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ABSTRACT

Predicting Vulnerable Road User (VRU) crossing intention is one of the major
challenges in automated driving. Crossing intention prediction systems trained
only on pedestrian features underperform in situations that are most obvious to hu-
mans, as the latter take additional context features into consideration. Moreover,
such systems tend to be over-confident for out-of-distribution samples, therefore
making them less reliable to be used by downstream tasks like sensor fusion and
trajectory planning for automated vehicles. In this work, we demonstrate that the
results of crossing intention prediction systems can be improved by incorporating
traffic light status as an additional input. Further, we make the model robust and
interpretable by estimating uncertainty. Experiments on the PIE dataset show that
the F1-score improved from 0.77 to 0.82 and above for three different baseline
systems when considering traffic-light context. By adding uncertainty, we show
increased uncertainty values for out-of-distribution samples, therefore leading to
interpretable and reliable predictions of crossing intention.

1 INTRODUCTION

VRUs are complex participants for an Automated Vehicle (AV) to perceive. The AV should not
only be able to detect VRUs, but also understand their underlying intentions and predict their future
actions. In addition, several surrounding factors, including incoming traffic and traffic light status,
influence VRU behavior. A pedestrian may decide to stop or go at a particular moment based on
these conditions. Consider a situation where a pedestrian is standing near the boundary of the curb
or walking towards the curb on a traffic light junction looking forward to cross the driving lane of
the ego-vehicle. The information about the green traffic light status for the vehicle might help to
predict that the pedestrian will keep standing or stop at the curb, i.e., the intention of the pedestrian
is not to cross. For this reason, it is necessary to consider surrounding factors like traffic light status
in addition to behavioral cues to make an accurate prediction.

Object-based context cues such as pedestrian location over a period of time can provide rich infor-
mation about VRU motion. But, it is challenging to perceive features like human interactions with
the ego-vehicle that can determine its maneuvering. Humans exhibit highly variable motion patterns,
and even the same gesture or activity may differ subtly among individuals based on geographic lo-
cations. In such a case, it is helpful to divide the task into a smaller sequence of tasks that can be
solved independently. In the VRU case, we can learn a model to infer an appearance-invariant rep-
resentation. The articulated pose of VRUs is one such representation, commonly used in literature
for action recognition (Duan et al., 2022), gesture recognition (Mitra & Acharya, 2007), emotion
recognition (Shi et al., 2020) and intention prediction (Kotseruba et al., 2021). These object-based
features along with surrounding information about the pedestrian can be combined over a temporal
domain to generate a reliable predictor for VRU actions in the future. In this paper, we explore this
approach and attempt to predict pedestrian crossing intention for a future time horizon of 1-2 s by
observing them for a time horizon of 0.5 s.

The handling of VRUs is safety-critical, so it is important to be aware of the uncertainty of the
model that predict their behavior as well. Despite much emphasis on safety, deep learning models
are often deployed as black box that do not offer reliability and interpretability. As a result, they
do not indicate how a system will behave under unknown circumstances. To interpret how the
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model behaves in such situations, we intend to predict the uncertainty of each prediction to know
the confidence of our model.

2 RELATED WORK

2.1 ARCHITECTURES FOR PEDESTRIAN CROSSING INTENTION PREDICTION

To build a safer AV system for urban roads, it is important to estimate the crossing intention of a
pedestrian, i.e. whether a pedestrian intends to cross/not-cross the road in front of ego-vehicle for a
predefined time horizon. Pedestrian crossing intention prediction is mostly treated as a binary task
where the goal is to classify between two classes for pedestrian intention, i.e. Crossing (C) or Not
Crossing (NC). One of the early works in this direction, as proposed by Rasouli et al. (2017) was to
predict crossing action at a given frame using a static representation of the traffic scene and encod-
ing pedestrian looking and walking actions using CNNs. Razali et al. (2021) propose a multitask
architecture to estimate the intention and pose of a pedestrian simultaneously using RGB images as
input. A multi-task architecture with an encoder-decoder based intention and action prediction to
predict pedestrian crossing intent and forecast future behavior of the pedestrians is presented by Yao
et al. (2021). The authors also propose an attentive relation network to extract important features
from traffic objects and scenes to improve the performance of the intention and action detection
framework. Lorenzo et al. (2021b) and Lorenzo et al. (2021a) use vision transformers to encode
the non-visual features. They experiment with different types of video encoders and finally fuse the
features from the two branches to predict pedestrian crossing intent. Kotseruba et al. (2021) present
a pedestrian action prediction model along with a common evaluation criterion. In this paper, the
authors evaluate different architectures for pedestrian action recognition, namely static (crossing
prediction is made using only last frame in the observation sequence), Recurrent Neural Network
(RNN) models, 3D convolution and optical flow based models. They propose a novel architec-
ture based on 3D convolution and multiple RNNs and experiment with different input features like
bounding box, local-context, human-pose keypoints and ego-vehicle speed. We base our experi-
ments on this architecture and perform ablation studies to get insights on drouputs and uncertainties.
Yang et al. (2022) fuse different phenomena such as sequences of RGB imagery, semantic segmen-
tation masks, and ego-vehicle speed in an optimum way using attention mechanisms and a stack of
recurrent neural networks. Achaji et al. (2022) present a framework based on multiple variations of
Transformer models to predict the pedestrian street-crossing decision, based on the dynamics of its
initiated trajectory, using only bounding boxes as input.

2.2 FEATURES USED FOR PREDICTING PEDESTRIAN CROSSING INTENTION

Body language is generally modeled as head orientation, body orientation, posture and gesture which
is often used to estimate the pedestrian intention in future. Yang & Ni (2019) use two vision cues
to estimate a pedestrian’s crossing intention. They propose a looking/not-looking classifier using a
2D convolutional CNN to capture the eye contact between a pedestrian and the ego-vehicle. They
also come up with a C/NC classifier based on 3D CNN to model the pedestrian’s early crossing
action. Roth et al. (2021) propose a method to estimate vehicle-pedestrian path prediction that
takes into account the awareness of the driver and the pedestrian towards each other. They extend
Dynamic Bayesian Network (DBN) method by Kooij et al. (2014) where they perform path pre-
diction for an individual pedestrian, to the mutual vehicle-pedestrian case. Their results indicate
that driver-attention-aware models improve collision risk estimation compared to driver-agnostic
models. Human-pose is an intermediate representation which is very useful to determine various
human behaviors. Quintero et al. (2017) propose a method to recognize pedestrian intentions such
as standing, walking, stopping and starting based on a Hidden Markov Model (HMM). The authors
use 3D positions and displacements of 11 skeleton points. They also propose a single frame skeleton
estimation algorithm based on point clouds extracted from a stereo pair. Fang & López (2018) use
CNN-based pedestrian detection, tracking and pose estimation to predict C/NC action for pedestri-
ans. They use a classifier to predict C/NC using human-pose features. The authors extend their work,
to recognize the intention of the cyclists along with the pedestrians (Fang & López, 2019). Mı́nguez
et al. (2018) present a method to predict the future path, pose and intentions of the pedestrians up
to a time horizon of 1 s. The authors use balanced Gaussian process dynamic models (BGPDM) to
learn 3D time-related information extracted from the skeleton points.
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2.3 MODELING UNCERTAINTY

To ensure the safety of the AV, it is critical to estimate the uncertainty of model predictions. Gal
(2016) show that uncertainty of a deep neural network model, i.e., the epistemic uncertainty or
model uncertainty, can be approximated by dropout training. Extending the work of Kendall &
Gal (2017), the authors present a Bayesian deep learning framework to estimate both the epistemic
and aleatoric uncertainties together. Recently, Djuric et al. (2020) presented a high definition map
based approach to predict the future trajectories of the traffic agents, taking the inherent uncertainty
of the predictions into account. Peng et al. (2021) propose a method to fine-tune the object
detection performance of a deep neural network by calibrating the confidence of the algorithm
using model uncertainty. To estimate the model uncertainty, the authors use Monte Carlo Dropout
(MCD) method. Model uncertainty can also be used for collecting meaningful data by using
active learning as proposed by Kaushal et al. (2019), i.e., high uncertainty samples can be collected
and the model can be fine-tuned on these samples to make it more robust through an iterative process.

Our contributions:

• We demonstrate that adding traffic light status as additional input improves crossing inten-
tion prediction at traffic light junctions by evaluating it on three state-of-the-art baselines
(Kotseruba et al. (2021), Yang et al. (2022), Achaji et al. (2022)).

• Introducing uncertainty in crossing intention prediction to produce reliable and inter-
pretable results. This can be used by downstream tasks like sensor fusion and trajectory
planning.

• Analyze attention weights distribution and uncertainty for models by sampling different
training distributions on PIE dataset.

3 PROPOSED APPROACH

Solution Formulation: The model takes the following observations as input: 2D bounding-
box bt−m, bt−m+1, ...., bt defined by top-left and bottom-right image coordinates, pose of the
pedestrian pt−m, pt−m+1, ...., pt, speed of the ego-vehicle st−m, st−m+1, ...., st, local-context
ct−m, ct−m+1, ...., ct where c is the cropped RGB image of the scene around the pedestrian and traf-
fic light status tlt−m, tlt−m+1, ...., tlt where t is the time-to-event and m is the observation length.
Our goal is to predict a crossing action A = {C, NC}, and epistemic uncertainty (U) of the model.

The network architecture of our proposed method as depicted in Figure 1, is inspired by PCPA
(Kotseruba et al., 2021). It consists of parallel RNN branches to compute non-visual features such
as bounding-box, human-pose and ego-vehicle speed. We add traffic light status as an additional
contextual feature. To compute visual features or RGB input which is referred to as local-context,
the image crop of the enlarged bounding box (factor 1.5), is processed by 3D convolutions. Each
RNN encoder produces a vector (h1, h2, h3, ..., hm) of hidden states where hi = f(xi, hi−1).

Attention mechanism is used to combine features from different time frames and modalities as im-
plemented in PCPA (Kotseruba et al., 2021). Temporal attention is used to weigh input for each
time step and focus on important temporal events. It is learned for m = 16 hidden temporal states
for each of the RNN branches. The attention mechanism applied here is the Luong’s multiplicative
attention (Luong et al., 2015). The goal is to get an attention weight vector α with length equal
to observation length m. Further, modality attention is learned for weighing all the different input
modalities in a similar manner. Here, the attention mechanism is applied to all the final vectors from
3D convolution branch and temporal attention outputs i.e. human-pose, bounding-box, ego-vehicle
speed and traffic light status.

Epistemic or model uncertainty which denotes under-represention of samples in training distribution,
is computed during inference by running a Monte Carlo sampling over the network for N number
of times (Gal, 2016).

P = p(y = Y |x,Dtrain) (1)
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Figure 1: Architecture diagram of the proposed approach inspired by PCPA (Kotseruba et al., 2021).
RNN: Recurrent Neural Network, FC: Fully Connected Layer, ATT: Attention block. Our contribu-
tions are highlighted in green borders. We incorporate the traffic light status as an additional input.
Dropouts at temporal and modality attention blocks are added which are also active during run-time
for performing Monte Carlo simulation to give probabilistic output for each simulation run.

H[y|x,Dtrain] = −
∑
Y

P logP (2)

where H represents the predictive entropy and is the measure of model uncertainty, Y represents
the output classes C/NC and P represents the final probability vector for C and NC class which is
then mapped to crossing action A = {C, NC} for the given observation horizon. It is obtained by
averaging all output probability vectors from N forward passes.

4 EXPERIMENTS

4.1 DATASET

In this work, we use Pedestrian Intention Estimation (PIE) by Rasouli et al. (2019) which is a
large public benchmark dataset for studying pedestrian behavior. It contains 6 hours of continuous
footages recorded in Canada under clear weather conditions. It provides annotations for all pedes-
trians sufficiently close to the road who may or may not attempt to cross in front of the ego-vehicle.
We follow the data split defined by Rasouli et al. (2019), i.e., videos from set01, set02 and set04
are used for training (TRAIN split), set05 and set06 for validation (VAL split) and set03 for testing
(TEST split). The number of pedestrian tracks in PIE is 880, 243 and 719 in TRAIN, VAL and
TEST splits, respectively.

We use following explicit features that are annotated in PIE dataset: bounding-box coordinates, ego-
vehicle speed, and attributes for the scene e.g. local-context and traffic light. In addition, human-
pose information here is generated by OpenPose (Cao et al., 2017). Thus, we have 18 skeleton
point coordinates which are concatenated into a 36D feature vector. PIE dataset has annotations for

Internal
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Figure 2: Pedestrian crossing parallel to the direction of motion of ego-vehicle (A) and perpendicular
to the direction of motion of ego-vehicle (B). The arrows in red denote the direction of motion of
pedestrian and ego-vehicle.
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traffic light as an entity, with traffic light status being undefined, red, yellow or green. We associate
the traffic light status to the corresponding pedestrians in that frame using frame-ids. This traffic
light status was mapped to the relevant pedestrians using a semi-automatic labeling technique as
follows: We first assign body-orientations for all pedestrians in the PIE dataset. This was achieved
by adding a body-orientation predictor to the VRU Pose-SSD (Kumar et al., 2021) model which
was trained on body-orientation labels in TDUP dataset (Wang et al., 2021). Based on the values of
body-orientation, we label the pedestrians to be crossing parallel or perpendicular to the direction of
motion of ego-vehicle as shown in Figure 2. We then associate the traffic light status in the scene, for
perpendicular crossings and not-crossing pedestrians, as the traffic light in the scene is valid only for
these pedestrians. This is because the parallel crossings are not regulated by the front traffic lights
which is visible to the ego-vehicle. For pedestrians crossing parallel to the direction of motion of
the ego-vehicle, we encode the traffic light status to be undefined during training and inference.

4.2 COMPARISION OF RESULTS ON DIFFERENT ARCHITECTURES

Metrics: We report the results using standard binary classification metrics: accuracy, Area Under
Curve (AUC) and F1-score (F1) defined as F1 = 2×(precision×recall)

(precision+recall) .

To evaluate crossing predictions when adding traffic light status to inputs, we experiment with three
different architectures: PCPA (Kotseruba et al., 2021), Feature-Fusion (Yang et al., 2022) and TED
model (Achaji et al., 2022). The process of dataset preparation remains same across these architec-
tures. We report consistent improvement across all metrics when incorporating traffic light status as
additional input. There is a improvement of 5% (CIPTLUmt, F1 = 0.82), 6% (Feature Fusion,
F1 = 0.83) and 6% (TED, F1 = 0.83) in the F1-score respectively as shown in Table 1. Since,
the dataset is not balanced, i.e., there are more not-crossing pedestrians as compared to crossing
pedestrians (1322 NC vs. 512 C), we use F1-score for performance comparision of the models. We
strongly believe that adding traffic light status to any architecture will improve its performance, as
the model learns better representations to predict pedestrian behavior for stop-and-go transitions at
traffic light junctions. Although, we compare these three architectures, we now focus our experi-
ments and analysis of attention-weights distribution and uncertainty only on PCPA as it allows us

Table 1: Accuracy (Acc), Area Under Curve (AUC), and F1-score comparison with baseline models
(1., 7. and 9.). All metrics reported here are on the TEST set of PIE dataset which is described under
the dataset sub-section in Section: 4. TL status refers to presence or absence of traffic light status in
the inputs and MC Dropout refers to adding Monte Carlo Dropouts to the model. Here, modal / temp
signifies dropout layers are applied inside the modality attention block or temporal attention block
respectively as shown in Figure 1. We extend PCPA to CIPU: Crossing Intention Prediction with
Uncertainty, CIPTL: Crossing Intention Prediction with Traffic Light, CIPTLU: Crossing Intention
Prediction with Traffic Light and Uncertainty. The subscripts m and t denotes the blocks (modal
/ temp) where the dropout is applied. The models in boldface represent the best setting for that
architecture. Inputs to Feature Fusion are same as that of PCPA wheres inputs to TED constitutes
only bounding-boxes other than traffic light status.

S.No. Model TL status MC Dropout Acc AUC F1

1. PCPA (Kotseruba et al., 2021) no no 0.87 0.86 0.77
2. CIPTL yes no 0.89 0.86 0.81
3. CIPUm no modal 0.86 0.85 0.77
4. CIPTLUm yes modal 0.89 0.87 0.81
5. CIPTLUt yes temp 0.90 0.87 0.81
6. CIPTLUmt yes modal, temp 0.90 0.87 0.82
7. Feature Fusion (Yang et al., 2022) no no 0.87 0.84 0.78
8. Feature Fusion yes no 0.91 0.87 0.83
9. TED (Achaji et al., 2022) no no 0.86 0.86 0.78
10. TED yes no 0.89 0.89 0.83
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to experiment with several inputs and also uses attention mechanism which gives deeper insights on
representations learned by the model.

4.3 EXPERIMENTS ON PCPA

Inputs, model architecture and training: By adding traffic light status as input to PCPA and adding
MCD on temporal and modality attention blocks, we report a improvement of 5% (F1 = 0.82) in the
F1-score as shown in Table 1 (CIPTLUmt). Following Kotseruba et al. (2021), we use RNN based
model with 256 hidden units for each non-visual input and a conv3D network for encoding RGB
input. The number of observation frames (m) is set to 16 (≈ 0.5 s) and the time-to-event is 30− 60
frames (1-2 s). Dropout of 0.5 is added before temporal and modality attention. L2 regularization
of 0.001 is added to the final dense layer. The batch-size is set to 8 and model is trained with Adam
optimizer. It is trained for 60 epochs with 5× 10−5 learning rate.

Effect of Monte Carlo Dropout: As mentioned in Section 3, Monte Carlo sampling is performed
N number of times during inference where N = 10. Even for higher values of N , we observe that
the distribution of uncertainty remains same. We experiment with dropout layer at several places like
inside the temporal attention block and modality attention block as shown in the Table 1. Applying
dropout for both temporal and modality attention gives the best results (F1 = 0.82) for PCPA
model. Further, we add dropout before the last FC layer but it neither improves nor degrades the
performance (F1 = 0.81). We also perform experiments with different values of dropouts, namely
0.25, 0.50 and 0.75 where we observe that dropout value of 0.50 gives the best results whereas the
F1-score either degrades or remains constant for other values.

Ablation study on model uncertainty: Results of experiments to analyze the varation of samples
with high uncertainty values w.r.t. time horizon are shown in Figure 3. Since pedestrian behavior
becomes more complex when predicting for longer horizons, the uncertainty increases as the time
horizon increases.
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Figure 3: Percentage of samples with high uncertainty increases as the training and prediction hori-
zon boundary is increased.

We perform experiments to analyze the effect of under-represented samples on uncertainty. In-
order to achieve this, we create modified TRAIN splits by removing a type of distribution from
the PIE TRAIN split. We perform following three experiments by creating under-representations
with-respect-to bounding-box, ego-vehicle speed and traffic light status: For bounding-box (Figure
4: A), we remove all the samples from the TRAIN split with pedestrian height less than 100 pixels
to get the modified TRAIN split for bounding-box experiment. We use this modified TRAIN split
to train a new model. Uncertainties are then filtered for the samples with pedestrian height less
than 100 pixels in the TEST split. Similarly, we perform experiments by removing all samples with
speed equal to zero (Figure 4: B) and removing all samples with green-light status in the TRAIN
split (Figure 4: C). When we compare the uncertainties on same samples from the original model,
we observe that the uncertainties are clearly shifted towards larger values for the under-represented
samples. This demonstrates the effectiveness of model uncertainty in estimating out-of-distribution
samples in the training distribution.

Model uncertainty and misclassification rate: We observe that increase in uncertainty has a strong
correlation with misclassification rate (ratio of number of incorrect predictions to total number of
predictions) for crossing action prediction. This remains true for both the models with and without
traffic light status (see Figure 5). This property of uncertainty can be utilized for ignoring samples
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Figure 4: Ablation study on uncertainty with inputs. The output uncertainties are from the model
CIPTLUmt trained on datasets mentioned in the figure, i.e., TRAIN and modified TRAIN which
represents model trained on TRAIN split and reduced TRAIN splits respectively. The samples
represented in the graphs are all the samples with mentioned settings on box height, speed and traffic
light status from the TEST split. (A), (B) and (C) correspond to uncertainty ablation experiments
with bounding-box, ego-vehicle speed and traffic light status respectively.
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Figure 5: Misclassification rate of model uncertainty without TL status (A) and with TL status (B).
The misclassification rate increases with model uncertainty for both models. The uncertainty values
recorded in model with traffic light shift towards lesser values, which shows the model is more
certain when using traffic light status.

with high uncertainty and spawning crossing action for pedestrians only with reasonable uncertainty
for downstream tasks like sensor fusion and trajectory planning.

Analysis of attention weights: We compare the attention weights for the inputs of the model and
found that local-context features still dominate for few samples in the model trained with traffic
light status. There has not been much change in the attention weights of the earlier inputs like local-
context, bounding box, human-pose and ego-vehicle speed except that they are pushed towards
lower values to incorporate the weight given to traffic light status. But most importantly, there are
no cases where traffic light status dominates as a feature as shown in Figure 6. This distribution
is important, as it shows that adding traffic light status as input does not shift the weights entirely
towards traffic light. Domination of traffic light in attention weight distribution would have meant
that the model ignores all other cues which might be crucial in scenarios where the pedestrians
are violating the traffic light rules. We observe that PIE dataset does not contain cases where the
pedestrian violates traffic light. Such scenarios play an important role in modelling a rare pedestrian
behavior (jaywalking on signalized junctions) which can lead to accidents.
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Figure 6: Attention weights distribution in model trained without (A) and with (B) traffic light status.
Local-context still dominates the weights distribution for some samples. Additionally traffic light
status does not dominate the weights distribution in any of the samples.

Qualitative results: Some examples of low and high uncertainties are shown in the Figure 7. Many
low uncertainty samples belong to the category of most common scenarios like NC scenarios where
the pedestrian is standing near the curb (Figure 7: A) and the car is at moderate speed (greater than 30
kmph). It is observed that uncertainty is high for samples with shorter pedestrian height (children)
(Figure 7: B), occlusion (Figure 7: C) and car taking a turn (Figure 7: D) as these category of
samples are under-represented in PIE dataset.

A comparision of success and failure cases on PIE TEST split for the models trained without and
with traffic light status (left and right snippets repectively) is shown in the Figure 8. The success
cases occur when the traffic light status is either green or red (Figure 8: A and B). On the other hand,
failure cases are samples with yellow light status (Figure 8: C). This is because the PIE dataset con-
tains low amount of samples with yellow light as compared to red and green light (as yellow light is a
transition light between red and green). The predictions become more stable across the 0.5 s predic-
tion window (Figure 8: D) which is attributed to improvement in F1-score. Also, the uncertainties
for samples with traffic light (only for red and green light, as yellow light is under-represented in
PIE dataset) have drastically reduced for model trained with traffic light status (compare U values
for samples in left and right snippet). This shows the confidence of the model has increased when
adding traffic light status. This is also evident for the model uncertainty graphs shown in Figure 5,
as the overall uncertainty distribution shifts towards lower values in the model trained with traffic
light status.

Figure 7: Examples for low (A) and high uncertainty (B), (C), (D) samples from PIE dataset. GT:
Ground Truth (C/NC) and epistemic uncertainty (U) are marked on top and bottom of the snippets
respectively. Snippets encapsulated in red indicates wrong model prediction and green encapsulta-
tion indicates correct model prediction.
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Figure 8: Comparision of predictions from the model without traffic light status (CIPUm: left) and
with traffic light status as input (CIPTLUmt: right). Refer to Figure 7 caption for explanation to
border color and abbreviations. Snippets with colored circle on top (green/ red/ yellow) indicates
the traffic light status for that sample. Snippets in (A), (B) and (C) belong to the same subsample
of the observation window (16 frames ≈ 0.5 s) whereas in (D), the snippets are from subsequent
subsamples with an overlap of 10 frames (≈ 0.3 s).

5 CONCLUSION AND FUTURE WORK

We demonstrate that adding traffic light status as input improves crossing intention predictions as the
model learns representations for traffic light status as an additional contextual feature that influence
pedestrian behavior. We prove this by showing improvement when incorporating traffic light status
across three baseline models for crossing prediction. We also demonstrate that a model becomes
more interpretable and robust when it predicts uncertainty for the crossing intention prediction, as it
provides a way to assess the reliability of the predictions by estimating a factor by which the sample
is represented in the model. Further, we demonstrate that traffic light status does not dominate
completely over other inputs by analyzing the attention weights distribution for the inputs. We
also show that uncertainty of pedestrian intention prediction is directly proportional to the length of
prediction horizon.

We also observe that the PIE dataset does not cover a variety of traffic light scenarios. As pedestrians
are likely to break rules on the road, one of the most important scenario that is missing in the dataset
is the jaywalking cases at traffic light junctions. With uncertainty, our proposed model can deal with
jaywalking to a limited degree. We argue, that preparing the model explicitly for these scenarios
can ensure more accurate predictions at traffic light junctions. Therefore, there is a need for a
dataset that has sufficient samples for jaywalking with and without traffic light junctions. We aim
to prepare such dataset as one of our future works. Further, we want to optimize the model to avoid
repetitive computations at runtime to perform MC sampling for uncertainty predictions. This work
provides us with the necessary framework and evidence to further research uncertainty estimations
and modelling surounding factors like traffic light status for pedestrian crossing intention prediction.
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Raúl Quintero Mı́nguez, Ignacio Parra Alonso, David Fernández-Llorca, and Miguel Angel Sotelo.
Pedestrian path, pose, and intention prediction through gaussian process dynamical models and
pedestrian activity recognition. IEEE Transactions on Intelligent Transportation Systems, 20(5):
1803–1814, 2018.

Sushmita Mitra and Tinku Acharya. Gesture recognition: A survey. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 37(3):311–324, 2007.

10



Under review as a conference paper at ICLR 2023

Liang Peng, Hong Wang, and Jun Li. Uncertainty evaluation of object detection algorithms for
autonomous vehicles. Automotive Innovation, 4(3):241–252, 2021.
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