
Under review as a conference paper at ICLR 2024

CLUSTERING DATA WITH GEOMETRIC MODULARITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering data is a fundamental problem in unsupervised learning with a range of
applications in the natural and social sciences. This wide applicability has led to
the development of dozens of clustering algorithms. Broadly, these algorithms can
be divided as being (i) parametric, e.g. k-means, where the centers are parameters
and k a hyperparameter, and (ii) non-parametric, e.g. DB-SCAN (Ester et al.,
1996), which has hyperparameters, but otherwise only uses density to find clusters.
An attractive feature of DB-SCAN is not needing to know the number of clusters
(usually unknown in practice) in advance. In this work, we propose a new measure
of cluster quality, called geometric modularity and show how it can be used to
improve popular algorithms such as DB-SCAN. Through experiments on a wide-
range of datasets we show that using geometric modularity yields a parameter-free
DB-SCAN-based approach with better output quality than other parameter-free
density based clustering approaches such as OPTICS and DPC. Interestingly,
our experiments also show that geometric modularity tracks a supervised measure
called adjusted mutual information well, despite using no label information. Finally,
we also provide a theoretical justification of the use of this measure by considering
an idealized model for well-clusterable data.

1 INTRODUCTION

Clustering algorithms are a foundational machine learning tool that find applicability in a wide range
of applied fields such as biology, econometrics, forensics, network sciences, political sciences, etc. to
extract structured information from amorphous data (Xu & Wunsch, 2005; Xu & Tian, 2015). The
goal of clustering algorithms is to divide data into groups, called clusters, in a way that elements in the
same cluster are similar to each other while elements in different clusters are dissimilar. Clustering
algorithms are widely used in practice for their ability to unveil hidden structures in seemingly
unstructured data that can lead to significant insights and discoveries. As a consequence, the design
of efficient clustering algorithms has been extensively studied in several areas of computer science
and statistics in the past decades.

A key advantage of clustering compared to other machine learning techniques is that clustering
algorithms are unsupervised, i.e. they do not depend on labeled data that indicates to which cluster
a given input belongs. Their ability to learn patterns directly from untagged data is particularly
important in settings where gathering labeled data is a challenge, for cost, privacy, or scarcity reasons
(e.g., medical diagnosis, etc.). A further application of clustering methods is the potential ability to
find structure in data where human experts had hitherto not foreseen any structure; this is particularly
relevant for medical and scientific discoveries. To summarize, one of the main reason behind the
practical success of clustering lies in its ability to extract information from datasets on which we have
very scarce or no label information.

However clustering algorithms are very sensitive to hyper-parameters that need to be tuned in a
data-dependent manner by an experienced user. Clustering algorithms come in many flavors; we
focus on the well-known DB-SCAN algorithm (Ester et al., 1996), a widely-used heuristic, and part of
standard machine learning toolboxes (e.g., scikit-learn), that is used for identifying patterns in points
embedded in a metric space (Alg. 1). DB-SCAN is a density-based algorithm and it is non-parametric
in the sense that the data density determines the number of clusters etc., which need not be known
in advance. A key hyper-parameter however for DB-SCAN is the radius,1 which determines which

1There is a second hyper-parameter minPoints; but it interacts with the radius and usually has a smaller
effect. In sklearn it is by default set to 5. We also use the default and find that it is not particularly sensitive.

1

Under review as a conference paper at ICLR 2024

elements are considered core, i.e., points that have many points within this radius, and the connectivity
between points. If the radius is set to be too small, DB-SCAN classifies all points as outliers. On the
other hand, if the radius is too big then all data will be grouped in a single cluster. In fact, by varying
this hyperparameter it is possible to generate several candidate clusterings at different granularities.
The radius in DB-SCAN is typically treated as a hyper-parameter. One of the best-known and widely
used method to automatically select this hyperparameter is OPTICS (Ankerst et al., 1999), which
can be seen as a hierarchical clustering version of DB-SCAN. At a high-level, OPTICS ranks the
points based on how far they are from dense regions of the space. OPTICS then defines the clusters
by identifying key break points in the ordering (when two consecutive points have very different
neighbor densities). We also compare with Density Peak Clustering (DPC) which identifies local
peaks in terms of density and assigns each point to the nearest local peak to form clusters.

Algorithm 1: DB-SCAN (simplified)
1 Input: Data: x1, . . . ,xn, distance d(·, ·) → R+; Hyper-Parameters: ε, minPoints
2 Set xi to be core if ε-ball around xi has at least minPoints points
3 Add a directed edge from xi to xj whenever xi is core and d(xi,xj) ≤ ε
4 Say xj reachable from xi if there is a directed path, denote xi → xj

5 Say xi ∼ xj if there exists xk with xk → xi and xk → xj

6 Obtain the transitive closure of ∼ and output equivalence classes as clusters

Our Results: This work focuses on improving on previous non-parametric methods with a focus
on DB-SCAN. We start by designing a method to autotune, in an unsupervised fashion, the radius
parameter, denoted by ε, of DB-SCAN. Then we show how to improve the results further via a local
search routine.

In the supervised setting a natural way to set the hyperparameter ε would be to select the value for
which the clusters output by DB-SCAN have the highest adjusted mutual information score (AMI)2

with respect to the target clusters induced by the labeled data. AMI is a measure of similarity between
two candidate clusterings (for a formal definition of AMI refer to Section 4). As we are in the
unsupervised setting, we introduce a new quality measure for clusterings (i.e., partitionings of the
space), called Geometric modularity, that evaluates the quality of a clustering (without the knowledge
of the target clusters).

Our approach is based on a generalization of the notion of modularity (Newman, 2006) to vector
data. A striking property of our new notion of modularity is its ability of mimicking the behavior of
the adjusted mutual information (AMI) without having access to the ground truth. In fact, we can
show empirically that our new notion of modularity, despite being an unsupervised measure tracks
the supervised measure AMI, incredibly well on datasets where the underlying clustering is known.
For an example of this phenomena refer to Figure 1. In particular, it is remarkable that these two
measures achieve the maximum for very similar values of ε (the scales are different, though irrelevant
when choosing the mode). In Appendix A.1 we show that this behavior is, to a large extent, replicated
on a wide range of datasets.

This metric allows us to develop a novel approach to tune ε creating an essentially hyperparameter-
free clustering algorithm. Concretely, we simply pick the value of ε for which DB-SCAN maximizes
the Geometric modularity and outputs the clusters hence obtained. The details of the algorithm are
provided in Section 2 after we formally define Geometric modularity.

From a theoretical perspective, we show that our technique is able to recover the underlying clustering
in a well-separated clustering model related to that of Arora et al. (2018b). In particular, we show
that using our Geometric modularity metric, it is possible to auto-tune the parameter of DB-SCAN to
recover the underlying clustering structure.

From an experimental perspective, we compare our method to OPTICS, the main approach for
choosing the radius parameter of DB-SCAN, the density peak clustering algorithm (DPC) (Rodriguez
& Laio, 2014), and to a hypothetical algorithm that picks the hyper-parameter using the AMI score
which is a supervised quantity. OPTICS seeks to order points in a dataset in terms of reachability
distance from previously considered points and uses steep changes in this distance to automatically

2Or any other suitable supervised accuracy measure.

2

Under review as a conference paper at ICLR 2024

(a) colleges (b) iris

Figure 1: We show the AMI and the Geometric modularity score for different clusterings obtained by
using DB-SCAN with different ε to cluster the colleges and iris datasets. Geometric modularity
has a resolution parameter ρ, which we show how to pick automatically in a data-dependent way in
Section 4. These plots also show that this is not a sensitive hyper-parameter as the curves are broadly
similar across a range of values of ρ.

identify new clusters. Although, this algorithm still has a hyperparameter, ξ, to indicate the steepness
of the change, in libraries it is often implemented with defaults that yield good results on certain
datasets. DPC is based on the idea that “cluster centers” are local maxima in terms of their density
and far from other centers. We show that our approach significantly outperforms OPTICS and for
hyper-parameter tuning of DB-SCAN. On all our datasets DPC did not produce meaningful results.
In addition, we also show that Geometric modularity is able to track closely the AMI score on
multiple datasets, proving its effectiveness in detecting a good clustering.

Local Search: We moreover show experimentally that the results obtained via DB-SCAN, namely
the results obtained by running DB-SCAN with parameter ε chosen so as to maximize Geometric
modularity, can be further improved by running a simple local search heuristic seeded with DB-SCAN
clusters. Concretely, the local search algorithm iteratively moves a point from one cluster to another
if it increases the overall Geometric modularity of the clustering. We show that seeded with the
DB-SCAN clusters (which are useful to identify the overall structure), the local search algorithm
often outperforms DB-SCAN in terms of AMI.

Additional related work: There has been a lot of attention to compute the optimal parameters for
DB-SCAN algorithm. Unfortunately most of previous works consider a setting that significantly
departs from ours. Bergstra et al. (2011); Karami & Johansson (2014); Zhang et al. (2022)) assume
that the algorithm has access to some set of already labeled data elements (i.e.: the semi-supervised
setting) and their approaches cannot be applied to the fully unsupervised setting we consider here.
Other approaches, such as Liu et al. (2007); Mitra & Nandy (2011), introduce another parameter that
replaces the parameter ε. Namely, both approaches run DB-SCAN with a specific value εp for each
point p of the input. The main issue is that in both cases, the value εp is derived from the distances
from p to its k-nearest neighbors, where k is a new parameter. The approaches thus replace the
parameter ε with a new parameter, k. Finally, none of the previous work (Bergstra et al. (2011);
Karami & Johansson (2014); Zhang et al. (2022); Liu et al. (2007); Mitra & Nandy (2011); Lai et al.
(2019); Zhou & Gao (2014)) prove theoretical guarantees of the resulting algorithm. So our work if
the first method with good experimental result and theoretical guarantees. Some work focuses on
improving the running time or scalability, see e.g.: Esfandiari et al. (2021); Jiang et al. (2020).

From a theoretical perspective not much work has been done for DB-SCAN. Recently few papers
(Sriperumbudur & Steinwart (2012); Jiang (2017); Steinwart et al. (2017); Jang & Jiang (2019))
study the statistical properties of DB-SCAN and few of its variants although our paper is the first
paper in which it is shown that DB-SCAN can recover “clusterable” instances. Despite the practical
significance of DB-SCAN, its statistical properties have only been explored recently. Such analyses
make use of recent developments in topological data analysis to show that DB-SCAN estimates the
connected components of a level-set of the underlying density.

3

Under review as a conference paper at ICLR 2024

2 GEOMETRIC MODULARITY

In our setting we receive as input a set of points and a distance (or dissimilarity) function between
them. In this setting, an ideal cluster corresponds to a sets of points that are “unusually” close in
comparison to the global distance structure of the input at hand. To capture this intuition we present
the notion of geometric modularity and we show that this notion aligns very well with the target
ground-truth clusters, and so enables hyper-parameter tuning for DB-SCAN. Geometric modularity
is defined for vector-valued inputs and is inspired by modularity introduced by Newman (2006) in
the context of detecting communities in networks. The main intuition behind our notion is to assign a
score to each point that is proportional to the difference between its “average” distance to the rest of
the points in the instance and the “average” distance to the rest of the points in its cluster. Arenas et al.
(2008) considered a more general version of the modularity function to capture different resolutions
at which cluster structures may appear. Subsequently, Newman (2016) established the equivalence
between modularity maximization and maximum likelihood methods for community detection in
block-models in this more general case. We will also allow the additional resolution parameter, which
we denote by ρ in our definition of geometric modularity. Although in principle this introduces an
extra hyper-parameter, in Section 4 we show how this can also be tuned automatically from data.

Formally, let x1, . . . ,xn be n points in Rm and let d(·, ·) denote some distance function (smaller
distance indicates greater similarity). We do not require d(·, ·) to be a metric. In Section 2.1, we show
how geometric modularity can be computed efficiently when d(·, ·) is the squared Euclidean distance.
In our experiments, we also use squared Euclidean distance. For any xi, let Di =

∑
j d(xi,xj). And

let Z =
∑

i Di. Let c1, . . . , cn be an assignment of points to a cluster, where each ci is an integer
between 1 and n and it represents the cluster to which xi is assigned. Let δcicj be equal to 1 if ci = cj
and 0 otherwise. Then, we define the geometric modularity (Gρ) of a clustering as:

Gρ =
∑
i,j

(
ρ · DiDj

Z
− d(xi,xj)

)
δcicj

In general, higher values of Gρ indicate higher quality of the underlying clustering. To understand
better our new notion, let’s consider the contribution of one point to Gρ. Let’s first assume that ρ = 1,
though we will discuss the effect of ρ below when discussing the properties of geometric modularity.
When ρ = 1, we will ignore the cumbersome superscript. In particular, we can rewrite G =

∑
i Gi

where Gi = Di

∑
j

(
Dj

Z − d(xi,xj)
Di

)
δcicj . We note that the score of a point is directly proportional

to its distance to the rest of the points in the instance. Furthermore two points benefit more from being
in the same cluster if their distances to the rest of the points is larger. In particular, the contribution to
the score that one gets by placing xi and xj in the same cluster is Dj

Z − d(xi,xj)
Di

, where Dj

Z captures

the “average” distance of point j to the remaining points in the instance and d(xi,xj)
Di

captures the
local distance between point j to point i. This intuitively captures the fact that for a set of points to be
in the same cluster their distance has to be “unusually” close in comparison with the set of distances
in the instance – connecting with the philosophy of clustering: Points that are close should be in the
same clusters, while points that are far should be in separate clusters.

Basic Properties of Geometric Modularity: Let’s now turn our attention to some basic properties
of geometric modularity. First note that if all points are clustered together (e.g. ci = 1 for all i), then
Gρ = (ρ− 1)Z; in particular, when ρ = 1, then we have G = 0. This captures the fact that there is
no gain in clustering the instance into a single cluster. Second, if we cluster every point in a singleton
cluster (e.g. ci = i for all i) then the total score of the instance is Gρ = ρ

∑
i
D2

i

Z . This also allows us
to see the effect of ρ. In general, if ρ ≪ 1, we will prefer smaller clusters, while if ρ ≫ 1, we will
prefer larger (and fewer) clusters. In Section 4, we give a method to tune ρ from data, typically in the
range [0.5, 1]. Essentially, we can count the number of clusters obtained by picking ε to maximize
the geometric modularity for different values of ρ. We find that the number of clusters is relatively
stable as a function of ρ and pick ρ to be in the interval with the most stability in this regard.

2.1 COMPUTATIONAL COMPLEXITY

In this section, we show how to efficiently compute the modularity of a given clustering of a given
dataset. Let X = {x1, . . . ,xn} denote a dataset of n points in an m-dimensional Euclidean space,

4

Under review as a conference paper at ICLR 2024

and for points x,y, the dissimilarity function is the squared Euclidean distance d(x,y) = ∥x− y∥2.
Let C = {C1, . . . , Ck} be a partition of the X . We now explain how the modularity of C can be
computed in time linear in n and m.3 Concretely, we wish to compute

Gρ =
∑
i,j

(
ρ
DiDj

Z
− d(xi,xj)

)
δcicj

where ci indicates which cluster of C contains xi.

1. Let µ be the mean of X and let Σµ =
∑n

i=1 ∥xi − µ∥22. We have that for any point p in
Rm,

∑n
i=1 ∥xi − p∥22 = Σµ + n∥µ− p∥22. Hence, computing Di = Σµ + n∥µ− xi∥22 for

all i ∈ [n] can be done in linear time by first computing µ and then Σµ, which can easily be
done in linear time. It follows that Z can be computed in linear time.

2. Similarly, we let µCℓ
and ΣµCℓ

be respectively the mean of cluster Cℓ and the sum of
distances squared of the points in Cℓ to the mean of cluster Cℓ. Again, computing the means
of all the clusters can be done in linear time. Moreover, by an argument similar to the
above one,

∑
i,j|ci=cj

∥xi − xj∥22 can be rewritten as
∑n

i=1(Σµci
+ |ci| · ∥xi − µci∥22) and

computed in linear time.
3. Finally, for each cluster Cℓ, we let Zℓ =

∑
i|ci=Cℓ

Di and we rewrite the sum∑
ij|ci=cj

DiDj as
∑

i|ci=Cℓ
DiZℓ = Z2

ℓ . Since computing Zℓ for all ℓ ∈ [k] can be

done in linear time, we have that
∑

ij|ci=cj
DiDj =

∑k
ℓ=1 Z

2
ℓ can be computed in linear

time.

Therefore, by rewriting Gρ as

Gρ =
ρ

Z

k∑
ℓ=1

Z2
ℓ −

n∑
i=1

(Σµci
+ |ci| · ∥xi − µci∥22)

and since Z,
∑k

ℓ=1 Z
2
ℓ , and

∑n
i=1(Σµci

+ |ci| · ∥xi −µci∥22) can be computed in linear time, Gρ can
be computed in linear time.

3 THEORETICAL INSIGHTS

In this section, we formally justify the use of Geometric modularity by showing that it can determine
ground-truth clusters in inputs that exhibit a clear clustering. Missing proofs appear in Appendix C.

We focus on a beyond-worst-case analysis of the behavior of the Geometric modularity objective;
indeed, worst-case analysis for clustering is frequently not useful as real-life instances are often very
far from being worst-case. Beyond worst-case analysis has been a successful research direction in
the context of clustering: such analyses have shown that k-means, combined with low-dimensional
projections, e.g., Principal component analysis (PCA), or t-SNE, indeed unveil the cluster structure
of a dataset when it exists. For example, Arora et al. (2018a) have analyzed the performance of the
popular t-SNE embedding on instances exhibiting an underlying “spherical” and “well-separated”
clustering, and Kumar & Kannan (2010) have shown that k-means and PCA allows to recover
“well-separated” clustering. For graph modularity, Cohen-Addad et al. (2020) have shown that the
Louvain heuristic recovers the planted clusters in graphs drawn from the stochastic block model,
a distribution of graphs exhibiting a clear cluster structure. On the other hand, for several popular
heuristics, such as DB-SCAN, nothing similar has been shown so far.

In this section, we prove two results on what we call ‘regular’ instances that consist of ‘well-separated’
clusters {C1, . . . , Ck}:

1. Theorem 3.2: The partition that maximizes geometric modularity is the one corresponding
to the well-separated clusters, namely {C1, . . . , Ck}.

2. Theorem 3.6: The DB-SCAN algorithm, tuned using geometric modularity, outputs the
well-separated clusters, namely {C1, . . . , Ck}.

3Note that a naïve algorithm to compute modularity would require quadratic time in n

5

Under review as a conference paper at ICLR 2024

For regular and well-separated instances, the output of DB-SCAN already maximizes geometric
modularity, hence the additional local search step is not needed (though is not harmful!). So this
analysis holds equally for the algorithm with the local search procedure. Our experiments show that
on real-world data the local search step has benefits.

Beyond-worst-case instances: We first provide a formal definition of the beyond-worst-case instances
we consider. This is a variant of that used by Arora et al. (2018a) for the t-SNE algorithm. Unlike
them, our notion does not require that the planted clusters be spherical, but requires some basic
regularity. We show that instances that don’t satisfy such a regularity notion may indeed exhibit
several underlying ground-truth clusterings; and so no theorems as the above two can be derived.
Definition 3.1 (Well-separated, regular data). Let X = {x1,x2, . . . ,xn} ⊂ Rm be clusterable
data with C = {C1, C2, . . . , Ck} defining the individual clusters such that for each i ∈ [k], |Ci| ≥
0.1(n/k). We say that X is η-regular and γ-well-separated if for some b > 0, we have:

1. η-Regular: For any point xi, η−1nb2 ≤
∑n

j=1 ∥xj − xi∥22 ≤ ηnb2.

2. γ-Well-Separated Clustering: For any ℓ, ℓ′ ∈ [k], (ℓ ̸= ℓ′), i ∈ Cℓ and j ∈ Cℓ′ , we have
∥xi − xj∥ ≥ (1 + γ)b; and for any i ∈ Cℓ, we have |{j ∈ Cℓ \ {i} : ∥xi − xj∥ ≤ b/4}| ≥
0.51|Cℓ|.

Structural properties of beyond-worst-case instances: We show that the partition that maxi-
mizes the geometric modularity objective agrees with the planted clusters; and that regularity and
well-clusterability assumptions are needed for this to hold. It is worth commenting briefly on the
parameters, η, γ and b; b represents the scale of the instance; η we think of as a constant very close
to 1, representing high regularity, and γ is a constant greater than 1 ensuring minimum distance
between points in different clusters. In particular, this means that the interval (η3/4, (1 + γ)2η−3) is
non-empty and includes 1; for relatively large values of γ this interval allows some flexibility with
respect to the choice of ρ in the theorem below.
Theorem 3.2. For any η-regular and γ-well-separated instance with clusters C = {C1, C2, . . . , Ck},
we have that for any resolution parameter value ρ such that η3/4 < ρ < (1 + γ)2η−3, C is the
partition that maximizes geometric modularity with resolution ρ.

To prove Theorem 3.2, we use the following two lemmas, whose proofs can be found in Appendix C.
Lemma 3.3. Let ρ < (1 + γ)2η−3. Consider a clustering S = {S1, . . . , Sk′}. For any i ∈ [k′],
j ∈ [k], define Si,j := Si ∩ Cj . If there exist i, j, j′ such that j ̸= j′ and Si,j ̸= ∅ and Si,j′ ̸= ∅,
then the clustering S∗ := S − {Si} ∪

⋃k
ℓ=1{Si,ℓ} has higher geometric modularity than S.

Lemma 3.4. Let ρ > η3/4. Consider a clustering S = {S1, . . . , Sk′}. If there exist i, j, ℓ such
that Si ⊂ Cℓ and Sj ⊂ Cℓ. Then the clustering S∗ := S − {Si} − {Sj} ∪ {Si ∪ Sj} has higher
geometric modularity than S.

The above two lemmas imply Theorem 3.2 (see Appendix C). We now show that our regularity
condition is indeed required since otherwise multiple “ground-truth” clusterings can coexist in the
same instance, at different resolution levels. In Figure 2 we show that the regularity condition is
needed. In the case where there is high irregularity in the data, there may be two well-separated
clusterings co-existing in the input.

Figure 2: Two different well-separated clusterings represented in red continuous line and blue dotted
line. The resolution parameter allows to identify each.

Geometric modularity to self-parameterized DB-SCAN: We consider the geometric modularity
objective for any ρ such that η3/4 < ρ < (1 + γ)2η−3. Our proof of Theorem 3.6 relies on the
following lemma, whose proof can be found in Appendix C.

6

Under review as a conference paper at ICLR 2024

(a) colleges (b) iris

Figure 3: A plot of #clusters vs ρ on the datasets colleges and iris.

Lemma 3.5. Let C = {C1, . . . , Ck} denote the clusters of an η-regular and γ-well-separated
clustering instance. Let ε ∈ [b, (1 + γ)b), and minPoints ≥ .51|Cℓ| for all ℓ. Then, the clusters
output by DB-SCAN with parameters ε and minPoints is a permutation of C.

Equipped with the above lemma, the proof of Theorem 3.6 follows immediately (see Appendix C).

Theorem 3.6. Consider any η-regular and γ-well-separated clustering instance with clusters C =
{C1, C2, . . . , Ck}. Suppose DB-SCAN is run with minPoints ≥ 0.51|Cℓ| for all ℓ ∈ [k] and varying
values of ε to generate candidate clusters. The candidate clustering that maximizes geometric
modularity, Gρ for ρ ∈ (η3/4, (1 + γ)2/η3) is a permutation of {C1, . . . , Ck}.

Discussion: We have not attempted to optimize any of the parameters in our results, and our main
goal is to show that in idealized settings our algorithm will work correctly. We use this theoretical
grounding to evaluate our algorithms empirically and observe that it compares favorably to existing
methods.

4 RESULTS AND DISCUSSION

In this section, we explain the setup for our experimental results, the methodology, the choice of
datasets and a summary of the results. Further plots and and results appear in Appendices A and B.

4.1 METHODOLOGY

Our algorithm is outlined in Section 2. From an implementation perspective there are two key choices.
First, we need to pick the resolution parameter, ρ, in the definition of the function Gρ. For any fixed ρ,
we can run DB-SCAN with various values of ε and pick the clustering that maximizes the value of Gρ.
Note that for a fixed ε, this clustering is unique (when DB-SCAN is implemented deterministically;
otherwise, we can smooth all our results over a small number of runs). We keep track of the number
of clusters produced and denote that by k(ρ). We repeat this for different values of ρ and create a
plot of k(ρ) vs. ρ for ρ in some range. In our experiments we picked ρ ∈ [0.5, 1].

DB-SCAN can have a large number of outliers, depending on the value of ε. We don’t count the
outliers as clusters with a singleton element. When outliers are ignored, we find that in most cases,
the number of clusters is not very sensitive to the hyper-parameter ρ. This is shown on the datasets
colleges and iris in Figure 3. This phenomenon is fairly common across a wide range of
datasets (cf. Appendix A). We pick ρ to be any value in the longest sub-interval for which the number
of clusters remains fixed. Although, we do not need to do this in our experiments, we find that as
k(ρ) is (generally) a decreasing function of ρ, we can first perform isostonic regression to smooth the
curve before selecting ρ (Barlow & Brunk, 1972).

Clustering Algorithm: Once the value of ρ is picked, we pick ε for which the output clustering of
DB-SCAN maximizes Gρ. We noticed that performing local search on the resulting cluster to allow
swaps that increase Gρ mildly improves the performance. We report performance metrics for our
algorithm both with and without local search.

7

Under review as a conference paper at ICLR 2024

dataset optics dbscan-mod (LS) dbscan-ami (hypothetical)
ami prec. recall f1 ami prec. recall f1 ami prec. recall f1

biomed 0.06 0.90 0.03 0.05 0.34 0.83 0.40 0.54 0.16 0.84 0.37 0.51
colleges 0.02 0.82 0.00 0.00 0.27 0.53 0.58 0.56 0.16 0.58 0.54 0.56
diabetes 0.00 0.63 0.00 0.00 0.07 0.69 0.19 0.30 0.04 0.70 0.31 0.43

euca 0.09 0.28 0.05 0.08 0.17 0.29 0.25 0.27 0.15 0.23 0.86 0.36
gesture 0.01 0.88 0.00 0.00 0.08 0.26 0.44 0.32 0.01 0.25 0.45 0.32

har 0.01 1.00 0.00 0.00 0.51 0.34 0.88 0.49 0.21 0.34 0.47 0.40
iris 0.14 1.00 0.05 0.09 0.64 0.58 0.95 0.72 0.73 0.60 1.00 0.75

libras 0.30 0.80 0.10 0.17 0.46 0.23 0.45 0.31 0.34 0.14 0.39 0.21
magic 0.00 0.81 0.00 0.00 0.08 0.61 0.36 0.45 0.06 0.61 0.85 0.71
mice 0.41 1.00 0.05 0.09 0.26 0.23 0.26 0.25 0.48 0.59 0.11 0.19
musk 0.03 0.96 0.00 0.00 0.04 0.77 0.34 0.48 0.09 0.82 0.18 0.30

olivetti 0.45 0.99 0.25 0.40 0.44 0.11 0.55 0.18 0.42 0.69 0.24 0.35
pendigits 0.04 1.00 0.00 0.00 0.57 0.34 0.74 0.47 0.63 0.57 0.62 0.59
skdigits 0.06 1.00 0.01 0.02 0.64 0.57 0.59 0.58 0.43 0.84 0.31 0.46

wine 0.06 1.00 0.01 0.02 0.68 0.97 0.61 0.75 0.34 0.59 0.54 0.56

Table 1: Comparison dbscan-mod (LS), OPTICS and dbscan-ami in terms of AMI and F-score

Competitor Auto-tuning DB-SCAN Algorithms: There are relatively few automated methods
that tune the hyper-parameter ε for DB-SCAN. The most famous of these is OPTICS (Ankerst
et al., 1999), which is implemented in the sklearn library (Pedregosa et al., 2011) and is widely
used. We also report results obtained using OPTICS. We find that when data is not sufficiently
low-dimensional, OPTICS fails quite badly and tends to have a large number of outliers. We also
ran experiments with Density Peak Clustering (DPC) (Rodriguez & Laio, 2014); using a publicly
available implementation,4 we found that this algorithm always returned a single cluster as the output.
Since the main point of our work is to automatically tune DB-SCAN parameters, we believe it is
fair to compare competitor algorithms without extensive hyper-parameter tuning. Nevertheless, we
did try different values of the hyper-parameter ξ for OPTICS; a range of choices don’t change the
fundamental picture. We report some of these results in Appendix A.3.

We also compare ourselves to a hypothetical algorithm which uses adjusted mutual information
(AMI) with the ground-truth clusters as a means of picking the hyper-parameter ε. Obviously, this
cannot be implemented in an unsupervised fashion as this requires supervision, i.e. access to the
ground-truth labels. Nevertheless, we find that our fully unsupervised algorithm performs almost as
well (and often even better) than this hypothetical supervised algorithm that cannot be implemented
in a fully unsupervised environment.

Datasets: We use several small to medium scale datasets from the UCI machine learning repository
Dua & Graff (2017) (hence publicly available). The datasets that we chose are those for which
ground-truth clusters are available; in certain cases these are essentially multi-class classification
problems, each class forming a single cluster. The list of datasets we use is in Table 1.

4.2 SUMMARY OF RESULTS

We report the following metrics for the clusters output by the algorithms. We let c = (c1, . . . , cn) be
the cluster labels for the points x1, . . . ,xn output by the clustering algorithm and let c⋆ = (c⋆1, . . . , c

⋆
n)

denote the ground-truth cluster labels. We assume that each of ci and c⋆i are in {1, . . . , n}.

Adjusted Mutual Information: We associate a joint distribution over random variables (X,Y),
where X = ci, Y = c⋆i with probability 1

n . Then the adjusted mutual information between c and
c⋆, ami(c, c⋆) is defined as ami(c, c⋆) = I(X;Y)−EI(X;Y)

(H(X)+H(Y))/2−EI(X;Y) , where H denote the entropy,
I(X;Y) denotes the mutual information between X and Y , and EI(X;Y) denotes the expected
mutual information if X and Y were independent partitions with same the number of clusters and the
number of points in each clusters as in the joint case (Vinh et al., 2009).

4https://github.com/lanbing510/DensityPeakCluster

8

https://github.com/lanbing510/DensityPeakCluster

Under review as a conference paper at ICLR 2024

dataset dbscan-mod (LS) dbscan-mod dbscan-ami (hypothetical)
ami prec. recall f1 ami prec. recall f1 ami prec. recall f1

biomed 0.34 0.83 0.40 0.54 0.16 0.84 0.37 0.51 0.16 0.84 0.37 0.51
colleges 0.27 0.53 0.58 0.56 0.16 0.58 0.54 0.56 0.16 0.58 0.54 0.56
diabetes 0.07 0.69 0.19 0.30 0.03 0.84 0.04 0.08 0.04 0.70 0.31 0.43

euca 0.17 0.29 0.25 0.27 0.12 0.24 0.29 0.26 0.15 0.23 0.86 0.36
gesture 0.08 0.26 0.44 0.32 0.01 0.25 0.45 0.32 0.01 0.25 0.45 0.32

har 0.51 0.34 0.88 0.49 0.21 0.34 0.47 0.40 0.21 0.34 0.47 0.40
iris 0.64 0.58 0.95 0.72 0.73 0.60 1.00 0.75 0.73 0.60 1.00 0.75

libras 0.46 0.23 0.45 0.31 0.33 0.38 0.15 0.21 0.34 0.14 0.39 0.21
magic 0.08 0.61 0.36 0.45 0.04 0.77 0.22 0.34 0.06 0.61 0.85 0.71
mice 0.26 0.23 0.26 0.25 0.48 0.59 0.11 0.19 0.48 0.59 0.11 0.19
musk 0.04 0.77 0.34 0.48 0.07 0.78 0.29 0.43 0.09 0.82 0.18 0.30

olivetti 0.44 0.11 0.55 0.18 0.42 0.69 0.24 0.35 0.42 0.69 0.24 0.35
pendigits 0.57 0.34 0.74 0.47 0.63 0.57 0.62 0.59 0.63 0.57 0.62 0.59
skdigits 0.64 0.57 0.59 0.58 0.43 0.84 0.31 0.46 0.43 0.84 0.31 0.46

wine 0.68 0.97 0.61 0.75 0.26 1.00 0.21 0.35 0.34 0.59 0.54 0.56

Table 2: Comparison dbscan-mod (LS), dbscan-mod and dbscan-ami in terms of AMI and F-score

Precision, Recall, F1-score: For two every two points xi and xj , let yij = 1 if they are in the
same output cluster and 0 otherwise. We define analogously the ground-truth value y∗ij = δc⋆i ,c⋆j ,
i.e. y⋆ij = 1 if xi and xj are in the same cluster in the ground-truth clustering given by c⋆ and 0
otherwise.

This allows us to define precision, recall and the F1-score in the standard way. Namely, F1-score =
2/(precision−1 + recall−1) where

precision =
|{(i, j) | yij = 1 ∧ y⋆ij = 1}|

|{(i, j) | yij = 1}|
, recall =

|{(i, j) | yij = 1 ∧ y⋆ij = 1}|
|{(i, j) | y⋆ij = 1}|

.

Results: The results are shown in Tables 1 and 2. In Table 1, as can be seen from the columns for
OPTICS, as there are a large number of outliers, the precision of the clusters output by OPTICS is
pretty high, but the recall is quite low. Likewise, the AMI is quite low. This is because the support
of the distribution generated by the clusters is much larger that the distribution generated by the
ground-truth clustering. On the other hand, we can also see that while the precision can be somewhat
lower for our method, the corresponding recall is quite high. As a result our algorithm consistently
outperforms OPTICS both on F1-score and AMI. In fact, our algorithm compares extremely favorably
even to the hypothetical algorithm which uses AMI directly to select the hyper-parameter ε. In
addition to the metrics in Table 1, we also report the correlation coefficients of the outputs of these
algorithms with the ground-truth in Appendix A.4 as suggested by Gösgens et al. (2021).

Perhaps surprisingly it shows that DB-SCAN with geometric modularity and local search, dbcan-mod
(LS) performs even better than the hypothetical algorithm in terms of AMI. The fact that this is
because of local search is clear from Table 2, where we also report performance of picking an ε for
DB-SCAN using geometric modularity, but without local search. We see that this is still comparable
in performance to the hypothetical algorithm and in particular, much better than OPTICS. In Table 5
in Appendix B we report some properties of the datasets as well as the number of clusters and outliers
produced by the algorithms.

CONCLUSION AND FUTURE WORK

We introduce a new measure of cluster quality called Geometric modularity and we show that it can
be used to tune hyperparameters of clustering algorithms effectively. Leveraging this new measure
we improve over the classic DB-SCAN algorithm and we show both theoretically and experimentally
the strength of newly introduced technique. Natural next steps are to leverage this new measure to
improve other clustering techniques or to introduce new algorithms to optimize it directly.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. Optics: Ordering points to identify the
clustering structure. ACM Sigmod record, 28(2):49–60, 1999.

Arenas, A., Fernandez, A., and Gomez, S. Analysis of the structure of complex networks at different
resolution levels. New journal of physics, 10(5):053039, 2008.

Arora, S., Hu, W., and Kothari, P. K. An analysis of the t-sne algorithm for data visualization. In
Bubeck, S., Perchet, V., and Rigollet, P. (eds.), Conference On Learning Theory, COLT 2018,
Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine Learning Research, pp.
1455–1462. PMLR, 2018a. URL http://proceedings.mlr.press/v75/arora18a.
html.

Arora, S., Hu, W., and Kothari, P. K. An analysis of the t-sne algorithm for data visualization. In
Conference On Learning Theory, pp. 1455–1462. PMLR, 2018b.

Barlow, R. E. and Brunk, H. D. The isotonic regression problem and its dual. Journal of the American
Statistical Association, 67(337):140–147, 1972.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms for hyper-parameter optimization.
Advances in neural information processing systems, 24, 2011.

Cohen-Addad, V., Kosowski, A., Mallmann-Trenn, F., and Saulpic, D. On the power of lou-
vain in the stochastic block model. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
29a6aa8af3c942a277478a90aa4cae21-Abstract.html.

Dua, D. and Graff, C. UCI machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml.

Esfandiari, H., Mirrokni, V. S., and Zhong, P. Almost linear time density level set estimation
via DBSCAN. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pp. 7349–7357. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/
AAAI/article/view/16902.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-based algorithm for discovering clusters
in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

Gösgens, M. M., Tikhonov, A., and Prokhorenkova, L. Systematic analysis of cluster similarity
indices: How to validate validation measures. In International Conference on Machine Learning,
pp. 3799–3808. PMLR, 2021.

Jang, J. and Jiang, H. Dbscan++: Towards fast and scalable density clustering. In International
conference on machine learning, pp. 3019–3029. PMLR, 2019.

Jiang, H. Density level set estimation on manifolds with dbscan. In International Conference on
Machine Learning, pp. 1684–1693. PMLR, 2017.

Jiang, H., Jang, J., and Lacki, J. Faster DBSCAN via subsampled similarity queries. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/fdf1bc5669e8ff5ba45d02fded729feb-Abstract.html.

Karami, A. and Johansson, R. Choosing dbscan parameters automatically using differential evolution.
International Journal of Computer Applications, 91(7):1–11, 2014.

Kumar, A. and Kannan, R. Clustering with spectral norm and the k-means algorithm. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pp. 299–308. IEEE, 2010.

10

http://proceedings.mlr.press/v75/arora18a.html
http://proceedings.mlr.press/v75/arora18a.html
https://proceedings.neurips.cc/paper/2020/hash/29a6aa8af3c942a277478a90aa4cae21-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/29a6aa8af3c942a277478a90aa4cae21-Abstract.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://ojs.aaai.org/index.php/AAAI/article/view/16902
https://ojs.aaai.org/index.php/AAAI/article/view/16902
https://proceedings.neurips.cc/paper/2020/hash/fdf1bc5669e8ff5ba45d02fded729feb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fdf1bc5669e8ff5ba45d02fded729feb-Abstract.html

Under review as a conference paper at ICLR 2024

Lai, W., Zhou, M., Hu, F., Bian, K., and Song, Q. A new dbscan parameters determination method
based on improved mvo. Ieee Access, 7:104085–104095, 2019.

Liu, P., Zhou, D., and Wu, N. Vdbscan: varied density based spatial clustering of applications with
noise. In 2007 International conference on service systems and service management, pp. 1–4.
IEEE, 2007.

Mitra, S. and Nandy, J. Kddclus: A simple method for multi-density clustering. In Proceedings
of International Workshop on Soft Computing Applications and Knowledge Discovery (SCAKD
2011), Moscow, Russia, pp. 72–76. Citeseer, 2011.

Newman, M. E. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577–8582, 2006.

Newman, M. E. Equivalence between modularity optimization and maximum likelihood methods for
community detection. Physical Review E, 94(5):052315, 2016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Rodriguez, A. and Laio, A. Clustering by fast search and find of density peaks. science, 344(6191):
1492–1496, 2014.

Sriperumbudur, B. and Steinwart, I. Consistency and rates for clustering with dbscan. In Artificial
Intelligence and Statistics, pp. 1090–1098. PMLR, 2012.

Steinwart, I., Sriperumbudur, B. K., and Thomann, P. Adaptive clustering using kernel density
estimators. arXiv preprint arXiv:1708.05254, 2017.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic measures for clusterings comparison: is a
correction for chance necessary? In Proceedings of the 26th annual international conference on
machine learning, pp. 1073–1080, 2009.

Xu, D. and Tian, Y. A comprehensive survey of clustering algorithms. Annals of Data Science, 2(2):
165–193, 2015.

Xu, R. and Wunsch, D. Survey of clustering algorithms. IEEE Transactions on neural networks, 16
(3):645–678, 2005.

Zhang, R., Peng, H., Dou, Y., Wu, J., Sun, Q., Li, Y., Zhang, J., and Yu, P. S. Automating dbscan
via deep reinforcement learning. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 2620–2630, 2022.

Zhou, H. B. and Gao, J. T. Automatic method for determining cluster number based on silhouette
coefficient. In Advanced materials research, volume 951, pp. 227–230. Trans Tech Publ, 2014.

11

Under review as a conference paper at ICLR 2024

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 FURTHER EXPERIMENTAL PLOTS: AMI AND GEOMETRIC MODULARITY

In this section, we show the plots of the relationship between AMI and Geometric modularity Gρ

for all datasets used in the paper. The X-axis is the radius ε for DB-SCAN and the Y-axes have the
AMI (thick blue) and Geometric modularity (Gρ). The thick red line shows Gρ for ρ picked as per
the method described in Section 4; the other lines show Gρ for different values of ρ as described in
the legend.

(a) biomed (b) colleges

(c) diabetes (d) euca

(e) gesture (f) har

(g) iris (h) libras

12

Under review as a conference paper at ICLR 2024

(i) magic (j) mice

(k) diabetes (l) euca

(m) gesture (n) har

(o) iris

13

Under review as a conference paper at ICLR 2024

A.2 FURTHER EXPERIMENTAL PLOTS: # CLUSTERS VS RESOLUTION PARAMETER (ρ)

We show plots similar to Figure 3 for all datasets used in our paper. We notice that for some datasets
the curve is not monotonic. This is because when ρ is small, most points are classified as singletons,
and these outliers are not counted as clusters. These plots show that ρ is not a sensitive hyperparameter
and can be automatically picked from the data in an easy manner.

(a) biomed (b) colleges

(c) diabetes (d) euca

(e) gesture (f) har

(g) iris (h) libras

14

Under review as a conference paper at ICLR 2024

(i) magic (j) mice

(k) diabetes (l) euca

(m) gesture (n) har

(o) iris

15

Under review as a conference paper at ICLR 2024

A.3 TUNING THE HYPERPARAMETER ξ FOR OPTICS

The hyperparameter ξ in OPTICS controls the steepness which is used to define a new cluster; lower
values of ξ result in coarser clusters. The default value in sklearn is set to 0.05. We report the
AMI, precision, recall and F1 score for 5 values of ξ on all datasets. We see that moderate changes
to ξ do not fundamentally alter the picture that OPTICS is not as effective as our approach when it
comes to automatically tuning DB-SCAN hyperparameters.

dataset ξ ami prec recall f1

biomed

0.0125 0.08 0.88 0.04 0.07
0.025 0.07 0.88 0.04 0.07
0.05 0.06 0.90 0.03 0.05
0.1 0.05 0.91 0.03 0.06
0.2 0.01 1.00 0.00 0.00

colleges

0.0125 0.04 0.79 0.00 0.00
0.025 0.03 0.80 0.00 0.00
0.05 0.02 0.82 0.00 0.00
0.1 0.01 0.91 0.00 0.00
0.2 0.01 0.88 0.00 0.00

diabetes

0.0125 0.01 0.67 0.00 0.00
0.025 0.01 0.69 0.00 0.00
0.05 0.00 0.63 0.00 0.00
0.01 0.00 0.52 0.00 0.00
0.02 0.00 0.71 0.00 0.00

euca

0.0125 0.11 0.53 0.02 0.03
0.025 0.11 0.52 0.02 0.03
0.05 0.09 0.28 0.05 0.08
0.01 0.04 0.27 0.03 0.05
0.02 0.02 0.23 0.02 0.03

gesture

0.0125 0.02 0.78 0.00 0.00
0.025 0.01 0.83 0.00 0.00
0.05 0.01 0.88 0.00 0.00
0.1 0.01 0.93 0.00 0.00
0.2 0.00 0.90 0.00 0.00

har

0.0125 0.04 1.0 0.00 0.00
0.025 0.03 1.0 0.00 0.00
0.05 0.01 1.0 0.00 0.00
0.1 0.00 1.0 0.00 0.00
0.2 0.00 0.17 1.0 0.29

iris

0.0125 0.20 1.0 0.05 0.10
0.025 0.20 1.0 0.06 0.12
0.05 0.14 1.0 0.05 0.09
0.1 0.08 1.0 0.03 0.06
0.2 0.72 0.59 0.99 0.74

libras

0.0125 0.39 0.67 0.15 0.25
0.025 0.37 0.76 0.14 0.23
0.05 0.33 0.82 0.11 0.20
0.1 0.25 0.93 0.08 0.15
0.2 0.11 0.90 0.03 0.05

dataset ξ ami prec recall f1

magic

0.0125 0.01 0.83 0.00 0.00
0.025 0.01 0.83 0.00 0.00
0.05 0.00 0.81 0.00 0.00
0.1 0.00 0.84 0.00 0.00
0.2 0.00 1.00 0.00 0.00

mice

0.0125 0.44 1.0 0.05 0.10
0.025 0.42 1.0 0.05 0.10
0.05 0.40 1.0 0.05 0.10
0.1 0.39 1.0 0.05 0.10
0.2 0.23 1.0 0.03 0.06

musk

0.0125 0.04 0.94 0.00 0.00
0.025 0.04 0.94 0.00 0.00
0.05 0.03 0.96 0.00 0.00
0.01 0.02 0.98 0.00 0.00
0.02 0.01 0.99 0.00 0.00

olivetti

0.0125 0.51 0.91 0.31 0.46
0.025 0.49 0.94 0.30 0.45
0.05 0.45 0.99 0.25 0.40
0.01 0.16 1.0 0.06 0.12
0.02 0.11 1.0 0.04 0.08

pendigits

0.0125 0.11 1.0 0.00 0.00
0.025 0.09 1.0 0.00 0.00
0.05 0.04 1.0 0.00 0.00
0.1 0.02 1.0 0.00 0.00
0.2 0.00 1.0 0.00 0.00

skdigits

0.0125 0.15 1.0 0.01 0.02
0.025 0.11 1.0 0.01 0.02
0.05 0.05 1.0 0.01 0.02
0.1 0.01 1.0 0.00 0.00
0.2 0.00 0.01 1.0 0.18

wine

0.0125 0.18 1.0 0.05 0.09
0.025 0.14 1.0 0.04 0.07
0.05 0.06 1.0 0.01 0.02
0.1 0.00 0.34 1.0 0.51
0.2 0.00 0.34 1.0 0.51

Table 3: Performance metrics for different values of ξ in DB-SCAN.

16

Under review as a conference paper at ICLR 2024

A.4 CORRELATION COEFFICIENTS BETWEEN CLUSTERS AND THE GROUND-TRUTH

Motivated by the inadequacy of the existing metrics such as NMI, AMI, F1-score, etc. Gösgens et al.
(2021) suggested also evaluating cluster metrics using the Pearson correlation coefficient between the
output clusters and the ground truth. We report these for all datasets for the three methods: optics,
dbscan-mod, dbscan-mod-LS.

dataset dbscan-mod-LS dbscan-mod optics
biomed 0.35 0.34 0.09
colleges 0.24 0.28 0.22
diabetes 0.12 0.10 0.00

euca 0.09 0.03 0.03
gesture 0.05 0.04 0.01

har 0.4 0.25 0.01
iris 0.58 0.63 0.18

libras 0.26 0.20 0.29
magic 0.09 0.20 0.00
mice 0.13 0.22 0.20
musk 0.05 0.06 0.01

olivetti 0.21 0.40 0.50
pendigits 0.42 0.55 0.02
skdigits 0.53 0.49 0.08

wine 0.69 0.39 0.09

Table 4: Correlation coefficient between output clusters and ground-truth clusters for the different
algorithms.

17

Under review as a conference paper at ICLR 2024

B DATASETS AND SOME ADDITIONAL RESULTS

The table below shows some general properties of the datasets we used as well as some additional
experimental results. In particular, for each clustering algorithm we report the number of clusters
produced as well as the number of outliers. It is clear that several of these algorithms produce lots of
outliers for some datasets and that the local search procedure improves this. This also explains why
we occasionally get worse precision, but better recall, and as a result a better F1 score.

dataset parameters optics dbcsan-mod dbscan-mod (LS) dbscan-ami
n k dim # cl # ol ρ # cl # ol # cl # ol # cl # ol

biomed 209 3 7 5 152 0.80 3 70 6 1 3 70
colleges 1161 4 13 20 1019 0.85 5 386 5 0 5 386
diabetes 768 2 8 10 704 0.70 7 585 11 2 2 386

euca 736 5 14 19 358 0.80 8 19 9 0 3 2
gesture 9873 5 32 61 9381 0.70 4 3457 46 3 4 3457

har 10299 6 561 22 10126 0.80 25 3949 5 1 25 3949
iris 150 3 4 5 108 0.80 2 0 2 0 2 0

libras 360 15 90 19 223 0.70 17 178 13 1 13 112
magic 19020 2 10 155 17955 0.80 98 10459 9 0 7 2438
mice 1080 8 77 84 321 0.80 59 172 14 1 59 172
musk 6598 2 166 323 4035 0.80 27 61 5 0 102 499

olivetti 400 40 4096 20 260 0.80 17 262 19 1 17 262
pendigits 10992 10 16 128 9991 0.80 43 1314 10 0 43 1314
skdigits 1797 10 64 18 1643 0.80 24 807 16 0 24 807

wine 178 3 13 4 154 0.70 5 97 8 2 2 45

Table 5: This table shows for each dataset the number of points n, number of clusters k, the data
dimension dim, as well as the number of clusters (# cl) and number of outliers (# ol) produced by
all the algorithms. For our algorithms we also show the resolution parameter ρ that was picked for
geometric modularity.

18

Under review as a conference paper at ICLR 2024

C PROOFS OF SECTION 3

In this section, we include the missing proofs from Section 3.

Proof of Lemma 3.3. We simply compute the change in modularity going from S to S∗, i.e., letting
∆ := Gρ(S∗) − Gρ(S), we show that ∆ > 0. To do this, it is enough to bound the change in
contribution to the modularity objective induced by the points p ∈

⋃k
j=1 S

i,j ∪ Si,ℓ. (We slightly
abuse notation, by having the sets Si include the indices of points, so the corresponding point will be
xp.) We thus have

∆ ≥
∑
j∈k

∑
ℓ∈k
ℓ ̸=j

∑
p∈Si,j

∑
q∈Si,ℓ

−ρ
DpDq

Z
+ ∥xp − xq∥22

We now argue that for each pair p ∈ Si,j and q ∈ Si,ℓ, for j ̸= ℓ, we have that ∥xp − xq∥22 >
ρDqDp/Z which combined with the above argument yields the lemma. By our assumption, we have
that ∥xp − xq∥22 > (1 + γ)2b2, since p ∈ Cj and q ∈ Cℓ; and η−1nb2 < Dp < ηnb2 for all p, and
so Z > η−1n2b2. Therefore, ρDqDp/Z < ρη3b2 Since ρ < (1 + γ)2η−3, the lemma follows.

Proof of Lemma 3.4. We again compute the change in modularity going from S to S∗, i.e., letting
∆ := Gρ(S∗) − Gρ(S), we show that ∆ > 0. To do this, it is enough to bound the change in
contribution to the modularity objective induced by the points p ∈ Si ∪ Sj . We thus have

∆ ≥
∑
p∈Si

∑
q∈Sj

ρ
DpDq

Z
− ∥xp − xq∥22

We will show that ∥xp − xq∥22 < ρDqDp/Z. By our assumption, we have that for any p′ ∈ Cℓ,
|{q′ ∈ Cℓ | ∥xp′ − xq′∥2 ≤ b/4}| ≥ .51|Cℓ| and so for any p′, q′ ∈ Cℓ

{p′′ ∈ Cℓ | ∥xp′ − xp′′∥2 ≤ b/4} ∩ {q′ ∈ Cℓ | ∥xq′ − xp′′∥2 ≤ b/4} ≠ ∅
Thus, there is a point that is at distance at most b/4 from both xp and xq. Triangle inequality
immediately implies ∥xp − xq∥22 < b2/4, Moreover, η−1b2 < Dp < ηnb2 for all p, and so
Z < ηn2b2. Therefore, ρDqDp/Z > ρb2η−3. Since ρ > η3/4, the lemma follows.

Proof of Theorem 3.2. Lemma 3.3 implies that any clustering S that contains a cluster which has
non-empty intersection with two clusters Ci, Cj can be improved into a clustering such that each
cluster is a subset of a cluster Ci. Next, Lemma 3.4 shows that any clustering S containing two
clusters Si, Sj that are subsets of a cluster Ci can be improved by merging Si and Sj into a single
cluster. Therefore, the clustering C1, . . . , Ck has the highest modularity.

Proof of Lemma 3.5. Clearly, if ϵ < (1 + γ)b, then the clusters output by DB-SCAN cannot overlap
several clusters since the graph generated does not contain an edge between any pair of points at
distance larger than b. So we have to show that each Cℓ ∈ C is fully contained in a cluster output by
Algorithm 1, which then in fact corresponds to a cluster output by Algorithm 1. Furthermore, note
that any point that belongs to a cluster Cℓ has at least .51|Cℓ| neighbors at distance at most b and
since minPoints is at least .51|Cℓ|, all the input points are core points.

We next show that for each cluster Ci, for any p, q ∈ Ci, either p is reachable from q or q is reachable
from p or there exists a core point p∗ and both p and q are reachable from p∗ and p∗ is reachable from
both p and q. Indeed, by the definition of the well-clusterable clustering, p and q have at least 0.1|Cℓ|
common points at distance at most b. Since 0.1|Cℓ| > 0 by the definition and that all points are core
points, there exists a core point that is reachable and can reach both p and q. It follows that p and q
are in the same cluster output by Algorithm 1.

Proof of Theorem 3.6. Recall that the algorithm returns the maximum modularity clustering com-
puted. Moreover, Lemma 3.5 implies that the clustering {C1, . . . , Ck} is computed by the algorithm
as one of the candidate clusterings, and Theorem 3.2 states that this the maximum modularity clus-
tering over the whole instance. Therefore, the algorithm will return the clustering {C1, . . . , Ck} as
prescribed desired.

19

	Introduction
	Geometric Modularity
	Computational Complexity

	Theoretical Insights
	Results and Discussion
	Methodology
	Summary of Results

	Additional Experimental Results
	Further Experimental Plots: AMI and Geometric Modularity
	Further Experimental Plots: # Clusters vs Resolution Parameter ()
	Tuning the Hyperparameter for Optics
	Correlation Coefficients between Clusters and the Ground-Truth

	Datasets and Some Additional Results
	Proofs of Section 3

