58.29 53.79 - 69.83 75.80 67.51 74.35
3-shot 71.95 68.35 - 81.08 83.82 80.24 85.45
5-shot 77.78 74.69 - 84.68 87.08 85.47 87.84
7-shot 78.76 76.51 - 85.66 87.72 86.91 88.59

Full Data 93.45 92.68 - 95.72 96.03 95.79 96.40

XFUND-zh

1-shot 26.35 23.26 - 48.26 70.68 55.67 59.24
3-shot 39.62 40.48 - 64.88 77.22 72.89 78.58
5-shot 44.03 46.14 - 70.00 82.02 79.92 82.23
7-shot 48.46 49.58 - 76.58 85.44 82.47 84.30

Full Data 67.72 68.71 - 91.20 93.20 92.91 93.37
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A.4.3 DETAILED RESULTS OF ATTENTION WEIGHTS OBTAINED FROM DIFFERENT BLOCKS

We also provide the numerical metrics of distinct settings to obtain the attention weight from differ-
ent blocks. Table 9 illustrates the experimental results, indicating that obtaining attention weights
from the last block yields the best performance of F1 score, precision and recall. Although the
reduction of parameters alleviates over-fitting to some extent, since some shallower blocks outper-
form certain deeper ones in 1-shot scenario, our default setting to obtain the attention weight from
the last block significantly outperforms the alternative settings of obtaining the attention weight from
shallower blocks. This finding strongly reinforces the effectiveness of our design.

Table 9: Performances of PPTSER on CORD benchmark when obtaining the attention weight from
different blocks.

(a) F1 score (%) of PPTSER on CORD benchmark when obtaining the attention weight
from different blocks. Avg. Diff. refers to the average difference of F1 score compared to
that in 12th block.

PPTSER
7th block 8th block 9th block 10th block 11th block 12th block

1-shot 68.27 69.63 68.34 68.93 74.27 75.57
3-shot 80.09 81.16 80.81 81.51 82.89 83.83
5-shot 84.29 85.25 85.00 84.84 86.41 87.06
7-shot 84.58 85.86 85.48 85.97 86.79 87.73
Full Data 95.63 95.59 95.48 96.12 95.86 96.04

Avg. Diff. -3.47 -2.55 -3.03 -2.57 -0.80 -

(b) Precision (%) of PPTSER on CORD benchmark when obtaining the attention weight
from different blocks. Avg. Diff. refers to the average difference of Precision compared to
that in 12th block.

PPTSER
7th block 8th block 9th block 10th block 11th block 12th block

1-shot 67.36 69.02 67.86 68.53 73.91 75.35
3-shot 79.76 81.19 80.78 81.46 82.76 83.85
5-shot 80.98 85.38 85.01 84.78 86.22 87.03
7-shot 84.41 85.92 85.52 85.97 86.68 87.74
Full Data 95.70 95.64 95.55 96.16 95.87 96.06

Avg. Diff. -4.36 -2.58 -3.06 -2.63 -0.92 -

(c) Recall (%) of PPTSER on CORD benchmark when obtaining the attention weight from
different blocks. Avg. Diff. refers to the average difference of Recall compared to that in
12th block.

PPTSER
7th block 8th block 9th block 10th block 11th block 12th block

1-shot 69.21 70.25 68.83 69.34 74.64 75.80
3-shot 80.43 81.14 80.84 81.56 83.03 83.82
5-shot 80.41 85.13 84.99 84.89 86.60 87.08
7-shot 84.75 85.80 85.43 85.97 86.90 87.72
Full Data 95.57 95.54 95.41 96.09 95.85 96.03

Avg. Diff. -4.02 -2.52 -2.99 -2.52 -0.69 -
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A.5 PARAMETER ANALYSIS OF PPTSER OVER TRADITIONAL FINE-TUNING

We provide a further analysis of the parameter counts in this section. As shown in Table 6, our
PPTSER maintains consistent parameters across different benchmarks with the same pre-trained
model. This is attributed to the fact that PPTSER does not necessitate an additional classifier layer,
unlike the traditional fine-tuning method. Consequently, the parameter variance arises when em-
ploying the traditional fine-tuning method with the same pre-trained models on different bench-
marks, owing to variations in the number of entity types present in those benchmarks. Furthermore,
as PPTSER omits the value transform layer and the feed-forward layer in the final attention block,
we achieve a reduction in the parameter count of the pre-trained model it is based on. Additionally,
the extent of parameter reduction varies among different pre-trained models due to disparities in
their architectural designs, resulting in slice differences in the eliminations of the modules.
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