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Abstract
Combination therapies have become the stan-001
dard of care for diseases such as cancer, tu-002
berculosis, malaria and HIV. However, the003
combinatorial set of available multi-drug treat-004
ments creates a challenge in identifying effec-005
tive combination therapies available in a situ-006
ation. To assist medical professionals in iden-007
tifying beneficial drug-combinations, we con-008
struct an expert-annotated dataset for extract-009
ing information about the efficacy of drug com-010
binations from the scientific literature. Beyond011
its practical utility, the dataset also presents a012
unique NLP challenge, as the first relation ex-013
traction dataset consisting of variable-length014
relations. Furthermore, the relations in this015
dataset predominantly require language under-016
standing beyond the sentence level, adding017
to the challenge of this task. We provide a018
promising baseline model and identify clear ar-019
eas for further improvement. We release our020
dataset and code1 publicly to encourage the021
NLP community to participate in this task.022

1 Introduction023

“So far, many monotherapies have been tested, but024

have been shown to have limited efficacy against025

COVID-19. By contrast, combinational therapies026

are emerging as a useful tool to treat SARS-CoV-2027

infection.” (Ianevski et al., 2021).028

Indeed, combining two or more drugs together029

has proven to be useful for treatments of various030

medical conditions, including cancer (DeVita et al.,031

1975; Carew et al., 2008; Shuhendler et al., 2010),032

AIDS (Bartlett et al., 2006), malaria (Eastman and033

Fidock, 2009), tuberculosis (Bhusal et al., 2005),034

hypertension (Rochlani et al., 2017) and COVID-035

19 (Ianevski et al., 2020).036

In this work, we examine the clinically signifi-037

cant and challenging NLP task of extracting known038

1Dataset and code can be found at
https://anonymous.4open.science/r/
drug-synergy-models--C8B7/README.md

drug combinations from the scientific literature. 039

We present an expert-annotated dataset and base- 040

line models for this new task. Our dataset contains 041

1600 manually annotated abstracts, each mention- 042

ing between 2 and 15 drugs. 840 of these abstracts 043

describe one or more positive drug combinations, 044

varying in size from 2 to 11 drugs. The remaining 045

760 abstracts either contain mentions of drugs not 046

used in combination, or discuss combinations of 047

drugs that do not give a combined positive effect. 048

From a clinical perspective, solving the drug 049

combination identification task will assist re- 050

searchers in suggesting and validating complex 051

treatment plans. For example, when searching 052

for effective treatments for cancer, knowing which 053

drugs interact synergistically with the first line treat- 054

ment allows researchers to suggest new treatment 055

plans that can subsequently be validated in-vivo 056

and become a standard protocol (Wasserman et al., 057

2001; Katzir et al., 2019; Ianevski et al., 2020; 058

Niezni et al., 2021). 059

From an NLP perspective, the drug combination 060

identification task and dataset pushes the bound- 061

aries of relation extraction (RE) research, by in- 062

troducing a relation extraction task with several 063

challenging characteristics: 064

Variable-length n-ary relations Most work on re- 065

lation extraction is centered on binary relations 066

(e.g. Li et al. (2016), see full listing in §5), or 067

on n-ary relations with a fixed n (e.g. Peng et al. 068

(2017)). In contrast, the drug combination task 069

involves variable-length n-ary relations: different 070

passages discuss combinations of different num- 071

bers of drugs. For each subset of drugs mentioned 072

in a passage, the model must predict if they are used 073

together in a combination therapy and whether this 074

drug combination is effective. 075

No type hints As noted by Rosenman et al. (2020) 076

and Sabo et al. (2021), in many relation extraction 077

benchmarks (Han et al., 2018; Sabo et al., 2021; 078

Zhang et al., 2017), the argument types serve as 079
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“We tried adding Nifedipine , as Labetalol combined to Prazosin did not reduce blood pressure.
OTHER_COMB

POS_COMB

Indeed, the addition produced a marked decrease in blood pressure. No reduction of urinary NA
excretion was observed in our patient during the addition of the Nifedipine therapy, suggesting
that the decrease in blood pressure was not caused by suppression of NA release from pheochromo-
cytoma tissue.”

“In Thailand , artesunate and artemether are the mainly used antimalarials for treatment of

NO_COMB

severe or multidrug resistant falciparum malaria .”

Figure 1: Examples of our label scheme. The top example contains two relations: a binary OTHER_COMB
relation and a ternary POS_COMB relation. The evidence required to annotate the latter relation is found in a
different sentence (highlighted). In the bottom example, each drug is described as a separate treatment rather than
a combination therapy.

an effective clue. However, argument types do not080

apply naturally to the drug combination task, in081

which all possible relation arguments are entities082

of the same type (drugs) and we need to identify083

specific subsets of them.084

Long range dependencies The information de-085

scribing the efficacy of a combination is often086

spread-out across multiple sentences. Indeed, our087

annotators reported that for 67% of the instances,088

the label could not be determined based on a single089

sentence, requiring reasoning with a larger textual090

context. Interestingly, our experiments show that091

our models are not helped by the availability of092

longer context, showing the limitations of current093

standard modeling approaches. This suggests our094

dataset can be a test-bed for models that attempt to095

incorporate longer context.096

Challenging inferences As we show in our qualita-097

tive analysis (§4.2), instances in this dataset require098

processing a range of phenomena, including coordi-099

nation, numerical reasoning, and world knowledge.100

We hope that by releasing this dataset we will101

encourage NLP researchers to engage in this impor-102

tant clinical task, while also pushing the boundaries103

of relation extraction.104

2 The Drug Combinations Dataset105

A set of drugs in a biomedical abstract are classi-106

fied to one of the following labels:107

Positive combination (POS_COMB): the sen-108

tence indicates the drugs are used in combination,109

and the passage suggests that the combination has110

additive, synergistic, or otherwise beneficial effects111

which warrant further study. 112

Non-positive combination (OTHER_COMB): 113

the sentence indicates the drugs are used in com- 114

bination, but there is no evidence in the passage 115

that the effect is positive (it is either negative or 116

undetermined).2 117

Not a combination (NO_COMB): the sentence 118

does not state that the given drugs are used in com- 119

bination, even if a combination is indicated some- 120

where else in the wider context. An example is 121

given in the lower half of Figure 1, where each of 122

the drugs Artesunate and Artemether is given in 123

isolation, and no combination is reported. 124

Our primary interest is to identify sets of drugs 125

that are positive combinations. 126

2.1 Relevant Context Size for Classifying 127

Drug Combinations 128

When formulating the extraction task and design- 129

ing our data collection methodology, we first an- 130

alyzed the locality of the phenomenon: to what 131

extent are drug combinations are expressed in a 132

single sentence, or is a larger context is needed? 133

We sampled 275 abstracts that contained known 134

drug combinations according to DrugComboDB.3 135

Analysis showed that 51% of these abstracts men- 136

tioned attempted drug combinations. In 97% of the 137

2We also experimented with another label for combinations
that are discouraged (antagonistic, harmful or not effective).
The agreement for this label was low, leading us to keep it as
a subset of OTHER_COMB.

3We used Syner&Antag_voting.csv taken from
http://drugcombdb.denglab.org/download/
and ranked according to the Voting metric.
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abstracts containing drug combinations, all partic-138

ipating drugs in the attempted combination could139

be located within a single sentence in the abstract140

(for an example, see the OTHER_COMB relation141

in Figure 1). However, establishing the efficacy142

of the combination frequently required a larger143

context (such as the context accompanying the144

POS_COMB relation in Figure 1).145

2.2 Task Definition146

We define each instance in the Drug Combination147

Extraction (DCE) task to consist of a sentence, drug148

mentions within the sentence, and an enclosing149

context (e.g. paragraph or abstract).150

The output of the task is a set of relations, each151

consisting of a set of participating drug spans and152

a relation label (POS_COMB or OTHER_COMB).153

Each subset of drug mentions not included in the154

output set is implicitly considered to have relation155

label NO_COMB.156

More formally, DCE is the task of labeling an157

instance X = {C, i,D} with a set of relation in-158

stances R, where C = (S1, ...Sn) is an ordered list159

of context sentences (e.g. all the sentences in an ab-160

stract or paragraph), 1 ≤ i ≤ n is an index of a tar-161

get sentence Si = (w1, ..., wn(i)) with n(i) words,162

and D = {(d1start, d1end), ..., (dmstart, dmend)}163

is a set of m >= 2 spans of drug mentions in164

S. The output is a set R = {(ci, yi)} where165

ci ∈ P(D) is a drug combination from P(D),166

the set of all possible drug combinations, and167

yi ∈ {POS_COMB,OTHER_COMB} is a com-168

bination label.169

2.3 Evaluation Metric170

We consider two settings: “Exact Match”, a strict171

version which considers identifying exact drug172

combinations, and “Partial Match”, a more relaxed173

version which assigns partial credits to correctly174

identified subsets.175

We use standard precision, pecall and F1176

metrics for both settings. For the partial-match177

case, we replace the binary 0 or 1 score for178

a given combination with a refined score:179

shared_drugs/total_drugs. If there are multiple180

partial matches with gold relations, we take the181

one with maximum overlap. We compute recall as182

identified_relations/all_gold_relations,183

and precision as184

correct_relations/identified_relations.185

We consider two metrics, the averaged Pos-186

itive Combination F1 score which compares187

POS_COMB to the rest, and the averaged Any 188

Combination F1 score which counts correct predic- 189

tions for any combination label (POS or OTHER) 190

as opposed to NO_COMB. The latter is an easier 191

task, but still valuable for identifying drug combi- 192

nations irrespective of their efficacy. 193

2.4 Collecting Data for Annotation 194

To collect data for annotation we curated a list of 195

2411 drugs from DrugBank 4 and sampled from 196

PubMed a set of sentences which mention 2 or 197

more drugs. Analysis of the first 50 sentences from 198

this sample showed that only 8/50 of the sentences 199

included mentions of drug combinations. This 200

meant that annotating the full sample will be costly, 201

and will result in a dataset that’s highly skewed 202

toward relatively trivial NO_COMB instances. 203

We therefore repeated this experiment, sampling 204

sentences whose PubMed abstract included a trig- 205

ger phrase.5 48% of 50 sampled sentences included 206

mentions of drug combinations. Evaluating the 207

coverage of the trigger list against a new sample of 208

abstracts with known drug combinations showed 209

that 90% of these new abstracts included one of 210

the trigger words. This suggests our trigger list 211

is useful for fetching label-balanced data, without 212

prohibitively restricting coverage and diversity. 213

Accordingly, we collected the majority of in- 214

stances for annotation, 90%, using a basic search 215

for sentences that contain at least two different 216

drugs and whose abstract contains one of the trigger 217

phrases. To overcome the lexical restrictions im- 218

posed by our trigger list, we sample the remaining 219

10% of instances using distant supervision: fetch- 220

ing sentences containing pairs of drugs known to be 221

synergistic according DrugComboDB, but whose 222

abstract does not include one of our trigger phrases. 223

All data collecting queries were performed using 224

the SPIKE Extractive Search tool (Shlain et al., 225

2020; Taub-Tabib et al., 2020). The process is il- 226

lustrated at the top of Figure 2. 227

4Curation included downloading a premade drug list from
DrugBank’s website, while removing non pharmacological
intervention such as Vitamins and Supplements. The later we
got from the FDA orange book.

5Triggers were selected by manually identifying words
and phrases which frequently appear in abstracts mentioning
drug combinations. These are phrases like “combination”,
“followed by”, “prior to”, etc. (see full list in Appendix A.3).
The triggers are recall oriented, so while a presence of a trigger
increases the chances that an abstract mentions a drug combi-
nation, it is definitely not clearly indicative. Importantly, since
we’re dealing with a wide context, the presence of a trigger in
an abstract which includes multiple drugs does not mean the
trigger is related to the drugs.
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Figure 2: Illustration of the data construction process. First we construct the required knowledge resources. Then,
we collect data using SPIKE –an extractive search tool– over the PubMed database. The train and test sets were
annotated using Prodigy over the curated data. For test data, we collected two annotations for each sample, and
then had a domain expert resolve annotation disagreements.

2.5 The Annotation Process228

Seven graduate students in biomedical engineer-229

ing took part in the annotation task. The students230

all completed a course in combination therapies231

for cancer and were supervised by a principled re-232

searcher with expertise in this field.233

We provided the participants with annotation234

guidelines which specified how the annotation pro-235

cess should be carried out (see Appendix A.1) and236

conducted an initial meeting where we reviewed237

the guidelines with the group and discussed some238

of the examples together.239

Each of the participants had access to a separate240

instance of the Prodigy annotation tool (Montani241

and Honnibal, 2018), pre-loaded with the candidate242

annotation instances. Once a session starts, the243

instances (containing of a sentence with marked244

drug entities, and its context) appear in a sequential245

manner, with no time limit. For each instance we246

instructed the annotators to mark all subsets of247

drugs that participated in a combination, and for248

each subset to indicate its label (POS_COMB or249

OTHER_COMB). Moreover, we instructed them250

to indicate whether the context was needed in order251

to determine the positive efficacy of the relation.252

Despite the considerable time required for expert253

annotation, we collected annotations for 1634 pas-254

sages. Among these, 272 were assigned to at least255

two annotators. After further arbitration by the lead256

Metric Partial Match Exact Match
Avg. Any Combination F1 88.9 86.1

Avg. Positive Combination F1 83.4 79.6

Table 1: Agreement scores using our adaptation of F1
score to allow for partial-match.

researcher, these were used for the test set. The 257

process is illustrated in the bottom part of Figure 2. 258

2.6 Inter-annotator Agreement 259

During the course of the task we calculated inter- 260

annotator agreement multiple times to identify 261

cases of disagreement and provide feedback to an- 262

notators. Each time, a set of 25 instances were 263

randomly selected and assigned to all annotators. 264

Agreement was calculated based on a pairwise F1 265

measure (with some modifications as described in 266

§2.3) and averaged over all pairs of annotators (see 267

discussion of alternative metrics in Appendix A.2). 268

Final agreement numbers, in Table 1, are satis- 269

factory (Aroyo and Welty, 2013; Araki et al., 2018). 270

2.7 Resulting Dataset 271

The dataset consists of 1634 annotated abstracts,6 272

split into 1362 train and 272 test instances. These 273

6This is a similar size to existing human-labeled biomedi-
cal relation extraction datasets, such as BioCreative V CDR
(Li et al., 2016), which has 1500 abstracts annotated, BioCre-
ative VI (Krallinger et al., 2017), which has 2432 abstracts,
and DDI (Herrero-Zazo et al., 2013), which has 714 abstracts.
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Contextualized Embedding

"[...] of protein kinase C-alpha. This study evaluated the response rate of the combination therapy of 
<<m>>  aprinocarsen <</m>> , <<m>>  gemcitabine <</m>> , and <<m>>  carboplatin <</m>> in 
previously untreated patients with advanced non-small cell lung cancer…    [200 tokens later] … 
However, this combination resulted in severe thrombocytopenia in the majority of patients."

Feedforward OTHER_COMB

Figure 3: Our baseline architecture, adapted from the PURE model (Zhong and Chen, 2021)

include 1248 relations; 838 are POS_COMB and274

410 are OTHER_COMB (with the same label ratio275

in the train and test sets). 591 sentences contain no276

drug combination, 877 contain one relation (either277

POS_COMB or OTHER_COMB), and 166 con-278

tain two or more different combinations. Among279

annotated relations, 900 are binary, 226 are 3-ary,280

69 are 4-ary, and 53 are 5-ary or more.281

For each instance in the resulting dataset we282

include the context-required indication provided283

by the annotators. In 835 out of 1248 relations the284

annotator marked the context as needed which is285

67% of the time, showing the importance of the286

context in the DCE task.287

3 Experiments288

3.1 Baseline Model Architecture289

We establish a baseline model to measure the diffi-290

culty of our dataset and reveal areas for improve-291

ment. For our underlying baseline model architec-292

ture, we adopt the PURE architecture from Zhong293

and Chen (2021), which is state-of-the-art on sev-294

eral relation classification benchmarks, including295

the SciERC binary scientific RE dataset (Luan296

et al., 2018). The PURE architecture, designed297

for 2-ary and 3-ary relation extraction, consists of298

three components. First, special “entity marker"299

tokens are inserted around all entities in a candidate300

relation. Next, these marker tokens are encoded301

with a contextualized embedding model. Finally,302

the entity marker embeddings are concatenated and303

fed to a feedforward layer for prediction.304

Unlike the original PURE architecture, we con-305

sider the more challenging case of extracting rela-306

tions of variable arity. To support this setting, we307

average the entity marker tokens in a relation rather308

than concatenate. The final baseline model architec- 309

ture is shown in Figure 3. For the contextual embed- 310

ding component of this architecture, we experiment 311

with four different pretrained scientific language 312

understanding models (SciBERT (Beltagy et al., 313

2019), BlueBERT (Peng et al., 2019), Pubmed- 314

BERT (Gu et al., 2020), and BioBERT (Lee et al., 315

2020)). During training, we only finetune the final 316

*BERT layer. We train each model architecture 317

for 10 epochs on a single NVIDIA Tesla T4 GPU 318

with 15GB of GPU memory, which takes roughly 319

7 hours to train for each model. 320

To our knowledge, there are no other models 321

designed for variable-length N -ary relation extrac- 322

tion, so we consider no other baselines. 323

3.2 Domain-Adaptive Pretraining 324

Our baseline model architecture relies heavily on 325

a pretrained contextual embedding model to pro- 326

vide discriminative features to the relation classifier. 327

Gururangan et al. (2020) showed that continued 328

domain-adaptive pretraining almost always leads 329

to significantly improved downstream task perfor- 330

mance. Following this paradigm, we performed 331

continued domain-adaptive pretraining (“DAPT”) 332

on our contextual embedding models. 333

We acquired in-domain pretraining data using 334

the same procedure used to collect data for anno- 335

tation: running a SPIKE query against PubMed 336

to find abstracts containing multiple drug names 337

and a “trigger phrase" (from the list in Appendix 338

A.3). This query resulted in 190K unique ab- 339

stracts. We do not include any paragraphs from 340

our annotated dataset. We then perform domain- 341

adaptive training against this dataset using the 342

Huggingface Transformers library. We 343

train for 10 epochs using a learning rate of 5e-4, 344
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Model Positive Combination F1 Any Combination F1
Exact Match Partial Match Exact Match Partial Match

Human-Level 79.6 83.4 86.1 88.9

Rule-based 31.8 45.6 39.1 57.4

SciBERT 44.6 (± 4.6) 55.0 (± 5.9) 50.2 (± 1.9) 63.6 (± 2.7)
w/ DAPT 54.8 (± 3.2) 63.6 (± 2.0) 61.8 (± 2.7) 72.8 (± 2.1)

BlueBERT 41.2 (± 4.8) 51.7 (± 6.0) 47.3 (± 4.2) 59.9 (± 6.2)
w/ DAPT 56.6 (± 2.3) 63.5 (± 3.1) 64.2 (± 2.6) 74.7 (± 2.7)

PubmedBERT 50.7 (± 5.5) 59.6 (± 5.8) 55.9 (± 3.2) 66.7 (± 3.8)
w/ DAPT 61.8 (± 5.1) 67.7 (± 4.8) 69.4 (± 1.7) 77.5 (± 2.2)

BioBERT 45.4 (± 3.7) 55.8 (± 2.2) 46.7 (± 3.6) 58.3 (± 5.1)
w/ DAPT 56.0 (± 6.5) 63.5 (± 7.5) 65.6 (± 1.8) 75.7 (± 2.2)

Table 2: Comparing different foundation models (with and without continued domain-adaptive pretraining) on
Exact-Match and Partial-Match relation extraction metrics. Mean score from 4 different random seeds is reported,
and standard deviation is computed across seeds.

finetuning all *BERT layers and using the same345

optimization parameters specified by Gururangan346

et al. (2020). This pretraining took roughly 8 hours347

using four 15GB NVIDIA Tesla T4 GPUs.348

3.3 Relation Prediction349

To apply the model to drug combination extraction,350

we reduce the RE task to an RC task by consider-351

ing all subsets of drug combinations in a sentence,352

treating each one as a separate classification input,353

and combining the predictions.354

This poses two challenges: there may be a large355

number of candidate relations for a given document,356

and each relation is classified independently despite357

the combinatorial structure. To handle these issues,358

we use a greedy heuristic of choosing the smallest359

set of disjoint relations whose union covers as many360

drug entities as possible in the sentence. We do361

this iteratively: at each step, we choose the largest362

predicted relation that does not contain any drugs363

found in the relations chosen at previous iterations.364

This greedy heuristic favors large (high arity)365

relations. Nonetheless, we empirically find this366

method is helpful for extracting high-precision367

drug combinations from our model architecture.368

3.4 Rule-based baseline369

To further validate that the trigger words do not in-370

troduce bias to our task, we consider an additional371

baseline based on the following rule: if a trigger372

word is found in the same sentence with multiple373

drugs, this set of drugs is tagged as POS_COMB.374

4 Results 375

4.1 Effect of Pretrained LMs and 376

Domain-Adaptive Pretraining 377

We show results of our baseline model architec- 378

tures in Table 2. For each model, we report the 379

mean and standard deviation of each metric over 380

four identical models trained with different seeds.7 381

Among the four base scientific language under- 382

standing models in our experiments, we observe 383

PubmedBERT to be the strongest on every metric. 384

We additionally find that domain-adaptive pretrain- 385

ing provides significantly improvements for every 386

base model, consistently giving 5-10 points of im- 387

provement on Positive Combination F1 score. The 388

value of domain-adaptive pretraining supports our 389

observation that encoding domain knowledge is 390

critical to solving this new task. 391

The rule-based approach underperformed all 392

learned models (30 F1 points under our strongest 393

model, PubmedBERT-DAPT). This shows this task 394

cannot be reduced to keyword identification. 395

4.2 Qualitative Error Analysis 396

We identify classes of challenges that make this 397

task difficult, both in terms of human annotation 398

and machine prediction. 399

Coordination Ambiguity: A known linguistic 400

challenge is the ambiguity that stems from vague 401

coordination. In cases where explicit combination 402

words (e.g. combination, plus, together with, etc) 403

are not used, it may be unclear whether two drugs 404

are being used together or separately. For example 405

in “These findings may help clinicians identify pa- 406

tients for whom acamprosate and naltrexone may 407

7Seeds used are 2021, 2022, 2023, and 2024
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Model Positive Combination F1 Any Combination F1
Exact Match Partial Match Exact Match Partial Match

No Extra-sentential Context 63.4 (± 0.6) 68.5 (± 1.1) 69.7 (± 1.3) 76.8 (± 1.7)
1 Sentence of Context 63.9 (± 2.3) 69.4 (± 3.5) 71.9 (± 1.1) 78.6 (± 1.8)
2 Sentences of Context 61.9 (± 9.0) 67.6 (± 9.2) 70.1 (± 2.3) 77.9 (± 1.3)
3 Sentences of Context 65.2 (± 2.3) 72.4 (± 1.3) 70.8 (± 1.7) 78.7 (± 1.2)

Table 3: The effect of extra-sentential context on model performance. n sentences are included on each side of the
relation-bearing sentence. Mean and standard deviation of each metric are reported over 4 different random seeds.

be most beneficial” it is unclear if acamprosate and408

naltrexone are being described in combination or409

as independent treatments, leading to either a POS410

label for the former or NO_COMB for the latter.411

Numerical and Relative Reasoning: In some412

cases, the effect of a treatment is described in rel-413

ative or numerical terms, rather than an absolute414

claim. Consider the example, “The infection rate415

in the control group was 3.5% and in the treated416

group 0.5%.”. Here, the reader must compare the417

control vs experimental groups and deduce that the418

experimental outcome is positive, because the treat-419

ment yields a lower infection rate.420

Domain Knowledge: Similarly, classifying rela-421

tions in this dataset may require an understand-422

ing of domain knowledge. In “Growth inhibition423

and apoptosis were significantly higher in BxPC-3,424

HPAC, and PANC-1 cells treated with celecoxib425

and erlotinib than cells treated with either cele-426

coxib or erlotinib”, one must understand that hav-427

ing higher values of Growth inhibition and apopto-428

sis in specific cells is a positive outcome, in order429

to classify this combination as positive.430

Context related Complications: The following431

are kinds of complications found when the evi-432

dence lies in the wider part of the context.433

Coreference: Anaphoric or coreferential reasoning434

is sometimes needed to understand the efficacy of435

the combination e.g. “it was demonstrated that436

they could be combined with acceptable toxicity.”.437

Contradicting Evidence: the reader often must in-438

fer a conclusion given opposing claims within a439

given abstract. This can happen as combinations440

can be referred as e.g. toxic but effective.441

Long Distance: The target sentence can be far—up442

to 41 sentences apart—from the evidence sentence,443

making it difficult for even humans to process.444

4.3 Quantitative Error Analysis 445

To probe this task, we analyze the performance 446

of our strongest model—the one using a Pubmed- 447

BERT base model tuned with domain-adaptive 448

pretraining—along different partitions of test data. 449

We trained with four random seeds and perform 450

comparisons using a paired multi-bootstrap hypoth- 451

esis test where bootstrap samples are generated by 452

sampling hierarchically over the four random seeds 453

and the subsets of the test set (Sellam et al., 2021). 454

We use 1000 bootstrap samples in each test. 455

4.3.1 Do models leverage context effectively? 456

Each relation in our dataset consists of entities con- 457

tained within a single sentence, but labeling the 458

relation frequently requires extra-sentential con- 459

text to make a decision. In our dataset, annota- 460

tors record whether or not each relation requires 461

paragraph-level context to label, reporting that 67% 462

of drug combinations required context to annotate. 463

To understand the extent that models make use 464

of paragraph-level context, we trained and evalu- 465

ated our PubmedBERT-based model using varying 466

amounts of extra-sentential context around the sen- 467

tence containing drug entities. In Table 3, we see 468

that adding context provides nearly identical perfor- 469

mance to training a model with no extra-sentential 470

context at all, with differences rarely exceeding one 471

standard deviation of F1 score. 472

However, we see increased variability in “Pos- 473

itive Combination F1” performance when extra- 474

sentential context is used. To explain this, recall 475

from §2.1 that determining the efficacy of a drug 476

combination often requires paragraph-level context 477

for annotators, while identifying any combination 478

usually requires no context. From qualitative analy- 479

sis of attention maps, we observed that our models 480

are not able to consistently identify the salient parts 481

of paragraph-level context, potentially causing in- 482

stability with larger inputs. 483

These results suggest ample room for improve- 484

ment in extracting document-level evidence. This 485
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Figure 4: Comparing models performance on binary
vs higher-order N -ary relations, averaged over 4 seeds
of the PubmedBERT-DAPT model. No consistent sig-
nificant differences were observed; p-values for these
comparisons are 0.456, 0.149, 0.240, and 0.276.
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Figure 5: Comparing relation extraction on test set drug
combinations that are observed in the training set or not,
using the PubmedBERT-DAPT model. Paired multi-
bootstrap test p-values for these four comparisons are
0.262, 0.025, 0.103, and 0.009, respectively.

makes our dataset a potentially useful benchmark486

for document-level language understanding.487

4.3.2 Binary vs. higher-arity relations488

Given that our dataset is the first relation extrac-489

tion dataset with variable-arity relations, do higher-490

order relations pose a particular challenge for our491

models? To answer this, we separate all predicted492

and ground truth relations for the test set into bi-493

nary relations and higher-arity relations. We then494

report precision among each subset of predicted495

relations and recall among each subset of ground496

truth relations. We perform this experiment across497

four different model seeds, and report results in498

aggregate using a paired multi-bootstrap procedure.499

In the results in Figure 4, we see no consistent sig-500

nificant differences between models of different501

arities, suggesting that our technique of computing502

relation representations by averaging entity repre-503

sentations scales well to higher-order relations.504

4.3.3 Generalizing to new drug combinations505

How well can relation extraction models classify506

drug combinations not seen during training? Sim-507

ilar to the setup in §4.3.2, we divide all predicted508

and ground truth relations for the test set into the509

set of drug combinations which are also annotated 510

in our training set, and the set that have not been. In 511

our dataset, over 80% of annotated test set relations 512

are not found in the training set. 513

In Figure 5, performance is consistently better 514

for relations observed in the training set than for 515

unseen relations, by a margin of 10-15 points. Re- 516

call, in particular, is significantly worse for rela- 517

tions unseen during training (at 95% confidence), 518

and precision is potentially also worse. Consider- 519

ing that unseen drug combinations are practically 520

more valuable than already-known combinations, 521

improving generalization to new combinations is a 522

critical area of improvement for this task. 523

5 Related Work 524

The DDI dataset (Herrero-Zazo et al., 2013) is the 525

only work to our knowledge that annotates drug 526

interactions for text mining. However, it funda- 527

mentally differs from our dataset in the type of 528

annotations provided: the DDI annotates the type 529

of discourse context in which a drug combination is 530

mentioned, without providing explicit information 531

about combination efficacy. In contrast, our dataset 532

is focused on semantically classifying the efficacy 533

of drug combinations as stated in text. 534

Other RE datasets exist in the biomedical field 535

(Peng et al., 2017; Li et al., 2016; Wu et al., 2019; 536

Krallinger et al., 2017), but do not focus on drug 537

combinations. Similarly, several RE datasets tackle 538

the N -arity problem in the scientific domain (Peng 539

et al., 2017; Jain et al., 2020; Kardas et al., 2020; 540

Hou et al., 2019), and in the non-scientific domain 541

(Akimoto et al., 2019; Nguyen et al., 2016), how- 542

ever, all of them consider a fixed choice of N . 543

6 Conclusions 544

We present a new resource for drug combination 545

and efficacy identification. We establish base- 546

line models that achieve promising results but re- 547

veal clear areas for improvement. Beyond the 548

immediate, application-ready value of this task, 549

this task poses unique relation extraction chal- 550

lenges as the first dataset containing variable- 551

arity relations. We also highlight challenges with 552

document-level representation learning and incor- 553

porating domain knowledge. We encourage oth- 554

ers to participate in this task, and our dataset 555

and modeling code are all available to the public 556

at https://anonymous.4open.science/ 557

r/drug-synergy-models--C8B7. 558
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A Appendices 780

A.1 Annotation Guidelines 781

Figure 6: Annotation instance in the Prodigy environment. The screen is constructed of the sentence where they
should mark relations, a button to show the full context and a selection per relation to indicate the necessity of the
context.

For this task we recruited 7 annotators all studying for advanced degrees in biomedical engineering. The 782

annotators were payed by their advisor, an amount that is standard for annotation projects in their country 783

of residence. All participating annotators were provided with annotation guidelines. The guidelines 784

specified how the annotation process should be carried out and provided definitions and examples for the 785

different labels used. As the task progressed, the guidelines were also expanded to include discussion of 786

frequently encountered issues. 787

For a given instance, such as presented in the top of Figure 6 the annotator needs to first recognize any 788

missing drugs and mark them, and then label any interactions they find among the drugs. In case they need 789

to consult a wider context they can press on a ‘show more context’ button and a text box with the wider 790

context will appear. This context can be again hidden by clicking the same button if needed. Lastly, in the 791

bottom of the sample page, we present a table with questions regarding the necessity of using the context. 792

Then the annotator should decide if they need to ignore the current sample or to complete the current 793

instance and accept it, by pressing the accept and ignore buttons. 794

The annotators are instructed as follows. They should read the sentence carefully, and try to answer a 795

two phase question to themselves. First, if the drugs are mentioned in any form of combination or they 796

should be given separately. Second, if indeed the annotator recognized the drugs as a combination can 797

they determine the efficacy of the combination by the sole sentence. 798

In case they can not determine the efficacy they are instructed to press on the ‘get more context’ button 799

and read the entire context in order to determine what is the correct efficacy. If after reading the context 800

they can still not determine the efficacy then the label of the interaction should be OTHER_COMB (aside 801

from negative label experimentation mentioned in Footnote 2). Otherwise it should be POS_COMB. In 802

case that they recognized that there is no combination between the drugs in the sentence then they should 803

not use any label and simply accept the current instance. Then they should answer the context related 804

questions for the POS_COMB label in order to signal if the context was needed. 805

While reading the sentence if the annotators find unmarked drugs they can mark them before continuing 806
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to the interaction-labeling phase and treat them the same as the other drugs, but, it is not required to mark807

a word as drug in order to use it in an interaction. If a drug is marked in a wrong manner they should try808

and fix it, e.g. the span of the drug is incorrect.809

In order to achieve more consistent and accurate annotations, they are also instructed to annotate all the810

interactions that they can find in a given sentence. They should always use the accept button even if there811

are no interactions in the sentence. Only in cases where they want to skip a sentence (e.g. when there812

is an inherent problem with it) or leave it for a future discussion they should use the ignore button. An813

interaction can occur between more than two drugs, if so they should notice that they don’t need each814

pair from this group to have a marked interaction, as long as they all connect to the same graph. e.g.815

“Drugs A, B and C are synergistic.” connecting A to B and B to C is sufficient, no need to connect drug816

A to drug C. Each interaction should be marked with a different tag (POS_COMB1, POS_COMB2...,817

OTHER_COMB1, OTHER_COMB2...).818

A.2 Evaluation Metric Discussion819

For measuring the agreement, we chose to use our adaptation of F1 score and not other common metrics820

such as Cohen’s Kappa (Cohen, 1960) or one of its variations (e.g. Feliss’s Kappa (Fleiss, 1971) and821

Krippendorf’s Alpha (Hayes and Krippendorff, 2007)). These metrics expect a setup where the relation822

candidates are already marked and the task is only to label them – a labeling task and not an extraction823

task. This causes two problems, one is that they inherently do not need to handle a partial match. So if824

for example there are three drugs in a sentence, the first annotator annotated a relation between drugs825

A and B, while a second annotator annotated the same relation between drugs A, B and C. So we will826

either underestimate or overestimate their agreement score if we considered this a mismatch or a match827

respectively. Moreover, their calculations depend on the hypothetical agreement by chance normalization828

factor, but this will not reflect the difficulty of random choosing in our setup as they ignore the size of the829

combinatorial set of relation candidates we can possibly have.830

A.3 Trigger List831
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Figure 7: Abstracts percentage including each trigger word (1634 abstracts included; 44 words in the full word list;
Words <1% were neglected from the figure.
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In Figure 7 we show the triggers that we used in the Spike queries. We show the percentage of abstracts 832

that included each trigger (others under 1%: conjunction, two-drug, first choice, additivity, combinational, 833

synergetic, simultaneously with, supra-additive, five-drug, combinatory, over-additive, timed-sequential, 834

co-blister, super-additive, synergisms, synergic, synergistical, less-than-additive, greater-than-additive, 835

additivesynergistic, supraadditive, superadditive, overadditive, subadditive, first-choice, 2-drug, sub- 836

additive, more-than-additive, 3-drug). 837
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