
Locate, Crop and Segment: Efficient abdominal
CT image segmentation on CPU

Yinyin Luo†, Yue Liu†, Wenbin Liu, Jingheng Dai, Xunliang Xiao, and
Gang Fang*

Institute of Computing Science and Technology, Guangzhou University, Guangzhou,
510006, China

†Co-first authors
*Corresponding author
gangf@gzhu.edu.cn

Abstract. Although current deep learning based models have achieved
tremendous successes in medical segmentation tasks, the deployment of
such models on CPU only devices is still challenging due to the sub-
stantial computational resources required for segmentation inference, es-
pecially for 3D medical images. Small sized models capable of efficient
inference have been proposed to mitigate the computational overheads,
however these small models usually largely sacrifice the segmentation
accuracy. In order to tackle the challenge in compliance with the re-
quirements of MICCAI FLARE 2024 Challenge Task 2, i.e. deploying
advanced 3D abdominal CT segmentation models in non-GPU environ-
ments while maintaining high accuracy, we introduce a multi-scale knowl-
edge distillation method to train a student model that maximally retains
the segmentation performance of the teacher model. In order to improve
the segmentation performance of tiny organs and Overcome the quality
issues of pseudo-labels themselves, We also design a weighted composite
loss function to train the model. Furthermore, for efficient segmentation
inference on CPU only devices, we introduce a liver-based Z-axis Region-
of-Interest (RoI) localization strategy which effectively improve the seg-
mentation efficiency. Experiments on the MICCAI FLARE 2024 datasets
have shown significant improvements in both segmentation accuracy and
efficiency. The proposed method achieves an average organ Dice Similar-
ity Coefficient (DSC) of 88.70% and a Normalized Surface Dice (NSD)
of 94.29% on the public validation set. In the FLARE 2024 Task2 online
validation, the method achieved an average organ Dice Similarity Coeffi-
cient (DSC) of 88.47% and a Normalized Surface Dice (NSD) of 94.71%,
with an impressive average inference time of 12.33 seconds. The code is
available at https://github.com/lay-john/FLARE24-Task2.

Keywords: Semi-supervised · Deep learning · Organ segmentation ·
Knowledge distillation.
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1 Introduction

The automatic and accurate semantic segmentation of medical images is a fun-
damental problem in medical image analysis, which serves as a crucial step in
computer-aided diagnosis, surgical navigation, visual enhancement, radiother-
apy, and biomarker measurement systems[27]. Segmentation accuracy is the most
important factor to be considered when developing segmentation applications to
aid medical image analysis, as it directly affects the patient diagnosis and the
efficiency of clinical workflows. Based on this consensus, various methods, e.g.
algorithm based methods and deep learning based methods, have been proposed
to tackle this problem in recent years. For instance, U-Net[23] has shown supe-
rior segmentation accuracy by effectively utilizing skip connections to preserve
spatial information. The DeepLab[2] series enhances multi-scale context and de-
tail precision through the introduction of atrous convolution and Conditional
Random Fields (CRFs). nnU-Net[12] offers an adaptive framework that opti-
mizes performance for various datasets, showcasing remarkable versatility and
effectiveness. Attention U-Net[22] leverages attention mechanisms to focus on
crucial features, further improving segmentation accuracy. These methods have
all achieved excellent segmentation results in different applications, advancing
the development of medical image analysis. Among these methods, it is highly
noted that nnU-Net has consistently demonstrated outstanding performance in
different medical image segmentation tasks.

However, most current research works, including nnU-Net, neglect the impor-
tance of the computational efficiency of segmentation inference, i.e. the inference
time and computational resource required, especially for 3D medical images. For
an example, for a complete semantic segmentation of a 3D abdominal Comput-
erized tomography (CT) image using nnU-Net, it would approximately take 60
seconds and 8G GPU memory, which is unbearable in real diagnosis practice.
In fact, the memory consumption and GPU usage of these methods have led to
a huge demand for computing resources, posing considerable challenges to the
industrial deployment of the method. To mitigate the computational overheads,
small sized models capable of efficient inference have been proposed, for an exam-
ple EfficientNet[26], however previous researchers find that using smaller models
often entails a compromise in performance[10]. Thus, this limitation prompts a
critical challenge: how can we deploy state-of-the-art abdominal segmentation
models in non-GPU environments without compromising segmentation accuracy.

In order to tackle the challenge in compliance with the requirements of MIC-
CAI FLARE 2024 Challenge Task 2, i.e. deploying advanced 3D abdominal CT
segmentation models in non-GPU environments while maintaining high accu-
racy, we introduce knowledge distillation and a pre-processing strategy in this
paper. Specifically, in MICCAI FLARE 2024 Challenge Task 2, it is required to
perform semantic segmentation of abdominal organ CT images using a CPU-
based algorithm on a notebook computer with an 8GB memory limit. The task,
which uses the same dataset as FLARE2022[15], involves segmenting 13 organs
from CT images provided by over 20 medical groups, the organ labels are illus-
trated in Fig. 1. The dataset includes 2050 cases for model training, 250 cases
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Fig. 1. Semantic labels of the 13 abdominal organs in FLARE 2024 Task2.

for validation, and 300 new, hidden test cases for final evaluation. The evalua-
tion metrics include Dice Similarity Coefficient (DSC), Normalized Surface Dice
(NSD), and seconds for inferring a single CT image(runtime).

Follow prior works, we also take advantage of small sized model for effi-
cient inference, and we propose a multi-scale knowledge distillation method[31]
to train a student model that maximally retains the segmentation performance
of the teacher model. Knowledge distillation[9] is a technique where knowledge
from a larger, more complex model (i.e. the teacher model) is transferred to
a smaller, more efficient model (i.e. the student model), allowing the student
model to achieve performance comparable to that of the teacher model while
significantly reducing computational resources. Multi-scale knowledge distilla-
tion is commonly adopted in visual tasks to guide the training of a smaller
student model by extracting multi-scale visual knowledge from a larger teacher
model.Specifically, we perform multi-scale knowledge distillation by enforcing
the student model to learn feature maps from the two intermediate layers of the
teacher model by optimizing Mean Squared Error (MSE). In order to improve
the segmentation performance of tiny organs and Overcome the quality issues of
pseudo-labels themselves. we also propose a weighted composite loss algorithm
based on DiceLoss and CELoss.

Furthermore, we introduce a pre-processing strategy to speed up the infer-
ence process. Given a 3D abdominal CT scan that is quite large in vertical size,
the region of interest (RoI) for abdominal semantic segmentation may only oc-
cupy a portion of the scan, an example is shown in Fig. 2. It is unnecessary to
perform inference on irrelevant areas. Thus, identifying and cropping the RoI is
an effective strategy to reduce the inference time and the resource consumption.
To address this, we propose a liver-based Z-axis RoI localization strategy to fo-
cus segmentation inference on the abdominal regions of interest. Previously, the
approach for determining the RoI involved training a dedicated model specifi-
cally for RoI detection. This kind of methods induce increases in computational
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Fig. 2. The RoI only occupies a portion of the 3D abdominal CT scan.

complexity and time. Additionally, the RoI detection model often exhibits in-
ferior performance compared to the segmentation model. Consequently, errors
from the RoI detection model would propagate and adversely affect the final seg-
mentation results. In contrast, our proposed strategy eliminates the need for a
separate ROI detection model by leveraging our segmentation model to perform
both ROI localization and segmentation. Our strategy is based on the accuracy
of liver segmentation: as long as the Dice score for liver segmentation exceeds
60%, which is relatively easy to achieve, we can determine the ROI along the
z-axis of the CT scan. This strategy minimizes the impact of poor input data
quality and avoids the issues associated with a separate ROI detection model.

To summarize, in this paper, we propose a multi-scale knowledge distillation
method and a Z-axis RoI localization strategy to tackle the MICCAR FLARE
2024 Challenge Task 2, the main contributions are summarized as follows: (1)
Through multi-scale knowledge distillation, an efficient student model effectively
absorbs the knowledge from the teacher model, thus maximally retains the per-
formance of the teacher model while significantly reducing the computational
overheads. (2) In order to improve the segmentation performance of tiny organs
and Overcome the quality issues of pseudo-labels themselves, we also propose a
weighted composite loss algorithm based on DiceLoss and CELoss. (3) To im-
prove the speed of the segmentation inference, we further introduce a liver-based
z-axis ROI localization strategy. Experimental results demonstrate the effective-
ness of the proposed method in enhancing the performance of small sized model
and accelerating the segmentation process.
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2 Method

2.1 Preprocessing

– Resample and normalization: We resample the pixel spacing to (2.2838,
1.8709, 1.8709) for all cases, and clip the pixel value based on the Hounsfield
units to [-160, 240], and normalize all the cases in [0, 1] to ensure data
stability and consistency.

– Data augmentation: In order to prevent the model from over-fitting, data
augmentation is used in this study. The augmentation approaches of nnU-
Net methodology have been utilized.

2.2 Network Architecture

Here we define two nnUNet structures of different model size: nnU-Net-Teacher
and nnU-Net-Student. nnU-Net-Teacher is constructed as a conventional nnU-
Net structure for medical image segmentation tasks. nnU-Net-Student is con-
structed by modifying a conventional nnU-Net architecture by changing the ini-
tial number of channels from 32 to 16 and adding an additional convolutional
layer with a channel count doubled while keeping the resolution unchanged.
The network architecture of nnU-Net-Teacher and nnU-Net-Student are shown
in Fig. 3. The model hyper-parameters and the input patch size of [80, 160,
160] are chosen to satisfy the memory requirement by the FLARE 2024 Task2
competition.

2.3 Proposed Method

Specifically, this paper proposes a multi-scale knowledge distillation method that
initially trains a large Teacher model using the provided FLARE22 dataset and
pseudo labels. This Teacher model is subsequently utilized to perform multi-scale
knowledge distillation on a smaller Student model. A distillation loss (MSE) is
calculated at the lowest two layers of the encoders in both the Teacher model and
the Student model, and this distillation loss is incorporated into the Student loss
to enhance the performance of the Student model through multi-scale knowledge
distillation.When training the model. we also proposed a weighted compound
loss algorithm based on DiceLoss and CELoss.Another contribution is the liver-
based z-axis ROI localization technique. This technique involves scanning from
the bottom to the top along the z-axis and stopping when a certain number of
liver voxels are detected, using this patch to determine the z-axis ROI.

Multi-scale Knowledge Distillation: Initially, a large nnUNet model with
an initial channel number of 32 is trained using Dice and Cross-Entropy loss for
segmentation, achieving satisfactory performance. Subsequently, a smaller model
is designed. To ensure consistency in the region where knowledge distillation is
performed, an additional layer which does not change the resolution is added to
the Student model, which has an initial channel number of 16, as illustrated in
Fig. 3. During the training of the Student model, distillation losses are introduced
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Fig. 3. Overview of the proposed method. (see Sect. 2.3 for details).

At the bottom two layers of the encoder. Both scales utilize MSE loss, and the
distillation losses from these two scales are simply summed to obtain the total
distillation loss. This total distillation loss is then multiplied by a weight w and
added to the final loss.Here w is set to 0.5.Teacher model and Student model both
use a deep supervision strategy.During the training phases of the two models,
we use pseudo-labels generated from 2,000 unlabeled cases based on the winning
solution[11] from FLARE 2022 , without any further processing.

Loss Function: The loss function combines weighted DiceLoss and CELoss,
where CombLoss[25] converges significantly faster than cross-entropy loss. Specif-
ically, different weights are applied to DiceLoss and CELoss. For the weight w1 of
DiceLoss, we use the Mean DSC for each organ as reported in the winning solu-
tion of FLARE 2022[11]. For the weight w2 of CELoss, we allocate weights based
on the size ratio of each organ, with smaller organs receiving higher weights. This
approach ensures that the model focuses more on the quality of pseudo-labels
and effectively considers the impact of organ size on the model.When train the
Student model we need to add the total distillation loss.The loss function im-
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proves the performance of the model. See Section 4.1 for details.The formula is
as follows:
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LCE(y, ŷ, w2) =

c0∑
i

w2i

− 1

N

N∑
j=1

(
yij log(ŷ
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LKD = w3 ·MSE1 + w4 ·MSE2 (3)

LSeg = αdc · LDice(y, ŷ, w1) + αce · LCE(y, ŷ, w2) + αKD · LKD (4)

Where the y and ŷ mean the ground truth and the predicted probability,
respectively, and N is the number of pixels. αdc and αce are the hyperparameters
to balance the contribution of DiceLoss and CELoss. αdc and αce are set to 0.5 in
this study. αKD is the hyperparameter of knowledge distillation. In this study,
it is set to 0.5. w3 and w4 are hyperparameters on two scales of multi-scale
knowledge distillation, and they are both set to 0.5 in this study.

Fig. 4. The proposed liver-based Z-axis RoI localization strategy. (see Sect. 2.3 for
details.)

Liver-based Z-axis RoI Localization: Prior to inference, the z-axis ROI
is determined and the region is cropped for final inference, as shown in Fig. 4,
we also wrote pseudocode for this process, as shown in Algorithm 1. Specifically,
fixed sliding window regions are set for the x-axis and y-axis, both at (0, 160),
with a step size of 80 for sliding only along the z-axis starting from 0. A liver
threshold, set to 20,000 in this study, is defined. During the z-axis sliding process,
if the number of liver label voxels in the window is less than the threshold, the
window slides to the next position; otherwise, the sliding stops. At this point,
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the area of the window on the z-axis is (i, i + patch_size[0]), where i is the
value of the lowest point of the z-axis window. Within this sliding window, the
bounding box of the liver label is extracted, and based on the lower limit of
the z-axis of this bounding box (minzidx), the final z-axis ROI range is (i +
minzidx− 7

8 ×patch_size[0], i+minzidx+2× 7
8 ×patch_size[0]). This provides

a z-axis ROI region, which is then used for inference. The z-axis ROI region is
defined as covering three z-axis sliding regions because with our patch_size =
(80, 160, 160), spacing = (2.2838, 1.8709, 1.8709), and stride =

(
7
8 ,

7
8 ,

7
8

)
, all z-

axis abdominal organ regions can be covered within three sliding windows.

Algorithm 1 Pseudocode for axis-based z-axis RoI positioning.
Input: CT scan, liver threshold (20000), patch size (80, 160, 160), spacing (2.2838,

1.8709, 1.8709), stride (7/8, 7/8, 7/8)
Output: z-axis ROI region
1: Initialize: x_range, y_range, z_start, step_size, liver_threshold,

patch_size_z
2: Define sliding window regions for x and y axes:
3: x_window = x_range
4: y_window = y_range
5: Slide along the z-axis:
6: for i = z_start to end_of_z_axis step step_size do
7: current_window = CT_scan[x_window, y_window, i : i+ patch_size_z]
8: liver_voxel_count = count_liver_voxels(current_window)
9: if liver_voxel_count ≥ liver_threshold then

10: break
11: end if
12: end for
13: Determine z-axis ROI range:
14: z_lower_bound = i
15: Extract liver label bounding box within the sliding window:
16: liver_bbox = extract_liver_bbox(current_window)
17: minzidx = liver_bbox.z_lower_limit
18: Calculate final z-axis ROI range:
19: final_z_lower = z_lower_bound+minzidx− (7/8× patch_size_z)
20: final_z_upper = z_lower_bound+minzidx+ (2× 7/8× patch_size_z)
21: z_axis_ROI = (final_z_lower, final_z_upper)
22: return z_axis_ROI

2.4 Post-processing

In the post-processing stage, to save time, no post-processing operations were
performed.
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3 Experiments

3.1 Dataset and evaluation measures

The dataset is curated from more than 40 medical centers under the license
permission, including TCIA [3], LiTS [1], MSD [24], KiTS [7,8], autoPET [6,5],
AMOS [14], AbdomenCT-1K [21], TotalSegmentator [28], and past FLARE chal-
lenges [18,19,20]. The training set includes 2050 abdomen CT scans where 50 CT
scans with complete labels and 2000 CT scans without labels. The validation and
testing sets include 250 and 300 CT scans, respectively. The annotation process
used ITK-SNAP [30], nnU-Net [13], MedSAM [16], and Slicer Plugins [4,17].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside one efficiency
measures—runtime. These metrics collectively contribute to the ranking com-
putation. During inference, GPU is not available where the algorithm can only
rely on CPU.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 22.04 LTS or Windows 10
CPU Intel(R) Core(TM) i9-10900X CPU@3.70GHz
RAM 16×4×32GB; 2933MT/s
Programming language Python 3.9.16
Deep learning framework torch 2.1.0, torchvision 0.16.0
Specific dependencies nnU-Net 1.7.0
Code https://github.com/lay-john/FLARE24-Task2

Training protocols During the training phase, we set the batch size to 2 and
randomly select all samples within each epoch. For each sample, we perform
random patch cropping with patch sizes of (80, 160, 160). As for the optimizer,
we utilize AdamW with a learning rate of 1e-2 and a weight decay of 1e-5. The
learning rate updating follows the default mechanism of AdamW. Additional
details are presented in Table 2.

https://github.com/lay-john/FLARE24-Task2


10 Y.Luo, Y.Liu et al.

Table 2. Training protocols for Teacher model.

Network initialization
Batch size 2
Patch size 80×160×160
Total epochs 500
Optimizer AdamW with weight decay(µ = 1e -5)
Initial learning rate (lr) 0.01
Lr decay schedule halved by 200 epochs
Training time 35 hours
Loss function DiceLoss and CELoss
Number of Teacher model parameters 30.8M1

Number of Teacher model flops 469.2262 G2

Teacher model CO2eq 1.61908 Kg3

Number of Student model parameters 30.3M4

Number of Student model flops 128.1024 G5

Student model CO2eq 0.73306 Kg6

4 Results and discussion

4.1 Quantitative results on validation set

Quantitative evaluation results are shown in Table 3, demonstrating that the
proposed method achieves very promising results for major organs such as the
liver, spleen, kidneys, and stomach. However, segmenting smaller organs remains
highly challenging and requires further attention, particularly for very small
organs with unclear boundaries, such as the adrenal glands and duodenum.

To conduct a more comprehensive ablation study of our proposed method, we
performed quantitative experiments, as shown in Table 4. Both of our proposed
methods have shown improvements.
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Table 3. Quantitative evaluation results.

Target Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 97.09 98.41 97.14 98.12
Right Kidney 92.37 94.26 93.87 95.71
Spleen 96.82 98.89 96.11 98.07
Pancreas 89.25 97.80 86.13 96.50
Aorta 94.50 98.48 94.78 98.85
Inferior vena cava 89.27 91.02 89.48 92.20
Right adrenal gland 79.58 93.01 81.71 95.63
Left adrenal gland 79.64 91.86 81.48 94.57
Gallbladder 84.58 86.06 83.03 84.86
Esophagus 85.77 95.54 81.25 92.35
Stomach 91.38 94.41 91.96 95.92
Duodenum 81.68 94.41 79.65 92.79
Left kidney 91.18 92.66 93.53 95.72
Average 88.70 94.29 88.47 94.71

Table 4. Overview of Ablation Experiment Results. Proposed: Base+KD+Z-RoI.

Target Base Base+ KD Base+KD+Z-RoI
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 96.59 97.97 97.07 98.25 97.09 98.41
Right Kidney 89.97 91.10 90.92 92.57 92.37 94.26
Spleen 96.68 98.78 96.81 98.86 96.82 98.89
Pancreas 88.07 97.41 88.91 97.43 89.25 97.80
Aorta 93.84 98.13 94.56 98.60 94.50 98.48
Inferior vena cava 85.93 87.43 88.83 90.58 89.27 91.02
Right adrenal gland 76.69 90.65 79.79 93.22 79.58 93.01
Left adrenal gland 74.77 87.59 76.05 88.34 79.64 91.86
Gallbladder 77.45 79.64 84.96 86.70 84.58 86.06
Esophagus 82.58 92.25 84.60 94.27 85.77 95.54
Stomach 88.93 92.87 91.12 94.75 91.38 94.41
Duodenum 80.26 92.10 81.09 93.66 81.68 94.41
Left kidney 86.89 89.45 88.01 89.60 91.18 92.66
Average 86.05 91.95 87.90 93.60 88.70 94.29

To visually demonstrate the impact of our method on inference speed on cpu,
we conducted quantitative experiments on inference speed, as shown in Table 5.
the length of the step is [7/8, 7/8, 7/8] times the window width for each axis.

4.2 Qualitative results on validation set

In this section, we show the two good segmentation cases and two bad segmen-
tation case, along with the time consumption for inference on several large CT
scans.
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Table 5. Overview of Ablation Experiment Results on inference speed. Proposed:
Small nnU-Net + Z-RoI. Time is measured in seconds.

Target Average time(s)
Big nnU-Net 38.21
Small nnU-Net 17.88
Small nnU-Net + Z-RoI 12.33

Good segmentation cases: Fig. 5 presents examples of good segmenta-
tion results. In FLARETs_0001, both the Baseline and our proposed method
demonstrate strong segmentation performance. In FLARETs_0012, while the
overall segmentation performance remains satisfactory, our method exhibits a
minor shortcoming where a portion of the right kidney is erroneously excluded
and classified as background. This discrepancy may stem from our model’s in-
correct learning from the teacher model, leading to reduced sensitivity in certain
localized regions, thereby failing to capture this specific area.

Fig. 5. Good segmentation cases from 50 validation set.

Bad segmentation cases: Fig. 6 presents examples of bad segmentation
results.In FLARETs_0033, the baseline model demonstrates suboptimal perfor-
mance, occasionally segmenting a single organ as two distinct organs. In contrast,
our proposed method generally performs well; however, it misclassifies a portion
of the duodenum as the stomach and exhibits poor segmentation performance
for the pancreas. This is likely due to the anatomical proximity of the stomach
and duodenum, especially at the junction between the lower end of the stomach
and the beginning of the duodenum, where the boundary between the two or-
gans is not always clearly defined. Additionally, the segmentation performance
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of the pancreas was suboptimal. This may because the pancreas is located deep
within the abdomen, surrounded by other organs such as the stomach, duode-
num, and liver, and has a long and variable shape. These anatomical features
make it difficult to distinguish the pancreas from other tissues in CT images. In
FLARETs_0049, Both Baseline and our method have poor segmentation of the
liver and inferior vena cava. As can be seen from the figure, there are patches
of black areas in the liver of the FLARETs_0049 use case. These may be some
diseased areas, resulting in poor model performance. For the inferior vena cava,
the anatomical location of the inferior vena cava is close to many other impor-
tant organs and blood vessels. The morphology may not be significantly different
from the surrounding tissue, making it difficult for the model to accurately dis-
tinguish the inferior vena cava from the inferior vena cava and the shape and
size of the inferior vena cava may vary greatly between different patients. This
variation may increase the difficulty of model segmentation, which is difficult for
our model to learn.

Upon further investigation, we recognize that the limitations of our model
extend beyond the anatomical complexities. Specifically, the feature learning ca-
pabilities of our current model architecture may be insufficient for distinguishing
the inferior vena cava from surrounding tissues. The convolutional layers in our
network might struggle to capture fine-grained anatomical details, especially in
regions with high variability. Additionally, the current loss function design may
not adequately penalize errors in regions with high anatomical variability, such
as the inferior vena cava. This suggests that the model may benefit from alter-
native loss functions that incorporate anatomical priors or use a combination of
different loss terms to improve segmentation accuracy.

To address these limitations, we propose several targeted improvement plans.
First, we will experiment with different network architectures, such as those in-
corporating attention mechanisms or multi-scale feature fusion, which are better
suited for handling complex anatomical structures. Second, we will investigate
advanced training strategies, including curriculum learning and data augmen-
tation techniques tailored to the specific challenges of the inferior vena cava.
These improvements aim to enhance the model’s ability to learn from the data
and improve segmentation performance in challenging anatomical regions.

Table 6 presents the time taken for several large CT scans, indicating that
our method has a significant advantage in reducing inference time, especially for
large CT scans.

Table 6. Overview of Ablation Experiment Results on inference speed. Proposed:
Small nnU-Net + Z-RoI.

Dataset Big nnU-Net(s) Small nnU-Net(s) Small nnU-Net + Z-RoI(s)
FLARETs_0001_0000 62.79 29.29 15.72
FLARETs_0010_0000 62.48 29.56 17.05
FLARETs_0050_0000 114.84 55.58 25.39
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Fig. 6. Bad segmentation cases from 50 validation set.

4.3 Segmentation efficiency results on validation set

We quantitatively evaluate the segmentation efficiency of our model based on
running time, as shown in Table 7.

Table 7. Quantitative evaluation of segmentation efficiency in terms of the running
time. Evaluation CPU: Intel(R) Core(TM) i5-12400F CPU @ 2.50GHz × 12.

Case ID Image Size Running Time (s)
0059 (512, 512, 55) 10.66
0005 (512, 512, 124) 6.62
0159 (512, 512, 152) 11.20
0176 (512, 512, 218) 9.68
0112 (512, 512, 299) 10.36
0135 (512, 512, 316) 10.53
0150 (512, 512, 457) 7.94
0134 (512, 512, 597) 12.77

4.4 Results on final testing set

Tables 8, 9 and 10 present the final testing results of our proposed method
in the FLARE 2024 Task2 across the Asian, European, and North American
datasets, respectively. These tables list the performance metrics of our method,
including the Dice Similarity Coefficient (DSC), Normalized Surface Distance
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(NSD), and inference time. Each metric is reported with both the mean and
standard deviation (Mean ± Std), as well as the median along with the first and
third quartiles (Median (Q1, Q3)).

Table 8. Final testing results of the proposed method on the FLARE 2024 Task2
Asian datasets.

Metric Mean ± Std Median (Q1, Q3)
DSC (%) 85.2 ± 6.2 87.8 (80.7, 90.5)
NSD (%) 92.1 ± 5.9 94.3 (88.3, 96.8)
Inference Time (s) 15.5 ± 3.7 13.7 (12.8, 18)

Table 9. Final testing results of the proposed method on the FLARE 2024 Task2
European datasets.

Metric Mean ± Std Median (Q1, Q3)
DSC (%) 87.4 ± 6.2 89.7 (84.7, 91.9)
NSD (%) 93.4 ± 6.1 95.7 (91.3, 98)
Inference Time (s) 16.4 ± 4.6 17.5 (12.8, 18.3)

Table 10. Final testing results of the proposed method on the FLARE 2024 Task2
North American datasets.

Metric Mean ± Std Median (Q1, Q3)
DSC (%) 87.6 ± 4.5 89.1 (85.4, 91)
NSD (%) 93.1 ± 4.7 94.7 (91, 96.7)
Inference Time (s) 12.6 ± 2.7 13 (12.7, 13.3)

4.5 Limitation and future work

In this study, the segmentation performance for small organs remains unsatisfac-
tory, especially the boundary segmentation of these organs is not very clear. In
future work, we will focus on improving the segmentation of these small organs
and improve the boundary segmentation effect of these small organs, such as the
gallbladder and adrenal glands. Additionally, we only determined the roi of the
z-axis and did not consider the roi positioning of the x-axis and y-axis. In future
work, we will explore the positioning scheme of the x-axis and y-axis to achieve
the positioning scheme of the three axes.
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5 Conclusion

To facilitate efficient semantic segmentation inference of abdominal CT scans
on a CPU, this paper introduces a multi-scale knowledge distillation method
to improve the performance of small models and design a weighted Composite
loss function to alleviate class imbalance problem and Overcome the quality
issues of pseudo-labels themselves. At inference, we further introduce a liver-
based z-axis ROI localization strategy to accelerate inference. Quantitative and
qualitative results demonstrate that our method can efficiently and flexibly learn
information about multiple organs from the dataset. We validated our method on
the MICCAI FLARE 2024 challenge dataset, proving that the proposed approach
performs excellently in segmenting 13 different organs on a CPU.
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