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ABSTRACT

To inform decisions about changing the future trajectories of a dynamics system,
it is important to predict not only the intrinsic dynamics of the system but also its
response to external interventions. While notable progress has been made in learn-
ing intervention effects over time, existing research has prioritized the challenge of
time-varying confounding in observational data. Significant challenges however
remain in aspects related to the modeling and inference of latent dynamics. A first
and foremost challenge lies in the need to separate, from a composite observation,
the natural temporal evolution of intrinsic dynamics from its response to external
interventions. This challenge is further exacerbated by the need to integrate rich
history information into these latent dynamics. In this paper, we present a novel
framework of adaptive and separable interventional dynamics (ASIDE) to over-
come these challenges. First, we leverage inductive bias and progressive learning
to allow separable modeling and inference of the intrinsic dynamics and its re-
sponses to external interventions at the latent space. This is in contrast to existing
approaches that model and infer the composite dynamics as a black box. Second,
we leverage meta-learning to enable these latent dynamics to adapt to context ex-
amples in past history, addressing both inter- and intra-subject variabilities. This
is in contrast to existing approaches that use history only to initialize a one-size-
fit-all forecasting function. On synthetic and real benchmarks, we demonstrate
the advantage of ASIDE in improving forecasting accuracy for both intrinsic and
interventional dynamics, in settings with or without time-varying confounding.

1 INTRODUCTION

Across diverse domains, high-dimensional time-series observations are becoming increasingly abun-
dant. This trend underscores the growing importance of time-series modeling as a foundation for
enabling prediction and optimal control of observed systems (Krishnan et al., 2015). While fore-
casting the intrinsic dynamics native to a system is important for predicting its future trajectories,
to inform optimal decisions that can influence such trajectories requires predicting the effect of ex-
ternal interventions on the system’s intrinsic dynamics (Krishnan et al., 2015; Gwak et al., 2020).
Using medicine as an example, longitudinal multi-modal data of an individual can be leveraged to
predict the progression of an underlying health condition, while the decision of what interventions
(e.g., medication, life-style, etc.) to best improve such progression requires an ability to model and
predict the effect of these interventions on the individual’s native health condition over time.

Significant advances have been made in developing deep learning models for modeling the latent
dynamics underlying high-dimensional time-series data (Chung et al., 2015; Krishnan et al., 2015;
Fraccaro et al., 2017; Botev et al., 2021). However, most of these developments are focused on the
intrinsic dynamics of a system, with limited consideration about the effects of external interventions
(Krishnan et al., 2015; Gwak et al., 2020; Brouwer et al., 2022). In parallel, there has been a
rising interest in modeling intervention effects over time from observational data: however, with
a priority on addressing the challenge of time-varying confounding, dynamics modeling in these
works have mostly leveraged established techniques such as LSTM (Lim, 2018; Bica et al., 2020;
Berrevoets et al., 2021), transformers (Melnychuk et al., 2022), and neural ordinary differential
equations (ODEs) (Brouwer et al., 2022). At the intersection of these two vibrant research areas,
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Figure 1: Illustration of ASIDE with separate modeling and inference of intrinsic dynamics and its
response to external interventions, both adaptive from context samples in the history as enabled by
progressive meta-learning.

significant gaps remain in tackling the challenges of modeling and inferring latent dynamics under
external interventions.

A first and foremost challenge lies in the need to separate, from a composite observation, the natural
temporal evolution of intrinsic dynamics from its response to external interventions. Consider time-
series covariate data {xt}Tt=1 and its corresponding latent dynamics states {zt}Tt=1. Assume that
the temporal evolution of zt under external interventions at is governed by a dynamics function
dzt

dt = f(zt,at), which describes both how zt naturally evolves (intrinsic dynamics) and its response
to the external intervention at. Unfortunately, these two mechanisms are not separately observed.
Existing works in longitudinal intervention-effect modeling partially addresses this challenge from
the perspective of causal-inference, e.g., by extracting from the history a latent representation zt
that is minimally predictive of at when predicting the effect of zt and at on an outcome variable
yt+1. These however do not explicitly disentangle intrinsic dynamics and its response to external
interventions in f(zt,at). Limited works have attempted this disentangling. In (Gwak et al., 2020),
two separate neural ODEs were used to respectively model intrinsic dynamics f(zx) and its effect
from external interventions f(za). In (Brouwer et al., 2022), the latent dynamics is modeled as a
neural controlled differential equation (CDE) where the dynamics f(zt) is modulated by incoming
treatments at’s. While explicit separation in f(zt,at) improves its interpretability compared to a
black box, effective inference strategies to ensure such separation remain an open problem.

Secondly, consider zt+1:t+τ generated by f(zt,at) over any time window τ and its associated co-
variates xt+1:t+τ and outcomes yt+1:t+τ . All existing intervention-effect models attempt to de-
scribe this by a good initial estimate ẑt (from history) along with a global dynamics function that
applies to all data samples. This is typically achieved in a two-stage encoding-decoding framework:
in the first stage, a sequential encoder is trained to extract a latent representation ẑt from past history;
in the second stage, a forecasting decoder is then trained to use ẑt to forecast ahead for a window
length of τ . This popular approach has two limitations. First, the training of the encoder, i.e., the
extraction of ẑt, is unaware of the primary forecasting objective in the second stage. Second and
more importantly, a global f(zt,at) can be limited in its ability to describe the heterogeneity in
both the intrinsic dynamics and responses to external interventions – a variability that can exist both
among individual systems (e.g., different patient subgroups) and within the same system over time
(e.g., different disease stages of the same patient). While ẑt as an estimated initial condition may
capture such heterogeneity from past history, the ability for such information to pass forward in a
one-size-fit-all dynamics function is not clear, especially as the forecasting horizon increases.
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In this paper, we overcome these two challenges in a novel framework of ASIDE to achieve adaptive
and separable interventional dynamics. As outlined in Fig. 1, ASIDE has two major innovations.

• We introduce a novel strategy for separately modeling and inferring the mechanisms of
intrinsic dynamics fint(zt) and its response to external interventions fext(zt,at). This in-
cludes 1) explicit separation of these components in the model of f(zt, at), along with 2)
a progressive learning strategy to first estimate fint from intervention-free history and, with
which, to isolate fext from their composite observations. In contrast to black-box learning
of f(zt, at), we show that this progressive learning of separate dynamics improves the ac-
curacy of forecasting for both intrinsic dynamics and its response to external interventions.

• We further allow both dynamics to vary as fint(zt; cint) and fext(zt, at; cext), where, cint and
cext are context embeddings extracted from respective samples from the past history. This
is enabled in a novel end-to-end meta-learning framework to allow rapid feed-forward ex-
traction of context embeddings cint/ cext and its adaptation of the latent dynamics function,
enabling adaptive and individualized forecasting that can address both inter- and intra-
subject variations. In contrast to existing approaches that uses history information to only
initialize a global one-size-fit-all dynamics function, we show that this adaptive dynamics
function will improve forecasting accuracy, especially in long forecasting horizons, and,
increasing heterogeneity.

We first evaluated ASIDE in a synthetic benchmark of tumor growth under radiation and chemother-
apies (Geng et al., 2017): to isolate the effect of the dynamics modeling strategies introduced in
ASIDE, we considered data settings without treatment assignment bias. We then evaluated ASIDE
on a real dataset from MIMIC-III (Johnson et al., 2023), which are inherently associated with un-
known treatment assignment bias inherent in observational data. In both settings, we demonstrated
the improved performance of ASIDE for time-series forecasting under dynamic external interven-
tions in comparison to contemporary baselines.

2 RELATED WORKS

Modeling intervention effects over time: Rapid progress has been made in learning interven-
tion effects over time (Lim, 2018; Bica et al., 2020; Melnychuk et al., 2022; Seedat et al., 2022;
Berrevoets et al., 2021). Most of these works focus on addressing the challenge of time-varying con-
founding and treatment assignment bias, represented by propensity weight (Lim, 2018) and invariant
representation (Bica et al., 2020; Melnychuk et al., 2022; Seedat et al., 2022) based approaches. In
terms of dynamics modeling, earlier works have mostly adopted a two-stage learning process, where
the first-stage trains an encoder to extract latent representations zt from past history H1:t and, with
this fixed, a second-stage decoder learns to take the encoded zt to predict treatment outcome given
intervention at within a horizon of τ . Different types of neural architectures have been used, such as
recurrent neural networks (Lim, 2018; Bica et al., 2020) and controlled differential equations (See-
dat et al., 2022). Recognizing the limitations associated with such two-stage training, especially that
the encoding from history is not made aware of the forecasting objectives, growing recent works
have attempted learning the encoding-decoding process end-to-end (Melnychuk et al., 2022), using
neural ODEs (Brouwer et al., 2022) and transformers (Melnychuk et al., 2022).

Orthogonal to the contribution of addressing time-varying confounding, ASIDE aims to advance
intervention-effect modeling by enabling the learning of separable and adaptive interventional dy-
namics, realized in a novel progressive (for separable) meta-learning (for adaptive) framework.

Separating intrinsic dynamics and interventional effects: There have been limited works that
share our motivation in separating the intrinsic and interventional dynamics from observed time-
series. In (Gwak et al., 2020), this is achieved by using two separate neural ODEs which are then
combined in a third neural ODE to generate the observed composite trajectories. In (Seedat et al.,
2022), the latent dynamics is modeled as a neural CDE where the intrinsic dynamics f(zt) is mod-
ulated by incoming treatments at’s. This explicit separation of intrinsic dynamics and intervention
effects improves the interpretability of the latent dynamics models compared to a black box. How-
ever, effective inference strategies to ensure such separation remain an open problem. Furthermore,
neither of these works have considered adaptive latent dynamics.
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3 METHODOLOGY

As outlined in Fig. 1, ASIDE includes two key innovations. First, we leverage inductive bias to
enable separable modeling and inference of the intrinsic dynamics and its responses to external
interventions at the latent space. This is in contrast to existing approaches that model and infer
the composite dynamics as a black box. Second, we leverage meta-learning to enable these latent
dynamics functions to adapt to context examples in past history. This is in contrast to existing ap-
proaches that use history to only initialize a one-size-fit-all forecasting function. Below, we describe
ASIDE by its adaptable latent dynamics models (Section 3.1), the extraction of context embedding
from history to adapt the dynamics (Section 3.2), and the progressive meta-learning scheme (3.3).

3.1 GENERATION PROCESS: ADAPTIVE AND SEPARABLE LATENT DYNAMICS

While our model is agnostic to the type of functions used to describe latent dynamics, in this paper
we choose a neural ODE to describe the latent dynamics as a continuous process:

dzt
dt

= fθ(zt,at) = fθint(zt; cint,t) +
∑
k

Ik(akt )fθk
ext
(zt, a

k
t ; c

k
ext,t); yt+1 = gη(zt,at) (1)

where fθint models the intrinsic dynamics parameterized by θint. Multiple intervention mechanisms
can exist, where akt ∈ at represents intervention k and the indicator function I(akt ) = 1 flags its
presence at time t. The response of zt to the intervention k is modeled by fθk

ext
parameterized by

θkext. g describes the effect of zt and at parameterized by η. Instead of learning fixed functions for
fθint and fθkext

’s, we allow them to change with time-varying embeddings cint,t and ckext,t’s that are
separately identified from history H1:t = {x1:t,a1:t−1,y1:t} up to time t. While different adaptation
mechanisms exist, here we consider a simple conditioning for additive adaptation.

The generation process as described in equation 1 differ from existing works in two aspects. First,
the latent dynamics is explicitly decomposed into intrinsic dynamics and its response to interven-
tions. Second, latent dynamics functions are adaptable instead of fixed for all training samples.

3.2 INFERENCE PROCESS: ADAPTATION VIA DYNAMICS-SPECIFIC CONTEXT EMBEDDING

To optimize the generation process in equation 1, existing works mostly focus on first learning
an encoder to extract a latent representation zt from the history H1:t, which is then utilized to
initialize a fixed forecasting function optimized by predicting forward for a duration of τ . ASIDE
differs in the following aspects. First, because the trajectory of zt’s is governed by fθ, we shift
the focus of learning to fθ: this results in a fundamentally-different inference formulation where
information from a patient’s history H1:t is used to adapt fθ to capture inter- and intra-subject
variability, optimized by forecasting forward for a window of τ using a simple zt estimated from
recent observations. Second, to encourage the separation of intrinsic dynamics and responses to
interventions, we design the extraction of cint,t and ckext,t from 1) different portions of the history
data H1:t depending on their relevance to fint and fext and 2) via different extraction mechanisms.

Inference of initial latent states: To shift the learning focus to a strong forecasting function fθ that
is able to capture history information, we use a simple strategy to infer zt from the first frames of
xt−l−1:t−1(l < τ) via a neural encoder Ψϕz with weight parameters ϕz: ẑt = Ψϕz (xt−l−1:t−1).

Inference of intrinsic dynamics: To infer cint,t for adapting fθint at time t, we assume that it may
be shared by past trajectories of natural dynamics of the same individual. To remove confounding
interventional effects in past history, we further consider only the trajectories in history H1:t that are
free from any intervention, denoted by H1:t ∗ I0

1:t with I0
1:t indicating the absence of intervention

(= 1) or not (= 0) at each time instant t. We further divide available H1:t ∗ I0
1:t into lint number of

segments sint’s of duration τ , where lint varies as the history grows. Each individual segment sint is
fed into an encoder Ψϕint(·) to extract an embedding, which are then aggregated across segments as:

cint,t = Mint(H1:t ∗ I0
1:t) =

1

lint

∑
sint∈H1:t∗I0

1:t

Ψϕint(sint) (2)

where we adopt a simple averaging here to extract the shared embedding by the context samples
sint ∈ H1:t ∗ I0

1:t. Additional weighted averaging or time decay can be added to share with only
recent history, or using attention mechanism to find similar dynamics in the history.
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Inference of response to external interventions: The inference of ckext,t for adapting fθext is more
challenging as, unlike intrinsic dynamics, the history will never have intrinsic-free trajectories. In-
stead, for any intervention k, only its composite effect with intrinsic dynamics can be observed.
To separate out the latter, we leverage the concept of counterfactuals: for any factual composite
trajectory under the effect of intervention k, we introduce an intervention-free counterfactual for
an encoder Ψk

ϕext
(·) to compare and extract an embedding that accounts for the difference due to

intervention k. This is realized in two strategies. First, for each segment skext ∈ H1:t ∗ Ik
1:t with Ik

1:t
indicating the presence of intervention type k (= 1) or not (= 0), we synthesize its counterfactual
skext,CF with our learned fθint and the initial latent state estimate, projecting what the segment would
have looked like if intervention k was not applied. The pair of factual and counterfactual samples are
fed into an encoder Ψϕk

ext
(·) to extract an embedding, which are then aggregated across the segments

as:
ckext,t = Mk

ext(H1:t ∗ Ik
1:t) =

1

lkext

∑
skext∈H1:t∗Ik

1:t

Ψϕk
ext
(skext, s

k
ext,CF) (3)

where lkext represents the number of history segments with intervention k. Similarly, a simple av-
eraging is used here, although more advanced aggregation strategy can be used depending on prior
knowledge about the intra-subject variability in an individual’s response to intervention k.

Alternatively, we can include factual intervention-free segments in the history H1:t ∗I0
1:t in addition

to the interventional segments H1:t ∗ Ik
1:t, along with the mask I(ak = 1) that indicates the pres-

ence or absence of ak. While not paired, this can be considered as comparing interventional and
intervention-free data at a distribution level. We realize this with an convolutional architecture over
these segments concatenated with intervention masks:

ckext,t = Mk
ext([H1:t ∗ Ik

1:t,H1:t ∗ I0
1:t; I(ak = 1)]) (4)

3.3 PROGRESSIVE META-LEAERNING

Learn-to-adapt meta-objectives: Given a dataset consisting of N unique time-series, we con-
sider the forecasting task of predicting the values of yi

t+1:t+τ given the values of history to the point
Hi

1:t = {xi
1:t,a

i
1:t−1,y

i
1:t} and intervention assignment ait, where i = 1 : N indicates the i-th

time-series in the dataset. For each yi
t+1:t+τ , the predicted ŷi

t+1:t+τ is generated as described by
equation 1, with zit estimated by the initial state encoder, and fθint

and fk
θext

’s respectively adapted
by Mint and Mk

ext’s as described in equation 2 – equation 4. The mean-squared-error (MSE) loss
between ŷi

t+1:t+τ and yi
t+1:t+τ is used to optimize the weight parameters of the latent dynamics

functions θint and θkext’s, their corresponding encoders for adaptation ϕint and ϕk
ext’s, along with that

for the initial state encoder ϕz and emission function η.

min
ϕk

ext,ϕint,ϕz,θint,θk
ext,η

∑N

i=1

∑T−τ

t=1
∥yi

t+1:t+τ − ŷi
t+1:t+τ (H1:t,at)∥22 k = 1, · · · ,K (5)

where K is the maximum numbers of intervention types considered in the dataset.

The optimization of equation 5 thus corresponds to a meta-learning objective when treating the
prediction of each yi

t+1:t+τ as its own task, with context samples selected from the history H1:t as
described in Section 3.2, to adapt the intrinsic dynamics fθint and interventional dynamics fk

θext
’s to

the specific task. Mint and Mk
ext as described in equation 2 – equation 4 thus represent feedforward

meta-models to extract task-specific embedding for rapid adaptation of latent dynamics models.

Progressive meta-learning to separate intrinsic and interventional dynamics: While the opti-
mization in equation 5 in theory can be carried out simultaneously for all parameters involved, due
to the composite observation of intrinsic and multiple interventional dynamics, their separation can-
not be guranteed while optimized simultaneously (see ablation in Section 4.3). Instead, we adopt a
progressive training strategy where different componnets of the model are estimated at a schedule.

More specifically, we first optimize ϕint and θint related to intrisinc dynamics, i.e., the intrinsic
dynamics function fθint and the meta-encoder Mint used to adapt it. Note that this optimization
only involve intervention-free observations, removing the challenge of separating composite effects.
With the optimized ϕint and θint fixed, we then simultaneously optimize ϕk

ext’s and θkint’s related

5
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to responses to interventions, i.e., interventional dynamics functions fθk
ext

’s and the meta-encoders
Mk

int used to adapt them, for all intervention types k. While this stage of the training does involve
interventional data with composite effects, leveraging the optimized intrinsic dynamics facilitates
the separation of interventional dynamics. Finally, all model parameters are finetuned together as
a fully-integrated model. The initial state encoder Ψϕz and emission gη are trained throughout.
This progressive training is achieved by turning off the gradient flow to the parameters not involved
in training at different stages, each with its respective optimization and learning hyperparameters.
Transition between the stages is determined by when the loss for the previous step plateaus or when
a max epoch limit is reached.

4 EXPERIMENTS

Counterfactual outcomes are not commonly observed for real-world data, due to which synthetic
data have become important for evaluating intervention effect models (Lim, 2018; Bica et al., 2020;
Seedat et al., 2022; Melnychuk et al., 2022). We thus first evaluated ASIDE on the well-established
benchmark generated by a pharmacokinetic-pharmacodynamic (PK-PD) model of tumor growth in
lung cancer patients that includes the effects of chemotherapy and radiotherapy (Geng et al., 2017).
To isolate the effect of dynamics models, we considered experimental settings without time-varying
confoudning due to treatment assignment bias. To test feasibility in real world settings, we then
conducted experiments on the MIMIC-III (Johnson et al., 2023), an electronic health record dataset
with inherent real-world treatment assignment bias in observational data (Bica et al., 2020).

Baselines: On both datasets, we considered representative baselines in intervention effect model-
ing over time, including: 1) RMSN (Lim, 2018), 2) CRN (Bica et al., 2020), and CausalTransformers
(CT) (Melnychuk et al., 2022), In terms of the underlying dynamics models, RMSN and CRN use
the two-stage training strategies as described earlier while CT is end-to-end. In terms of model
architectures, RMSN and CRN are based on RNNs whereas CT is based on transformers.

Metrics: We evaluated the performance of all models by their accuracy in predicting counter-
factual outcomes over time, measured by rooted-mean-square-error (RMSE). Following standard
practice, the RMSE is normalized by the maximum volume of the tumor (death threshold defined in
Lim (2018)) fon the synthetic dataset.

4.1 SYNTHETIC DATA EXPERIMENTS

4.1.1 DATA

Following the PK-PD model in (Geng et al., 2017) for non-small cell lung cancer, we used the
following Gompertz model to describe the grwoth of tumor volume with a starting volume of V0:

Vt+1 = Vt(1 + ρ log(KV ) − βcCt − (αrt + βr2t ) + ϵ) (6)

where parameters ρ and K control natural growth dynamics, βc controls the effect of chemotherapy
with dose Ct, and β, α control the effect of radiotherapy dose of rt. The parameter K is the carrying
capacity of the model. More details are provided in Appendix B.1

Treatment assignment bias: To isolate the benefits of the dynamics modeling strategies intro-
duced by ASIDE, we considered random treatment assignment with a probability of p0 = 0.1 re-
gardless of tumor volume: the relatively low assignment probability was chosen to avoid generating
numerous time series where the tumor was killed within a small time window. For a fair comparison,
for CRN and CT, that uses treatment-invariant representations to address confounding, we disabled
their adversarial training element as it was not needed on the dataset.

Heterogeneity levels: To examine the importance of adaptive latent dynamics, we created training
data with four different levels of heterogeneity in the key parameters (ρ, βc, α, β) in Equation (6).
This was achieved by controlling the sampling of the parameters to be within a preset range from
the mean as summarized in Table 1.
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Heterogeneity Intrinsic Growth (ρ) Radio effect (α) Chemo effect (βc)
lower upper lower upper lower upper

0 7× 10−5 7× 10−5 .0398 .0398 .028 .028
1 0.0 7× 10−3 0.0 .208 .0273 .0287
2 0.0 7× 10−3 0.0 .508 .0259 .0301
3 0.0 21× 10−3 0.0 .508 .0259 .0301

Table 1: Parameter ranges for different levels of heterogeneity in data generation.

τ Heterogeneity RMSN CRN CT ASIDE min gain (%)

5

0 0.75 (0.26) 0.62 (0.09) 0.87 (0.21) 0.32 (0.05) 93.75
1 1.80 (0.53) 1.35 (0.06) 1.57 (0.12) 0.80 (0.16) 68.75
2 1.19 (0.06) 1.09 (0.04) 1.31 (0.29) 0.66 (0.12) 65.15
3 1.14 (0.03) 1.16 (0.02) 1.29 (0.06) 0.68 (0.02) 67.65

10

0 0.91 (0.61) 0.69 (0.10) 0.87 (0.15) 0.23 (0.01) 200.00
1 1.84 (0.36) 1.19 (0.02) 1.69 (0.16) 0.59 (0.04) 101.69
2 1.40 (0.32) 1.20 (0.14) 1.37 (0.19) 0.60 (0.03) 100.00
3 1.31 (0.22) 1.26 (0.11) 1.44 (0.11) 0.57 (0.05) 121.05

15

0 1.74 (0.47) 0.93 (0.25) 1.20 (0.24) 0.31 (0.02) 200.00
1 1.38 (0.65) 0.98 (0.29) 1.11 (0.12) 0.39 (0.05) 151.28
2 1.28 (0.26) 1.15 (0.22) 1.34 (0.17) 0.58 (0.07) 98.28
3 1.00 (0.10) 1.02 (0.07) 1.35 (0.11) 0.35 (0.01) 185.71

20

0 1.60 (0.92) 1.11 (0.05) 1.02 (0.15) 0.25 (0.01) 308.00
1 1.89 (1.02) 1.21 (0.13) 1.66 (0.20) 0.52 (0.02) 132.69
2 1.38 (0.33) 1.20 (0.33) 1.29 (0.18) 0.39 (0.02) 207.69
3 1.23 (0.17) 1.06 (0.13) 1.45 (0.13) 0.37 (0.02) 186.49

Table 2: RMSE for different heterogeneity levels and projection horizon in tumor dataset. min gain
= |RMSE of ASIDE - RMSE of the second best model| / RMSE of the second best model.

Prediction horizon: Compared to existing works that integrate history into an initial condition
for forecasting in time, ASIDE’s use of history to adapt the dynamics function is expected to be
able to carry heterogeneity information forward for a longer prediction horizon. To delineate this
benefit, we considered prediction horizons of different lengths (τ = 5 − 20). Furthermore, within
a given prediction horizon, we examined the per-step prediction RMSE over time in addition to the
commonly-considered average RMSE.

4.1.2 RESULTS

Table 2 summarizes the results for the normalized RMSE for all models considered, under different
levels of heterogeneity and over different prediction horizons: the last column further summarizes
the % gain of improvements obtained by ASIDE over the next best models in each experiment
setting. As shown, ASIDE was able to provide significant margins of improvement over the included
baselines across all prediction horizons and all levels of heterogeneity. As further highlighted in the
last column of Table 2 and summarized in Fig. 2a, this improvement overall improved as τ increased
for all levels of heterogeneity. Fig. 2a further shows the per-step RMSE prediction accuracy of
ASIDE when trained to predict for a horizon of τ = 20 at the highest level of heterogeneity, where
ASID consistently attained the lowest prediction accuracy over time versus all baseline models. This
provided strong evidence that 1) ingesting history into the latent dynamics is stronger than ingesting
history into an initial condition for predicting over longer horizons, and 2) adaptive dynamics is
important for addressing data heterogeneity.

To further demonstrate the benefits of separable dynamics enabled by ASIDE, we examined the
RMSE for intervention-free and interventional segments of the test samples separately. As shown in
the example in Table 3, ASIDE delivered significantly improved RMSE for both predicting intrinsic
dynamics and its changes under radiation or chemotherapies. While most baseline methods expe-
rienced an increase in error when predicting the effect of radiation therapies, potentially due to its
relatively small effect compared to the growth of tumor due to intrinsic dynamics, ASIDE was able
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τ Heterogeneity RMSE on RMSN CRN CT ASIDE
intrinsic growth 1.30 (0.18) 1.15 (0.13) 1.14 (0.17) 0.42 (0.02)

20 3 chemo steps only 1.21 (0.18) 1.04 (0.10) 1.55 (0.12) 0.44 (0.03)
radio steps only 1.50 (0.25) 1.38 (0.19) 1.65 (0.22) 0.44 (0.02)

Table 3: Separate RMSEs for different dynamics for all models on datasets with heterogenity level
3 and a projection horizon of 20.
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(a) Percentage gain over the second-best model
across τ for different heterogeneity levels.
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(b) Stepwise RMSE for all the models when trained
for heterogeneity level 3 and τ = 20

to maintain consistently prediction errors across the various dynamics. Fig. 3 provides examples of
individual trajectories.

A notable observation in Table 2 was that for most baselines, their forecasting accuracy actually
improved as τ or the heterogeneity level increased (from level 1 to level 2-3). This was potentially
because a higher heterogeneity level in treatment effect parameters or time-window τ have resulted
in a dataset with smaller tumor volumes (and hence small RMSE) (see Fig. 4 in Appendix B.1.1).

4.2 REAL DATA EXPERIMENTS

Data: MIMIC-III (Johnson et al., 2023) contains electronic health records of ICU patients. Fol-
lowing Melnychuk et al. (2022), we considered covariates xt as 25 vitals and 3 static features,
outcome yt as diastolic blood pressure, and treatment at as vasopressor and ventilation. Because of
the treatment bias inheret within observational data, all baselines were included with their original
mechanisms for addressing confounding on.

Results: Table 4 summarizes the test RMSE results by all models in MIMIC-III. As shown, even
without any specific mechanisms to addressing time-varying confounding, ASIDE was able to de-
liver an margin of improvement that was statistically significant over the second best models across
all prediction horizons, except at τ = 5 where p = 0.104 (paired-t tests). Similarly, while all models
RMSE increased as τ increased, ASIDE demonstrated the least deterioration (10%) compared to the
baselines (ranging 13% to 22%). Fig. 5 provides the RMSE metric at each step over the prediction
horizon.

4.3 ABLATION

To further understand the significant gain of ASIDE over considered baselines in its prediction accu-
racy, we conducted an ablation study on the key components of ASIDE: separated latent dynamics
components, meta-learning for adaptive dynamics, and progressive learning to ensure separation.
This set of experiments was conducted considering only radiation therapy without the presence of
chemotherapy: in the absence of the latter, the average tumor value in the dataset had increased
which resulted in an increased RMSE in all models, as shown in Table 5 . For ablation, we started
with a global neural ODE (Model 1) in which a single global ODE function was learned at the latent
space. that was not conditioned on any history H. This model delivered comparable performance
to the other baselines considered. As we decomposed this single neural ODE into a formulation
with separated intrinsic and interventional dynamics similar to equation 1 but without the adaptive

8
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Figure 3: Some visual examples of forecast data for the different models

Model τ = 5 τ = 10 τ = 15 τ = 20
RMSN 12.28 (1.88) 12.58 (0.87) 14.93 (1.40) 14.09 (0.93)
CRN 9.82 (0.10) 10.46 (0.15) 11.00 (0.12) 11.46 (0.11)
CT 9.66 (0.11) 10.23 (0.15) 10.58 (0.19) 10.92 (0.22)

ASIDE 9.55 (0.11) 10.02 (0.13)* 10.31 (0.15)* 10.56 (0.16)*

Table 4: Test RMSEs for different prediction projection horizon in MIMIC-III dataset.

component (Model 2), a moderate improvement was obtained without statistical significance. The
addition of meta-learning to allow adaptation of the latent dynamics, and the addition of progressive
training strategy (Model 3) achieved significant reduction of RMSE.

5 CONCLUSIONS & DISCUSSION

We present ASIDE, a novel framework for learning adaptive and separable interventional dynamics
with progressive meta-learning. In contrast to black-box based approaches for modelling, this ap-
proach leverages inductive biases and meta-learning based approaches to learn latent dynamics and
adapt it to pass history. We validate our models on simulation data along with a real world dataset.
The major contributions were also validated using an ablation study.

This model does have some limitations. The model is not particularly designed for the handling of
treatment selection biases. Incorporating challenges brought forth by such biases is a future work
necessary. Apart from that, ASIDE is good at handling heterogeneity across samples, however,
heterogeneity might also be caused by parameters of the dynamics changing with time. Handling
such heterogeneity is another important next step for future.

Model Separate Meta Learning with RMSE
Dynamics Progressive Training (avg)

RMSN ✗ ✗ 2.25
CRN ✗ ✗ 2.24
CT ✗ ✗ 2.27

Model 1 ✗ ✗ 2.17 (0.05)
Model 2 ✓ ✗ 1.96 (0.15)
Model 3 ✓ ✓ 1.06 (0.08)

Table 5: Ablation results for setting with only radiotherapy, heterogenity = 3 and τ = 5

9
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A SUMMARY OF MATHEMATICAL NOTATIONS

Symbol Definition
xt Observed covariates at time t
zt Latent state at time t
at External intervention(s) applied at time t
yt Observed outcome at time t
fθ(zt,at) Composite latent dynamics function
ẑt Estimated latent state from encoder given short past history
ŷt Predicted outcome at time t
fθint(zt; cint,t) Intrinsic dynamics function
fθk

ext
(zt, a

k
t ; c

k
ext,t) Effect of intervention k on dynamics

cint,t Context embedding for intrinsic dynamics
ckext,t Context embedding for intervention k
Ik(akt ) Indicator function for intervention k at time t
gη(zt,at) Emission function to observable outcome
τ Forecasting horizon length
H1:t History of covariates, interventions, and outcomes up to time t
sint History segment without interventions
skext History segment with intervention k
skext,CF Counterfactual segment without intervention k
Ψϕz

Neural encoder function for initial latent states
Ψϕint Neural encoder function for intrinsic dynamics
Ψϕk

ext
Neural encoder function for external intervention

Mint Meta-encoder for intrinsic dynamics
Mk

int Meta-encoder for intervention type k
Vt Tumor volume at time t
ρ Intrinsic tumor growth rate
K Carrying capacity of the tumor growth model
βc Effect of chemotherapy
Ct Chemotherapy dose at time t
α Linear effect of radiotherapy
β Quadratic effect of radiotherapy
rt Radiotherapy dose at time t
ϵ Random noise term in tumor dynamics

Table 6: Summary of Mathematical Notations

B DETAIL OF EXPERIMENTS AND ADDITIONAL RESULTS

B.1 DATASET DETAILS

Geng et al. (2017) provide the dynamic model for the growth of non-small cell lung cancer under
radiotherapy and chemotherapy interventions. This model is based on assuming that the intrinsic
growth follows a Gompertz growth model. Similarly, effect of radiothrapy is taken to be linear
quadratic (LQ) model and for chemotherapy is a log-cell kill model. This results in the trajectory of
the tumor volume V to be defined by a differential equation defined as:

dV

dt
= V ∗ (ρ log(K

V
)− βcC(t)− (αR(t) + βR(t)2)) (7)

For the growth model, Gompertz is a common way to model a more general form of logistic growth.
ρ represents the cell specific growth rate and K is the carrying capacity. The value of K is kept
constant at K = 14137.167 across the simulation whereas ρ is varied based on distribution suggested
in (Geng et al., 2017) with changes for different heterogeneity setting as mentioned in 4.1.1.
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Figure 4: Volume distribution across τ for different heterogeneity

For the chemotherapy part of the model, the value of C(t) represents the drug concentration. Drug
once administered is assumed to decay with an half life of 1 timestep. based on the clinical practice
of administering vinblastine at 5 mg/m3 per week, the value of C(t) = 5 is introduced at anytime
the treatment assignment dictates chemotherapy administration. The drug constantly decays with
half life of 1 timestep.

For radiotherapy, the parameters α, β : α/β = 10 are made to effect the cell volume at only the
time of administration, and effects disappear immediately disappears. R(t) = 5 Gy at time of
administration is kept constant to simulate practice.

B.1.1 DISTRIBUTION OF VOLUME ACROSS HETEROGENEITY AND PROJECTION HORIZON

The distribution of volume across different stages and different projection horizon vary greatly, as
shown in 4. Since the volume of ground truth are different, the RMSE calculated for these varying
setting will also be different and not easily comparable. As clearly seen, volume distribution is
higher for heterogenity = 1, thus RMSE are expected to be higher for this setting across all τ .

B.2 IMPLEMENTATION DETAILS

• Latent Encoder: Ψϕz
(xt−l−1:t−1)

– Input: xt−l:t−1, at−l:t−1 with l = 3

– Model structure: MLP with 3 layers
– Output: zt

• Metamodel for intrinsic dynamics equation 2

– Input: sint

– Model structure: MLP with 8 layers
– Output: cint,t

• Metamodel for intervention dynamics equation 4

– Input: H1:t, Ik
1:t

– Model structure: CNN with 8 layers
– Output: ckext,t

13
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• Dynamics Intrinsic Function

– Input: zt, cint,t

– Model: MLP 9 layer, 16 hidden units
– Output: dz

dt = fint

• Dynamics Intervention Function

– Input: zt, ckext,t

– Model: MLP 9 layer, 16 hidden units
– Output: dz

dt = fk
ext

• Emission decoder

– Input: zt
– Model: MLP 2 layer, 16 hidden units
– Output: yt+1:t+τ

Encoder
Layer Output Dim Details

Linear + ELU 8 in features = 3 · F , out features = 8
Linear + ELU 8 in features = 8, out features = 8

Linear 8 in features = 8, out features = zinit

Meta-encoder (intrinsic)
Layer Output Dim Details

Linear + ELU H in features = din, out features = H
(Linear + ELU)*N H in features = H , out features = H

Linear cint in features = H , out features = cint

Meta-encoder (intervene)
Layer Output Dim Details

Conv1D + ELU H in features = din + dmask, out features = H
(Conv1D + ELU)*N H in features = H , out features = H

Linear cint in features = H , out features = cext

Intrinsic Dynamics
Layer Output Dim Details

Linear + ELU H in features = cint + zinit, out features = H
(Linear + ELU)*N H in features = H , out features = H

Linear zt in features = H , out features = zt

Extrinsic Dynamics
Layer Output Dim Details

Linear + ELU H in features = cext + zinit + dint, out features = H
(Linear + ELU)*N H in features = H , out features = H

Linear zt in features = H , out features = zt

Table 7: Architecture of the encoder, meta-encoders and dynamics networks.

Architecture of codes

B.3 DESCRIPTION OF BASELINES

Recurrent Marginal Structural Network (RMSN): Based on work by Lim (2018), RMSN is
built completely on RNNs. It is a simple extension to linear marginal Structural models described
in Hernan & Robins (2020) using RNN. First, the Inverse Probability Weights are learned. One
RNN models: fpt(at|a1:t−1) and another RNN models fph

(at|a1:t−1,H1:t−1). Then, the weight
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is calculated to be: wi =
fptxi

fphxi
. After learning the weights, an encoder is trained with the task of

learning representations from data as: ei,t = fe(wi,H1:t−1). The representation ei learnt above is
then used to make autoregressive predictions for yt+1:τ and is modeled by another RNN: yi,t+1:τ =
fd(ei,t, wi, yi,t)

Counterfactual Recurrent Network (CRN): CRN by Bica et al. (2020) is also an encoder-decoder
architecture. However, unlike RMSN, in CRN, the bias handling is done by an adversarial loss com-
ponent instead of learned weights, which reduces the need for separately modelling the weights by
RNNs. The idea behind CRN, is to learn balanced representations ri(Hi

1:t−1) which is invariant to
treatment assignment. This is done by building to separate heads to the RNN models, one to predict
the treatment at+1 = GA(ri(Hi

1:t−1)) and another to predict outcome Yt+1 = GY (ri(Hi
1:t−1),at)

at each time point. An adversarial loss is used to learn this model.

In the open source implementation provided by the Bica et al. (2020), this loss is implemented using
Gradient reversal layer.

Causal Transformer (CT): CT (Melnychuk et al., 2022) extends the idea of CRN using transformer
to make the pipeline end-to-end and replace the two-stage learning process in previous models. They
use multi-headed self and cross-attention mechanisms common in transformer based approaches to
model the sequences, which then learns to attend to different part of history to make future predic-
tions. As in CRN, they learn the transformer by an adversarial component on top of transformer.
The transformer is tasked to learn a balanced represenattion ri(Hi

1:t−1) such that it is invariant of
treatment predictions. Two heads are added on top of transformer: one to predict the treatment
at+1 = GA(ri(Hi

1:t−1)) and another to predict outcome Yt+1 = GY (ri(Hi
1:t−1),at) at each time

point. An adversarial loss known as Counterfactual Domain Confusion (CDC) loss is used to learn
the balanced representation.

C ADDITIONAL RESULTS

C.1 SEPARATE RMSE

Separate RMSE across intrinsic dynamcis and extrinsic dynamics can be found in table 8 for RMSN
(Lim, 2018), table 9 for CRN (?), table 10 for CT (Melnychuk et al., 2022), and table 11 for ASIDE

RMSE Type Heterogeneity 5 10 15 20
0 0.86 (0.30) 1.01 (0.70) 1.96 (0.54) 1.78 (1.03)

Growth 1 2.03 (0.64) 2.11 (0.44) 1.52 (0.74) 2.16 (1.18)
2 1.30 (0.08) 1.58 (0.38) 1.42 (0.30) 1.55 (0.39)
3 1.20 (0.03) 1.47 (0.27) 1.07 (0.12) 1.30 (0.18)
0 0.84 (0.30) 0.95 (0.67) 1.86 (0.52) 1.72 (1.05)

Chemo 1 1.58 (0.71) 1.85 (0.45) 1.39 (0.74) 1.97 (1.22)
2 0.87 (0.12) 1.34 (0.52) 1.36 (0.36) 1.46 (0.41)
3 0.73 (0.07) 1.20 (0.38) 1.02 (0.15) 1.21 (0.18)
0 0.86 (0.30) 0.97 (0.67) 1.96 (0.54) 1.80 (1.11)

Radio 1 3.02 (0.54) 2.85 (0.45) 1.87 (0.77) 2.59 (1.10)
2 1.98 (0.09) 2.11 (0.24) 1.70 (0.28) 1.85 (0.34)
3 2.04 (0.05) 2.09 (0.11) 1.23 (0.13) 1.50 (0.25)

Table 8: Separate RMSE for the different segments for RMSN

C.2 PER STEP RMSE FOR MIMIC-III

Fig 5 shows per-step RMSE for MIMIC-III
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RMSE Type Heterogeneity 5 10 15 20
0 0.68 (0.10) 0.73 (0.12) 1.04 (0.28) 1.24 (0.05)

Growth 1 1.49 (0.06) 1.36 (0.04) 1.10 (0.34) 1.39 (0.17)
2 1.18 (0.04) 1.34 (0.14) 1.29 (0.26) 1.36 (0.38)
3 1.22 (0.03) 1.40 (0.12) 1.10 (0.08) 1.15 (0.13)
0 0.65 (0.12) 0.72 (0.14) 0.91 (0.28) 1.18 (0.15)

Chemo 1 0.99 (0.09) 0.98 (0.04) 0.94 (0.38) 1.16 (0.18)
2 0.77 (0.07) 1.00 (0.23) 1.19 (0.35) 1.16 (0.39)
3 0.77 (0.06) 1.08 (0.15) 1.06 (0.11) 1.04 (0.10)
0 0.64 (0.11) 0.72 (0.14) 0.99 (0.30) 1.23 (0.11)

Radio 1 2.53 (0.15) 2.19 (0.07) 1.38 (0.14) 1.96 (0.22)
2 1.78 (0.06) 1.84 (0.10) 1.54 (0.20) 1.67 (0.34)
3 2.06 (0.03) 2.04 (0.04) 1.24 (0.10) 1.38 (0.19)

Table 9: Separate RMSE for the different segments for CRN

RMSE Type Heterogeneity 5 10 15 20
0 1.00 (0.24) 0.98 (0.17) 1.36 (0.27) 1.14 (0.17)

Growth 1 1.80 (0.14) 1.96 (0.18) 1.27 (0.14) 1.95 (0.24)
2 1.43 (0.34) 1.56 (0.23) 1.53 (0.19) 1.49 (0.21)
3 1.38 (0.07) 1.63 (0.13) 1.49 (0.12) 1.63 (0.15)
0 0.95 (0.26) 0.97 (0.18) 1.34 (0.27) 1.13 (0.15)

Chemo 1 1.32 (0.15) 1.67 (0.18) 1.11 (0.13) 1.79 (0.22)
2 1.10 (0.27) 1.29 (0.20) 1.28 (0.21) 1.37 (0.18)
3 0.92 (0.07) 1.34 (0.13) 1.46 (0.10) 1.55 (0.12)
0 0.98 (0.22) 1.00 (0.18) 1.39 (0.29) 1.16 (0.16)

Radio 1 2.54 (0.18) 2.47 (0.40) 1.37 (0.20) 2.23 (0.44)
2 2.11 (0.38) 2.02 (0.20) 1.67 (0.19) 1.73 (0.16)
3 2.19 (0.08) 2.18 (0.10) 1.50 (0.18) 1.65 (0.22)

Table 10: Separate RMSE for the different segments for CT

D SOCIETAL IMPACT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

E LLM USAGE

LLM tools such as ChatGPT, DeepSeek were used in limited capacity for refining this paper. Tasks
for which LLMs were used are mostly spellchecks and grammar checks. Apart from that, LLMs
were also used to generate table templates and filler codes for some plots in this paper.

F SOURCE CODE

Source code can be found here: https://anonymous.4open.science/r/ASIDE/
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RMSE Type Heterogeneity 5 10 15 20
0 0.36 (0.06) 0.26 (0.01) 0.35 (0.03) 0.28 (0.00)

Growth 1 0.92 (0.22) 0.68 (0.05) 0.44 (0.06) 0.60 (0.02)
2 0.73 (0.15) 0.68 (0.04) 0.65 (0.08) 0.45 (0.02)
3 0.70 (0.03) 0.64 (0.06) 0.39 (0.01) 0.42 (0.02)
0 0.37 (0.07) 0.26 (0.01) 0.32 (0.03) 0.29 (0.02)

Chemo 1 0.61 (0.16) 0.57 (0.12) 0.39 (0.03) 0.53 (0.03)
2 0.49 (0.04) 0.42 (0.04) 0.50 (0.06) 0.39 (0.02)
3 0.24 (0.02) 0.47 (0.09) 0.40 (0.02) 0.44 (0.03)
0 0.33 (0.03) 0.25 (0.01) 0.32 (0.02) 0.29 (0.01)

Radio 1 1.30 (0.02) 0.93 (0.06) 0.55 (0.03) 0.79 (0.04)
2 1.00 (0.26) 0.99 (0.07) 0.87 (0.17) 0.56 (0.03)
3 1.38 (0.05) 1.02 (0.13) 0.38 (0.04) 0.44 (0.02)

Table 11: Separate RMSE for the different segments for ASIDE
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Figure 5: RMSE per step for MIMIC-III for different models
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