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Abstract

In representation learning, a common ap-
proach is to seek representations which dis-
entangle the underlying factors of variation.
Eastwood and Williams (2018) proposed three
metrics for quantifying the quality of such dis-
entangled representations: disentanglement (D),
completeness (C) and informativeness (I). We
provide several extensions of this DCI frame-
work by considering the functional capacity
required to use a representation. In particular,
we establish links to identifiability, point out
how D and C can be computed for black-box
predictors, and introduce two new measures
of representation quality: explicitness (E), de-
rived from a representation’s loss-capacity
curve, and size (S) relative to the ground truth.
We illustrate the relevance of our extensions
on the MPI3D-Real dataset.

1 INTRODUCTION

A primary goal of representation learning it is to learn
representations r(x) of complex data x that “make
it easier to extract useful information when building
classifiers or other predictors” (Bengio et al., 2013). Dis-
entangled representations, which aim to recover and
separate the underlying factors z that generate the
data as x = g(z), are a promising step in this direction.
In particular, it has been argued that such representa-
tions are not only interpretable (Kulkarni et al., 2015)
but make it easier to extract useful information for
downstream tasks by recombining previously-learnt
factors in novel ways (Lake et al., 2017).

While there is no single, widely-accepted definition
of disentanglement, many evaluation protocols have

*Equal contribution.

been proposed to capture different notions based on
the relationship between the learnt representation or
code c = r(x) and the ground-truth data-generative
factors z (Locatello et al., 2020, Fig. 11). The metrics of
Eastwood and Williams (2018)—disentanglement (D),
completeness (C) and informativeness (I)—estimate this
relationship by learning a probe f to predict z from c
(§ 2) and can be used to relate many other definitions
and scores (Locatello et al., 2020, § 6).

In this work, we extend the DCI framework in several
ways. Our main idea is that the functional complexity
or capacity required to recover z from the learnt code c is
an important but under-explored aspect of evaluating rep-
resentations. For example, consider the extreme case
of recovering some true label from either: (i) a noisy
version thereof; or (ii) raw, high-dimensional data (e.g.
images). Noisy labels will do quite well with just linear
capacity, but are fundamentally limited by the noise
corruption. In contrast, the raw data will likely do
quite poorly with linear capacity, but will eventually
outperform the noisy labels given sufficient capacity.
As shown in Fig. 1, we find this behaviour to be exhib-
ited by a broad range of representations and probes.

Structure and contributions. First, we connect the
DCI metrics to two common notions of linear and
nonlinear identifiability (§ 3), thereby establishing a
link to the related field of independent component
analysis. We then propose an extended DCI-ES frame-
work (§ 4) in which we: (i) elucidate a means to com-
pute D and C scores for arbitrary black-box probes f
(e.g., MLPs); and (ii) introduce two new complemen-
tary measures of representation quality that permit a
more fine-grained evaluation—explicitness (E) or ease-
of-use, derived from a representation’s loss-capacity
curve (see Fig. 2), and size (S) relative to z. In our exper-
iments (§ 6), we illustrate the relevance of our exten-
sions by comparing several different representations
on the MPI3D-Real dataset (Gondal et al., 2019).
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Figure 1: Loss-capacity curves. We show empirical loss-capacity curves (see § 4.2) for various representations
(see legend) and two types of probes, multi-layer perceptrons (MLPs; left) and Random Forests (RFs; right), on
the MPI3D-Real dataset. Results are averages over factors zj, with means and 95% confidence intervals (shaded)
computed over 3 random seeds.

2 BACKGROUND

Given a synthetic dataset of observations x = g(z)
along with the corresponding K-dimensional data-
generating factors z ∈ RK, the DCI framework quanti-
tatively evaluates an L-dimensional data representa-
tion or code c= r(x) ∈ RL by: (i) training a probe f to
predict z from c, i.e., ẑ= f (c) = f (r(x)) = f (r(g(z)));
and (ii) quantifying f ’s prediction error and its de-
viation from the ideal one-to-one mapping, which
is a permutation matrix (with extra “dead” units
in c whenever L > K).1 For step (i), Eastwood and
Williams (2018) use Lasso (Tibshirani, 1996) or Ran-
dom Forests (Breiman, 2001) as linear or nonlinear pre-
dictors, respectively, for which it is straight-forward
to read-off suitable “relative feature importances”.

Definition 2.1. R ∈ RL×K is called a matrix of relative
importances of c for predicting z via ẑ = f (c) if Rij
captures some notion of the contribution of ci to pre-
dicting zj such that for all i, j: Rij ≥ 0 and ∑L

i=1 Rij = 1.

For step (ii), Eastwood and Williams use R and the
prediction error to define and quantify three criteria,
or desiderata, of disentangled representations: disen-
tanglement (D), completeness (C), and informativeness (I).

Disentanglement. Disentanglement (D) measures
the average number of data-generating factors zj
that are captured by any single code ci. The score
Di is given by Di = 1 − HK(Pi.), where HK(Pi.) =

−∑K
k=1 Pik logK Pik denotes the entropy of the distri-

bution Pi. over row i of R, with Pij = Rij/ ∑K
k=1 Rik. If

1W.l.o.g., it can be assumed that zi and cj are normalised
to have zero mean and variance one for all i, j, for otherwise
such normalisation can be “absorbed” into g(·) and r(·).

ci is only important for predicting a single zj, we get
a perfect score of Di = 1. If ci is equally important
for predicting all zj (for j=1, . . . , K), we get the worst
score of Di = 0. The disentanglement score D is then
given by the weighted average D = ∑L

i=1 ρiDi, with
ρi =

1
K ∑K

k=1 Rik.

Completeness. Completeness (C)2 measures the av-
erage number of code variables ci required to cap-
ture any single zj. The score Cj in capturing zj is
given by Cj = (1 − HL(P̃.j)), where HL(P̃.j) =

−∑L
ℓ=1 P̃ℓj logL P̃ℓj denotes the entropy of the distri-

bution P̃.j over column j of R, with P̃ij = Rij. If a single
ci contributes to zj’s prediction, we get a perfect score
of Cj = 1. If all ci equally contribute to zj’s predic-
tion, we get the worst score of Cj = 0. The overall
completeness score is given by C = 1

K ∑K
j=1 Cj.

Informativeness. The informativeness (I) of repre-
sentation c about data-generative factor zj is quanti-
fied by the prediction error, i.e., Ij = 1−E[ℓ(zj, f j(c))],
where ℓ is an appropriate loss function. Here we devi-
ate from Eastwood and Williams by defining Ij such
that 1 is the best score. The informativeness score is
given by I = 1

K ∑K
j=1 Ij.

Remarks on the D and C scores. Together, D and C
quantify the degree of “mixing” between z and c, i.e.,
the deviation from a one-to-one mapping. They are
reported separately as they capture distinct criteria.

2also called compactness (Ridgeway and Mozer, 2018)



3 CONNECTION TO IDENTIFIABILITY

The goal of learning a data representation which re-
covers the underlying independent data-generating
factors is closely related to blind source separation and
independent component analysis (ICA) (Comon, 1994;
Hyvärinen and Pajunen, 1999; Hyvarinen et al., 2019).
Whether a given learning algorithm provably achieves
this goal up to acceptable ambiguities, subject to cer-
tain assumptions on the data-generating process, is
typically formalised using the notion of identifiabil-
ity. Two common types of identifiability for linear and
nonlinear settings, respectively, are the following.

Definition 3.1. We say that c = r(x) = r(g(z)) iden-
tifies z up to sign and permutation if c = Pz for some
matrix P such that |P| is a permutation matrix.

Definition 3.2. We say that c identifies z up to permuta-
tion and element-wise reparametrisation if there exists
a permutation π of {1, ..., K} and invertible scalar-
functions {hk}K

k=1 such that, for all j, cj = hj(zπ(j)).

We now establish theoretical connections between the
DCI framework and these types of identifiability.

Proposition 3.3. If D = C = 1 and K = L (i.e.,
dim(c) = dim(z)), then R is a permutation matrix.

Proof. First, by Defn. 2.1, we have 0 ≤ Rij and
∑L

i=1 Rij = 1 ∀i, j, so 0 ≤ Rij ≤ 1. It follows that ∀i, j :
Pi·, P̃·j ∈ ∆K−1, where ∆K−1 denotes the K-dim. proba-
bility simplex, i.e., Pi· and P̃·j are valid probability vec-
tors. Hence, the Shannon entropies HK(Pi·), HK(P̃·j)
are well-defined ∀i, j, and, due to using logK in the def-
inition of HK (see § 2), are bounded in [0, 1]. It follows
that ∀i, j : 0 ≤ Di ≤ 1 and 0 ≤ Cj ≤ 1. Since D and C
are convex combinations of the Di and Cj, we have

D = 1 ⇐⇒ ∀i : Di = 1 ⇐⇒ ∀i : HK(Pi·) = 0 ,

C = 1 ⇐⇒ ∀j : Cj = 1 ⇐⇒ ∀j : HK(P̃·j) = 0 .

Now for any p = (p1, ..., pK) ∈ ∆K−1, we have that

HK(p) = −∑K
k=1 pk logK pk = 0

⇐⇒ ∀k : pk logK pk = 0 ⇐⇒ ∀k : pk ∈ {0, 1}

where pk log pk := 0 for pk = 0, consistent with
limx→0+ x log x = 0. Together with the simplex con-
straint, this implies that p must be a standard basis
vector p = el for some l, i.e., pl = 1 and pk = 0 for
k ̸= l. Hence, Pi·, P̃·j must be standard basis vectors
for all i, j, and so each row and column of R contains
exactly one non-zero element. Since columns of R sum
to one, these non-zero elements must all be one.

Using Prop. 3.3, we can establish links to identifiability,
provided that the inferred representation c perfectly
predicts the true data-generating factors z, i.e., I = 1.

Corollary 3.4. Under the same conditions as Prop. 3.3, if
z = W⊤c (so that I = 1) and R = |W|, then c identifies z
up to permutation and sign (Defn. 3.1).

Proof. By Prop. 3.3, R is a permutation, so W and thus
(W⊤)−1 must be signed permutation matrices.

For nonlinear f , we give a more general statement for
suitably-chosen feature-importance matrices R.

Corollary 3.5. Under the same conditions as Prop. 3.3, let
z = f (c) (so that I = 1) with f an invertible nonlinear
function, and let R be a matrix of relative feature impor-
tances for f (Defn. 2.1) with the property that Rij = 0 if
and only if f j does not depend on ci, i.e., ||∂i f j||2 = 0.
Then c identifies z up to permutation and element-wise
reparametrisation (Defn. 3.2).

Proof. For any j consider zj = f j(c). By Prop. 3.3, R is a
permutation matrix, so column j of R contains exactly
one non-zero entry in row π(j) for some permuta-
tion π of {1, ..., K}. Hence, by the assumed property
of R, f j(c) does not depend on ci for all i ̸= π(j), and
thus zj = f j(cπ(j)) ∀j. By invertibility of f , we obtain
cj = hj(zj′) with hj = f−1

j′ and j′ = π−1(j).

Remark 3.6. While the if part of Corollary 3.5 holds
for most feature importance measures, the only if part,
in general, does not: not using a feature ci is typically
a sufficient condition for Rij = 0, but it need not be a
necessary condition (as required for Corollary 3.5). E.g.,
measures based on average performance may not sat-
isfy this since a feature may not contribute on average,
but still be used—sometimes helping and sometimes
hurting performance, see § 7 for further discussion.

Note that Gini importances, as used in random
forests, do satisfy the necessary condition. While non-
invertibility of random forests prevents an explicit link
to identifiability (which is typically studied for contin-
uous features), they can still be a principled choice in
practice where factors are often categorical (see § 6).

4 EXTENDED DCI-ES FRAMEWORK

Motivated by our insights from § 3—considering dif-
ferent probe function classes provides different links to
identifiability—as well the empirically-observed per-
formance differences between representations trained
with different-capacity probes (see Fig. 1), we now
propose several extensions of the DCI framework.



4.1 PROBE-AGNOSTIC FEAT. IMPORTANCES

First, to meaningfully discuss more flexible probe func-
tion choices within the DCI framework, we point out
that the D and C scores can be computed for arbi-
trary black-box probes f by using predictor-agnostic fea-
ture importance measures. In particular, in our experi-
ments (§ 6), we use SAGE (Covert et al., 2020) which
summarises each feature’s importance based on its
contribution to predictive performance, making use of
Shapley values (Shapley, 1953) to account for complex
feature interactions. Such predictor-agnostic measures
allow D and C to be computed for probes with no
inherent, built-in notion of feature importance (e.g.,
for MLPs), thereby generalising the Lasso and Ran-
dom Forest examples of Eastwood and Williams (2018,
§ 4.3). While SAGE has several practical advantages
over other probe-agnostic methods (see, e.g., Covert
et al., 2020, Table 1), it may not satisfy the required
conditions to link the D and C scores to different iden-
tifiability equivalence classes (see Remark 3.6). Future
work may explore some of the alternative methods
which do, e.g., by looking at a feature’s mean absolute
attribution value (Lundberg and Lee, 2017).

4.2 EXPLICITNESS (E)

We now introduce a new complementary notion of
disentanglement based on the functional capacity re-
quired to recover or predict z from c. The key idea is
to measure the explicitness or ease-of-use (E) of a repre-
sentation using its loss-capacity curve.

Setup. Let F be a probe function class (e.g., random
forests or MLPs), let f ∗j ∈ argmin f∈F E[ℓ(zj, f (c))] be
a minimum-loss probe for factor zj on a held-out data
split3, and let Cap(·) be a suitable capacity measure on
F—e.g., for random forests, Cap( f ) could correspond
to the average tree-depth of f .

Loss-capacity curves. A loss-capacity curve for rep-
resentation c, factor zj, and probe class F displays test-
set loss against probe capacity for increasing-capacity
probes f ∈ F (see Fig. 1). To plot such a curve, we
must train T predictors with capacities κ1, . . . , κT to
predict zj, with

f t
j ∈ argmin

f∈F
E[ℓ(zj, f (c))] s.t. Cap( f ) = κt. (4.1)

Here κ1, . . . , κT is a list of T increasing probe capacities
ideally4 shared by all representations, with suitable

3In practice, all expectations are taken w.r.t. the corre-
sponding empirical (train/validation/test) distributions.

4True for RFs but not input-size dependent MLPs (§ 6).
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Figure 2: Explicitness via the area under the loss-
capacity curve (AULCC). Here, κ1, ..., κT (x-axis) are
a sequence of increasing function capacities and
ℓ1,c, ..., ℓT,c (y-axis) are the losses achieved by the corre-
sponding optimal predictors for c. The lowest loss ℓ∗,c

is achieved at capacity κ∗,c, while ℓb and ℓ∗ are suitable
baseline and best-possible losses for the probe class.

choices for κ1 and κT depending on both F and the
dataset. For example, we may choose κT to be large
enough for all representations to achieve their lowest
loss and, for random forest f s, we may choose κ1 = 1
and then T − 2 tree depths between 1 and κT .

AULCC. We next define the Area Under the Loss-
Capacity Curve (AULCC) for representation c, factor zj,
and probe class F as the (approximate) area between
the corresponding loss-capacity curve and the loss-line
of our best predictor ℓ∗,c

j = E[ℓ(zj, f ∗j (c))]. To compute
this area, depicted in Fig. 2, we use the trapezoidal rule

AULCC(zj, c;F )=
t∗,c

∑
t=2

(
1
2

(
ℓt−1,c

j +ℓt,c
j

)
−ℓ∗,c

j

)
·∆κt,

where t∗,c denotes the index of c’s lowest-loss capac-
ity κ∗,c; ℓt,c

j =E[ℓ(zj, f t
j (c))] the test-set loss with pre-

dictor f t
j , see Eq. (4.1); and ∆κt =κt−κt−1 the size of the

capacity interval at step t. If the lowest loss is achieved
with the lowest capacity (t∗,c =1), we set AULCC=0.

We now define the explicitness (E) of representation c
for predicting factor zj with predictor class F as

E(zj, c;F ) = 1 −
AULCC(zj, c;F )

1
2 (κT − κ1)(ℓ

b
j − ℓ∗j )

,

where ℓb
j is a suitable baseline loss (e.g., that of E[zj])

and ℓ∗j a suitable lowest loss (e.g., 0) for F . Here, the de-
nominator represents the area of the light-blue triangle
in Fig. 2, normalizing the AULCC such that E∈ [−1, 1]
so long as ℓ∗j < ℓb

j . The best score E = 1 means that
the best loss was achieved with the lowest-capacity



probe f 1
j , i.e., ℓ∗,c

j = ℓ1,c
j and κ∗,c =κ1, and thus our rep-

resentation c was explicit for predicting zj with f ∈ F
since there was no surplus capacity required (beyond κ1)
to achieve our lowest loss. In contrast, E = 0 means that
the loss reduced linearly from ℓb

j to ℓ∗j with increased
probe capacity, i.e., AULCC = Normalizer in Fig. 2.
More generally, if ℓ∗,c = ℓ∗, i.e. the lowest loss for F
can be reached with c, then E < 0 implies that the loss
decreased sub-linearly while E > 0 implies it decreased
super-linearly. The overall explicitness score is simply
the arithmetic mean over the K factors, i.e., the zjs.

E vs. I. While the informativeness score Ij captures
the (total) amount of information in c about zj, the
explicitness score Ej captures the ease-of-use of this
information. In particular, while Ij is quantified by the
lowest prediction error with any capacity ℓ∗,c, correspond-
ing to a single point on c’s loss-capacity curve, Ej is
quantified by the area under this curve.

A fine-grained picture of identifiability. Compared
to the commonly-used mean correlation coefficient
(MCC) or Amari distance (Amari et al., 1996; Yang and
Amari, 1997), the D, C, I, E scores represent empirical
measures which: (i) easily extend to mismatches in
dimensionalities, i.e., L > K; and (ii) provide a more
fine-grained picture, for if the initial probe capacity κ1
is linear and R satisfies Corollary 3.5, we have that:

• D=C= I=E=1 =⇒ up to sign and permutation.
• D=C= I=1 =⇒ up to permutation and element-

wise reparametrisation.
• I=E=1 =⇒ up to an invert. linear transformation.

Thus, if D=C= I=E=1 does not hold exactly, which
score deviates the most from one may provide valu-
able insight into the type of identifiability violation.

Probe classes. As emphasized throughout this sec-
tion, whether or not a representation c is “explicit” for
predicting factor zj depends on the class of probe F
used, e.g., random forests or multi-layer perceptrons
(MLPs). More generally, the explicitness of a represen-
tation depends on the way in which it is used in down-
stream applications, with different downstream uses
or probes resulting in different definitions of explicit or
easy-to-use information. We thus conduct experiments
with different probes in § 6.

4.3 SIZE (S)

We next introduce a measure of relative size (S):

S =
K
L
=

dim(z)
dim(c)

.

When L ≥ K, which is usually the case in representa-
tion learning, we have S ∈ (0, 1] and a perfect score of
S = 1. However, if we also consider the L < K case,
which would likely sacrifice some informativeness,
we have S ∈ (0, K]. As we discuss in § 6, increased
representation size often improves other scores like
I and E. Reporting S thus permits an analysis of this
size-informativeness or size-explicitness trade-off.

5 RELATED WORK

Explicit representations. Eastwood and Williams
(2018, § 2) noted that the informativeness with a linear
probe quantifies the amount of information about z in
c that is “explicitly represented”, while Ridgeway and
Mozer (2018, § 3) proposed a measure of “explicitness”
which simply reports the informativeness score with a
linear probe. In contrast, our DCI-ES framework dif-
ferentiates between the amount of information about
z in c (informativeness) and the ease-of-use of this infor-
mation (explicitness). This allows a more fine-grained
analysis of the relationship between z and c, both the-
oretically (distinguishing between more identifiability
equivalence classes; § 3) and empirically (§ 6).

Loss-capacity curves. Plotting loss as a function of
model complexity or capacity has long been used in
statistical learning theory, e.g., for studying the bias-
variance trade-off (Hastie et al., 2009, Fig. 7.1). More
recently, such loss-capacity curves have been used to
study the double-descent phenomenon of deep neural
networks (Belkin et al., 2019; Nakkiran et al., 2021).
However, they have yet to be used for assessing the
quality or explicitness of representations.

Loss-data curves. Whitney et al. (2020) use loss-data
curves, which plot loss against dataset size, to assess
representations. They measure the quality of a repre-
sentation by the sample complexity of learning probes
that achieve low loss on a task of interest. In contrast,
we focus on functional complexity and the task of pre-
dicting the data-generative factors z, then discuss the
functional complexity for other tasks y in § 7.

6 EXPERIMENTS

Data. We use MPI3D-Real (Gondal et al., 2019), a
common disentanglement dataset containing ≈ 1M
real-world images of a robotic arm holding different
objects with seven annotated ground-truth factors: ob-
ject colour (6), object shape (6), object size (2), camera
height (3), background colour (3) and two degrees of
rotations of the arm (40 × 40); numbers in brackets
indicate the number of possible values for each factor.



Representations. We use the following synthetic
baselines and standard models as representations:

• Noisy labels: c = z + ϵ with ϵ ∼ N (0, 0.01 · IK).

• Uniform mix: c = Wz, where Wij =
1

LK + ϵij with
ϵij ∼ N (0, 0.0016) (to ensure invertibility of W a.s.).

• Raw data: c = x.

• Others: We also use VAEs (Kingma and Welling,
2014) with 10 latent variables (L=10), β-VAEs (Hig-
gins et al. 2017, β=100, L=10); and an ImageNet-
pretrained ResNet18 (He et al. 2016, L=512).

Probes. We use different MLP and RF probes f to
predict z from c, with MLPs allowing us to analyse
ease-of-use with neural networks. For MLPs, we start
with linear probes (no hidden layers) then increase
capacity by adding two hidden layers and varying
their widths from 2 × K to 512 × K. We then measure
capacity based on the number of “extra” parameters
beyond that of the linear probe, and compute feature
importances using SAGE with permutation-sampling
estimators and marginal sampling of masked val-
ues (https://github.com/iancovert/sage). For RFs, we
use ensembles of 100 trees, control capacity by varying
the maximum allowed depth between 1 and 32, and
compute feature importances using Gini importance.

Implementation details. We split the data into train-
ing, validation and testing subsets of size 295k, 16k,
and 726k respectively. We use the validation split
for hyperparameter selection and report results on
the test split. We train the MLP probes using the
Adam (Kingma and Ba, 2015) optimizer for 100 epochs.
We use mean-square error and cross-entropy losses
for continuous and discrete factors zj, respectively. To
compute E, we use E[zj] or a random classifier as base-
line losses for continuous and discrete zj, respectively.

Results. Fig. 1 depicts loss-capacity curves, averaged
over factors zj. For both probe types, the noisy labels
baseline performs quite well with low-capacity probes
but is surpassed by other representations given suffi-
cient capacity, as expected. The uniform mix baseline
is explicit for MLP probes (achieving ≈ 0 loss with
linear capacity) but not for RF probes, supporting the
idea that the explicitness or easy-of-use of a represen-
tation depends on the way in which it is used. Note
that, with MLP probes and log(excess #params) as the
capacity measure, larger input representations are af-
forded more parameters with a linear probe and thus
are more expressive. This highlights the difficulty of
measuring the capacity of MLPs—an active area of
research in its own right, which we discuss in § 7.

Table 1 reports the corresponding full DCI-ES scores,
along with some oracle scores for MLPs. We find that:

Table 1: DCI-ES scores for different probes and represen-
tations. We report empirical scores using MLP and random
forest (RF) probes trained on the MPIP-3D dataset, as well as
theoretical/oracle for MLPs (MLP*) for some simple repre-
sentations. We show averages over 3 random seeds; standard
deviations were all < 0.02.
Representation Probe D C I E S

GT Labels z MLP* 1 1 1 1 1

Noisy labels
MLP* 1 1 0.9 1 1.0
MLP 0.97 0.97 0.89 0.99 1.0
RF 0.75 0.76 0.89 0.98 1.0

Uniform mix
MLP* 0 0 1 1 1.0
MLP 0.13 0.22 1.0 1.0 1.0
RF 0.17 0.21 1.0 0.72 1.0

VAE MLP 0.15 0.14 0.99 0.71 0.7
RF 0.10 0.10 0.93 0.65 0.7

β-VAE MLP 0.26 0.38 0.74 0.81 0.7
RF 0.22 0.25 0.72 0.85 0.7

ImgNet-pretr MLP 0.16 0.10 0.99 0.82 0.01
RF 0.35 0.20 0.89 0.78 0.01

Raw data MLP 0.22 0.16 0.99 0.82 0.001
RF 0.84 0.41 0.96 0.80 0.001

(i) the GT labels z get perfect scores of 1 for all metrics;
(ii) the uniform mix representation exposes the key
difference between mixing-based (D, C) and functional-
capacity-based (E) measures of the simplicity of the c-z
relationship, since it attains very low mixing, but near-
perfect explicitness scores; and (iii) larger representa-
tions (ImgNet-pretr, raw data) tend to be more explicit
than the smaller ones (VAE, β-VAE), with S and E
together capturing this size-explicitness trade-off.

7 DISCUSSION

Why connect disentanglement and identifiability?
Connecting prediction-based evaluation in the disen-
tanglement literature to the more theoretical notion of
identifiability has several benefits. Firstly, it provides
a concrete link between two often-separate communi-
ties. Secondly, it endows the often empirically-driven
or practice-focused disentanglement metrics with a
solid and well-studied theoretical foundation. Thirdly,
compared to the commonly-used MCC or Amari dis-
tance, it provides the ICA or identifiability community
with more fine-grained empirical measures.

Measuring probe capacity. Our measure of explicit-
ness E depends strongly on the choice of capacity mea-
sure for a probe or function class. For some probes, e.g.
random forests or random Fourier features (Rahimi
and Recht, 2007; Belkin et al., 2019), there exist natural
measures of capacity. However, for other probes like
MLPs, coming up with a good capacity measure is

https://github.com/iancovert/sage


itself an important and active area of research (Jiang*
et al., 2020; Dziugaite et al., 2021). While we used the
number of parameters to measure the available (or
upper-bound) probe capacity, future work may im-
prove the soundness of E by leveraging recent (and
future) advances in MLP capacity measures, e.g. those
which measure the used or effective capacity of a trained
MLP (Hanin and Rolnick, 2019; Maddox et al., 2020).

Measuring feature importance. Similarly, the choice
of feature-importance measure has a strong influence
on the D and C scores, with some probes having nat-
ural or in-built measures (e.g. random forests) and
others not (e.g. MLPs). For the latter, we proposed the
use of probe-agnostic feature-importance measures
like SAGE or SHAP (Covert et al., 2020; Lundberg and
Lee, 2017), and specified the conditions (Corollary 3.5)
that importance measures must satisfy if the resulting
D and C scores are to be connected to identifiability.
As with probe capacity, coming up with good mea-
sures of feature importance is its own orthogonal field
of study (e.g., model explainability), with future ad-
vances likely to improve the DCI-ES framework.

What is the relation to causality? Like the DCI
framework and other disentanglement evaluations
based on observational data, the D and C scores assume
statistically independent factors zj, corresponding to
a rather trivial causal graph. To relax this assump-
tion and compute D and C in the presence of depen-
dencies, one option is to resort to interventional data:
Suter et al. (2019) allow for unobserved confounding
and propose a measure based on robustness to inter-
ventions do(zj) on the ground-truth factors (see their
Defns. 2&3), which can also be used to construct a
matrix of feature importances R (see their Figs. 8–12).
Similar ideas may help extend the DCI-ES framework
to the evaluation of causal representations (Schölkopf
et al., 2021; Schölkopf and von Kügelgen, 2022).

What about explicitness for other tasks y? While
we focused on the explicitness of a representation for
predicting or recovering z, one may also be interested
in its explicitness for other tasks or labels y. While it
is often implicitly assumed that ease of predicting z
correlates with ease-of-use for other common tasks of
interest (e.g., object classification, segmentation, etc.),
future work could directly evaluate the explicitness of
a representation for particular tasks y. For example,
one could consider the entire loss-capacity curve when
benchmarking self-supervised representations on Im-
ageNet, rather than just linear-probe performance (a
single slice). In addition, one could explore the trade-
off between explicit but task-specific representations
and implicit but task-agnostic representations.

Conclusion. We have connected DCI scores to iden-
tifiability, and presented an extended DCI-ES frame-
work which introduces two new complementary mea-
sures and elucidates how probe-agnostic measures of
feature importance can be employed to compute the
D and C scores for arbitrary black-box probes. In par-
ticular, we advocated for additionally measuring the
explicitness E of a representation by the functional ca-
pacity required to use it, and proposed to quantify this
explicitness using loss-capacity curves. Together with
the relative size S of a representation, we believe that
DCI-ES constitutes a more fine-grained and nuanced
evaluation of representation quality.
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