

000 SPEEDCP: FAST KERNEL-BASED CONDITIONAL CON- 001 002 FORMAL PREDICTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Conformal prediction provides distribution-free prediction sets with finite-sample
011 conditional guarantees. We build upon the RKHS-based framework of Gibbs et al.
012 (2023), which leverages families of covariate shifts to provide approximate conditional
013 conformal prediction intervals, an approach with strong theoretical promise,
014 but with prohibitive computational cost. To bridge this gap, we develop a sta-
015 ble and efficient algorithm that computes the full solution path of the regularized
016 RKHS conformal optimization problem, at essentially the same cost as a single
017 kernel quantile fit. Our path-tracing framework simultaneously tunes hyperpa-
018 rameters, providing smoothness control and data-adaptive calibration. To extend
019 the method to high-dimensional settings, we further integrate our approach with
020 low-rank latent embeddings that capture conditional validity in a data-driven la-
021 tent space. Empirically, our method provides reliable conditional coverage across
022 a variety of modern black-box predictors, improving the interval length of Gibbs
023 et al. (2023) by 30%, while achieving a 40-fold speedup.

024 025 1 INTRODUCTION

026 Conformal prediction is a framework for constructing prediction sets that are valid under minimal
027 distributional assumptions. Given a trained predictor $\hat{\mu}(X)$, and calibration data $(X_i, Y_i)_{i \in [n]}$ to-
028 gether with a test point X_{n+1} , all drawn i.i.d. (or more generally, exchangeable) from an unknown
029 and arbitrary distribution P , conformal methods such as split conformal prediction (SplitCP) (Pa-
030 padopoulos et al., 2002) calculate conformity scores $\{S_i\}_{i \in [n]}$ on the calibration data to construct a
031 prediction set $\hat{C}(X_{n+1})$. This procedure guarantees *marginal coverage*, ensuring that the resulting
032 set includes the true label Y_{n+1} with probability at least $1 - \alpha$, for any specified $\alpha \in (0, 1)$.
033

034 However, marginal coverage does not preclude significant variability in *conditional coverage* on
035 the test input X_{n+1} , defined as $\mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \mid X_{n+1} = x) = 1 - \alpha$ for all x . This
036 limitation can be particularly problematic in high-stakes applications such as drug discovery or
037 socially sensitive decision-making, where systematic under-coverage on critical subgroups may lead
038 to unreliable or even harmful outcomes. Unfortunately, prior works (Vovk, 2012; Barber et al.,
039 2021) have shown that in distribution-free settings, any interval satisfying conditional coverage must
040 have an infinite expected length, $\hat{C}(X_{n+1}) = \mathbb{R}$, making meaningful prediction impossible without
041 further assumptions.

042 To address this issue, Gibbs et al. (2023) note that the conditional coverage can be equivalently
043 reformulated as a marginal guarantee over any measurable function f , i.e., $\mathbb{E}[f(X_{n+1}) \cdot (\mathbf{1}\{Y_{n+1} \in
044 \hat{C}(X_{n+1})\} - (1 - \alpha))] = 0$. This observation motivates them to relax the objective by restricting
045 the requirement to a user-specified function class \mathcal{F} :

$$046 \mathbb{E}[f(X_{n+1}) \cdot (\mathbf{1}\{Y_{n+1} \in \hat{C}(X_{n+1})\} - (1 - \alpha))] = 0, \text{ for all } f \in \mathcal{F}. \quad (1)$$

047 Different choices of \mathcal{F} yield different notions of conditional validity. For example, taking $\mathcal{F}^0 =$
048 $\{\eta : \eta \in \mathbb{R}\}$ to be the set of all constant functions in equation 1 is equivalent to guaranteeing
049 marginal coverage. Taking \mathcal{F}^g to be the set of piecewise constant functions over a set of pre-specified
050 (potentially overlapping) groups \mathcal{G} , so that $\mathcal{F}^g = \{\sum_{G \in \mathcal{G}} \eta_G \mathbf{1}\{x \in G\} : \eta \in \mathbb{R}^{|\mathcal{G}|}\}$, yields group-
051 conditional coverage (Vovk et al., 2003; Jung et al., 2022), i.e., $\mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \mid X_{n+1} \in
052 G) = 1 - \alpha$ for all $G \in \mathcal{G}$.
053

In this paper, we consider a more flexible class associated with a reproducing kernel Hilbert space (RKHS) that is capable of achieving coverage guarantees under *complex, nonlinear covariate shifts*:

$$\mathcal{F}^{RKHS} = \{f_\psi(\cdot) + \Phi(\cdot)^\top \eta : f_\psi \in \mathcal{F}_\psi, \eta \in \mathbb{R}^d\}^1, \quad (2)$$

with a given positive definite kernel $\psi : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ and any covariate representation $\Phi : \mathcal{X} \rightarrow \mathbb{R}^d$. The linear component $\Phi(\cdot)^\top \eta$ enables marginal, group-conditional, or other linear adjustments, while the RKHS component $f_\psi(\cdot)$ controls smoothness over complex data structures. Notably, both $\mathcal{F}^0, \mathcal{F}^g$ are special cases of \mathcal{F}^{RKHS} . For instance, setting $f_\psi = 0$ and choosing $\Phi(X) = \mathbf{1}\{X \in G\}$ for a group $G \in \mathcal{G}$ in equation 2 recovers group-conditional coverage.

Although RKHS function classes provide a promising surrogate for exact conditional coverage in equation 1, their practical use remains limited. Gibbs et al. (2023) established theoretical guarantees under RKHS classes, but, contrary to simpler classes of shifts for which their method is fast, the computational cost of RKHS classes is so prohibitive that the approach is not deployable at scale.

To construct prediction sets, Gibbs et al. (2023) fit an RKHS quantile regression on the n calibration points $(X_i, S_i)_{i \in [n]}$, augmented with the test point (X_{n+1}, S) , where S is an imputed score **for un-seen value S_{n+1}** . The imputation of S is carried out via a binary search, with each candidate value requiring a fresh RKHS regression on the $n + 1$ points. Because of this already prohibitive computational burden, the authors fix the kernel bandwidth γ and restrict hyperparameter selection to cross-validation over a pre-specified grid for the regularization parameter λ . While they demonstrate that (λ, γ) do not affect marginal coverage, these hyperparameters crucially shape the smoothness of the regression fit and thus the tightness of the resulting prediction sets.

The primary objective of this paper is to improve upon the algorithm of Gibbs et al. (2023) in order to achieve conditional validity in the RKHS function class in reasonable time, guaranteeing coverage under complex covariate shifts. Like (Gibbs et al., 2023), we frame the problem as regularized RKHS quantile regression to recover score cutoffs for constructing prediction sets. To address the previous limitations, we introduce two new (λ, S) -path algorithms. Our method builds solution paths of regression parameters that are piecewise-linear in either the smoothness parameter λ (the λ -path) or in the candidate score S (the S -path). The algorithm decides the next λ or S by updating these parameters only when **there is a change in the elbow set**. At each step, the solution is based on the current elbow set, a subset dramatically smaller than $n+1$, yielding substantial computational savings. This formulation makes conditional conformal prediction with RKHS both tractable and tunable, providing prediction sets that are not only valid but also adaptively tight.

Our second objective is to deploy our method in high-dimensional settings when $X \in \mathbb{R}^p$ with $p \gg n$. In such cases, conditional coverage on low-rank representation is often more interpretable and relevant. Using raw covariates in kernel methods is often ineffective, as distance-based similarities become less discriminative. Accordingly, we approximate each covariate vector X using a K -dimensional latent embedding (i.e., latent mixture, principal component, or layer embedding of a predictor network model) via a low-rank map $\hat{\pi} : \mathbb{R}^p \rightarrow \mathbb{R}^K$ with $K \ll p$. We define the kernel of the RKHS function class \mathcal{F}^{RKHS} on this representation, resulting in improved signal-to-noise ratios and enhanced predictive performance (Hastie et al., 2009; Udell & Townsend, 2019). *This yields a different notion of conditional coverage: rather than directly guaranteeing $\mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) | X_{n+1})$, we wish to condition on $\mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) | \hat{\pi}(X_{n+1}))$.*

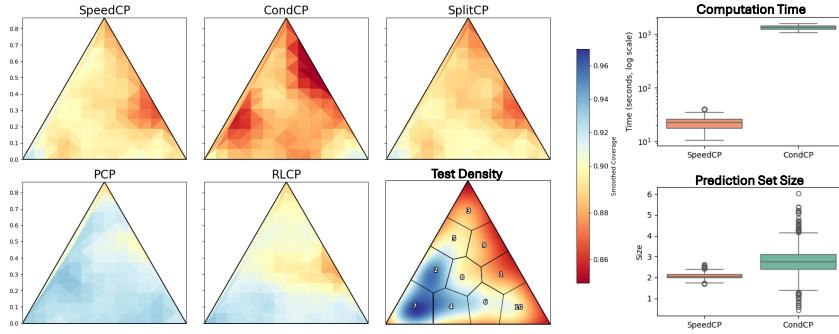
Contributions Our contributions in this work are threefold:

- **Methods:** We extend conditional conformal prediction (Gibbs et al., 2023) to high-dimensional settings by conditioning on learned low-rank embeddings $\hat{\pi}(X)$ within an RKHS, and thus improving signal-to-noise and yielding better-calibrated prediction sets, particularly in low-density data regions.
- **Algorithm:** **We explore the affine relationship between the imputed score S and the RKHS coefficients v, η , and leverage this structure to design a fast, stable solution-path algorithm for RKHS-based conformal prediction, yielding a closed-form solution for hyperparameter selection and higher-quality prediction sets.**

¹Given a positive definite kernel $\psi : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, let \mathcal{F}_ψ denote the associated RKHS with an inner product $\langle \cdot, \cdot \rangle_\psi$ and a norm $\|\cdot\|_\psi$. Using the representer theorem (Kimeldorf & Wahba, 1971), any function $f_\psi \in \mathcal{F}_\psi$ has a finite form $f_\psi(X) = \sum_{i \in [n+1]} v_i \psi(X, X_i)$ for some coefficient vector $v \in \mathbb{R}^{n+1}$. The norm has form $\|f_\psi\|_\psi^2 = \langle f_\psi, f_\psi \rangle_\psi = \sum_{i,j} v_i v_j \psi(X_j, X_i)$. We provide notations used in the paper in Appendix A.1.

108
 109
 110
 111 • *Theory*: We establish finite-sample guarantees for approximate conditional coverage with
 respect to data-driven latent embeddings, instead of pre-specified functions of X , and char-
 acterize how embedding estimation error affects validity in high-dimensional inference.
 112
 113
 114

We illustrate our contributions in Figure 1. **SpeedCP** achieves uniform 0.9 coverage across the 2D simplex, delivering smaller prediction sets while running nearly 50 times faster than CondCP (Gibbs et al., 2023). A detailed comparison with other conformal methods is provided in Appendix A.2, and further results are discussed in Section 3.
 115



126
 127 Figure 1: Mean coverage on fine-gridded partitions on the latent space (a 2D simplex). The results
 128 are aggregated over 50 random generations. **SpeedCP** shows the most uniform 0.9 (pale yellow)
 129 coverage across the simplex.
 130

2 METHODS

131
 132 We begin by introducing preliminary notation. We partition the dataset $\{(X_i, Y_i)\}_{i \in \mathcal{D}}$ into three
 133 disjoint subsets: \mathcal{D}_{train} , \mathcal{D}_{calib} , and \mathcal{D}_{test} . A single test input is denoted as X_{n+1} , since Y_{n+1} is
 134 unobserved. The training set \mathcal{D}_{train} is used to train a predictive model $\hat{\mu}(\cdot)$ while the calibration
 135 set \mathcal{D}_{calib} provides conformity scores $S_i = S(X_i, Y_i)$ for $i \in \mathcal{D}_{calib}$ (We also use $i \in [n]$ to denote
 136 calibration points as $|\mathcal{D}_{calib}| = n$). For high-dimensional covariates $\mathbf{X} \in \mathbb{R}^{n \times p}$ with $p \gg n$, we
 137 denote a low-rank embedding map by $\hat{\pi} : \mathcal{X} \rightarrow \mathbb{R}^K$ with $K \ll p$. Our procedure can accommodate
 138 any low-rank embedding $\hat{\pi}(X)$, provided that $\hat{\pi}(\cdot)$ is fitted symmetrically across the calibration and
 139 test set. We provide experiments on different low-rank methods in Section 3. When dimensionality
 140 reduction is unnecessary, the identity map $\hat{\pi}(X) = X$ may be used.
 141
 142

143 Our goal is to construct prediction intervals for test points X_{n+1} that achieve conditional coverage
 144 defined in equation 1 within the RKHS function class \mathcal{F}^{RKHS} (equation 2). In the high-dimensional
 145 setting, we instead define the kernel on low-rank embeddings yielding a subclass $\mathcal{F}^* \subset \mathcal{F}^{RKHS}$
 146 tailored to the latent space. The associated kernel ψ^* is designed to emphasize local coverage in the
 147 latent embedding space:
 148

$$\psi^*(X_1, X_2) = \exp \{ -\gamma \cdot d_\pi(\hat{\pi}(X_1), \hat{\pi}(X_2)) \}, \quad (3)$$

149 where γ is the kernel bandwidth and $d_\pi(\cdot, \cdot)$ is a distance metric between the low-dimensional em-
 150 beddings (we detail this distance in Appendix B.1). The feature map $\Phi^* : \mathbb{R}^K \rightarrow \mathbb{R}^d$ is defined using
 151 the estimated embedding space generated by $\hat{\pi}(\cdot)$, thereby allowing linear modeling of covariate
 152 shifts within the latent representation space. The specific form of Φ^* depends on the application and
 153 will be specified in the theorem statements and experimental settings later.
 154

2.1 ALGORITHM: SPEEDCP

155 In this section, we present our method for constructing conditionally valid prediction sets. We fit
 156 a regularized quantile regression in the RKHS class \mathcal{F}^* with fixed $\gamma > 0$. Recalling that the rank
 157 of a test point is uniformly distributed over the calibration set plus the test point, we fit using n
 158 calibration covariate-score pairs $(X_i, S_i)_{i \in [n]}$ plus the test point (X_{n+1}, S_{n+1}) . Because S_{n+1} is
 159 unobserved, we impute it with an arbitrary candidate value S , which yields a regression function
 160 parameterized by S ,
 161

162

$$\hat{g}_S := \arg \min_{g \in \mathcal{F}^*} \frac{1}{n+1} \sum_{i \in [n]} \ell_\alpha(S_i - g(X_i)) + \frac{1}{n+1} \ell_\alpha(S - g(X_{n+1})) + \frac{\lambda}{2} \|g_{\psi^*}\|_{\psi^*}^2 \quad (4)$$

163 where $\lambda > 0$ is the regularization parameter and $\ell_\alpha(z) = (1-\alpha)[z]_+ + \alpha[z]_-$ denotes the pinball loss
 164 at level $\alpha \in (0, 1)$. The regularization penalty rules out the meaningless prediction set $\hat{C}(X_{n+1}) =$
 165 \mathbb{R} that can arise in infinite-dimensional classes. Accordingly, the prediction set takes the form,

$$\hat{C}^*(X_{n+1}) = \{y : S(X_{n+1}, y) \leq \hat{g}_{S(X_{n+1}, y)}(X_{n+1})\}. \quad (5)$$

166 Note that the RKHS class \mathcal{F}^* and the corresponding quantile regressor in equation 4 are well defined
 167 for any fixed pair (γ, λ) . Our method proceeds in two stages. First, we aim to select a sufficiently
 168 good pair of hyperparameters (γ, λ) for the RKHS quantile regression. Using a separate data set,
 169 \mathcal{D}_{split} , disjoint from both the calibration and test sets, we trace the λ -path for each prefixed γ ,
 170 which provides a solution path of RKHS regression along the regularization parameter λ . This
 171 yields an efficient way to explore different levels of smoothness without repeatedly solving the full
 172 optimization problem. We then cross-validate on the bandwidth γ of the kernel ψ^* to choose the
 173 optimal $(\hat{\gamma}, \hat{\lambda})$ pair. We therefore define the RKHS class \mathcal{F}^* in equation 4 and in all subsequent
 174 theorems with respect to this selected pair $(\hat{\gamma}, \hat{\lambda})$. Second, integrating with the test set, we construct
 175 the S -path, which traces maximum score cutoff S that satisfies the condition in equation 5. The
 176 full procedure is detailed in Algorithm 1. We begin by outlining the setup before introducing the
 177 (λ, S) -paths.

178

179 For a given λ , the solution to equation 4 has the following closed form:

$$\hat{g}_S(X) = \Phi^*(X)^\top \hat{\eta}_S + \frac{1}{\lambda} \sum_{i=1}^{n+1} \hat{v}_{S,i} \psi^*(X, X_i), \quad (6)$$

180 where $\hat{\eta}_S, \hat{v}_{S,i}$ are parameters when the score of the test point S_{n+1} is set to S . For numerical
 181 stability of the algorithm, we assume the columns of $\Phi^*(X)$ are linearly independent. Plugging this
 182 in equation 4, the objective becomes,

$$\min_{\eta_S, v_S} \sum_{i=1}^{n+1} l_\alpha(S_i - \Phi^*(X_i)^\top \eta_S - \frac{1}{\lambda} \sum_{i'=1}^{n+1} v_{S,i'} \psi^*(X_i, X_{i'})) + \frac{1}{2\lambda} \sum_{i,i=1}^{n+1} v_{S,i} v_{S,i'} \psi^*(X_i, X_{i'}). \quad (7)$$

183 The Lagrangian formulation and the Karush–Kuhn–Tucker (KKT) conditions of equation 7 motivate
 184 us to define three index sets: the *Elbow*, *Left*, and *Right* set,

$$\begin{aligned} E &= \{i : S_i - g_S(X_i) = 0, v_{S,i} \in (-\alpha, 1-\alpha)\} \\ L &= \{i : S_i - g_S(X_i) < 0, v_{S,i} = -\alpha\} \\ R &= \{i : S_i - g_S(X_i) > 0, v_{S,i} = 1-\alpha\}. \end{aligned} \quad (8)$$

185 We observe that for the left and right sets, the kernel parameters $v_{S,i}$ are fixed to either $-\alpha$ or $1-\alpha$.
 186 Thus, we only need to solve for $v_{S,i}$'s in the elbow set, making the computation more efficient. The
 187 algorithm reduces to tracking changes in this set for different λ or S values: an *event occurs when*
 188 *there is a change in the index sets*: 1) a point leaves the elbow or 2) when a point from the left or
 189 right set enters it.

190

2.1.1 λ -PATH FOR SMOOTHNESS CONTROL

191 To select λ , we rely exclusively on the separate m observations in \mathcal{D}_{split} to choose optimal λ inde-
 192 pendent of calibration and test sets. The equations 6-8 remain valid on this subset m , so we denote
 193 the index sets as $(E(\lambda), L(\lambda), R(\lambda))$ as the sets evolve with λ . Since no imputed score S is required
 194 for S_{n+1} , we drop S from the subscripts. We initialize λ at the largest value for which at least two
 195 points are in the elbow, and define the step size to the next λ as the smallest decrement that triggers
 196 an event. Importantly, the resulting coefficients $\{\hat{v}_i(\lambda)\}_{i \in [m]}$ and $\hat{\eta}(\lambda)$ evolve as a piecewise-linear
 197 function of λ , which we formalize in the following proposition.

198 ²Let $f(\cdot) = f_{\psi^*}(\cdot) + \Phi^*(\cdot)^\top \eta \in \mathcal{F}^*$ denote the covariate-shift weighting of interest and $\hat{g}_S(\cdot) = \hat{g}_{\psi^*}(\cdot) +$
 199 $\Phi^*(\cdot)^\top \hat{\eta} \in \mathcal{F}^*$ be the fitted results using imputed S over the same RKHS with kernel ψ^* (with optimal $\hat{\gamma}$). The
 200 RKHS class is given by the optimal $\hat{\lambda}$ such that $\mathcal{F}_{\psi^*} = \{f_{\psi^*}(x) = \frac{1}{\hat{\lambda}} \sum_{i \in [n+1]} v_i \psi^*(x, X_i), v \in \mathbb{R}^{n+1}\}$.

216 **Proposition 1** Let $\{\lambda^l\}_{l=1,2,3,\dots}$ be the change points when an event occurs. For $\lambda^{l+1} \leq \lambda \leq \lambda^l$,
 217 denote $\{\hat{v}_{i'}(\lambda)\}_{i' \in [m]}$ and $\hat{\eta}(\lambda)$ as the solution of equation 7 given λ . Then, $\{\hat{v}_{i'}(\lambda)\}_{i' \in [m]}$ are affine
 218 in λ and $\hat{\eta}(\lambda)$ is affine in $1/\lambda$.
 219

220 The piecewise linearity allows us to track the whole λ solution path, not just at the change points.
 221 To select the optimal (γ, λ) -pair, we fix a grid of the kernel bandwidth values γ , and run the λ -
 222 path for each fixed γ . We then perform k -fold cross validation to choose the combination (γ, λ)
 223 that minimizes the quantile loss. It is worth noting that our coverage guarantee, established in
 224 Section 2.2, holds for any (γ, λ) . However, we want to choose parameters that reflect an appropriate
 225 level of smoothness of \hat{g}_S , which leads to tighter prediction sets. We provide additional details
 226 on the derivation of the closed-form expressions for $\hat{v}_{i'}(\lambda)$'s and $\hat{\eta}(\lambda)$, as well as the effect of
 227 hyperparameter tuning in Appendix B.2, D.1.3, and D.1.4.
 228

229 2.1.2 S -PATH FOR CONSTRUCTING PREDICTION SETS

230 We proceed to constructing prediction sets with $(\hat{\gamma}, \hat{\lambda})$ selected from the λ -path. We use the original
 231 notations of the regression parameters, $\hat{v}_{S,i}$ and $\hat{\eta}_S$, since conditions 4–8 now only depend on the
 232 imputed test score S . Recall that the prediction set is defined as a set of y such that $S(X_{n+1}, y) \leq$
 233 $\hat{g}_{S(X_{n+1}, y)}(X_{n+1})$. By equation 8, this is equivalent to $\hat{v}_{S(X_{n+1}, y), n+1} < 1 - \alpha$. Moreover, the
 234 mapping $S \mapsto \hat{v}_S$ is nondecreasing (which we prove in Proposition 3 in Appendix C). Thus, the
 235 problem reduces to finding the largest value $S^*(X_{n+1})$ such that $\hat{v}_{S^*(X_{n+1}), n+1} < 1 - \alpha$ holds.
 236

237 Conceptually, the S -path mirrors the λ -path: it traces the evolution of the score cutoff S through
 238 a sequence of events, where events are defined identically as before. The sets in equation 8 now
 239 evolve with S . We initialize the S -path with the smallest S^1 such that the test point enters the elbow
 240 set (i.e., $\hat{v}_{S^1, n+1} \in (-\alpha, 1 - \alpha)$) and then increment S to the next value at which an event occurs
 241 while the test point is still in the elbow. We iterate until the test point exits the elbow and set the
 242 final S as $S^*(X_{n+1})$. Similar to the λ -path, we prove that $\hat{v}_{S,i}$'s and $\hat{\eta}_S$ evolve as an affine function
 243 of S between any two change points:
 244

245 **Proposition 2** Let $\{S^l\}_{l=1,2,3,\dots}$ be the change points when an event occurs. For $S^l \leq S \leq S^{l+1}$,
 246 denote $\{\hat{v}_{S,i}\}_{i \in [n+1]}$ and $\hat{\eta}_S$ as the solution of equation 7. Then, $\{\hat{v}_{S,i}\}_{i \in [n+1]}$ and $\hat{\eta}_S$ are affine in
 247 S .
 248

249 As shown in Appendix Lemmas 3 and 4, using the threshold $S^*(X_{n+1})$ can inflate the conditional
 250 coverage. To mitigate this, we instead prefer the randomized cutoff $S^{rand}(X_{n+1}) = \sup\{S \mid$
 251 $\hat{v}_{S, n+1} < U\}$, where $1 - \alpha$ is replaced by $U \sim \text{Unif}(-\alpha, 1 - \alpha)$. The final prediction set is then
 252 defined as:
 253

$$\hat{C}_{rand}^*(X_{n+1}) = \{y : S(X_{n+1}, y) \leq S^{rand}(X_{n+1})\}. \quad (9)$$

254 **Computational complexity** At each iteration of the λ - and S -paths, we solve the inverse of
 255 $\begin{pmatrix} \Phi_E^* & \frac{1}{\lambda} \Psi_{EE}^* \\ \mathbf{0} & \Phi_E^{*\top} \end{pmatrix}$. Here, $\Phi_E^* \in \mathbb{R}^{|E| \times d}$ and $\Psi_{EE}^* \in \mathbb{R}^{|E| \times |E|}$ denote submatrices with row indices
 256 and both row and column indices in the current elbow set E , respectively. This requires inverting a
 257 $(|E| + d) \times (|E| + d)$ matrix at each iteration. While the worst-case complexity is $O((n + d)^3)$,
 258 in practice $|E| \ll n$, making our procedure more efficient than refitting the full RKHS quantile
 259 regression at every step. We detail the initialization and update functions of the λ - and S -paths as
 260 well as the proofs of Proposition 1,2 in Appendix B.2.
 261

262 2.2 COVERAGE UNDER COVARIATE SHIFT

263 In our setting, covariate shift is encoded by a tilting function $f \in \mathcal{F}^*$, which reweights the original
 264 distribution P to emphasize specific regions or subpopulations of the embedding space on which we
 265 seek to condition, $dP_f(x) = \frac{f(x)}{\mathbb{E}_P[f(X)]} dP(x)$. Since the solution-path formulation allows us to fit
 266 the RKHS-based quantile regression model for any pre-selected λ and γ , we can apply Theorem 3
 267 of Gibbs et al. (2023) to obtain a conditional guarantee with respect to all such tilts $f \in \mathcal{F}^*$ under
 268 selected $(\hat{\gamma}, \hat{\lambda})$ (as shown in Appendix C). Because \mathcal{F}^* is defined in terms of an estimated low-rank
 269 projection $\hat{\pi}(\cdot)$ directly rather than the unknown true embedding of the covariates, the coverage

Algorithm 1 SpeedCP

270
 271 **Input:** $\mathcal{D}_{train}, \mathcal{D}_{split}, \mathcal{D}_{calib}, \mathcal{D}_{test}$, latent map $\hat{\pi} : \mathcal{X} \rightarrow \mathbb{R}^K$, ($K \ll p$), kernel bandwidth grid
 272 Γ , miscoverage level α
 273
 274 **Output:** Conditionally calibrated prediction set for each test point
 275 1. Train $\hat{\mu}$ on \mathcal{D}_{train} and get calibration scores: $S_i = S(X_i, Y_i), i \in \mathcal{D}_{cal.total}$.
 276 2. Get latent embeddings: $\hat{\pi}_{cal.total} = \hat{\pi}(X_{cal.total}), \hat{\pi}_{test} = \hat{\pi}(X_{test})$.
 277 3. Optimize for hyperparameter pair $(\hat{\gamma}, \hat{\lambda})$ using \mathcal{D}_{split} Solve $(\hat{\gamma}, \hat{\lambda}) = \arg \min_{(\gamma, \lambda)} \text{CV}(\gamma, \lambda)$,
 278
 279 **for** $\gamma \in \Gamma$ **do** using,
 280 **for** $j = 1, \dots, k$ **do**
 281 $\{\hat{v}_1^\gamma(\lambda^l), \dots, \hat{v}_m^\gamma(\lambda^l), \hat{\eta}^\gamma(\lambda^l)\}_{l=1,2,\dots} = \lambda\text{-path}((\hat{\pi}_{split \setminus fold_j}, S_{split \setminus fold_j}); \gamma)$
 282 $\hat{g}^l(X) = \Phi^*(X)^\top \hat{\eta}^\gamma(\lambda^l) + \frac{1}{\lambda^l} \sum_{i \in \mathcal{D}_{split \setminus fold_j}} \hat{v}_i^\gamma(\lambda^l) \psi^*(X, X_i)$
 283 $\text{CV}_j(\gamma, \lambda^l) = \sum_{i \in fold_j} ((1 - \alpha)[S_i - \hat{g}^l(X_i)]_+ + \alpha[S_i - \hat{g}^l(X_i)]_-)$ for $l = 1, 2, \dots$
 284
 285 **end for**
 286 $\text{CV}(\gamma, \lambda^l) = \frac{1}{k} \sum_{j=1}^k \text{CV}_j(\gamma, \lambda^l)$ for $l = 1, 2, \dots$
 287
 288 **end for**
 289 4. For each test point X_{n+1} , find the maximum score S^* such that $S^* \leq \hat{g}_{S^*}(X_{n+1})$. Use
 290 $U \sim \text{Unif}[-\alpha, 1 - \alpha]$ to get the corresponding score S^{rand} for a randomized prediction set,
 291
 292 **for** $X_{n+1} \in \mathcal{D}_{test}$ **do**
 293 $S^{rand} = S\text{-path}(X_{n+1}, \mathcal{D}_{calib}; \hat{\gamma}, \hat{\lambda}, U)$
 294 $\hat{C}_{rand}^*(X_{n+1}) = \{y \in \mathcal{Y} : S(X_{n+1}, y) \leq S^{rand}\}$
 295
 296 **end for**
 297

298 validity is robust to errors in $\hat{\pi}(\cdot)$. Estimation error only impacts the effectiveness of prediction
 299 set size and the deviation from conditional guarantee given the true embedding $\pi(\cdot)$ directly. We
 300 illustrate this further via the following results. To do so, we need the following assumptions:

301 **Assumption 1** $\{(X_i, S_i)\}_{i \in [n+1]}$ are exchangeable and $\{Y_i \mid X_i\}_{i \in [n+1]} \stackrel{i.i.d.}{\sim} P_{Y|X}$.
 302

303 **Assumption 2** The projection $\hat{\pi}(\cdot)$ is computed symmetrically with respect to the $n + 1$ inputs.
 304

305 Assumption 1 relaxes the i.i.d. condition used in Gibbs et al. (2023) to exchangeability, which is stan-
 306 dard in conformal inference and accommodates latent-variable generative structures (e.g., admixture
 307 models such as LDA (Blei et al., 2003)) that induce dependence among $\{X_i\}$ while preserving ex-
 308 changeability (see Theorem 2 for details). Assumption 2 ensures the validity of the tilt function f
 309 and exchangeability of $n + 1$ samples under P_f .

310 To achieve a distribution-free guarantee for $\mathbb{P}(Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1}) \mid \hat{\pi}(X_{n+1}))$ without overly wide
 311 intervals, we consider one standard relaxation of conditional coverage using kernel reweighting
 312 such that the tilt $f(x) := \psi^*(x, x')$ with a given fixed point x' , that emphasizes coverage in a
 313 neighborhood around the latent embeddings of x' . In this analysis, we focus purely on the RKHS
 314 component and set $\Phi^*(\cdot) \equiv 0$.

315
 316 **Theorem 1** Suppose $\{(X_i, S_i)\}_{i \in [n+1]} \stackrel{i.i.d.}{\sim} P$ and Assumption 2 holds. Assume there exists a
 317 density kernel $\psi_W^*(w, \cdot)$ on the latent space such that, for all $x_1, x_2 \in \mathcal{X}$, $\psi_W^*(\hat{\pi}(x_1), \hat{\pi}(x_2)) =$
 318 $\psi^*(x_1, x_2)$. Let $W' \mid X_{n+1} = x \sim \psi_W^*(\hat{\pi}(x), \cdot)$, then we have

$$\mathbb{P}(Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1}) \mid W') = 1 - \alpha - \frac{\mathbb{E}[\sum_{i \in [n+1]} \hat{v}_{S^{rand}, i} \psi_W^*(W', \hat{\pi}(X_i))]}{\mathbb{E}[\psi_W^*(W', \hat{\pi}(X))]} \quad (10)$$

319
 320 This localized version of conformal prediction can be viewed as an approximation of conditional
 321 coverage on the event that $W' \approx \hat{\pi}(X_{n+1})$. The coverage gap on the right-hand side of equa-
 322 tion 10 quantifies the difficulty of achieving conditional coverage in the neighborhood emphasized

324 by $W = w'$ after projecting on the RKHS. When W' (or said $\hat{\pi}(X_{n+1})$) lies in a dense region of
 325 the embedding, this gap is small. It requires a stronger i.i.d. assumption than exchangeability in Ass-
 326 sumption 1 in order to give more relevance to data points closer to the test point in the latent space.
 327 In other words, the coverage gap term becomes more stable. Rather than showing the gap is asymp-
 328 tootically zero (Guan, 2023) with strong distribution and modeling assumption, this decomposition
 329 makes the source of deviation explicit and directly estimable (see the method in Appendix C.4.2
 330 using n -points quantile regression). Note, however, that equation 10 is stated for neighborhoods
 331 centered at the estimated embedding $\hat{\pi}(X_{n+1})$, not the true one. When $\hat{\pi}(\cdot)$ is a good approxi-
 332 mation of the true embedding $\pi(\cdot)$, the guarantee in equation 10 closely matches the conditional
 333 guarantee under localization by the true latent representation, as shown in Appendix C.4.1.

334 In addition, the guarantee can be generalized to any finite collection of groups encoded by the feature
 335 map $\Phi^*(\cdot)$. When the covariates are generated from an underlying latent structure, such as mixture
 336 components or clusters, our approach yields tighter and more informative prediction intervals when-
 337 ever the feature map captures the most informative low-rank projection of that structure. In the
 338 ideal setting where a true embedding $\pi(\cdot)$ is available, we run the quantile regression in equation 4
 339 directly based on $\pi(\cdot)$ to obtain the conditional coverage as below.

340 **Theorem 2 (Oracle setting)** Fix $K \geq 2$ and consider the latent mixture weights $\{W_i \in$
 341 $\Delta^{K-1}\}_{i \in [n]} \stackrel{i.i.d.}{\sim} P_W$ ³, and observations $\{X_i \mid W_i\}_{i \in [n]} \stackrel{i.i.d.}{\sim} P_{X|W}$. Define $\pi(X) := \mathbb{E}[W \mid$
 342 $X] \in \Delta^{K-1}$ to be the true embedding representatives. Let $T(X) := \arg \max_{k \in [K]} \pi_k(X)$. Sup-
 343 pose the Assumptions 1 and 2 are both satisfied. Assume $\mathbb{P}(T(X) = k) > 0$ for any $k \in [K]$. Let
 344 $\hat{C}_{rand}^*(\cdot)$ be the randomized conformal set calibrated with the linear term $\Phi^*(X) = (\mathbf{1}\{T(X) =$
 345 1\}, \dots, \mathbf{1}\{T(X) = K\})^\top. Then for every $k \in [K]$,

$$348 \mathbb{P}\left(Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1}) \mid T(X_{n+1}) = k\right) = 1 - \alpha. \quad (11)$$

351 Note that $\{(X_i, S_i)\}_{i \in [n]}$ in Theorem 2 are exchangeable but not independent because $\{X_i\}_{i \in [n]}$ are
 352 generated conditionally on latent variables $\{W_i\}_{i \in [n]}$. This structure violates the i.i.d. assumption
 353 on $\{(X_i, S_i)\}$ in Gibbs et al. (2023), so we need to adapt their conformal guarantee to the case
 354 with unobserved variables W . In practice, neither W nor $\pi(\cdot)$ is observed, so we condition on
 355 the estimated representation $\hat{\pi}(\cdot)$ and its induced group $\hat{T}(X)$. The finite-sample guarantee with
 356 respect to estimated groups $\hat{T}(X_{n+1})$ hold for any low-rank projection $\hat{\pi}(\cdot)$ (see Corollary 6). In the
 357 Appendix, we further quantify how the finite-sample guarantee based on the estimated embedding
 358 $\hat{\pi}(X)$ deviates from this oracle guarantee. The accuracy of $\hat{\pi}(X)$ relative to $\pi(X)$ does not affect
 359 coverage guarantee, but affect prediction sets. In particular, a coarser embedding still maintains
 360 coverage but may yield wider and less efficient sets. Compared with the near-nominal conditional
 361 coverage given by Posterior Conformal Prediction (PCP) (Meng, 1994) which relies on a latent
 362 structure built from residuals and requires the embeddings $\{\pi(X_i)\}_{i \in [n]}$ to be highly concentrated
 363 around $\pi(X_{n+1})$, our guarantee in equation 11 is on the latent space induced by covariates directly
 364 and thus remains robust even under highly heterogeneous mixture proportions.

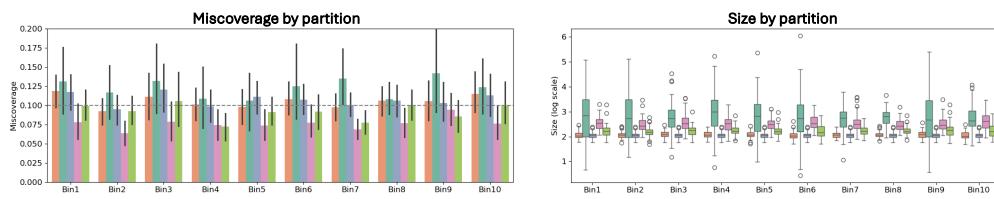
3 EXPERIMENTS

369 In this section, we evaluate SpeedCP across four diverse settings: synthetic admixture data, molec-
 370 ular property prediction with GNNs, and brain tumor MRI analysis with a CNN. We also analyze
 371 citation-count prediction on the arXiv dataset using topic-modeling features (see Appendix D.2.1).

373 **Synthetic experiments** We evaluate the performance of our method using synthetic datasets
 374 in the admixture setting where X is generated from a mixture of $K = 3$ latent dis-
 375 tributions. We use the mixture proportion $\hat{\pi}(X)$ as an input to all CP methods. In
 376 this case, $\sum_{k=1}^K \hat{\pi}_k(X) = 1$ and $\hat{\pi}_k(X) > 0$, yielding the latent space as a simplex.

377 ³ $\Delta^{K-1} = \{x \in \mathbb{R}^K : 0 \leq x_k \leq 1, \sum_{k \in [K]} x_k = 1\}$ is the $(K - 1)$ -dimensional simplex.

378 To test whether a method can effectively adapt to a covariate
 379 shift, we symmetrically sample the calibration mixture proportions
 380 over the simplex, but sample the test mixture proportions
 381 highly concentrated near one vertex (see the density plots in
 382 Figure 5). We also consider two different predictors, a linear
 383 regression and a two-layer neural network, to assess the model-
 384 agnostic behavior of the conditional conformal methods. We
 385 assess conditional coverage by dividing the simplex into 10 bins
 386 and evaluating coverage in each bin as in Figure 1. We summa-
 387 rize the results of SpeedCP and compare them with four other benchmarks: CondCP (Gibbs et al.,
 388 2023), SplitCP (Papadopoulos et al., 2002), PCP (Zhang & Candès, 2024), and RLCP (Hore &
 389 Barber, 2023) in Figure 2.



390
 391
 392
 393
 394
 395
 396
 397
 398 Figure 2: Conditional miscoverage and prediction set size on each fixed partition on the latent
 399 space when the predictor $\hat{\mu}$ is a linear regression. SpeedCP achieves 0.1 miscoverage across bins
 400 consistently with the smallest prediction sets.

401
 402 Table 2: Marginal miscoverage, prediction set size, and computation time.

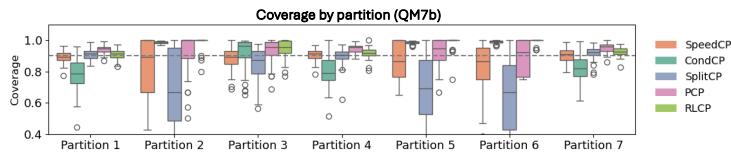
Method	Marginal miscoverage ($\alpha = 0.1$)		Prediction set size	Time (seconds)
	LR	NN		
SpeedCP	0.105 ± 0.07	0.098 ± 0.02	0.804 ± 0.06	22.05 ± 6.22
CondCP	0.123 ± 0.13	0.124 ± 0.05	2.126 ± 0.31	1332.67 ± 129.93
SplitCP	0.107 ± 0.07	0.114 ± 0.02	0.780 ± 0.06	< 0.01
PCP	0.076 ± 0.06	0.088 ± 0.02	0.910 ± 0.13	141.64 ± 14.48
RLCP	0.092 ± 0.07	0.089 ± 0.02	0.864 ± 0.07	22.05 ± 0.07

410 Overall, SpeedCP achieves miscoverage closest to the target level of 0.1 while producing the small-
 411 est prediction sets. SplitCP attains near-target miscoverage in many bins because a single global
 412 threshold works reasonably well when the calibration points are approximately uniform over the
 413 simplex. However, near the vertex (bins 3 and 5. See also Figure 4 in Appendix), sparsity makes the
 414 global threshold governed by denser regions, weakening its ability to capture local scores under
 415 covariate shift. CondCP solves the same regularized quantile regression problem, but it fails to achieve
 416 reasonable coverage in several bins and produces overly wide intervals. This happens because the
 417 optimization solver it relies on does not return exact solutions and output conservative approximations.
 418 In contrast, our path algorithm uses a stable piecewise-linear structure of the problem and
 419 tracks boundary events precisely, yielding tighter and more accurate prediction sets. Both PCP and
 420 RLCP tend to overcover in most bins and produce large prediction sets, as their performance is
 421 sensitive to the quality of the base predictor $\hat{\mu}(\cdot)$. We provide additional details of the experimental
 422 design, the full NN results, and comparisons across different values of n in Appendix D.1.

423 **Molecule Graphs** We evaluate our method on three molecular property prediction benchmarks:
 424 QM9, QM7b, and ESOL (Wu et al., 2018). For each dataset, we train a GNN to predict a molecular
 425 property: the HOMO–LUMO gap for QM9, polarizability for QM7b, and solubility for ESOL. We
 426 extract the last 64-dimensional graph embedding after pooling, and reduce it to 3 dimensions via
 427 PCA. Our objective is to achieve nominal 0.9 coverage across this low-dimensional representation
 428 of the molecular graphs. To assess conditional coverage, we partition the PC space into 6–8 regions
 429 using Voronoi tessellation, and compute coverage within each region. We aggregate results over
 430 50 random subsamples of 2000 graphs, and report the results in Figure 3 and Table 3. We observe
 431 that SpeedCP achieves nominal coverage consistently across all partitions, while achieving sharp
 432 prediction sets. We provide additional results for each dataset in Appendix D.2.

Table 1: Summary of parameters

Data	n	p	K	d
Synthetic	2K	1K	3	3
Molecule	2K	64	3	1
MRI	2K	256	8	2

432
433
434
435
436
437

438 Figure 3: Coverage on fixed partitions of the PC space for QM7b. We use PCA on the last layer
439 embeddings of GNN with $K = 3$ dimensions. The dashed line denotes the target coverage rate
440 $1 - \alpha = 0.9$.

441
442
443
444
445
446
447
448
449

Table 3: Mean prediction set size and computation time of QM9, QM7b, and ESOL

Method	Prediction set size			Computation time (seconds)		
	QM9	QM7b	ESOL	QM9	QM7b	ESOL
SpeedCP	1.135 ± 0.25	0.902 ± 0.44	1.789 ± 0.38	31.061 ± 2.94	33.056 ± 7.23	15.442 ± 1.55
CondCP	1.922 ± 0.40	1.447 ± 1.17	2.683 ± 0.42	1531.15 ± 195.60	1890.38 ± 166.62	625.06 ± 64.54
SplitCP	1.122 ± 0.122	0.999 ± 0.37	1.800 ± 0.17	< 0.01	< 0.01	< 0.01
PCP	1.530 ± 0.87	1.303 ± 1.07	2.261 ± 1.00	38.018 ± 3.48	47.218 ± 6.50	21.659 ± 2.36
RLCP	1.554 ± 0.89	1.286 ± 1.04	2.248 ± 1.02	1.157 ± 0.02	1.148 ± 0.01	0.668 ± 0.00

450 **Brain Tumor MRI** We evaluate on a brain-tumor MRI dataset from Kaggle⁴ with labels
451 $\{\text{healthy}, \text{tumor}\}$. We train a CNN classifier $\hat{\mu}(\cdot)$ on 2,000 images and extract NN features from
452 the last layer for calibration (training details in Appendix D.2.3). Table 4 shows that even with
453 intercept-only calibration ($\Phi^*(X) = 1$), our RKHS component alone gives a good approximation
454 for predicted-label coverage. When covariate shift aligns with label groups, adding linear terms for
455 the predicted label, $\Phi^*(X) = (\mathbf{1}\{\hat{\mu}(X) = \text{healthy}\}, \mathbf{1}\{\hat{\mu}(X) = \text{tumor}\})^\top$, provides better conditional
456 coverage. In contrast, SplitCP achieves comparable coverage but requires more conservative
457 sets than ours, while RLCP fails to exploit locality in the 256-dimensional feature space and effec-
458 tively reduces to uniform weighting, thus converging to Split CP. PCP tends to overcover, especially
459 for the healthy group, and their cutoffs are unstable with high variance and frequent near-zero values
460 (see Appendix Table 7), thereby producing overly conservative conditional coverage.

461

Table 4: Mean coverage and prediction set size across predicted labels in the MRI dataset.

Method	Target coverage ($1 - \alpha = 0.9$)			Prediction set size			Time (seconds)
	Marginal	Healthy	Tumor	Marginal	Healthy	Tumor	
SpeedCP(1)⁵	0.910 ± 0.01	0.902 ± 0.02	0.914 ± 0.02	0.262 ± 0.09	0.250 ± 0.09	0.275 ± 0.08	244.1 ± 9.2
SpeedCP(Φ^*)	0.908 ± 0.02	0.902 ± 0.02	0.901 ± 0.02	0.282 ± 0.08	0.266 ± 0.08	0.295 ± 0.08	270.5 ± 13.9
SplitCP	0.898 ± 0.01	0.888 ± 0.02	0.903 ± 0.02	0.348 ± 0.00	0.348 ± 0.00	0.348 ± 0.00	< 0.01
PCP	0.918 ± 0.01	0.945 ± 0.02	0.902 ± 0.02	0.231 ± 0.27	0.281 ± 0.26	0.201 ± 0.28	162.1 ± 13.9
RLCP	0.898 ± 0.01	0.888 ± 0.02	0.903 ± 0.02	0.348 ± 0.00	0.348 ± 0.00	0.348 ± 0.00	3.48 ± 0.08

4 LIMITATIONS AND FUTURE DIRECTIONS

472 While we believe our algorithm can be broadly applicable in high-dimensional problems, especially
473 when prior knowledge is limited, we highlight several limitations and directions for future work: (1)
474 We currently fix the miscoverage level α for all test points. However, α could be made adaptive
475 based on latent structure or user-specified utility. For example, one might use a stricter α for sub-
476 populations deemed more critical (Takeuchi et al., 2006; Gauthier et al., 2025), thereby allocating
477 tighter guarantees where they matter most. (2) Incorporating weights into our quantile regression
478 based on uncertainty or embeddings’ importance could further refine coverage and interpretability
479 (Jang & Candès, 2023). Although we focus on scalar regression tasks, the RKHS-based framework
480 can be extended to structured prediction problems such as text generation (Sun et al., 2023; Far-
481 quhar et al., 2024; Su et al., 2024; Shahrokhi et al., 2025), image completion (Angelopoulos et al.,
482 2020; Wieslander et al., 2020), and other multivariate problems (Messoudi et al., 2021; Johnstone &
483 Ndiaye, 2022; Xu et al., 2024) where uncertainty quantification over complex outputs is crucial.

⁴<https://www.kaggle.com/datasets/murtozalikhon/brain-tumor-multimodal-image-ct-and-mri>

⁵For the Brain Tumor MRI data, we use **SpeedCP(Φ^*)** to denote calibration with a linear term that includes predicted labels, whereas **SpeedCP(1)** uses an intercept-only linear term with $\Phi^*(X) = 1$.

486 **Ethics Statement.** This work adheres to the ICLR Code of Ethics. Our research does not involve human subjects, sensitive personal data, or applications with foreseeable risks of misuse. The datasets employed are publicly available and widely used in prior work. We have carefully considered issues of fairness, privacy, and security, and do not anticipate any ethical concerns arising from our methodology or findings.

491

492 **Reproducibility Statement.** We have taken significant steps to ensure the reproducibility of our
493 results. All theoretical results are stated with clear assumptions and complete proofs provided in
494 the appendix. The experimental setup, including data preprocessing procedures, hyperparameter
495 choices, and evaluation metrics, is described in detail in the main text and appendix. Anonymized
496 code and instructions to reproduce all experiments will be made available in the supplementary
497 material. Together, these resources allow independent researchers to fully reproduce and validate
498 our findings.

499

500 **Use of Large Language Models (LLMs).** In preparing this work, we used large language models
501 (LLMs) only as general-purpose assistive tools. Specifically, LLMs were employed to help
502 with tasks such as grammar correction, polishing the clarity of exposition, rephrasing sentences for
503 readability, adjusting mathematical notation for consistency, and correcting minor issues in code
504 formatting. All research ideas, methodological contributions, theoretical results, and experimental
505 designs were conceived and executed by the authors. We carefully verified all LLM-assisted text
506 and code to ensure correctness and originality, and we take full responsibility for the content of this
507 paper. LLMs were not used for generating research insights, proofs, experiments, or results, and
508 therefore are not considered contributors or authors.

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 John Aitchison. The statistical analysis of compositional data. *Journal of the Royal Statistical
543 Society: Series B (Methodological)*, 44(2):139–160, 1982.

544 Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets
545 for image classifiers using conformal prediction. *arXiv preprint arXiv:2009.14193*, 2020.

546 Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical foundations of
547 conformal prediction. *arXiv preprint arXiv:2411.11824*, 2024.

548 Mário César Ugulino Araújo, Teresa Cristina Bezerra Saldanha, Roberto Kawakami Harrop Galvao,
549 Takashi Yoneyama, Henrique Caldas Chame, and Valeria Visani. The successive projections
550 algorithm for variable selection in spectroscopic multicomponent analysis. *Chemometrics and
551 Intelligent Laboratory Systems*, 57(2):65–73, 2001.

552

553 Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models—going beyond svd. In *2012
554 IEEE 53rd Annual Symposium on Foundations of Computer Science*, pp. 1–10. IEEE, 2012.

555

556 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of
557 distribution-free conditional predictive inference. *Information and Inference: A Journal of the
558 IMA*, 10(2):455–482, 2021.

559

560 David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. *Journal of Machine
561 Learning Research*, 3(Jan):993–1022, 2003.

562

563 Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A survey of
564 some recent advances. *ESAIM: probability and statistics*, 9:323–375, 2005.

565

566 Colin B. Clement, Matthew Bierbaum, Kevin P. O’Keeffe, and Alexander A. Alemi. On the use of
567 arxiv as a dataset, 2019.

568

569 David Donoho and Victoria Stodden. When does non-negative matrix factorization give a correct
570 decomposition into parts? *Advances in Neural Information Processing Systems*, 16, 2003.

571

572 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
573 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

574

575 Jerome H Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
576 models via coordinate descent. *Journal of statistical software*, 33(1):1–22, 2010.

577

578 Etienne Gauthier, Francis Bach, and Michael I Jordan. Adaptive coverage policies in conformal
579 prediction. *arXiv preprint arXiv:2510.04318*, 2025.

580

581 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guar-
582 antees. *arXiv preprint arXiv:2305.12616*, 2023.

583

584 Nicolas Gillis and Stephen A Vavasis. Fast and robust recursive algorithms for separable nonnegative
585 matrix factorization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(4):
586 698–714, 2013.

587

588 Leying Guan. Localized conformal prediction: A generalized inference framework for conformal
589 prediction. *Biometrika*, 110(1):33–50, 2023.

590

591 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The elements of statistical learning: data
592 mining, inference, and prediction*. Springer, 2009.

593

594 Thomas Hofmann. Probabilistic latent semantic indexing. In *Proceedings of the 22nd annual in-
595 ternational ACM SIGIR Conference on Research and Development in Information Retrieval*, pp.
596 50–57, 1999.

597

598 Rohan Hore and Rina Foygel Barber. Conformal prediction with local weights: randomization
599 enables local guarantees. *arXiv preprint arXiv:2310.07850*, 2023.

594 Jayoon Jang and Emmanuel Candès. Tight distribution-free confidence intervals for local quantile
 595 regression. *arXiv preprint arXiv:2307.08594*, 2023.
 596

597 Hamid Javadi and Andrea Montanari. Nonnegative matrix factorization via archetypal analysis.
 598 *Journal of the American Statistical Association*, 115(530):896–907, 2020.

599 Chancellor Johnstone and Eugène Ndiaye. Exact and approximate conformal inference in multiple
 600 dimensions. *arXiv preprint arXiv:2210.17405*, 2022.
 601

602 Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth. Batch multivalid confor-
 603 mal prediction. *arXiv preprint arXiv:2209.15145*, 2022.

604 George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions. *Journal of
 605 mathematical analysis and applications*, 33(1):82–95, 1971.
 606

607 Olga Klopp, Maxim Panov, Suzanne Sigalla, and Alexandre Tsybakov. Assigning topics to docu-
 608 ments by successive projections. *arXiv preprint arXiv:2107.03684*, 2021.
 609

610 Roger Koenker. *Quantile regression*, volume 38. Cambridge university press, 2005.

611 Youjuan Li, Yufeng Liu, and Ji Zhu. Quantile regression in reproducing kernel hilbert spaces.
 612 *Journal of the American Statistical Association*, 102(477):255–268, 2007.
 613

614 Xiao-Li Meng. Posterior predictive p -values. *The annals of statistics*, 22(3):1142–1160, 1994.
 615

616 Soundouss Messoudi, Sébastien Destercke, and Sylvain Rousseau. Copula-based conformal predic-
 617 tion for multi-target regression. *Pattern Recognition*, 120:108101, 2021.

618 Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
 619 machines for regression. In *Machine learning: ECML 2002: 13th European conference on ma-
 620 chine learning Helsinki, Finland, August 19–23, 2002 proceedings 13*, pp. 345–356. Springer,
 621 2002.

622 Gideon Schwarz. Estimating the dimension of a model. *The annals of statistics*, pp. 461–464, 1978.

624 Hooman Shahrokhi, Devjeet Raj Roy, Yan Yan, Venera Arnaoudova, and Janaradhan Rao Doppa.
 625 Conformal prediction sets for deep generative models via reduction to conformal regression. *arXiv
 626 preprint arXiv:2503.10512*, 2025.
 627

628 Jiayuan Su, Jing Luo, Hongwei Wang, and Lu Cheng. Api is enough: Conformal prediction for
 629 large language models without logit-access.(2024). URL <https://arxiv.org/abs/2403.1216>, 2024.

630 Jiankai Sun, Yiqi Jiang, Jianing Qiu, Parth Nobel, Mykel J Kochenderfer, and Mac Schwager. Con-
 631 formal prediction for uncertainty-aware planning with diffusion dynamics model. *Advances in
 632 Neural Information Processing Systems*, 36:80324–80337, 2023.

633 Ichiro Takeuchi, Kaname Nomura, and Takafumi Kanamori. The entire solution path of kernel-based
 634 nonparametric conditional quantile estimator. In *The 2006 IEEE International Joint Conference
 635 on Neural Network Proceedings*, pp. 153–158. IEEE, 2006.

636 Kean Ming Tan, Heather Battey, and Wen-Xin Zhou. Communication-constrained distributed quan-
 637 tile regression with optimal statistical guarantees. *Journal of machine learning research*, 23(272):
 638 1–61, 2022.
 639

640 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical
 641 Society Series B: Statistical Methodology*, 58(1):267–288, 1996.
 642

643 Ryan J Tibshirani. *The solution path of the generalized lasso*. Stanford University, 2011.
 644

645 Madeleine Udell and Alex Townsend. Big data is low rank. *SIAM News*, 52(9), 2019.
 646

647 Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Asian conference on
 648 machine learning*, pp. 475–490. PMLR, 2012.

648 Vladimir Vovk, David Lindsay, Ilya Nouretdinov, and Alex Gammerman. Mondrian confidence
649 machine. *Technical Report*, 2003.
650

651 Håkan Wieslander, Philip J Harrison, Gabriel Skogberg, Sonya Jackson, Markus Fridén, Johan
652 Karlsson, Ola Spjuth, and Carolina Wählby. Deep learning with conformal prediction for hi-
653 erarchical analysis of large-scale whole-slide tissue images. *IEEE journal of biomedical and*
654 *health informatics*, 25(2):371–380, 2020.

655 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
656 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
657 ing. *Chemical science*, 9(2):513–530, 2018.

658 Chen Xu, Hanyang Jiang, and Yao Xie. Conformal prediction for multi-dimensional time series by
659 ellipsoidal sets. *arXiv preprint arXiv:2403.03850*, 2024.
660

661 Yao Zhang and Emmanuel J Candès. Posterior conformal prediction. *arXiv preprint*
662 *arXiv:2409.19712*, 2024.

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A NOTATION AND RELATED WORKS
703704 A.1 NOTATION
705

706 For any set \mathcal{G} , let $|\mathcal{G}|$ denote its cardinality. Given a vector $\eta \in \mathbb{R}^p$, we use $\eta(i)$ or η_i to represent the
707 i -th entry. For any $n \in \mathbb{N}$, let $[n]$ denote the index set $\{1, \dots, n\}$. Throughout this paper, we denote
708 the sets of variables with simple bold letters (e.g. $\mathbf{X} \in \mathbb{R}^{n \times p} = (X_1, X_2, \dots, X_n)^\top$). Let capital
709 letter P denote the joint distribution and P_X denote the marginal distribution of X .

710 Given a value z , let $[z]_+ = \max(z, 0)$ and $[z]_- = \max(-z, 0)$. Let $\mathcal{P}_{\mathcal{B}_n}, \mathcal{P}_{\mathcal{B}_\infty} : \mathbb{R}^K \rightarrow \mathbb{R}^K$ denote
711 the projection operators onto sets $\mathcal{B}_n, \mathcal{B}_\infty$, respectively. We use $Q_{1-\alpha}$ to denote the empirical $1 - \alpha$
712 quantile of the conformal scores.

713 Let a_n and b_n be sequences of real-valued random variables or deterministic quantities indexed by
714 $n \in \mathbb{N}$. We use the following asymptotic notation: $a_n = O(b_n)$ means there exists a constant $c > 0$
715 such that $|a_n| \leq c|b_n|$ for all sufficiently large n . $a_n = O_{\mathbb{P}}(b_n)$ means that for any $\epsilon > 0$, there
716 exists $c_\epsilon > 0$ and $N_\epsilon \in \mathbb{N}$ such that $\mathbb{P}(|a_n| > c_\epsilon|b_n|) < \epsilon$, for all $n \geq N_\epsilon$. We use small c to
717 represent a constant, which may vary line by line.

719 A.2 RELATED WORKS ON CONFORMAL PREDICTION
720

721 In standard split conformal prediction, the data is partitioned into three sets: the training set which
722 is used to train a predictive model $\hat{\mu}(\cdot)$, the calibration set $\{X_i, Y_i\}_{i \in [n]}$ which is used to calibrate
723 conformity scores, and finally, the test point X_{n+1} with unknown response Y_{n+1} . Throughout this
724 paper, we work with split conformal prediction, which generates the prediction interval for Y_{n+1} as:

$$725 \hat{C}(X_{n+1}) = \{y : S(X_{n+1}, y) \leq q^*\}, \quad (12)$$

726 where q^* is chosen as the $(1 - \alpha)$ -quantile of the set $\{S_i\}_{i \in [n+1]}$. The resulting prediction set
727 contains all values y for which the conformity score $S(X_{n+1}, y)$ is sufficiently small.

728 We demonstrate below how the various coverage can be achieved depending on the information
729 available about the predictive model $\hat{\mu}(\cdot)$.

730 **Marginal coverage** Suppose we know that the predictive model performs equally well across the
731 entire feature space, and the $(n + 1)$ -th conformity score is drawn i.i.d. from the same distribution
732 as the first n scores. By the replacement lemma in Angelopoulos et al. (2024), the prediction set in
733 equation 12 can be obtained by the threshold $q^0 = Q_{1-\alpha}(\sum_{i \in [n]} \frac{1}{n+1} \delta_{S_i} + \frac{1}{n+1} \delta_{+\infty})$. It is well
734 known that the set $\hat{C}^0(X_{n+1})$ given by q^0 has marginal validity such that $\mathbb{P}(Y_{n+1} \in \hat{C}^0(X_{n+1})) \geq$
735 $1 - \alpha$ (Papadopoulos et al., 2002). As an alternative strategy, Gibbs et al. (2023) proposed obtaining
736 coverage threshold q^0 in equation 12 using an intercept-only quantile regression within the constant
737 function class \mathcal{F}^0 . Let S denote an imputed value for the unknown score S_{n+1} and define the pinball
738 loss for level α as $\ell_\alpha(z) = (1 - \alpha)[z]_+ + \alpha[z]_-$. Then they fit
739

$$740 \hat{q}_S^0 := \arg \min_{q \in \mathcal{F}^0} \frac{1}{n+1} \sum_{i \in [n]} \ell_\alpha(S_i - q) + \frac{1}{n+1} \ell_\alpha(S - q), \quad (13)$$

741 and output the nonrandomized prediction set $\hat{C}^0(X_{n+1}) = \{y : S(X_{n+1}, y) \leq \hat{q}_{S(X_{n+1}, y)}^0\}$. They
742 show that this procedure also satisfies the marginal validity guarantee.

743 Applying conformal prediction in settings with latent structure is nontrivial. There exist several
744 challenges for conformal prediction with low-rank structure: (1) misspecification of $\hat{\mu}(\cdot)$ may pre-
745 vent the latent structure of X from being faithfully reflected in the distribution of $S | X$; (2) if the
746 embedding $\hat{\pi}(\cdot)$ is inaccurate or incomplete so that there are few neighbors near the test point in the
747 embedding space, prediction intervals can become overly conservative or excessively wide; and (3)
748 an inappropriate choice of rank K may undermine the conditional validity.

749 One prominent approach is Posterior Conformal Prediction (PCP) (Zhang & Candès, 2024), which
750 has been detailed as follows.

751 **Posterior conformal prediction** Zhang et al. Zhang & Candès (2024) proposed a posterior con-
752 formal prediction (PCP) framework under the assumption that X exhibits a latent low-rank structure,

and the predictive model $\hat{\mu}(\cdot)$ is well-specified. Specifically, they assume the conditional distribution of the conformity score $S | X$ follows a mixture model:

$$S_i | X_i \sim \sum_{k \in [K]} \pi_k(X_i) \zeta_k,$$

where ζ_1, \dots, ζ_K are distinct probability densities, and $\pi_k(X_i)$ represent cluster membership probabilities. Adapting ideas from weighted conformal prediction, the prediction set is constructed as:

$$\hat{C}^{\text{PCP}}(X_{n+1}) = \left\{ y : S(X_{n+1}, y) \leq Q_{1-\alpha} \left(\sum_{i \in [n]} w_i \delta_{S_i} + w_{n+1} \delta_{+\infty} \right) \right\}.$$

where weights $\{w_i\}_{i \in [n+1]}$ are determined by the similarity between latent structures. Let $m\hat{\pi} \sim \text{Multinomial}(m, \pi(X_{n+1}))$. In the randomized setting, the weights $w_{i, \text{rand}}$ are proportional to $\exp \left\{ -\sum_{k=1}^K m\hat{\pi}_k \cdot \log \frac{\pi_k(X_{n+1})}{\pi_k(X_i)} \right\}$. In the nonrandomized setting, weights are proportional to $\exp \left\{ -mD_{\text{KL}}(\pi(X_{n+1}) \| \pi(X_i)) \right\}$. Under the randomized setting, Zhang & Candès (2024) show that PCP provides conservative conditional coverage guarantees.

$$1 - \alpha \leq \mathbb{P} \left(Y_{n+1} \in \hat{C}_{\text{rand}}^{\text{PCP}}(X_{n+1}) | \hat{\pi} \right) \leq 1 - \alpha + \mathbb{E} \left[\max_{i \in [n+1]} w_{i, \text{rand}} | \hat{\pi} \right]. \quad (14)$$

This approach relies on the assumption that the predictive model $\hat{\mu}(\cdot)$ is well-specified, so that the latent structure of \mathbf{X} can be faithfully reflected in the mixture structure of the conditional distribution of the scores given X . When $\hat{\mu}(\cdot)$ is inaccurate, the scores S can exhibit higher variability, and the distribution of $S | X$ may not display a meaningful latent structure.

Instead of assuming latent structure in the noise model $S | X$, we directly leverage latent embeddings in the covariates \mathbf{X} . By calibrating conformity scores as a function of $\hat{\pi}(X)$ within an RKHS, rather than assuming their relationships a priori, our method remains robust under model misspecification and provides reliable uncertainty quantification.

Localized conformal prediction Another related method is randomly-localized conformal prediction (RLCP) Hore & Barber (2023), which aims to capture heterogeneity in the conformity score by adjusting the distribution based on proximity to the test point X_{n+1} . Specifically, LCP assigns higher weights, instead of $1/(n+1)$ for q^0 in marginal coverage, to data points closer to the test point X_{n+1} . These weights on δ_{S_i} , for instance, are proportional to the kernel distance $\exp(-\gamma \|X_i - X_{n+1}\|^2)$ for a bandwidth parameter $\gamma > 0$. While Hore & Barber (2023) showed LCP achieves marginal validity under a randomization step, increasing the bandwidth parameter γ can significantly widen the prediction interval, especially in high-dimensional settings.

To do the low-rank projection, RLCP applies a Gaussian reweighting to conformity scores based on distances in a latent embedding space between the test point and calibration points. This approach relies on carefully chosen embeddings that maximize the mutual information between conformity scores and covariates. When either $\hat{\mu}(\cdot)$ or $\hat{\pi}(\cdot)$ is inaccurate or incomplete so that there are few neighbors near the test point in the embedding space, RLCP often produces overly conservative or excessively wide prediction intervals by increasing γ .

In contrast, our method uses λ -path adapted to the local calibration density, allowing greater flexibility in sparse regions. This selects (γ, λ) to leverage the global low-rank structure and produce more stable, calibrated prediction intervals (See Figure 1).

Conditional conformal Suppose no prior information is available about the covariate shift, unlike the settings discussed in LCP and PCP. In this general setting, let $\psi : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel, and let \mathcal{F}_ψ denote the associated RKHS with an inner product $\langle \cdot, \cdot \rangle_\psi$ and a norm $\|\cdot\|_\psi$. Gibbs et al. (2023) proposed the regularized kernel quantile regression for class $\mathcal{F}^{\text{RKHS}}$ in equation 2 with a fixed hyperparameter $\lambda > 0$:

$$\hat{g}_S^{CC} := \arg \min_{g \in \mathcal{F}^{\text{RKHS}}} \frac{1}{n+1} \sum_{i \in [n]} \ell_\alpha(S_i - g(X_i)) + \frac{1}{n+1} \ell_\alpha(S - g(X_{n+1})) + \lambda \|g_\psi\|_\psi^2. \quad (15)$$

They constructed the nonrandomized prediction set as $\hat{C}^{cc}(X_{n+1}) := \{y : S(X_{n+1}, y) \leq \hat{g}_{S(X_{n+1}, y)}^{CC}(X_{n+1})\}$

810 **Lemma 3 (Theorem 3 in Gibbs et al. (2023))** *Let $\psi : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a positive definite kernel,
811 and $\Phi : \mathcal{X} \rightarrow \mathbb{R}^d$ a finite dimensional feature map. Consider the RKHS-based function class
812 \mathcal{F}^{RKHS} associated with ψ and Φ . Assume that $\{(X_i, S_i)\}_{i \in [n+1]}$ are exchangeable. Then for all
813 $f \in \mathcal{F}^{RKHS}$, we have*

$$814 \quad \mathbb{E} \left[f(X_{n+1}) \cdot \left(\mathbf{1}\{Y_{n+1} \in \hat{C}^{CC}(X_{n+1})\} - (1 - \alpha) \right) \right] = -2\lambda \mathbb{E} \left[\langle \hat{g}_{S_{n+1}, \psi}^{CC}, f_\psi \rangle \right] + |\epsilon_{int}|,$$

815 where the interpolation error ϵ_{int} satisfies $|\epsilon_{int}| \leq \mathbb{E} \left[f(X_i) \mathbf{1}\{S_i = \hat{g}_{S_{n+1}}^{CC}(X_i)\} \right]$.

816 The interpolation term ϵ_{int} can be removed when randomized prediction sets are used (see Lemma
817 4).

818 Similar to the challenges faced in localized conformal prediction, solving the optimization problem
819 equation 4 using a kernel ψ defined over the original high-dimensional feature space can lead to
820 oversmoothing and wider prediction interval. In particular, when $p \gg n$ the RKHS norm $\|g_\psi\|_\psi$
821 becomes large unless regularization λ is increased significantly, which in turn flattens the estimated
822 quantile function $\hat{g}_S(\cdot)$. As a result, the prediction set may have poor local adaptivity, leading to
823 wider intervals and coverage gaps.

824 B COMPUTATIONAL DETAILS FOR SPEEDCP

825 B.1 LOW-RANK PROJECTION USING ADMIXTURE MODEL

826 In this work, we consider high-dimensional covariates $X \in \mathbb{R}^p$ with $p \gg n$ and denote its low-rank
827 representation map as $\hat{\pi} : \mathcal{X} \rightarrow \mathbb{R}^K$ with $K \ll p$. A simple choice of $\hat{\pi}(\cdot)$ is principal component
828 analysis (PCA), where $\hat{\pi}(X) = X^\top \mathbf{V}$, with K principal directions $\mathbf{V} \in \mathbb{R}^{p \times K}$. Alternatively, proba-
829 bilistic models such as latent Dirichlet allocation (LDA) (Blei et al., 2003) provide interpretable
830 embeddings, representing each X as a mixture of latent components $\{\zeta_k\}_{k \in [K]}$. In deep learning
831 models, one can also consider applying low-rank projections on layer embeddings. For the simula-
832 tion experiments and experiments with ArXiv abstracts, we consider the admixture model under the
833 probabilistic Latent Semantic Indexing (pLSI) (Hofmann, 1999),

$$834 \quad m X_i \mid W_i = w_i \sim \text{Multinomial}(m, \sum_{k \in [K]} w_i(k) \zeta_k) \quad (16)$$

835 where $W_i \in \Delta^{K-1}$ denotes the latent mixture proportions and ζ_k represents the latent distribution.
836 m denotes the document length. This shows $\mathbb{E}[X_i \mid W_i] = \zeta^\top W_i$. However, this decomposi-
837 tion in general may not be unique, but under the separability condition Donoho & Stodden (2003) or
838 anchor word condition Arora et al. (2012), ζ is identifiable.

839 When applying RKHS methods to compositional data such as mixture proportions $\hat{\pi}(X)$, it is essen-
840 tial to first transform the simplex into Euclidean space. If we perform kernel regression or smoothing
841 over $\hat{\pi}$ directly, the output might be outside the simplex. Suppose $\hat{\pi}(X_i)$ lies in the open simplex
842 such that all entries are positive, then the log-ratio transformation (such as additive, centered, and
843 isometric log-ratio transformations) (Aitchison, 1982) can be used.

844 **Centered log-ratio transformation (clr)** If $\hat{\pi}_k(X_i) > 0$ for all i, k ,

$$845 \quad \hat{\theta}_{ik} := \log \hat{\pi}_k(X_i) - \frac{1}{K} \sum_{j \in [K]} \log \hat{\pi}_j(X_i)$$

846 Given this transformation, we define the kernel similarity between points as:

$$847 \quad d_\pi(X_i, X_j) := \|\hat{\theta}_i - \hat{\theta}_j\|^2; \quad \psi^*(X_i, X_j) = \exp \left\{ -\gamma \|\hat{\theta}_i - \hat{\theta}_j\|^2 \right\}$$

848 **pLSI using SVD** Let $\mathbf{X} := \mathbf{X}_{train} \cup \mathbf{X}_{calib} \cup \mathbf{X}_{test} \in \mathbb{R}^{n_{all} \times p}$. Here, we present one of the
849 algorithms used to estimate the latent embeddings $\boldsymbol{\pi} := \boldsymbol{\pi}(\mathbf{X}) = \mathbb{E}[\mathbf{W} \mid \mathbf{X}]$ from \mathbf{X} . When
850 $m \rightarrow \infty$, the posterior mean $\mathbb{E}[W_i \mid X_i]$ concentrates around the true mixture proportion w_i .

864 Assume π and ζ are full-rank matrices and the K -th largest singular value satisfies $\lambda_K(\pi\zeta^\top) > 0$,
 865 we start with the singular value decomposition of matrix $\pi\zeta^\top$:
 866

$$867 \pi\zeta^\top = \Xi\Lambda\mathbf{V}^\top \implies \Xi = \pi\zeta^\top\mathbf{V}\Lambda^{-1} := \pi\mathbf{H}$$

869 with some nonsingular matrix H . Notice that each row of $\pi \in \mathbb{R}^{n_{all} \times K}$ is a probability vector
 870 (i.e., nonnegative and sums to 1). Given this simplex structure, we can recover the matrix H from
 871 Ξ using nonnegative matrix factorization techniques. In particular, methods such as the *Successive*
 872 *Projection Algorithm* (SPA) Araújo et al. (2001); Gillis & Vavasis (2013) and *Archetypal Analysis*
 873 Javadi & Montanari (2020) are effective in recovering the extreme points (vertices) of the convex
 874 hull.

875 **Algorithm 2** pLSI using SVD Klopp et al. (2021)

877 **Input:** $\mathbf{X} \in \mathbb{R}^{n_{all} \times p}$, latent dimension K

878 **Output:** $\hat{\pi}_{train}, \hat{\pi}_{calib}, \hat{\pi}_{test} = \hat{\pi}(\mathbf{X}, K)$

879 1. Get the rank- K SVD of $\mathbf{X} = \hat{\Xi}\hat{\Lambda}\hat{\mathbf{V}}^\top$

880 2. (Vertex hunting algorithm) Apply the vertex hunting algorithm on the rows of $\hat{\Xi}$ to get the
 881 vertices $\hat{\mathbf{H}}$

882 3. Set $\hat{\pi}(\mathbf{X}) = \hat{\Xi}\hat{\mathbf{H}}^{-1}$ and thus $\hat{\pi}(X_i) = (\hat{\mathbf{H}}^{-1})^\top\Xi_i$.

883

884

885

886

887 **B.2 DERIVATION OF λ -PATH AND S -PATH**

888 In this section, we provide technical details on our path-tracing approaches of λ and S . Our approach
 889 for λ -path is inspired by the work of Li et al. (2007), who derives the solution path of λ in a RKHS
 890 quantile regression setting. Similar approaches have been studied extensively for the lasso Tibshirani
 891 (1996; 2011), generalized linear models Friedman et al. (2010), and quantile regression Koenker
 892 (2005); Li et al. (2007). In our work, we build on the solution path algorithm for RKHS quantile
 893 regression developed by Li et al. (2007) and adapt it to our RKHS function class \mathcal{F}^* , which has an
 894 extra linear component $\Phi^*(X)^\top\eta_S$,

$$895 \mathcal{F}^* = \{f_{\psi^*}(\cdot) + \Phi^*(\cdot)^\top\eta : f_{\psi^*} \in \mathcal{F}_{\psi^*}, \eta \in \mathbb{R}^d\}. \quad (17)$$

896 We begin with some preliminaries.

897 Denote $S_i = S(X_i, Y_i)$ as the score of the i^{th} point in the calibration set for $i \in [n]$ and S_{n+1} as
 898 the score of a test point. To decide the score cutoff we use for a prediction set, we proceed to fit a
 899 RKHS quantile regression on n calibration points together with the test point. Since the true score
 900 of the test point, S_{n+1} is unknown, we set the score of the test point, S_{n+1} , as an arbitrary value S .
 901 Let $\alpha \in (0, 1)$ be a user-specified miscoverage level. The objective then becomes,

$$902 \hat{g}_S = \arg \min_{g \in \mathcal{F}^*} \frac{1}{n+1} \sum_{i \in [n]} \ell_\alpha(S_i - g(X_i)) + \frac{1}{n+1} \ell_\alpha(S - g(X_{n+1})) + \frac{\lambda}{2} \|g_{\psi^*}\|_{\psi^*}^2, \quad (18)$$

903 with the known solution in finite form:

$$904 \hat{g}_S(X) = \Phi^*(X)^\top\hat{\eta}_S + \frac{1}{\lambda} \sum_{i=1}^{n+1} \hat{v}_{S,i} \psi^*(X, X_i), \quad (19)$$

905 We define $\Phi^*(X) \in \mathbb{R}^d$ as any feature representation of X and $\eta_{S,j}$ as the coefficient of $\Phi^*(X)_j$,
 906 $j \in [d]$. Plugging this in, the objective becomes,

$$907 \min_{\eta_S, v_S} \sum_{i=1}^{n+1} \ell_\alpha(S_i - \Phi^*(X_i)^\top\eta_S - \frac{1}{\lambda} \sum_{i'=1}^{n+1} v_{S,i'} \psi^*(X_i, X_{i'})) + \frac{1}{2\lambda} \sum_{i,i'=1}^{n+1} v_{S,i} v_{S,i'} \psi^*(X_i, X_{i'}).$$

918 with the Lagrangian primal function as
 919

$$\begin{aligned}
 920 \quad L_p = & (1 - \alpha) \sum_{i=1}^{n+1} p_i + \alpha \sum_{i=1}^{n+1} q_i + \frac{1}{2\lambda} v_S^\top \Psi^* v_S \\
 921 \quad & + \sum_{i=1}^{n+1} \sigma_i (S_i - g_S(X_i) - p_i) - \sum_{i=1}^{n+1} \tau_i (S_i - g_S(X_i) + q_i) \\
 922 \quad & - \sum_{i=1}^{n+1} \kappa_i p_i - \sum_{i=1}^{n+1} \rho_i q_i,
 \end{aligned} \tag{20}$$

923 and $\sigma, \tau, \kappa, \rho$ are nonnegative Lagrangian multipliers. Here, $\Psi^* \in \mathbb{R}^{(n+1) \times (n+1)}$ denotes the kernel
 924 matrix where its (i, i') element denotes $\psi^*(X_i, X_{i'})$. Setting the derivatives of L_p at 0,
 925

$$\begin{aligned}
 926 \quad \frac{\partial L_p}{\partial v_{S,i}} : v_{S,i} &= \sigma_i - \tau_i \\
 927 \quad \frac{\partial L_p}{\partial \eta_{S,j}} : \sum_{i=1}^{n+1} \sigma_i \Phi^*(X_i)_j &= \sum_{i=1}^{n+1} \tau_i \Phi^*(X_i)_j, \quad j \in [d] \\
 928 \quad \frac{\partial L_p}{\partial p_i} : \sigma_i &= 1 - \alpha - \kappa_i \\
 929 \quad \frac{\partial L_p}{\partial q_i} : \tau_i &= \alpha - \rho_i.
 \end{aligned} \tag{21}$$

930 The Karush–Kuhn–Tucker (KKT) conditions give
 931

$$\begin{aligned}
 932 \quad \sigma_i (S_i - g_S(X_i) - p_i) &= 0 \\
 933 \quad \tau_i (S_i - g_S(X_i) + q_i) &= 0 \\
 934 \quad \kappa_i p_i &= 0 \\
 935 \quad \rho_i q_i &= 0
 \end{aligned} \tag{22}$$

936 Since Lagrangian multipliers are nonnegative, $0 \leq \sigma_i \leq 1 - \alpha$ and $0 \leq \tau_i \leq \alpha$, combining
 937 equation 21 and equation 22, we can easily see that,
 938

$$\begin{aligned}
 939 \quad S_i - g_S(X_i) > 0 \Rightarrow p_i > 0, \kappa_i = 0, \sigma_i = 1 - \alpha, \tau_i = 0 \Rightarrow v_{S,i} &= 1 - \alpha \\
 940 \quad S_i - g_S(X_i) < 0 \Rightarrow q_i > 0, \rho_i = 0, \tau_i = \alpha, \sigma_i = 0 \Rightarrow v_{S,i} &= -\alpha \\
 941 \quad S_i - g_S(X_i) = 0 \Rightarrow p_i = q_i = 0, \sigma_i \in (0, 1 - \alpha], \tau_i \in (0, \alpha] \Rightarrow v_{S,i} &\in (-\alpha, 1 - \alpha)
 \end{aligned} \tag{23}$$

942 With $\hat{r}_{S,i} := S_i - \hat{g}_S(X_i)$, the KKT conditions induce three index sets:
 943

$$E := \{i : \hat{r}_{S,i} = 0, \hat{v}_{S,i} \in (-\alpha, 1 - \alpha)\}, \tag{24}$$

$$L := \{i : \hat{r}_{S,i} < 0, \hat{v}_{S,i} = -\alpha\}, \tag{25}$$

$$R := \{i : \hat{r}_{S,i} > 0, \hat{v}_{S,i} = 1 - \alpha\}. \tag{26}$$

944 B.3 DERIVATION OF λ -PATH

945 We use λ -path to tune the regularization (or smoothness) parameter λ , which we combine with
 946 cross validation on the kernel bandwidth γ to determine the optimal hyperparameter pair. The same
 947 equation 18–equation 24 hold, but the RKHS quantile regression is now estimated with **m separate**
 948 **points**. The motivation for this is to fix the hyperparameters before constructing prediction sets,
 949 which is necessary for our theoretical guarantees. The index sets (E, L, R) evolve with different λ
 950 values. We denote them as $(E(\lambda), L(\lambda), R(\lambda))$.
 951

952 We start with a sufficiently large initial value λ^1 and decrease it toward 0. As λ decreases, data
 953 points move from the left of the elbow, stay in the elbow, then move to the right of the elbow (or
 954 vice versa). Any change in the elbow set is denoted as an “event”. The next λ is updated as the
 955 largest value where such event occurs. At each update, we calculate \hat{v}_i for the points in $E(\lambda)$ since
 956 $\{\hat{v}_{i'}\}_{i' \in [m]}$ in $L(\lambda), R(\lambda)$ are fixed.
 957

In this section, we let the columns of m points projection $\Phi^* \in \mathbb{R}^{m \times d}$ are linearly independent. Denote Φ_A^* as a submatrix of Φ^* whose row indices are in set A . Also denote Ψ_{AB}^* as a submatrix of $\Psi^* \in \mathbb{R}^{m \times m}$ whose row indices are in set A and column indices are in set B .

B.3.1 PROOF OF PROPOSITION 1

We now prove Proposition 1, which states affine relationship of $\hat{v}_{i'}(\lambda)$'s and $\hat{\eta}(\lambda)$ on λ between two change points of λ . If $\hat{v}_{i'}(\lambda)$'s and $\hat{\eta}(\lambda)$ are affine in λ between any change points, then it holds that they are piecewise-linear on λ , which makes the solution path tractable for any $\lambda \leq \lambda^1$. We provide a more detailed version of the proof in Section B.4.1, which has identical steps as Proposition 1.

Proof. Let $\{\lambda^l\}_{l=1,2,3,\dots}$ be the change points when an event occurs. Consider an interval $\lambda^{l+1} \leq \lambda \leq \lambda^l$ during which the sets stay the same, i.e., $(E(\lambda), L(\lambda), R(\lambda)) = (E(\lambda^l), L(\lambda^l), R(\lambda^l))$. Denote $\hat{v}_{i'}(\lambda)$ and $\hat{\eta}(\lambda)$ as the solution of equation 18 given λ . In this proof, denote $E = E(\lambda) = E(\lambda^l)$, $L = L(\lambda) = L(\lambda^l)$, and $R = R(\lambda) = R(\lambda^l)$. Define two quantities.

$$d_E := \frac{1}{\lambda}((- \alpha) \Psi_{EL}^* \mathbf{1}_L + (1 - \alpha) \Psi_{ER}^* \mathbf{1}_R), \quad \Pi_E := I_{|E|} - \Phi_E^* (\Phi_E^{*\top} \Phi_E)^{-1} \Phi_E^{*\top}.$$

Let $S_E := (S_{i'})_{i' \in E}$, $d_E := (d_{i'})_{i' \in E}$, $\Phi_E^* \in \mathbb{R}^{|E| \times p}$, $\Psi_{EE}^* \in \mathbb{R}^{|E| \times |E|}$. By the definition of the elbow set combined with equation 19,

$$S_E = \Phi_E^* \hat{\eta}(\lambda) + \frac{1}{\lambda} \Psi_{EE}^* \hat{v}_E(\lambda) + d_E. \quad (27)$$

Projecting with Π_E eliminates $\hat{\eta}(\lambda)$,

$$\Pi_E \Psi_{EE}^* \hat{v}_E(\lambda) = \lambda \Pi_E (S_E - d_E). \quad (28)$$

Moreover, the second KKT constraint in equation 21 gives $\Phi^{*\top} \hat{v} = 0$. This is equivalent to,

$$\Phi_E^{*\top} \hat{v}_E(\lambda) = \alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R.$$

Define $\mathbf{A} := \Pi_E \Psi_{EE}^* \Pi_E$. Using its Moore–Penrose inverse (denoted by superscript \dagger),

$$\begin{aligned} \Pi_E \hat{v}_E(\lambda) &= \lambda \mathbf{A}^\dagger \Pi_E (S_E - d_E) \\ &\quad - \alpha \mathbf{A}^\dagger \Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E)^\dagger \Phi_L^{*\top} \mathbf{1}_L \\ &\quad + (1 - \alpha) \mathbf{A}^\dagger \Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E)^\dagger \Phi_R^{*\top} \mathbf{1}_R. \end{aligned} \quad (29)$$

Thus, the minimum–norm solution on $\text{Im}(\Pi_E)$ is,

$$\begin{aligned} \hat{v}_E(\lambda) &= \lambda \mathbf{A}^\dagger \Pi_E (S_E - d_E) \\ &\quad + [I_{|E|} - \mathbf{A}^\dagger \Pi_E \Psi_{EE}^*] \Phi_E^* (\Phi_E^{*\top} \Phi_E)^\dagger [\alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R]. \end{aligned} \quad (30)$$

Thus, $\hat{v}_E(\lambda)$ is *affine in λ* on the interval. From equation 27,

$$\hat{\eta}(\lambda) = (\Phi_E^{*\top} \Phi_E)^{-1} \Phi_E^{*\top} \left[S_E - d_E - \frac{1}{\lambda} \Psi_{EE}^* \hat{v}_E(\lambda) \right], \quad (31)$$

hence $\hat{\eta}(\lambda)$ is *affine in $1/\lambda$* . We have shown that,

$$\hat{v}_E(\lambda) = a + \lambda a, \quad \hat{\eta}(\lambda) = a^{(1)} + \frac{a^{(1)}}{\lambda}. \quad (32)$$

with $a, b \in \mathbb{R}^{|E|}$, $a^{(1)}, b^{(1)} \in \mathbb{R}^d$ constant on the segment. For $i \in L(\lambda), R(\lambda)$, $\hat{v}_{i'}$ is constant, making it affine in λ as well. Finally, for any $i' \in [m]$,

$$\begin{aligned} \hat{g}(X_{i'}) &= \Phi_{i'}^* (a^{(1)} + \frac{a^{(1)}}{\lambda}) + \frac{1}{\lambda} \Psi_{i',E}^* (a + \lambda a) + d_{i'} \\ &= \frac{1}{\lambda} (\Phi_{i'}^* a^{(1)} + \Psi_{i',E}^* a) + \Phi_{i'}^* a^{(1)} + \Psi_{i',E}^* a + d_{i'}, \end{aligned} \quad (33)$$

which makes the residual $r_{i'}(\lambda) = S_{i'} - \hat{g}(X_{i'})$ affine again in $1/\lambda$ for $i' \in [m]$ on the interval. ■

1026 B.3.2 UPDATE OF λ^l
10271028 Let λ^l denote the value after the l^{th} event. The elbow set $E(\lambda^l)$ is updated when one of the following
1029 events occurs,1030 • A point i in either $L(\lambda^l)$ or $R(\lambda^l)$ enters the elbow set (residual $S_i - \hat{g}(X_i)$ becomes 0).
1031 • A point i in $E(\lambda^l)$ leaves to the left or right set ($\hat{v}_i(\lambda), i \in E(\lambda^l)$ becomes $-\alpha$ or $1 - \alpha$).1032 We take λ^{l+1} as the largest $\lambda \leq \lambda^l$ that triggers one of the events and update (E, L, R) accordingly.
1033 Here, let $E = E(\lambda) = E(\lambda^l)$. Denote the linear parameter $\hat{\eta}_j^\lambda = \lambda \hat{\eta}_j(\lambda)$ for $j \in [d]$. From
1034 equation 19, for $\lambda^{l+1} \leq \lambda \leq \lambda^l$, the fit at λ is,
1035

1036
$$\begin{aligned} \hat{g}(X_{i'}) &= \Phi_{i'}^* \hat{\eta}(\lambda) + \frac{1}{\lambda} \Psi_{i'}^* \hat{v}(\lambda) \\ &= \Phi_{i'}^* \hat{\eta}(\lambda) + \frac{1}{\lambda} (\Psi_{i',E}^* \hat{v}_E(\lambda) - \alpha \Psi_{i',L}^* \mathbf{1}_L + (1 - \alpha) \Psi_{i',R}^* \mathbf{1}_R) \\ &= \frac{1}{\lambda} (\Phi_{i'}^* \hat{\eta}^\lambda + \Psi_{i',E}^* \hat{v}_E(\lambda) + d_{i'}), \end{aligned}$$

1037 where
1038

1039
$$d_{i'} := -\alpha \Psi_{i',L}^* \mathbf{1}_L + (1 - \alpha) \Psi_{i',R}^* \mathbf{1}_R.$$

1040 Let $\hat{g}^l(X_{i'})$ be the estimated function with λ^l . Now, we can express $\hat{g}(X_{i'})$ with λ^l and $\hat{g}^l(X_{i'})$,
1041

1042
$$\begin{aligned} \hat{g}(X_{i'}) &= \hat{g}(X_{i'}) - \frac{\lambda^l}{\lambda} \hat{g}^l(X_{i'}) + \frac{\lambda^l}{\lambda} \hat{g}^l(X_{i'}) \\ &= \frac{1}{\lambda} [\Phi_{i'}^* (\hat{\eta}^\lambda - \hat{\eta}^{\lambda^l}) + \Psi_{i',E}^* (\hat{v}(\lambda) - \hat{v}^l(\lambda)) + d_{i'} - d_{i'} + \lambda^l \hat{g}^l(X_{i'})] \\ &= \frac{1}{\lambda} [\Phi_{i'}^* (\hat{\eta}^\lambda - \hat{\eta}^{\lambda^l}) + \Psi_{i',E}^* (\hat{v}(\lambda) - \hat{v}^l(\lambda)) + \lambda^l \hat{g}^l(X_{i'})]. \end{aligned} \quad (34)$$

1043 Recall from the second KKT condition equation 21, we have $v_{i'} = \sigma_{i'} - \tau_{i'}$ and $\sum_{i'=1}^m (\sigma_{i'} - \tau_i) \Phi_{i',j}^* = \sum_{i'=1}^m v_{i'} \Phi_{i',j}^* = 0$ for $j = 1, \dots, d$.
10441045 Component-wise,
1046

1047
$$\Phi_E^{*\top} \hat{v}_E(\lambda) - \alpha \Phi_L^{*\top} \mathbf{1}_L + (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R = 0,$$

1048 and
1049

1050
$$\Phi_E^{*\top} \hat{v}_E(\lambda^l) - \alpha \Phi_L^{*\top} \mathbf{1}_L + (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R = 0,$$

1051 leading to
1052

1053
$$\Phi_E^{*\top} (\hat{v}_E(\lambda) - \hat{v}_E(\lambda^l)) = 0. \quad (35)$$

1054 Denote $\bar{v}_{i'} = \hat{v}_{i'}(\lambda) - \hat{v}_{i'}(\lambda^l)$ for $i' \in E$ and $\bar{\eta}_j = \hat{\eta}_j^\lambda - \hat{\eta}_j^{\lambda^l}$ for $j \in [d]$. For any $i \in E^l$, $\hat{g}(X_i) = S_i$.
1055 Let S_E be the stacked scores for E . Then, equation 34 becomes,
1056

1057
$$\Phi_E^* \bar{\eta} + \Psi_{EE}^* \bar{v} = (\lambda - \lambda^l) S_E$$

1058 Combining with equation 35 and representing in a matrix form,
1059

1060
$$\begin{aligned} \begin{pmatrix} \Phi_E^* & \Psi_{EE}^* \\ \mathbf{0} & \Phi_E^{*\top} \end{pmatrix} \begin{pmatrix} \bar{\eta} \\ \bar{v} \end{pmatrix} &= (\lambda - \lambda^l) \begin{pmatrix} S_E \\ \mathbf{0} \end{pmatrix} \\ \mathbf{A}^l \beta &= (\lambda - \lambda^l) \mathbf{S}_0 \\ a &= (\mathbf{A}^l)^{-1} \mathbf{S}_0, \end{aligned}$$

1080 where $a = \beta/(\lambda - \lambda^l)$. Let $a_u = \bar{\eta}/(\lambda - \lambda^l)$ and $a_v = \bar{v}/(\lambda - \lambda^l)$. Plugging a_u, a_v back to
 1081 equation 34, we reexpress the estimated function as a function of a ,

$$1083 \hat{g}(X_{i'}) = \frac{\lambda^l}{\lambda} [\hat{g}^l(X_{i'}) - h^l(X_{i'})] + h^l(X_{i'})$$

1084 where

$$1086 h^l(X_{i'}) = \Phi_{i'}^* a_u + \Psi_{i',E}^* a_v$$

1087 for $i' \in E$. Finally, to decide λ^{l+1} , we choose which event (whether a point enters or exits the elbow
 1088 set). The first event will happen for λ such that a point in $L(\lambda^l)$ or $R(\lambda^l)$ set satisfies $\hat{g}(X_{i'}) = S_{i'}$,
 1089 leading to,

$$1090 \lambda^{l+1,hit} = \max_{i' \in L(\lambda^l), R(\lambda^l)} \lambda^l \frac{\hat{g}^l(X_{i'}) - h^l(X_{i'})}{S_{i'} - h^l(X_{i'})} \mathbf{1} \left\{ \frac{\hat{g}^l(X_{i'}) - h^l(X_{i'})}{S_{i'} - h^l(X_{i'})} \leq 1 \right\}.$$

1093 Here, the indicator is to ensure that the updated λ is smaller than λ^l so that the path is monotonically
 1094 decreasing. To find λ such that a point leaves $E(\lambda^l)$,

$$1096 \lambda^{l+1,leave} = \lambda^l + \max_{i' \in E(\lambda^l)} \left\{ x \in \left\{ \frac{-\alpha - \hat{v}_{i'}(\lambda^l)}{a_{v,i'}}, \frac{1 - \alpha - \hat{v}_{i'}(\lambda^l)}{a_{v,i'}} \right\} \mid x \leq 0 \right\}$$

1099 We then take $\lambda^{l+1} = \max \{ \lambda^{l+1,hit}, \lambda^{l+1,leave} \}$. We also update $(E, L, R) =$
 1100 $(E(\lambda^{l+1}), L(\lambda^{l+1}), R(\lambda^{l+1}))$ accordingly based on which event occurred. Finally, parameters
 1101 $\hat{v}_{i'}(\lambda^{l+1})$'s, $\hat{\eta}(\lambda^{l+1})$ can be updated by solving for the new elbow,

$$1103 \begin{pmatrix} \frac{1}{\lambda} \Psi_{EE}^* & \Phi_E^* \\ \Phi_E^{*\top} & 0 \end{pmatrix} \begin{pmatrix} v \\ \eta \end{pmatrix} = \begin{pmatrix} S_E - \frac{1}{\lambda} (-\alpha \Psi_{EL}^* \mathbf{1}_L + (1 - \alpha) \Psi_{ER}^* \mathbf{1}_R) \\ \alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R \end{pmatrix} \quad (36)$$

1106 B.3.3 INITIALIZATION OF λ

1108 We describe our strategy for selecting a sufficiently large initial value λ^1 . At $\lambda^0 = \infty$, from equa-
 1109 tion 19, we can see that $\hat{g}(X_{i'}) = \Phi_{i'}^* \cdot \hat{\eta}$. In this case, we have only one point in the elbow, which
 1110 we denote as i^0 , that satisfies $S_{i^0} = \hat{g}(X_{i^0}) = \Phi_{i^0}^* \cdot \hat{\eta}$. We choose i^0 as the $(1 - \alpha)$ th quantile of
 1111 scores, i.e. $S_{i^0} = S_{\lceil (m)(1-\alpha) \rceil}$. Then, points that satisfy $S_{i'} < S_{i^0}$ are in $L(\lambda^0)$, and points such
 1112 that $S_{i'} > S_{i^0}$ are in $R(\lambda^0)$.

1113 To make the parameters identifiable, we set $\hat{\eta}_{j^*}(\lambda^0) = S_{i^0}/\Phi_{i^0,j^*}^*$ for one $j^* \in [d]$ and set other
 1114 parameters $\hat{\eta}_j(\lambda^0)$, $j \neq j^*$ to 0. When $\Phi_{i^0}^*$ is one-hot encoded, j^* is any index such that $\Phi_{i^0,j^*}^* = 1$.
 1115 If $\Phi_{i^0}^*$ is continuous, we choose j^* to be any arbitrary index. From equation 21, we have the
 1116 condition $\sum_{i'=1}^m \hat{v}_{i'} \Phi_{i',j}^* = 0$ for $j \in [d]$. Since i^0 is the only point in $E(\lambda^0)$. This leads to,

$$1119 \hat{v}_{i^0}(\lambda^0) = \frac{\alpha \sum_{i \in L(\lambda^0), R(\lambda^0)} \Phi_{i,j^*}^* - \sum_{i \in R(\lambda^0)} \Phi_{i,j^*}^*}{\Phi_{i^0,j^*}^*} \quad (37)$$

1122 Next, we find the next λ^1 , which will be the initial value of our solution path. This will be the largest
 1123 $\lambda < \infty$ such that another point from either $L(\lambda^0), R(\lambda^0)$ enters the elbow. Let i^1 be the new point
 1124 entering the elbow. Then, i^1 satisfies,

$$1125 S_{i^1} = \Phi_{i^1,j^*}^* \hat{\eta}_{j^*}(\lambda^0) + \frac{1}{\lambda^1} \left(\Psi_{i^1,i^0}^* \hat{v}_{i^0}(\lambda^0) - \alpha \Psi_{i^1,L(\lambda^0)}^* \mathbf{1}_{L(\lambda^0)} + (1 - \alpha) \Psi_{i^1,R(\lambda^0)}^* \mathbf{1}_{R(\lambda^0)} \right)$$

$$1127 = \Phi_{i^1,j^*}^* \hat{\eta}_{j^*}(\lambda^0) + \frac{1}{\lambda^1} f(X_{i^1})$$

1129 Since i^0 is still in the elbow set, it should also satisfy,

$$1131 S_{i^0} = \Phi_{i^0,j^*}^* \hat{\eta}_{j^*}(\lambda^0) + \frac{1}{\lambda^1} \left(\Psi_{i^0,i^0}^* \hat{v}_{i^0}(\lambda^0) - \alpha \Psi_{i^0,L(\lambda^0)}^* \mathbf{1}_{L(\lambda^0)} + (1 - \alpha) \Psi_{i^0,R(\lambda^0)}^* \mathbf{1}_{R(\lambda^0)} \right)$$

$$1133 = \Phi_{i^0,j^*}^* \hat{\eta}_{j^*}(\lambda^0) + \frac{1}{\lambda^1} f(X_{i^0})$$

1134 Putting it all together, we can choose λ^1 as,
 1135

$$1136 \quad \lambda^1 = \max_{i' \neq i^0, i' \in [m]} \frac{f(X_{i'}) - (\Phi_{i',j^*}^* / \Phi_{i^0,j^*}^*) f(X_{i^0})}{S_{i'} - (\Phi_{i',j^*}^* / \Phi_{i^0,j^*}^*) S_{i^0}} \quad (38)$$

1139 and the corresponding i' that maximizes equation 38 becomes i^1 . We proceed with the same $\hat{v}(\lambda^0)$,
 1140 $\hat{\eta}(\lambda^0)$ as our initial parameters and our initial elbow set as $E(\lambda^1) = \{i^0, i^1\}$.
 1141

1142 **B.4 DERIVATION OF S -PATH**

1144 We fix the hyperparameters $\hat{\gamma}, \hat{\lambda}$ selected by the λ -path. Conceptually, the S -path mirrors the λ -path,
 1145 and the conditions 18–24 apply. Now recall the prediction set we defined for a test point X_{n+1} ,
 1146

$$1148 \quad \hat{C}^*(X_{n+1}) = \{y : S(X_{n+1}, y) \leq \hat{g}_{S(X_{n+1},y)}(X_{n+1})\}.$$

1150 By equation 24, this is equivalent to,
 1151

$$1153 \quad \hat{C}^*(X_{n+1}) = \{y : \hat{v}_{S(X_{n+1},y),n+1} < 1 - \alpha\}.$$

1156 The problem reduces to finding the largest test score $S^*(X_{n+1})$ such that $\hat{v}_{S^*(X_{n+1}),n+1} < 1 - \alpha$.
 1157 By Proposition 3, the mapping $S \mapsto \hat{v}_S$ is monotone, which allows us to recover the prediction set
 1158 as,
 1159

$$1161 \quad \hat{C}^*(X_{n+1}) = \{y : S(X_{n+1}, y) \leq S^*(X_{n+1})\}.$$

1163 It remains to find the maximum $S^*(X_{n+1})$, the test score cutoff, such that $\hat{v}_{S^*(X_{n+1}),n+1} < 1 - \alpha$
 1164 holds, i.e., $S^*(X_{n+1}) = \sup\{S \mid \hat{v}_{S,n+1} < 1 - \alpha\}$ which is the role of S -path. Denote the index
 1165 sets,
 1166

$$1168 \quad E(S) := \{i : \hat{r}_{S,i} = 0, \hat{v}_{S,i} \in (-\alpha, 1 - \alpha)\}, \quad (39)$$

$$1170 \quad L(S) := \{i : \hat{r}_{S,i} < 0, \hat{v}_{S,i} = -\alpha\}, \quad (40)$$

$$1171 \quad R(S) := \{i : \hat{r}_{S,i} > 0, \hat{v}_{S,i} = 1 - \alpha\}. \quad (41)$$

1172 These sets now *evolve with S* . We initialize S -path with the smallest S^1 such that the test point is
 1173 in the elbow set (i.e., $S^1 = \hat{g}_{S^1}(X_{n+1})$) and find the smallest increment to the next S such that
 1174 an event occurs while the test point is still in the elbow. We use the same notion of an “event” as
 1175 before—any change in the elbow set. We iterate until the test point exits the elbow and use the final
 1176 S as $S^*(X_{n+1})$.
 1177

1178 In this section, we assume the columns of $\Phi^* \in \mathbb{R}^{(n+1) \times d}$ are linearly independent. The dimension
 1179 of Ψ^* is now $\mathbb{R}^{(n+1) \times (n+1)}$.
 1180

1181 **B.4.1 PROOF OF PROPOSITION 2**

1182 **Proof.** Let $\{S^l\}_{l=1,2,3,\dots}$ be the change points when an event occurs. Consider an interval $S^l \leq$
 1183 $S \leq S^{l+1}$ during which the sets stay the same, i.e., $(E(S), L(\lambda), R(S)) = (E(S^l), L(S^l), R(S^l))$.
 1184 Denote $\hat{v}_{S,i}$ and $\hat{\eta}_S$ as the solution of equation 18 given S . In this proof, denote $E = E(S) = E(S^l)$,
 1185 $L = L(S) = L(S^l)$, and $R = R(S) = R(S^l)$. Here, λ is fixed as the selected hyperparameter from
 1186 the previous step.
 1187

For every index i we have,

1188

1189

$$\begin{aligned}
1190 \quad \hat{g}_S(X_i) &= \Phi_{i \cdot}^* \hat{\eta}_S + \frac{1}{\lambda} \Psi_{i, \cdot}^* \hat{v}_S \\
1191 &= \Phi_{i \cdot}^* \hat{\eta}_S + \frac{1}{\lambda} (\Psi_{i, E}^* \hat{v}_{S, E} - \alpha \Psi_{i, L}^* \mathbf{1}_L + (1 - \alpha) \Psi_{i, R}^* \mathbf{1}_R) \\
1192 &= \Phi_{i \cdot}^* \hat{\eta}_S + \frac{1}{\lambda} \Psi_{i, E}^* \hat{v}_{S, E} + d_i,
\end{aligned} \tag{42}$$

1193

1194

1195

where

1196

1197

1198

$$d_i := \frac{1}{\lambda} (-\alpha \Psi_{i, L}^* \mathbf{1}_L + (1 - \alpha) \Psi_{i, R}^* \mathbf{1}_R).$$

1199

1200

1201

1202

From the second KKT condition in equation 21, we have $v_i = \sigma_i - \tau_i$ and $\sum_{i=1}^n (\sigma_i - \tau_i) \Phi_{i, j}^* = \sum_{i=1}^n v_i \Phi_{i, j}^* = 0$ for $j = 1, \dots, d$. In compact form,

1203

1204

$$\Phi_E^{*\top} \hat{v}_{S, E} = \alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R.$$

1205

This means that,

1206

1207

$$\Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_E^{*\top} \hat{v}_{S, E} = \alpha \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_R^{*\top} \mathbf{1}_R.$$

1208

1209

1210

Let $S_E := (S_i)_{i \in E}$, $d_E := (d_i)_{i \in E}$, $\Phi_E^* \in \mathbb{R}^{|E| \times p}$, $\Psi_{EE}^* \in \mathbb{R}^{|E| \times |E|}$. Equation 42 for $i \in E$ becomes,

1211

1212

$$S_E = \Phi_E^* \hat{\eta}_S + \frac{1}{\lambda} \Psi_{EE}^* \hat{v}_{S, E} + d_E. \tag{43}$$

1213

1214

Define the orthogonal projector, $\Pi_E := I_{|E|} - \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_E^{*\top}$. Because $\Pi_E \Phi_E^* = 0$, multiplying equation 43 by Π_E gives,

1215

1216

1217

$$\Pi_E S_E = \frac{1}{\lambda} \Pi_E \Psi_{EE}^* \hat{v}_{S, E} + \Pi_E d_E. \tag{44}$$

1218

1219

1220

Write $S_E = S_E^{\text{fixed}} + S \mathbf{e}_{n+1}$, where S_E^{fixed} has a zero in the $(n+1)$ -st row and \mathbf{e}_{n+1} selects that row. Equation 44 becomes,

1221

1222

$$\Pi_E \Psi_{EE}^* \hat{v}_{S, E} = \lambda \Pi_E (S_E^{\text{fixed}} - d_E) + \lambda S \Pi_E \mathbf{e}_{n+1}. \tag{45}$$

1223

1224

Since $I_E = \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_E^{*\top} + \Pi_E$, the previous equation yields,

1225

1226

1227

$$\Pi_E \Psi_{EE}^* \Pi_E \hat{v}_{S, E} = -\Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_E^{*\top} \hat{v}_{S, E} + \lambda \Pi_E (S_E^{\text{fixed}} - d_E) + \lambda S \Pi_E \mathbf{e}_{n+1}. \tag{46}$$

1228

Now, we know that:

1229

1230

1231

$$\Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_E^{*\top} \hat{v}_{S, E} = \alpha \Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_R^{*\top} \mathbf{1}_R.$$

1232

1233

1234

Because Π_E is an orthogonal projector ($\Pi_E^2 = \Pi_E$), the matrix $\Pi_E \Psi_{EE}^* \Pi_E$ is positive definite on the image of Π_E . Using its Moore–Penrose inverse (denoted by superscript \dagger) gives the unique minimum-norm solution,

1235

1236

1237

1238

1239

1240

1241

$$\begin{aligned}
1237 \quad \Pi_E \hat{v}_{S, E} &= \lambda (\Pi_E \Psi_{EE}^* \Pi_E)^\dagger \Pi_E (S_E^{\text{fixed}} - d_E + S \mathbf{e}_{n+1}) \\
1238 &\quad - \alpha (\Pi_E \Psi_{EE}^* \Pi_E)^\dagger \Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_L^{*\top} \mathbf{1}_L \\
1239 &\quad + (1 - \alpha) (\Pi_E \Psi_{EE}^* \Pi_E)^\dagger \Pi_E \Psi_{EE}^* \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_R^{*\top} \mathbf{1}_R
\end{aligned} \tag{47}$$

Therefore, since $\hat{v}_{S, E} = \Pi_E \hat{v}_{S, E} + \Phi_E^* (\Phi_E^{*\top} \Phi_E^*)^\dagger \Phi_E^{*\top} \hat{v}_{S, E}$:

$$\begin{aligned}
\hat{v}_{S,E} &= \lambda (\mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Pi}_E)^\dagger \mathbf{\Pi}_E (S_E^{\text{fixed}} - d_E + S \mathbf{e}_{n+1}) \\
&\quad - \alpha (\mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Pi}_E)^\dagger \mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Phi}_E^* (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_L^{*\top} \mathbf{1}_L \\
&\quad + (1 - \alpha) (\mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Pi}_E)^\dagger \mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Phi}_E^* (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_R^{*\top} \mathbf{1}_R \\
&\quad + \alpha \mathbf{\Phi}_E^* (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_L^{*\top} \mathbf{1}_L \\
&\quad - (1 - \alpha) \mathbf{\Phi}_E^* (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_R^{*\top} \mathbf{1}_R \\
&= \lambda (\mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Pi}_E)^\dagger \mathbf{\Pi}_E (S_E^{\text{fixed}} - d_E + S \mathbf{e}_{n+1}) \\
&\quad + \alpha [I_{|E|} - (\mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Pi}_E)^\dagger \mathbf{\Pi}_E \mathbf{\Psi}_{EE}^*] \mathbf{\Phi}_E^* (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_L^{*\top} \mathbf{1}_L \\
&\quad - (1 - \alpha) [I_{|E|} - (\mathbf{\Pi}_E \mathbf{\Psi}_{EE}^* \mathbf{\Pi}_E)^\dagger \mathbf{\Pi}_E \mathbf{\Psi}_{EE}^*] \mathbf{\Phi}_E^* (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_R^{*\top} \mathbf{1}_R
\end{aligned} \tag{48}$$

In particular, the kernel parameter of the test point, $\hat{v}_{S,n+1}$, is affine in S on every segment where the index sets (E, L, R) stay unchanged. Likewise, the linear coefficient satisfies,

$$\begin{aligned}
S_E &= \mathbf{\Phi}_E^* \hat{\eta}_S + \frac{1}{\lambda} \mathbf{\Psi}_{EE}^* \hat{v}_{S,E} + d_E \\
\mathbf{\Phi}_E^{*\top} S_E &= \mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^* \hat{\eta}_S + \frac{1}{\lambda} \mathbf{\Phi}_E^{*\top} \mathbf{\Psi}_{EE}^* \hat{v}_{S,E} + \mathbf{\Phi}_E^{*\top} d_E \\
\implies \hat{\eta}_S &= (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} S_E - \frac{1}{\lambda} (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} \mathbf{\Psi}_{EE}^* \hat{v}_{S,E} - (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} d_E \\
\implies \hat{\eta}_S &= (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} S_E^{\text{fixed}} + S (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} \mathbf{e}_{n+1} \\
&\quad - \frac{1}{\lambda} (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} \mathbf{\Psi}_{EE}^* \hat{v}_{S,E} - (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} d_E \\
&= (\mathbf{\Phi}_E^{*\top} \mathbf{\Phi}_E^*)^\dagger \mathbf{\Phi}_E^{*\top} \left[S_E^{\text{fixed}} + S \mathbf{e}_{n+1} - d_E - \frac{1}{\lambda} \mathbf{\Psi}_{EE}^* \hat{v}_{S,E} \right],
\end{aligned} \tag{49}$$

and thus, we have shown that,

$$\hat{v}_{S,E} = c + Sd, \quad \hat{\eta}_S = c^{(1)} + Sd^{(1)}. \tag{50}$$

with $c, d \in \mathbb{R}^{|E|}$, $c^{(1)}, d^{(1)} \in \mathbb{R}^d$ constant on the segment $S^l \leq S \leq S^{l+1}$.

Insert equation 50 back to equation 42. For any $i \in [n+1]$,

$$\hat{g}_S(X_i) = \mathbf{\Phi}_i \cdot \hat{\eta}_S + \frac{1}{\lambda} \mathbf{\Psi}_{iE}^* \hat{v}_{S,E} + d_i \tag{51}$$

$$= \mathbf{\Phi}_i \cdot (c^{(1)} + Sd^{(1)}) + \frac{1}{\lambda} \mathbf{\Psi}_{iE}^* (c + Sd) + d_i \tag{52}$$

$$= \underbrace{\left(\mathbf{\Phi}_i \cdot c^{(1)} + \frac{1}{\lambda} \mathbf{\Psi}_{iE}^* c + d_i \right)}_{=: g_i^{(0)}} + S \underbrace{\left(\mathbf{\Phi}_i \cdot d^{(1)} + \frac{1}{\lambda} \mathbf{\Psi}_{iE}^* d \right)}_{=: g_i^{(1)}}. \tag{53}$$

Thus $g_S(X_i) = g_i^{(0)} + S g_i^{(1)}$ is affine in S . There are two cases for the residual $r_i(S) = S_i - \hat{g}_S(X_i)$:

1. *Calibration index* $i \leq n$. The score S_i is fixed, hence

$$r_i(S) = [S_i - g_i^{(0)}] - S g_i^{(1)}.$$

Both $S_i - g_i^{(0)}$ and $g_i^{(1)}$ are constants on the segment.

2. *Test index* $i = n+1$. Here $S_{n+1} = S$, so

$$r_{n+1}(S) = S - g_{n+1}^{(0)} - S g_{n+1}^{(1)} = [1 - g_{n+1}^{(1)}] S - g_{n+1}^{(0)},$$

which is again affine in S .

Because every $r_i(S)$ is an affine function, each index outside the elbow can cross the zero-residual line at most once on the segment. Likewise each $v_i(S)$ in equation 50 can hit the bounds $1 - \alpha$ or $-\alpha$ at most once. Hence the overall solution path is *piecewise affine* with break-points occurring exactly when either (a) a coefficient in E hits its bound, or (b) a residual for an index in $L \cup R$ reaches zero, completing the argument used by the S-path algorithm. ■

1301

1302

1303

1304

B.4.2 UPDATE OF S^l

1305

1306

1307

Let S^l the value after the l^{th} event. The elbow set $E(S^l)$ is updated when one of the following events occurs:

1308

1309

1310

- A point i in either $L(S^l)$ or $R(S^l)$ enters the elbow set (residual $S_i - \hat{g}_{S^l}(X_i)$ becomes 0).
- A point i in $E(S^l)$ leaves to the left or right set ($\hat{v}_{S^l,i}$ becomes $-\alpha$ or $1 - \alpha$).

1311

1312

1313

For the first event, note that $\frac{\partial r_i(S)}{\partial S} = -(\Phi_i \cdot d^{(1)} + \frac{1}{\lambda} \Psi_{iE}^* d)$ in equation 53. Then we have,

1314

1315

1316

$$S^{l+1,hit} = S^l + \min_{i \in L(S^l), R(S^l)} r_i(S^l) / (\Phi_i \cdot d^{(1)} + \frac{1}{\lambda} \Psi_{iE}^* d) \mathbf{1} \left(r_i(S^l) / (\Phi_i \cdot d^{(1)} + \frac{1}{\lambda} \Psi_{iE}^* d) \geq 0 \right)$$

1317

1318

To find S such that a point leaves $E(S^l)$, recall $\frac{\partial \hat{v}_{S^l,i}}{\partial S} = d_i$ for $i \in E(S^l)$ (equation 53).

1319

1320

1321

1322

$$S^{l+1,leave} = S^l + \min_{i \in E(S^l)} \left\{ x \in \left\{ \frac{-\alpha - \hat{v}_{S^l,i}}{d_i}, \frac{1 - \alpha - \hat{v}_{S^l,i}}{d_i} \right\} \mid x \leq 0 \right\}$$

1323

1324

1325

We then take $S^{l+1} = \min \{S^{l+1,hit}, S^{l+1,leave}\}$. We also update $(E, L, R) = (E(S^{l+1}), L(S^{l+1}), R(S^{l+1}))$ accordingly based on which event occurred. Parameters $\hat{v}_{S^{l+1},i}$'s, $\hat{\eta}_{S^{l+1}}$ can be updated by solving for the new elbow,

1326

1327

1328

1329

$$\begin{pmatrix} \frac{1}{\lambda} \Psi_{EE}^* & \Phi_E^* \\ \Phi_E^{*\top} & 0 \end{pmatrix} \begin{pmatrix} v \\ \eta \end{pmatrix} = \begin{pmatrix} S_E - \frac{1}{\lambda} (-\alpha \Psi_{EL}^* \mathbf{1}_L + (1 - \alpha) \Psi_{ER}^* \mathbf{1}_R) \\ \alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R \end{pmatrix} \quad (54)$$

1330

1331

B.4.3 INITIALIZATION OF S

Let us first assume that the imputed test score S is small enough so that $S < \hat{g}_S(X_{n+1})$. Then, the test point $n + 1 \in L(S)$. We use the notation \hat{v}_{small} and $\hat{\eta}_{\text{small}}$ (instead of \hat{v}_S and $\hat{\eta}_S$), to denote the regression parameters. In this case, the residual $r_{n+1}(S) = S - \hat{g}_{\text{small}}(X_{n+1}) = S - \Phi_{n+1,\cdot}^* \hat{\eta}_{\text{small}} - \frac{1}{\lambda} \Psi_{n+1,\cdot}^* \hat{v}_{\text{small}}$ is linear in S . We can therefore track the moment when it enters the elbow set $E(S)$. This happens as soon as:

1337

1338

$$S = \Phi_{n+1,\cdot}^* \hat{\eta}_{\text{small}} + \frac{1}{\lambda} \Psi_{n+1,\cdot}^* \hat{v}_{\text{small}}.$$

1339

1340

1341

We thus solve for \hat{v}_{small} and $\hat{\eta}_{\text{small}}$ with $v_{\text{small},n+1} = -\alpha$ (as the test point is in the left set). Let $v^{\text{fixed}} \in \mathbb{R}^{n+1}$ be the vector defined as equal to v_S on all entries except the $(n + 1)^{th}$, where it is set to 0:

1342

1343

1344

1345

$$v_i^{\text{fixed}} = \begin{cases} v_{S,i} & \text{if } i \neq n + 1 \\ 0 & \text{if } i = n + 1. \end{cases}$$

1346

1347

This allows us to write,

$$v_{\text{small}} = v^{\text{fixed}} - \alpha \mathbf{e}_{n+1},$$

1348

1349

where \mathbf{e}_{n+1} is the indicator vector of the $(n + 1)^{th}$ coefficient,

$$\mathbf{e}_{n+1,i} = 0 \text{ if } i \neq n + 1, \quad \mathbf{e}_{n+1,n+1} = 1.$$

1350 The problem then becomes,
 1351
 1352

$$\begin{aligned}
 1353 \quad L_p &= (1 - \alpha) \sum_{i=1}^{n+1} p_i + \alpha \sum_{i=1}^{n+1} q_i + \frac{1}{2\lambda} v_{\text{small}}^\top \Psi^* v_{\text{small}} \\
 1354 &\quad + \sum_{i=1}^{n+1} \sigma_i (S_i - g_{\text{small}}(X_i) - p_i) - \sum_{i=1}^{n+1} \tau_i (S_i - g_{\text{small}}(X_i) + q_i) \\
 1355 &\quad - \sum_{i=1}^{n+1} \kappa_i p_i - \sum_{i=1}^{n+1} \rho_i q_i \\
 1356 &= \sum_{i=1}^{n+1} \sigma_i p_i + \sum_{i=1}^{n+1} \tau_i q_i + \frac{1}{2\lambda} v_{\text{small}}^\top \Psi^* v_{\text{small}} \\
 1357 &\quad + \sum_{i=1}^{n+1} (\sigma_i - \tau_i) (S_i - \Phi_{i,\cdot}^* \eta_{\text{small}} - \frac{1}{\lambda} \Psi_{i,\cdot}^* v_{\text{small}}) - \sum_{i=1}^{n+1} (\sigma_i p_i + \tau_i q_i) \\
 1358 &= \frac{1}{2\lambda} (v_{\text{small}}^{\text{fixed}} - \alpha \mathbf{e}_{n+1})^\top \Psi^* (v_{\text{small}}^{\text{fixed}} - \alpha \mathbf{e}_{n+1}) \\
 1359 &\quad + \sum_{i=1}^n (\sigma_i - \tau_i) (S_i - \Phi_{i,\cdot}^* \eta_{\text{small}} - \frac{1}{\lambda} \Psi_{i,\cdot}^* (v_{\text{small}}^{\text{fixed}} - \alpha \mathbf{e}_{n+1})) \\
 1360 &\quad - \alpha (S - \Phi_{n+1,\cdot}^* \eta_{\text{small}} - \frac{1}{\lambda} \Psi_{n+1,\cdot}^* (v_{\text{small}}^{\text{fixed}} - \alpha \mathbf{e}_{n+1})) \\
 1361 &= \frac{1}{2\lambda} \delta^\top \Psi_{1:n,1:n}^* \delta - \frac{\alpha}{\lambda} \Psi_{n+1,1:n}^* \delta + \frac{\alpha^2}{2\lambda} \Psi_{n+1,n+1}^* \\
 1362 &\quad + \delta^T (S_{1:n} - \Phi_{1:n,\cdot}^* \eta_{\text{small}} - \frac{1}{\lambda} \Psi_{1:n,1:n}^* \delta + \frac{\alpha}{\lambda} \Psi_{1:n,n+1}^*) \\
 1363 &\quad - \alpha (S - \Phi_{n+1,\cdot}^* \eta_{\text{small}} - \frac{1}{\lambda} \Psi_{n+1,1:n}^* \delta + \frac{\alpha}{\lambda} \Psi_{n+1,n+1}^*), \\
 1364 & \tag{55}
 \end{aligned}$$

1365 with $\delta \in \mathbb{R}^n$ the vector whose entries are defined as: $\delta_i = \sigma_i - \tau_i = v_{\text{small},i}$.
 1366
 1367

1368 We also know that $(\sigma - \tau)^\top \Phi^* = 0 \implies \forall j \in [d], \sum_{i=1}^n (\sigma_i - \tau_i) \Phi_{i,j}^* = -(\sigma_{n+1} - \tau_{n+1}) \Phi_{n+1,j}^* = \alpha \Phi_{n+1,j}^*$.
 1369
 1370

1371 Therefore, taking derivatives with respect to δ yields the following system:
 1372
 1373

$$\begin{pmatrix} \frac{1}{\lambda} \Psi_{EE}^* & \Phi_E^* \\ \Phi_E^{*\top} & 0 \end{pmatrix} \begin{pmatrix} \delta_E \\ \eta_{\text{small}} \end{pmatrix} = \begin{pmatrix} S_E - \frac{1}{\lambda} (-\alpha \Psi_{E,n+1}^* - \alpha \Psi_{EL}^* \mathbf{1}_L + (1 - \alpha) \Psi_{ER}^* \mathbf{1}_R) \\ \alpha \Phi_{n+1}^{*\top} + \alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R \end{pmatrix} \tag{56}$$

1374 We can therefore solve for both δ_E and η_{small} by inverting the previous system of equations.
 1375
 1376

1377 **When $S > g(X_{n+1})$.** Similarly, when we start with a large S so that the test point is in the right
 1378 set, we can derive the coefficients for both v and η by the same derivations as for the small case:
 1379
 1380

$$\begin{pmatrix} \frac{1}{\lambda} \Psi_{EE}^* & \Phi_E^* \\ \Phi_E^{*\top} & 0 \end{pmatrix} \begin{pmatrix} \delta_E \\ \eta_{\text{small}} \end{pmatrix} = \begin{pmatrix} S_E - \frac{1}{\lambda} ((1 - \alpha) \Psi_{E,n+1}^* - \alpha \Psi_{EL}^* \mathbf{1}_L + (1 - \alpha) \Psi_{ER}^* \mathbf{1}_R) \\ (\alpha - 1) \Phi_{n+1}^{*\top} + \alpha \Phi_L^{*\top} \mathbf{1}_L - (1 - \alpha) \Phi_R^{*\top} \mathbf{1}_R \end{pmatrix} \tag{57}$$

B.4.4 COMPUTATIONAL COMPLEXITY

1400 **Complexity** At each step of λ - and S -path we take inverse of matrices whose size are at most
 1401 $|E| + d$. The overall cost is $\mathcal{O}((n + d)^3)$ in the worst case, but empirical paths have $|E| \ll n$ and at
 1402 most $2(n + 1)$ break-points, making the routine fast in practice.
 1403

1404
1405 **Practical consequences**

1406 • **Threshold evaluation** Because $S \mapsto v_{S,n+1}$ is affine on each segment, the conformal
1407 threshold $\hat{g}(X_{n+1}) = \sup\{S : v_{S,n+1} < 1 - \alpha\}$ is found by a single root computation, *not*
1408 by binary search.

1409 • **Randomization** By Lemma 4, using the final update of S -path, $S^*(X_{n+1})$, can inflate the
1410 conditional coverage. To mitigate this, we can use the randomized cutoff $S^{rand}(X_{n+1}) =$
1411 $\sup\{S \mid \hat{v}_{S,n+1} < U\}$, for $U \sim Unif(-\alpha, 1 - \alpha)$. The procedure of S -path stays the
1412 same but we stop the algorithm as soon as $\hat{v}_{S,n+1} \geq U$.

1413
1414 **Summary of modifications versus the λ -path**

1415 1416 Component	1417 λ -path	1418 S -path (fixed λ)
1417 Moving parameter	$\lambda \downarrow 0$	$S \uparrow$
1418 Active sets	$E(\lambda), L(\lambda), R(\lambda)$	$E(S), L(S), R(S)$
1419 Triggering event	Elbow set changes	Elbow set changes
1420 Segment law	$\lambda \mapsto \hat{v}(\lambda)$ affine	$S \mapsto \hat{v}_S$ affine
1421 Break-points	critical values of λ	critical values of S
1422 Output	$\lambda \mapsto (v, \eta)$	$S \mapsto (v, \eta)$

1423 The resulting algorithm furnishes an explicit, efficient *score-path* for any fixed λ , enabling local
1424 density-adaptive conformal prediction and other post-hoc analyses.

1425
1426 **B.5 CROSS VALIDATION ON γ**

1427 In this section, we provide additional details on the selection of $(\hat{\gamma}, \hat{\lambda})$, described in Algorithm 1.

1428 We first select a fixed grid of γ 's, denoted as Γ . For each $\gamma \in \Gamma$, we measure k-fold validation error.
1429 This is done by running a λ -path for each γ that yields a sequence of λ values, $(\lambda^1, \lambda^2, \dots)$. The
1430 error of (γ, λ^l) for the j -th fold is then defined as the quantile regression loss,
1431

$$1433 \quad CV_j(\gamma, \lambda^l) = \sum_{i' \in fold_j} ((1 - \alpha)[S_{i'} - \hat{g}^l(X_i)]_+ + \alpha[S_{i'} - \hat{g}^l(X_i)]_-)$$

1432 A common practice is to get the mean of $CV_j(\gamma, \lambda^l)$ over k folds and choose the pair that minimizes
1433 it. However, running a λ -path for each γ does not guarantee that the λ values on the path will be all
1434 equivalent. To avoid this issue, we proceed with a two-step approach that first aggregates the error
1435 over all λ 's to get the optimal $\hat{\gamma}$,

$$1441 \quad CV_j(\gamma) = \min_{\lambda^l} CV_j(\gamma, \lambda^l)$$

$$1444 \quad \hat{\gamma} = \arg \min_{\gamma} CV(\gamma) = \arg \min_{\gamma} \sum_{j=1}^k CV_j(\gamma)$$

1445 This selects $\hat{\gamma}$ that reflects the best smoothness of the function overall. Once we select $\hat{\gamma}$, we run the
1446 λ -path again on the full dataset (m points) and choose $\hat{\lambda}$ that minimizes the Schwarz information
1447 criterion (SIC) (Schwarz, 1978), which is a commonly used alternative to cross validation error in
1448 kernel quantile regression for model selection (Li et al., 2007).

1449
1450 **C THEORETICAL PROOF**1451
1452 **C.1 GUARANTEE FOR RANDOMIZED INTERVAL**

1453 To incorporate the structured RKHS-based function in equation 6 into the conformal calibration
1454 framework in Gibbs et al. (2023), we need to show two propositions. Firstly, we show the mono-
1455 tonicity of the solution path for S . Namely, the mapping $S \mapsto v_{S,n+1}$ is nondecreasing in S . Second,

1458 we require the low-rank projection $\hat{\pi}(\cdot)$ to be trained symmetrically across the input data. With these
 1459 properties established, we are able to prove that our path algorithm satisfies exactly the same type
 1460 of results as Gibbs et al. (2023):
 1461

1462 **Lemma 4** *Consider the function class \mathcal{F}^* in equation 17, where RKHS component is given with the
 1463 optimal $\hat{\lambda}$ such that $\mathcal{F}_{\psi^*} = \{f_{\psi^*}(x) = \frac{1}{\hat{\lambda}} \sum_{i \in [n+1]} v_i \psi^*(x, X_i), v \in \mathbb{R}^{n+1}\}$. Suppose assumptions
 1464 1 and 2 are both satisfied. Then, for all $f \in \mathcal{F}^*$, SpeedCP gives*

$$1466 \mathbb{E} \left[f(X_{n+1}) \cdot \left(\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha) \right) \right] = -\hat{\lambda} \mathbb{E} [\langle \hat{g}_{S^{rand}, \psi^*}, f_{\psi^*} \rangle],$$

1467 where $\hat{g}_{S^{rand}, \psi^*}(X) = \frac{1}{\hat{\lambda}} \sum_{i \in [n+1]} \hat{v}_{S^{rand}, i} \psi^*(X, X_i)$.
 1468

1469 This result aligns with the randomization version of Theorem 3 in Gibbs et al. (2023) – but adapted
 1470 here to our algorithm and choice of RKHS class \mathcal{F}_{ψ^*} . While in Gibbs et al. (2023) v_i can be any
 1471 arbitrary value, we involve the optimal $\hat{\lambda}$ in the definition of f_{ψ^*} . In this type of RKHS class, the
 1472 relationship between S to $v_{S, n+1}$ is explicit, while Gibbs et al. (2023) depends on a dual analysis,
 1473 making the parameter less interpretable. Furthermore, the coverage gap $\mathbb{E}[\langle \hat{g}_{S^{rand}, \psi^*}, f_{\psi^*} \rangle]$ arises
 1474 because we have no prior information on the distribution shift and use a flexible RKHS-based func-
 1475 tion class instead. While it may lead to deviations from the nominal level $1 - \alpha$ when $f_{\psi^*} \neq 0$, this
 1476 deviation is measurable as shown by Gibbs et al. (2023); we detail how to estimate this deviation in
 1477 the latent-space setting in Appendix C.4.2.
 1478

1479 **Proof.**

1480 By Proposition 3, $S \mapsto v_{S, n+1}$ is non-decreasing in S . Furthermore, strong duality holds for the
 1481 optimization problem in equation 7 (this has been shown in Gibbs et al. (2023)), and the KKT
 1482 conditions are satisfied as shown in 22. Now consider a random variable $U \sim \text{Unif}(-\alpha, 1 - \alpha)$.
 1483 Then we have the equivalence under the randomization for a given $S_{n+1} = S(X_{n+1}, y)$:

$$1484 \mathbf{1}\{S_{n+1} \leq \hat{g}_{S_{n+1}}(X_{n+1})\} \iff \mathbf{1}\{\hat{v}_{S_{n+1}, n+1} \leq U\}$$

1485 Thus,

$$1486 \begin{aligned} & \mathbb{E} [f(X_{n+1}) (\mathbf{1}\{\hat{v}_{S_{n+1}, n+1} \leq U\} - (1 - \alpha))] \\ &= \mathbb{E} [\mathbb{E}_U [f(X_{n+1}) (\mathbf{1}\{\hat{v}_{S_{n+1}, n+1} \leq U\} - (1 - \alpha)) | X_{n+1}, \hat{v}_{S_{n+1}, n+1}]] \\ &= -\mathbb{E} [f(X_{n+1}) \hat{v}_{S_{n+1}, n+1}] \end{aligned}$$

1487 Using the Lagrangian in Proposition 3, we follow the calculation in the proof of Proposition 4 of
 1488 Gibbs et al. (2023). By the exchangeability of the data and the symmetry of $\hat{g}_{S_{n+1}}$, we have
 1489

$$1490 -\mathbb{E} [f(X_{n+1}) \hat{v}_{S_{n+1}, n+1}] = -2\mathbb{E} [\lambda \langle \hat{g}_{S_{n+1}, \psi^*}, f_{\psi^*} \rangle].$$

1491 Therefore, we replace S_{n+1} with the randomized cutoff S^{rand} and λ with the optimal $\hat{\lambda}$ to obtain
 1492 the desired result. \blacksquare
 1493

1494 **Proposition 3** *For all maximizers $\{v_{S, n+1}\}_{S \in \mathbb{R}}$ of the optimization problem in equation 7, the map-
 1495 ping $S \mapsto v_{S, n+1}$ is non-decreasing in S .*

1496 **Proof.** Recall the objective in equation 7:

$$1497 \min_{\eta_S, v_S} \sum_{i=1}^{n+1} l_\alpha(S_i - \Phi^*(X_i)^\top \eta_S - \frac{1}{\lambda} \sum_{i'=1}^{n+1} v_{S, i'} \psi^*(X_i, X_{i'})) + \frac{1}{2\lambda} \sum_{i, i'=1}^{n+1} v_{S, i} v_{S, i'} \psi^*(X_i, X_{i'}).$$

1498 Let $\Psi^* = (\psi^*(x_i, x_j))_{i, j \in [n+1]} \in \mathbb{R}^{(n+1) \times (n+1)}$ be the positive semidefinite kernel matrix. Following
 1499 the structure in Li et al. (2007), this objective is equivalent to the following quadratic program
 1500 for a fixed imputed value S (with $S_{n+1} = S$),
 1501

$$1502 \min_{\eta_S, v_S} (1 - \alpha) \sum_{i=1}^n p_i + \alpha \sum_{i=1}^n q_i + \frac{1}{2\lambda_{n+1}} v_S^\top \Psi^* v_S,$$

1512 subject to

$$1514 \quad -q_i \leq S_i - g_S(x_i) \leq p_i, \\ 1515 \quad q_i, p_i \geq 0, \quad i = 1, \dots, n+1,$$

1516 where

$$1517 \quad g_S(x_i) = \Phi^*(x)^\top \eta_S + \frac{1}{\lambda} \sum_{i'=1}^{n+1} v_{S,i'} \psi^*(x_i, x_{i'}), \quad i = 1, \dots, n+1.$$

1519 Note that the proof of Proposition 3 follows the argument structure of Theorem 4 in Gibbs et al.
1520 (2023), but with a key distinction that the function $g_S(x)$ in our case incorporates an RKHS-based
1521 component that depends on λ . The Lagrangian primal function is then defined as in equation 20.
1522 Setting the partial derivatives of L_p with respect to q and p to zero, we obtain

$$1523 \quad \frac{\partial L_p}{\partial p_i} : \sigma_i = 1 - \alpha - \kappa_i \\ 1524 \quad \frac{\partial L_p}{\partial q_i} : \tau_i = \alpha - \rho_i \quad (58)$$

1528 Since minimizing with respect to v yields $v_i = \sigma_i - \tau_i$, we can substitute this into the derivative
1529 expressions in Equation equation 58. We have

$$1530 \quad (1 - \alpha) \cdot \mathbf{1} - v = \kappa + \tau \\ 1531 \quad \alpha \cdot \mathbf{1} + v = \rho + \sigma$$

1532 Since $\kappa, \sigma, \tau, \rho$ are all non-negative, this can be simplified to

$$1533 \quad (1 - \alpha) \cdot \mathbf{1} \geq v \\ 1534 \quad -\alpha \cdot \mathbf{1} \leq v$$

1536 Let $Q^*(v) = -\min_{g \in \mathcal{F}^*} \frac{1}{2\lambda_{n+1}} v^\top \Psi^* v - \sum_{i=1}^{n+1} v_i g(X_i)$. Therefore, the dual formulation for
1537 equation 20 is,

$$1539 \quad \text{maximize}_v \sum_{i=1}^n v_i S_i + v_{n+1} S - Q^*(v)$$

1541 subject to $-\alpha \leq v_i \leq 1 - \alpha, 1 \leq i \leq n+1$

1542 Note we use notation v_S to denote the solution for a particular input S . Assume for the sake of
1543 contradiction that there exists $\tilde{S} > S$ such that

$$1545 \quad v_{\tilde{S},n+1} < v_{S,n+1}.$$

1547 Observe that $\sum_{i=1}^n v_i S_i - Q^*(v)$ does not depend on S . The contradiction assumption implies that

$$1548 \quad (\tilde{S} - S) \cdot (v_{\tilde{S},n+1} - v_{S,n+1}) < 0,$$

1550 or equivalently,

$$1551 \quad \tilde{S} \cdot (v_{\tilde{S},n+1} - v_{S,n+1}) < S \cdot (v_{\tilde{S},n+1} - v_{S,n+1}).$$

1552 On the other hand, by the optimality of v_S , we have that

$$1554 \quad \sum_{i=1}^n v_{\tilde{S},i} S_i - Q^*(v_{\tilde{S}}) + \tilde{S} \cdot v_{\tilde{S},n+1} \geq \sum_{i=1}^n v_{S,i} S_i - Q^*(v_S) + S \cdot v_{S,n+1} \\ 1555 \\ 1556 \quad \Leftrightarrow \quad \tilde{S} \cdot (v_{\tilde{S},n+1} - v_{S,n+1}) \geq \sum_{i=1}^n v_{S,i} S_i - Q^*(v_S) - \sum_{i=1}^n v_{\tilde{S},i} S_i - Q^*(v_{\tilde{S}}).$$

1559 Applying inequality given by assumption above, we conclude that

$$1561 \quad S \cdot (v_{\tilde{S},n+1} - v_{S,n+1}) > \sum_{i=1}^n v_{S,i} S_i - Q^*(v_S) - \sum_{i=1}^n v_{\tilde{S},i} S_i - Q^*(v_{\tilde{S}}),$$

1563 which yields the contradiction

$$1565 \quad \sum_{i=1}^n v_{\tilde{S},i} S_i - Q^*(v_{\tilde{S}}) + \tilde{S} \cdot v_{\tilde{S},n+1} > \sum_{i=1}^n v_{S,i} S_i - Q^*(v_S) + S \cdot v_{S,n+1}$$

1566 **Remark 5** In this proof we treat λ as fixed. Because λ is pre-selected before entering the S -path,
 1567 the nondecreasing property of \hat{v}_S holds for each λ —including the optimal $\hat{\lambda}$ selected by the SIC
 1568 criterion along the λ -path. ■

1572 C.2 PROOF OF THEOREM 1

1574 First, we consider the setting that $(X_1, Y_1), \dots, (X_n, Y_n)$ are independent of (X_{n+1}, Y_{n+1}, W') .
 1575 Since $\hat{\pi}(\cdot)$ is a deterministic function (not a random variable), $\hat{\pi}(X_1), \dots, \hat{\pi}(X_n)$ are also in-
 1576 dependent of $\hat{\pi}(X_{n+1})$. Since $\hat{\pi}(\cdot)$ is a pre-trained map from the covariate space to the latent
 1577 space, we write $\hat{\pi} : \mathcal{X} \rightarrow \mathcal{W}$, where \mathcal{W} denotes the latent representation space. Given this em-
 1578 bedding, we define a kernel directly on the latent space $\psi_W^* : \mathcal{W} \times \mathcal{W} \rightarrow \mathbb{R}$. Consequently,
 1579 $\psi^*(x, x') = \psi_W^*(\hat{\pi}(x), \hat{\pi}(x'))$. In our construction, ψ^* is already normalized, so $\psi_W^*(w, \cdot)$ is a den-
 1580 sity kernel in its second argument with respect to a base measure on \mathcal{W} , i.e.,

$$1581 \int_{\mathcal{W}} \psi_W^*(w, w') dw' = 1 \quad \text{for each } w \in \mathcal{W}.$$

1584 Let $P = P_X \times P_{Y|X}$. By the definition of W' , the joint distribution of (X_{n+1}, Y_{n+1}, W') is defined
 1585 by

$$1586 \begin{aligned} X_{n+1} &\sim P_X; \\ 1587 Y_{n+1} \mid X_{n+1} &\sim P_{Y|X}; \\ 1588 W' \mid (X_{n+1}, Y_{n+1}) &\sim \psi^*(X_{n+1}, \cdot). \end{aligned}$$

1590 By definition of ψ_W^* , we equivalently have $W' \mid (\hat{\pi}(X_{n+1}), Y_{n+1}) \sim \psi_W^*(\hat{\pi}(X_{n+1}), \cdot)$. Then, the
 1591 conditional distribution $(X_{n+1}, Y_{n+1}) \mid W'$ is given by

$$1593 \begin{aligned} (X_{n+1}, Y_{n+1}) \mid W' = w' &\sim \frac{(P_X \circ \psi_W^*(\hat{\pi}(X_{n+1}), w')) \times P_{Y|X}}{\int_{(x,y)} (P_X \circ \psi_W^*(\hat{\pi}(X_{n+1}), w')) \times P_{Y|X} dx dy} \\ 1594 &\sim \frac{\psi_W^*(\hat{\pi}(x), w')}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), w')]} dP_{(X,Y)}(x, y) := dP_f(x) \text{ by the symmetric of } \hat{\pi}(\cdot) \end{aligned}$$

1598 Thus conditioning on W' , we get

$$1600 \begin{aligned} &\mathbb{E} \left[\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha) \mid W' \right] \\ 1601 &= \int \frac{\psi_W^*(\hat{\pi}(x), W')}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), W')]} \left(\mathbf{1}\{y \in \hat{C}_{rand}^*(x)\} - (1 - \alpha) \right) dP_{X,Y}(x, y) \\ 1602 &= \frac{\mathbb{E} \left[\psi_W^*(\hat{\pi}(X_{n+1}), W') \cdot \left(\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha) \right) \right]}{\mathbb{E}[\psi^*(X, x')]} \\ 1603 &= \frac{-\hat{\lambda} \mathbb{E} \left[\sum_{i \in [n+1]} \hat{v}_{S^{rand}, i} / \hat{\lambda} \cdot \psi_W^*(\hat{\pi}(X_i), W') \right]}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), W')]} \quad \text{by Lemma 4} \\ 1604 &= \frac{-\mathbb{E} \left[\sum_{i \in [n+1]} \hat{v}_{S^{rand}, i} \psi_W^*(\hat{\pi}(X), W') \right]}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), W')]} \quad \text{by the structure of } \hat{g}_{S^{rand}, \psi^*} \end{aligned}$$

1613 C.3 PROOF OF THEOREM 2

1615 By the definitions in Theorem 2, for all $i \in [n]$

$$1617 \begin{aligned} W_i &\sim P_W; \\ 1618 X_i \mid W_i &\sim P_{X|W}; \\ 1619 Y_i \mid X_i &\sim P_{Y|X}. \end{aligned}$$

In this procedure, we say Y is conditionally independent of W given X . In practice, the latent variables $\{W_i\}_{i \in [n+1]}$ are unobserved. Firstly, for the joint distribution, we have $\{(W_i, X_i, Y_i)\}_{i \in [n]}$ independent of $(W_{n+1}, X_{n+1}, Y_{n+1})$. In this framework, we consider the covariate shifts such that the tilt function $f(X) = \mathbf{1}\{\arg \max_{k' \in [K]} \pi_{k'}(X) = k\}$ for a fixed k . Therefore,

$$X_{n+1}, W_{n+1} \sim \frac{f(x)}{\mathbb{E}[f(X)]} P_{(X,W)}; \\ Y_{n+1} \mid X_{n+1} \sim P_{Y|X}.$$

This gives that

$$X_{n+1} \sim \int_W \frac{f(x)}{\mathbb{E}[f(X)]} P_{X|W} P(W) dW = \frac{f(x)}{\mathbb{E}[f(X)]} \int_W P_{X|W} P(W) dW \\ = \frac{f(x)}{\mathbb{E}_X[f(X)]} dP_X(x) := dP_f(x)$$

Under this setting, we have for any set C under the distribution $dP_f(x)$

$$\mathbb{E}[\mathbf{1}\{Y_{n+1} \in C(X_{n+1}) - (1 - \alpha)\}] \\ = \int (\mathbf{1}\{Y_{n+1} \in C(X_{n+1}) - (1 - \alpha)\}) \frac{f(X_{n+1})}{\mathbb{E}[f(X)]} dP_X P_{Y|X} \\ = \frac{\mathbb{E}[f(X_{n+1}) (\mathbf{1}\{Y_{n+1} \in C(X_{n+1}) - (1 - \alpha)\})]}{\mathbb{E}[f(X)]}$$

Note that in the oracle setting, the prediction set is constructed directly using the true embedding $\pi(\cdot)$. In this case, the RKHS class \mathcal{F}^* used in our quantile regression is defined over the latent space induced by π , and we can therefore apply Lemma 4 with such a \mathcal{F}^* . By the Lemma 4, we see the numerator equals zero since the function f selected does not depend on the RKHS part. Therefore, we have

$$\frac{\mathbb{E}[f(X_{n+1}) (\mathbf{1}\{Y_{n+1} \in C(X_{n+1})\})]}{\mathbb{E}[f(X)]} \\ = \frac{\mathbb{P}(Y_{n+1} \in C(X_{n+1}), T(X_{n+1}) = k)}{\mathbb{P}(T(X_{n+1}) = k)} \\ = \mathbb{P}(Y_{n+1} \in C(X_{n+1}) \mid \arg \max_{k' \in [K]} \pi_{k'}(X_{n+1}) = k) = 1 - \alpha$$

Next, we establish group-conditional coverage when groups are defined via the estimated low-rank embedding $\hat{\pi}(\cdot)$.

Corollary 6 Fix $K \geq 2$ and let the latent mixture weights $\{W_i \in \Delta^{K-1}\}_{i=1}^n$ satisfy $W_i \stackrel{i.i.d.}{\sim} P_W$, with observations $\{X_i \mid W_i\}_{i=1}^n \stackrel{i.i.d.}{\sim} P_{X|W}$. Suppose we have an estimated embedding $\hat{\pi} : \mathcal{X} \rightarrow \mathbb{R}^K$ for $\pi(\cdot)$ which is defined in Theorem 2, and define $\hat{T}(X) := \arg \max_{k \in [K]} \hat{\pi}_k(X)$. Assume Assumptions 1 and 2 hold, and that $\mathbb{P}(\hat{T}(X) = k) > 0$ for all $k \in [K]$. Let $\hat{C}_{\text{rand}}^*(\cdot)$ be the randomized conformal set calibrated using the linear feature map

$$\Phi^*(X) = (\mathbf{1}\{\hat{T}(X) = 1\}, \dots, \mathbf{1}\{\hat{T}(X) = K\})^\top.$$

Then, for every $k \in [K]$,

$$\mathbb{P}\left(Y_{n+1} \in \hat{C}_{\text{rand}}^*(X_{n+1}) \mid \hat{T}(X_{n+1}) = k\right) = 1 - \alpha. \quad (59)$$

Proof. The proof follows the same argument as Theorem 2. The only difference is that the tilting function is now taken to be

$$f(x) = \mathbf{1}\{\hat{T}(x) = k\}, \quad \text{for a fixed } k \in [K],$$

so the reweighted distribution corresponds to conditioning on the estimated dominated group $\hat{T}(X) = k$. All other steps remain identical. Since the RKHS class \mathcal{F}^* is now defined with respect

1674 to the estimated embedding $\hat{\pi}(\cdot)$, we applying Lemma 4 with this tilting function yields the de-
 1675 sired group-conditional guarantee. To connect representation-conditional guarantee in equation 59
 1676 to equation 11, we apply the law of total probability such that, for any set $\hat{C}(X)$,
 1677

$$\begin{aligned}
 & \mathbb{P}(Y \in \hat{C}(X) \mid T(X)) \\
 &= \sum_{k=1}^K \mathbb{P}\left(Y \in \hat{C}(X), \hat{T}(X) = k \mid T(X)\right) \\
 &= \sum_{k=1}^K \mathbb{P}\left(Y \in \hat{C}(X) \mid \hat{T}(X) = k, T(X)\right) \cdot \mathbb{P}\left(\hat{T}(X) = k \mid T(X)\right) \\
 &= \sum_{k=1}^K \mathbb{P}(Y \in \hat{C}(X) \mid \hat{T}(X) = k) \mathbb{P}(\hat{T}(X) = k \mid T(X)) \\
 &+ \sum_{k=1}^K [\mathbb{P}(Y \in \hat{C}(X) \mid T(X), \hat{T}(X) = k) - \mathbb{P}(Y \in \hat{C}(X) \mid \hat{T}(X) = k)] \cdot \mathbb{P}(\hat{T}(X) = k \mid T(X)).
 \end{aligned}$$

1691 The term $\mathbb{P}(Y \in \hat{C}(X) \mid T(X), \hat{T}(X) = k) \equiv \mathbb{P}(Y \in \hat{C}(X) \mid \hat{T}(X) = k)$ for all k if the conformity
 1692 score is sufficient for T given \hat{T} , i.e., $S \perp T(X) \mid \hat{T}(X)$. In this case, representation-conditional
 1693 coverage transfers to true-group coverage. However, the condition, $S \perp T(X) \mid \hat{T}(X)$, is generally
 1694 not hold, since score S depends on (X, Y) and X depends on the unobserved variable W beyond \hat{T} .
 1695 It does hold under the ideal alignment $\hat{T}(X) = T(X)$ a.s., which is the setting in Theorem 2. The
 1696 condition $\hat{T}(X) = T(X)$ a.s. holds when $\hat{T}(X)$ is essentially the Bayes-optimal argmax classifier
 1697 or a marginal condition holds as shown in Lemma 10. ■
 1698

1700
 1701
 1702 **Remark 7** While the RKHS class \mathcal{F}^* is specified using the estimated low-rank embedding $\hat{\pi}(\cdot)$, the
 1703 tilt function $f = \mathbf{1}\{\hat{T}(X) = k\}$ used for group-conditional coverage must be fixed with respect to
 1704 the calibration sample. To ensure this, the low-rank projection $\hat{\pi}(\cdot)$ and the induced partition $\hat{T}(\cdot)$
 1705 are computed using an algorithm that is invariant under re-orderings of the input data. In this way,
 1706 f is data-dependent but non-random relative to the calibration set and test point, which preserves
 1707 the exchangeability conditions for our finite-sample guarantee.

1708 This construction can be viewed as an empirical proxy for a population-level tilt determined by the
 1709 latent structure. The posterior mean embedding $\pi(X) = \mathbb{E}[W \mid X]$ serves as the ideal population
 1710 target, as it is a deterministic, stable summary of the latent variable W , thus yielding the most
 1711 efficient prediction sets under the settings in Theorem 2. Our estimated embedding $\hat{\pi}(\cdot)$ and groups
 1712 $\hat{T}(\cdot)$ approximate this structure from data. From the Corollary 6 and the adaptivity of the tilt function
 1713 f to $\hat{\pi}(\cdot)$, the coverage guarantee remains robust to the errors in $\hat{\pi}(\cdot)$.
 1714

1715 C.4 SOME TECHNICAL PROOFS

1717 **Lemma 8** Fix $K \geq 2$ and let $\pi_i = (\pi_{ik})_{k=1}^K$ be the true embedding representative and $\hat{\pi}_i =$
 1718 $(\hat{\pi}_{ik})_{k=1}^K$ with $\pi_{ik}, \hat{\pi}_{ik} \in (0, 1)$. Define

$$\theta_{ik} := \log \pi_{ik} - \frac{1}{K} \sum_{\ell=1}^K \log \pi_{i\ell}, \quad \hat{\theta}_{ik} := \log \hat{\pi}_{ik} - \frac{1}{K} \sum_{\ell=1}^K \log \hat{\pi}_{i\ell},$$

1723 and write vectors $\theta_i = (\theta_{ik})_{k=1}^K$, $\hat{\theta}_i = (\hat{\theta}_{ik})_{k=1}^K$. Let $r_{ik} := \pi_{ik} - \hat{\pi}_{ik}$ and $\Delta\pi_{ik} := r_{ik}/\hat{\pi}_{ik}$, and
 1724 define the centered vector
 1725

$$\tilde{\Delta}\pi_{ik} := \Delta\pi_{ik} - \frac{1}{K} \sum_{\ell=1}^K \Delta\pi_{i\ell} \quad (k = 1, \dots, K), \quad \tilde{\Delta}\pi_i := (\tilde{\Delta}\pi_{ik})_{k=1}^K.$$

1728 Let $\Delta_{1,ij} = 2\langle \hat{\theta}_i - \hat{\theta}_j, \tilde{\Delta}\pi_i - \tilde{\Delta}\pi_j \rangle + \|\tilde{\Delta}\pi_i - \tilde{\Delta}\pi_j\|_2^2$. Assume $\max_{i,k} |\Delta\pi_{ik}| \leq \frac{1}{2}$, then
 1729

$$1730 \quad \|\theta_i - \theta_j\|_2^2 - \|\hat{\theta}_i - \hat{\theta}_j\|_2^2 = \Delta_{1,ij} + \Delta_{2,ij}, \quad (60)$$

1731 for an absolute constant C with $|\Delta_{2,ij}| \leq C \left(\left(\max_k |\Delta\pi_{ik}| \right)^3 + \left(\max_k |\Delta\pi_{jk}| \right)^3 \right)$. For the
 1732 Gaussian kernel $\psi_{ij} := \exp(-\gamma\|\theta_i - \theta_j\|_2^2)$ and $\hat{\psi}_{ij} := \exp(-\gamma\|\hat{\theta}_i - \hat{\theta}_j\|_2^2)$, we have
 1733

$$1735 \quad \psi_{ij} = \hat{\psi}_{ij} (1 - \gamma\Delta_{1,ij} + O(|\Delta_{2,ij}| + \gamma^2\Delta_{1,ij}^2)). \quad (61)$$

1736 **Proof.** Write $\pi_{ik} = \hat{\pi}_{ik}(1 + \Delta\pi_{ik})$. Then

$$1738 \quad \theta_{ik} - \hat{\theta}_{ik} = \log(1 + \Delta\pi_{ik}) - \frac{1}{K} \sum_{\ell=1}^K \log(1 + \Delta\pi_{i\ell}).$$

1741 For $|u| \leq \frac{1}{2}$, $\log(1 + u) = u - \frac{1}{2}u^2 + r(u)$ with $|r(u)| \leq 2|u|^3$. Hence
 1742

$$1743 \quad \theta_{ik} - \hat{\theta}_{ik} = \tilde{\Delta}\pi_{ik} - \frac{1}{2} \left(\Delta\pi_{ik}^2 - \frac{1}{K} \sum_{\ell=1}^K \Delta\pi_{i\ell}^2 \right) + \tilde{r}_{ik}, \quad |\tilde{r}_{ik}| \leq 2 \left(\max_k |\Delta\pi_{ik}| \right)^3.$$

1745 Let $q_i := \theta_i - \hat{\theta}_i - \tilde{\Delta}\pi_i$ where q_i collects the centered quadratic and remainder terms; then $\|q_i\|_2 \lesssim$
 1746 $(\max_k |\Delta\pi_{ik}|)^2$. Consequently,
 1747

$$1748 \quad \theta_i - \theta_j = (\hat{\theta}_i - \hat{\theta}_j) + (\tilde{\Delta}\pi_i - \tilde{\Delta}\pi_j) + (q_i - q_j),$$

1749 and expanding the squared norm yields equation 60 with
 1750

$$1751 \quad \Delta_{2,ij} = 2\langle \hat{\theta}_i - \hat{\theta}_j, q_i - q_j \rangle + 2\langle \tilde{\Delta}\pi_i - \tilde{\Delta}\pi_j, q_i - q_j \rangle + \|q_i - q_j\|_2^2,$$

1752 which is bounded as stated by Cauchy–Schwarz and the displayed bounds on q_i, q_j .
 1753

1754 For the kernels, write with $\hat{dist}_{ij} := \|\hat{\theta}_i - \hat{\theta}_j\|_2^2$ and $\Delta dist_{ij} := \|\theta_i - \theta_j\|_2^2 - \hat{dist}_{ij}$,
 1755

$$1756 \quad \psi_{ij} = \hat{\psi}_{ij} \exp(-\gamma\Delta dist_{ij}) = \hat{\psi}_{ij} (1 - \gamma\Delta dist_{ij} + O(\gamma^2\Delta dist_{ij}^2)),$$

1757 and substitute equation 60 to obtain equation 61. ■

1758 **Lemma 9 (Kernel perturbation against a fixed value)** Fix $K \geq 2$. Let $\Delta\pi_{ik} := (\pi_{ik} - \hat{\pi}_{ik})/\hat{\pi}_{ik}$
 1759 and the centered version $\tilde{\Delta}\pi_{ik}$ as in Lemma 8. Fix any $w \in \mathbb{R}^K$ and define the Gaussian kernels
 1760

$$1761 \quad \psi_i(w) := \exp(-\gamma\|\theta_i - w\|_2^2), \quad \hat{\psi}_i(w) := \exp(-\gamma\|\hat{\theta}_i - w\|_2^2).$$

1763 Assume $\max_k |\Delta\pi_{ik}| \leq \frac{1}{2}$. Then, writing $\Delta_{1,i}(w) := 2\langle \hat{\theta}_i - w, \tilde{\Delta}\pi_i \rangle + \|\tilde{\Delta}\pi_i\|_2^2$, we have the
 1764 distance expansion

$$1765 \quad \|\theta_i - w\|_2^2 - \|\hat{\theta}_i - w\|_2^2 = \Delta_{1,i}(w) + \Delta_{2,i}, \quad |\Delta_{2,i}| \leq C \left(\max_k |\Delta\pi_{ik}| \right)^3, \quad (62)$$

1767 for an absolute constant C . Consequently,

$$1769 \quad \Delta_i(w) := |\psi_i(w) - \hat{\psi}_i(w)| \leq \hat{\psi}_i(w) \left(\gamma |\Delta_{1,i}(w)| + C \left((\max_k |\Delta\pi_{ik}|)^3 + \gamma^2 \Delta_{1,i}(w)^2 \right) \right). \quad (63)$$

1771 **Proof.** Write $\pi_{ik} = \hat{\pi}_{ik}(1 + \Delta\pi_{ik})$. Using the proof in Lemma 8, we have now
 1772

$$1773 \quad \|\theta_i - w\|_2^2 - \|\hat{\theta}_i - w\|_2^2 = 2\langle \hat{\theta}_i - w, \tilde{\Delta}\pi_i \rangle + \|\tilde{\Delta}\pi_i\|_2^2 + \Delta_{2,i},$$

1774 with

$$1775 \quad \Delta_{2,i} = 2\langle \hat{\theta}_i - w, q_i \rangle + 2\langle \tilde{\Delta}\pi_i, q_i \rangle + \|q_i\|_2^2,$$

1776 which obeys $|\Delta_{2,i}| \leq C(\max_k |\Delta\pi_{ik}|)^3$ by Cauchy–Schwarz and the bounds on q_i . This proves
 1777 equation 62. For the kernels, let $\hat{dist}_i(w) := \|\hat{\theta}_i - w\|_2^2$ and $\Delta dist_i(w) := \|\theta_i - w\|_2^2 - \hat{dist}_i(w)$.
 1778 Then

$$1779 \quad \psi_i(w) = \exp(-\gamma(\hat{dist}_i(w) + \Delta dist_i(w))) = \hat{\psi}_i(w) (1 - \gamma\Delta dist_i(w) + O(\gamma^2\Delta dist_i(w)^2)).$$

1781 Substitute equation 62 for $\Delta dist_i(w)$ and take absolute values to obtain equation 63. ■

1782 **Lemma 10** Let $m(X) := \pi_{(1)}(X) - \pi_{(2)}(X)$ be the (pointwise) top-1 margin, where $\pi_{(1)} \geq \pi_{(2)} \geq \dots$ are the order statistics of $\{\pi_k(X)\}_{k=1}^K$. If

$$1785 \quad \|\hat{\pi}(X) - \pi(X)\|_\infty < \frac{1}{2} m(X) \quad a.s.,$$

1786 then $\hat{T}(X) = T(X)$ a.s.

1788 **Proof.** Let $k := T(X)$, so $\pi_k(X) - \pi_\ell(X) \geq m(X)$ for all $\ell \neq a$. Then

$$1789 \quad \hat{\pi}_k - \hat{\pi}_\ell = (\pi_k - \pi_\ell) + (\hat{\pi}_k - \pi_k) - (\hat{\pi}_\ell - \pi_\ell) \geq m(X) - 2\|\hat{\pi} - \pi\|_\infty > 0,$$

1790 so $\hat{T}(X) = k$. ■

1793 C.4.1 APPROXIMATE CONDITIONAL VALIDITY UNDER EMBEDDING ERROR

1795 **Lemma 11** Let W' be drawn according to the true neighborhood law $W' \mid \pi(X_{n+1}) \sim \psi_W^*(\pi(X_{n+1}), \cdot)$. Assume the conditions in Lemma 9 are all satisfied, then

$$1797 \quad \mathbb{P}(Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1}) \mid W' = w') = 1 - \alpha - \frac{\mathbb{E}[\sum_{i \in [n+1]} \hat{v}_{S^{rand}, i} \psi^*(w', \hat{\pi}(X_i))]}{\mathbb{E}[\psi^*(w', \hat{\pi}(X))] + Err(w')} \quad (64)$$

1800 where

$$1801 \quad |\text{Err}(w')| \leq \frac{\Delta(w')}{\mathbb{E}[\psi_W^*(\pi(X), w')]} + \frac{\mathbb{E}[\psi_W^*(\hat{\pi}(X), w')]}{\mathbb{E}[\psi_W^*(\pi(X), w')]} \cdot \frac{\Delta(w')}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), w')]} \quad (65)$$

1804 with $\Delta_i(w') = |\psi_W^*(\hat{\pi}(X_i), w') - \psi_W^*(\pi(X_i), w')|$. and $\Delta(w') := \mathbb{E}[\Delta_i(w')]$.

1806 **Proof.** Starting from the displayed decomposition in Theorem 1,

$$1807 \quad \mathbb{E}\left[\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha) \mid W'\right] \\ 1808 = \frac{\mathbb{E}\left[\psi_W^*(\pi(X_{n+1}), W') \cdot (\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha))\right]}{\mathbb{E}[\psi_W^*(\pi(X), W')]}.$$

1812 If we replace the true $\pi(X_i)$ by the estimated $\hat{\pi}(X_i)$, define $N(W') := \mathbb{E}[\psi_W^*(\pi(X), W') \cdot Z(X, Y)]$, $D(W') := \mathbb{E}[\psi_W^*(\pi(X), W')]$, and $\hat{N}(W') := \mathbb{E}[\psi_W^*(\hat{\pi}(X), W') \cdot Z(X, Y)]$, $\hat{D}(W') := \mathbb{E}[\psi_W^*(\hat{\pi}(X), W')]$ with $Z(X, Y) := \mathbf{1}\{Y \in \hat{C}_{rand}^*(X)\} - (1 - \alpha) \in [-1, 1]$. A standard ratio perturbation yields

$$1817 \quad \left| \frac{\hat{N}(W')}{\hat{D}(W')} - \frac{N(W')}{D(W')} \right| \leq \frac{|\hat{N}(W') - N(W')|}{D(W')} + \frac{|\hat{N}(W')|}{\hat{D}(W')} \cdot \frac{|\hat{D}(W') - D(W')|}{D(W')},$$

1819 since $D(W'), \hat{D}(W') > 0$. Next, with $\Delta_i(W') := |\psi_W^*(\hat{\pi}(X_i), W') - \psi_W^*(\pi(X_i), W')|$ and
1820 $\Delta(W') := \mathbb{E}[\Delta_i(W')]$, we have

$$1822 \quad |\hat{N}(W') - N(W')| = \left| \mathbb{E}[(\psi_W^*(\hat{\pi}(X), W') - \psi_W^*(\pi(X), W')) Z(X, Y)] \right| \leq \mathbb{E}[\Delta_i(W')] = \Delta(W'),$$

1824 and similarly $|\hat{D}(W') - D(W')| \leq \Delta(W')$. Using $|\hat{N}(W')| \leq \hat{D}(W')$ (because $|Z| \leq 1$) gives

$$1826 \quad \mathbb{E}\left[\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha) \mid W'\right] \\ 1827 = \frac{\mathbb{E}\left[\psi_W^*(\hat{\pi}(X_{n+1}), W') \cdot (\mathbf{1}\{Y_{n+1} \in \hat{C}_{rand}^*(X_{n+1})\} - (1 - \alpha))\right]}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), W')] + Err(W')} \\ 1829 = \frac{-\mathbb{E}\left[\sum_{i \in [n+1]} \hat{v}_{S^{rand}, i} \psi_W^*(\hat{\pi}(X), W')\right]}{\mathbb{E}[\psi_W^*(\hat{\pi}(X), W')] + Err(W')} \quad \text{Lemma 4}$$

1833 where the general bound is in equation 65. If $\Delta_i(w') \rightarrow 0$, then $Err(w') \rightarrow 0$ as well. Therefore,
1834 equation 10 closely approximates the conditional guarantee with respect to the true latent representation. ■

1836 C.4.2 COVERAGE GAP ESTIMATION
1837

1838 The idea behind estimating the coverage gap $\hat{\lambda} \frac{\mathbb{E}[\langle \hat{g}_{rand, \psi^*}, f_{\psi^*} \rangle_{\psi^*}]}{\mathbb{E}[f(X)]}$ is to leverage results from n -
1839 sample quantile regression, applied specifically to the calibration data points. As shown in Proposition
1840 2 of Gibbs et al. (2023), the estimation error in their setting (using raw covariates) can be
1841 bounded by $O(\sqrt{d \log n / n})$. We adapt their arguments to the latent-space setting, where the feature
1842 map satisfies $\|\Phi^*(X)\|_1 = 1$. The following result, Proposition 4, provides a sharper bound on this
1843 estimation error under our setting.

1844 To simplify the notation, let
1845

$$1846 \mathcal{L}_n(g_{\psi^*}, \eta) := \frac{1}{n} \sum_{i \in [n]} \ell_\alpha(S_i - \Phi^*(X_i)^\top \eta - g_{\psi^*}(X_i)) \\ 1847 \\ 1849 \mathcal{L}_\infty(g_{\psi^*}, \eta) := \mathbb{E} [\ell_\alpha(S_i - \Phi^*(X_i)^\top \eta - g_{\psi^*}(X_i))]$$

1850 denote the empirical and population losses with low-rank projection $\hat{\pi}(\cdot)$.
1851

1852 Recall the closed form solution in equation 6 shows the estimated coefficients are functions of λ .
1853 For a fixed λ , we denote the solution class parameterized by λ as

$$1854 \mathcal{F}_{\lambda, \psi^*} = \{g_{\psi^*} : g_{\psi^*}(x) = \frac{1}{\lambda} \sum_{i \in [n+1]} v_i \psi^*(x, X_i)\} \quad (66) \\ 1855 \\ 1856$$

1857 Define the objective
1858

$$1859 \tilde{\mathcal{L}}_n(g_{\psi^*}, \eta) := \mathcal{L}_n(g_{\psi^*}, \eta) + \lambda \cdot \|g_{\psi^*}\|_{\psi^*}^2 \\ 1860 \tilde{\mathcal{L}}_\infty(g_{\psi^*}, \eta) := \mathcal{L}_\infty(g_{\psi^*}, \eta) + \lambda \cdot \|g_{\psi^*}\|_{\psi^*}^2$$

1862 which is strictly convex in g_{ψ^*} and η . Let $(\hat{g}_{n, \psi^*}, \mathcal{B}_n), (g_{\infty, \psi^*}^*, \mathcal{B}_\infty^*) \in \mathcal{F}_{\lambda, \psi^*} \times 2^{\mathbb{R}^K}$, denote the
1863 minimizers of $\min_{(g_{\psi^*}, \eta) \in \mathcal{F}^*} \tilde{\mathcal{L}}_n(g_{\psi^*}, \eta), \min_{(g_{\psi^*}, \eta) \in \mathcal{F}^*} \tilde{\mathcal{L}}_\infty(g_{\psi^*}, \eta)$, respectively.
1864

1865 Note we write $g(x) = \Phi^*(x)^\top \eta + g_{\psi^*}(x)$ with arbitrary (g_{ψ^*}, η) . Let

$$1866 g_\infty^*(x) = \Phi^*(x)^\top \eta_\infty^* + g_{\infty, \psi^*}^*(x) \text{ for } \eta_\infty^* \in \mathcal{B}_\infty^* \\ 1867 \\ 1868 \hat{g}_n(x) = \Phi^*(x)^\top \hat{\eta}_n + \hat{g}_{n, \psi^*}(x) \text{ for } \hat{\eta}_n \in \mathcal{B}_n$$

1869
1870 Let $e(g, g_\infty^*) = \tilde{\mathcal{L}}_\infty(g_{\psi^*}, \eta) - \tilde{\mathcal{L}}_\infty(g_{\infty, \psi^*}^*, \mathcal{P}_{\mathcal{B}_\infty^*} \eta)$.
1871

1872 **Assumption 3 (Population strong convexity)** Let $d(g_{\psi^*}, \eta) := \inf_{\eta_\infty^* \in \mathcal{B}_\infty^*} \|\eta - \eta_\infty^*\|_2 + \|g_{\psi^*} - g_{\infty, \psi^*}^*\|_{\psi^*}$ denote the distance from (g_{ψ^*}, η) to the nearest population minimizer. Suppose $S \mid X$
1873 has positive density on \mathbb{R} and is continuous. If $d(g_{\psi^*}, \eta) \leq \epsilon_l$ for some constant $\epsilon_l > 0$, then there
1874 exists some constant $C_l > 0$ such that
1875

$$1876 e(g, g_\infty^*) \geq C_l d(g_{\psi^*}, \eta)^2 \\ 1877$$

1878 This assumption is mild under the some assumptions on the distribution of $S \mid X$ since $\nabla_\eta^2 \mathcal{L}_\infty =$
1879 $\mathbb{E}[P_{S \mid X}(0) X X^\top]$ Tan et al. (2022).
1880

1881 **Assumption 4** There exist some constants $c_f, c_\pi, c_{f,S} > 0$ such that
1882

$$1883 \sup_{f \in \mathcal{F}^*} \sqrt{\mathbb{E}[|f(X_i)|^2]} \leq c_f \mathbb{E}[|f(X)|], \quad \mathbb{E}[|f(X_i)| S_i^2] \leq c_{f,S} \mathbb{E}[|f(X)|] \\ 1884 \\ 1885 \inf_{\eta: \|\eta\|_2=1, \eta \in \mathbb{R}^d} \mathbb{E}[|\Phi^*(X)^\top \eta|] \geq c_\pi, \mathbb{E}[\|\Phi^*(X_i)\|_2^2] \leq c_0, \\ 1886 \\ 1887 \sup_{f \in \mathcal{F}^*} \mathbb{E}[|f(X_i)| \|\Phi^*(X_i)\|_2^2] \leq c_1 \mathbb{E}[|f(X_i)|].$$

1888
1889 Furthermore, we assume that $\mathbb{E}[|S_i^2|] < \infty$ and $\sup_x \psi^*(x, x) = 1$.

This assumption is stronger than Assumption 1 in Gibbs et al. (2023), which requires the following moment bounds:

$$\mathbb{E}[\|\Phi^*(X_i)\|_2^2] \leq c_0 d, \sup_{f \in \mathcal{F}^*} \mathbb{E}[|f(X_i)|\|\Phi^*(X_i)\|_2^2] \leq c_1 \mathbb{E}[|f(X_i)|]d$$

In contrast, we assume a bounded-norm feature map in the latent space, specifically $\|\Phi^*(X)\|_2^2 \leq c_0$ which does not grow with feature dimension d . In particular, when $\Phi^*(X)$ is an indicator vector over a finite partition, in which case $\|\Phi^*(X)\|_1 = 1$ as well.

Proposition 4 Suppose the assumptions 3, 4 are satisfied. Under the settings in Lemma 4. Define the n -sample kernel quantile regression estimate with a fixed λ

$$(\hat{g}_{n,\psi^*}, \hat{\eta}_n) = \arg \min_{g_{\psi^*} \in \mathcal{F}_{\lambda,\psi^*}, \eta \in \mathbb{R}^K} \frac{1}{n} \sum_{i \in [n]} \ell_\alpha(S_i - g_{\psi^*}(X_i) - \Phi^*(X_i)^\top \eta) + \lambda \|g_{\psi^*}\|_{\psi^*}^2,$$

and for any $\epsilon > 0$, let

$$\mathcal{F}_\epsilon^* := \{f(\cdot) = f_{\psi^*}(\cdot) + \Phi^*(\cdot)^\top \eta \in \mathcal{F}^* : \|f_{\psi^*}\|_{\psi^*} + \|\eta\|_2 \leq 1, \mathbb{E}[|f(X)|] \geq \epsilon\}.$$

Then,

$$\sup_{f \in \mathcal{F}_\epsilon^*} \left| 2\lambda \frac{\langle \hat{g}_{n,\psi^*}, f_{\psi^*} \rangle_{\psi^*}}{\frac{1}{n} \sum_{i=1}^n |f(X_i)|} - 2\lambda \frac{\mathbb{E}[\langle \hat{g}_{S_{n+1},\psi^*}, f_{\psi^*} \rangle_{\psi^*}]}{\mathbb{E}[\frac{1}{n} \sum_{i=1}^n |f(X_i)|]} \right| \leq O_{\mathbb{P}} \left(\sqrt{\frac{\log n}{n}} \right)$$

Proof. By the results in Section 4.1.2 in Boucheron et al. (2005) and $\|\Phi^*(X)\|_2^2 \leq c_0$, we know that $\{f_{\psi^*}(\cdot) + \Phi^*(\cdot)\eta : \|f_{\psi^*}\|_{\psi^*} + \|\eta\|_2 \leq 1\}$ has Rademacher complexity at most $O(\sqrt{1/n})$. Following the proof for Proposition 2 in Gibbs et al. (2023), we can show

1. Let $\mathcal{E}_2 = \{\|\eta - \mathcal{P}_{\mathcal{B}_\infty^*} \eta\|_2 \leq \epsilon_1, \|g_{\psi^*} - g_{\infty,\psi^*}^*\|_{\psi^*} \leq \epsilon_2 : \epsilon_1, \epsilon_2 > 0\}$. We have

$$\mathbb{E} \left\{ \sup_{\eta, g_{\psi^*} \in \mathcal{E}_2} |\mathcal{L}_n(g_{\psi^*}, \eta) - \mathcal{L}_n(g_{\infty,\psi^*}^*, \mathcal{P}_{\mathcal{B}_\infty^*} \eta) - (\mathcal{L}_\infty(g_{\psi^*}, \eta) - \mathcal{L}_\infty(g_{\infty,\psi^*}^*, \mathcal{P}_{\mathcal{B}_\infty^*} \eta))| \right\} \leq O((\epsilon_1 + \epsilon_2) \sqrt{1/n})$$

$$2. \sup_{f \in \mathcal{F}_\epsilon^*} \left| \frac{1}{n} \sum_{i \in [n]} f(X_i) - \mathbb{E}[\frac{1}{n} \sum_{i \in [n]} |f(X_i)|] \right| = O_{\mathbb{P}}(\sqrt{1/n})$$

$$3. \sup_{f_{\psi^*} \in \mathcal{F}_{\lambda,\psi^*}} \lambda |\mathbb{E}[\langle \hat{g}_{S_{n+1},\psi^*}, f_{\psi^*} \rangle_{\psi^*}]| = O(1)$$

$$4. \sup_{f_{\psi^*} \in \mathcal{F}_{\lambda,\psi^*} : \|f_{\psi^*}\|_{\psi^*} \leq 1} \lambda |\langle \hat{g}_{n,\psi^*}, f_{\psi^*} \rangle_{\psi^*} - \mathbb{E}[\langle \hat{g}_{S_{n+1},\psi^*}, f_{\psi^*} \rangle_{\psi^*}]| \leq O_{\mathbb{P}}(\sqrt{\frac{\log(n)}{n}})$$

Using the claims above, we thus get the desired results through some calculations. \blacksquare

Remark 12 Under the setting in Theorem 1, the tilt function $f^{w'}(x) = \psi_W^*(\hat{\pi}(x), w')$ emphasizes coverage in a neighborhood around the fixed point w' in the latent space. As shown in Proposition 4, this coverage gap $\frac{\mathbb{E}[\sum_{i \in [n+1]} \hat{v}_{S_{rand,i}} \psi_W^*(W', \hat{\pi}(X_i))]}{\mathbb{E}[\psi_W^*(W', \hat{\pi}(X))]}$ admits a data-driven approximation $\frac{\sum_{i \in [n]} \hat{v}_{n,i} \psi_W^*(w', \hat{\pi}(X_i))}{\frac{1}{n} \sum_{i \in [n]} \psi_W^*(w', \hat{\pi}(X_i))}$ where $W' = w'$ is fixed and $\{\hat{v}_{n,i}\}_{i \in [n]}$ are the empirical coefficients from \hat{g}_{n,ψ^*} .

D ADDITIONAL EXPERIMENTS

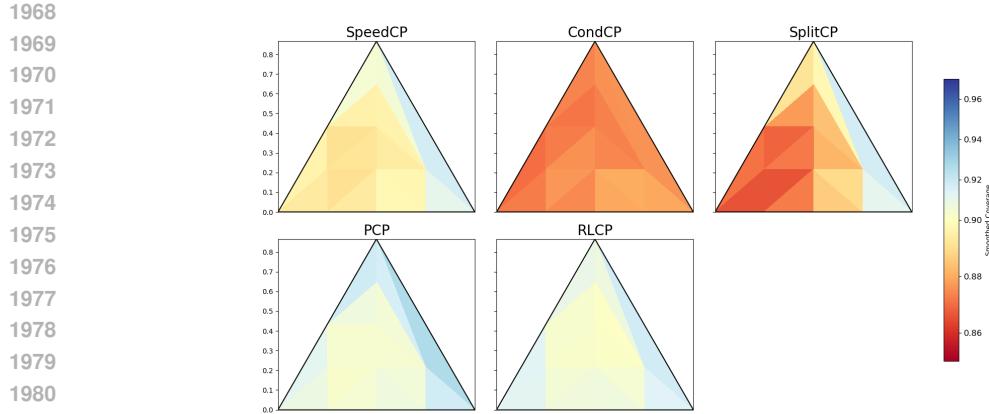
D.1 SYNTHETIC EXPERIMENTS

In this section, we provide additional details on the synthetic experiments and provide further experiment results.

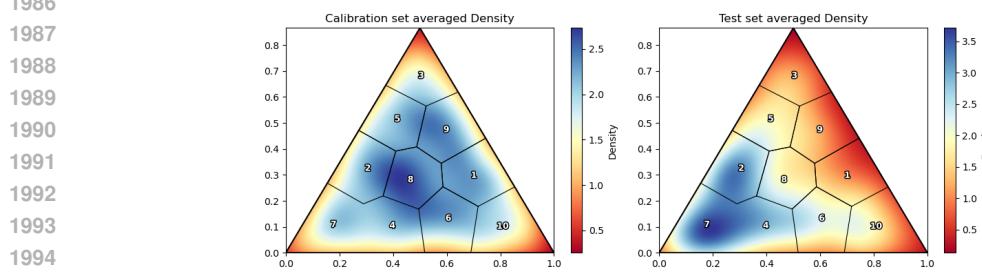
1944 In all of our experiments, we generate $X_i \in \mathbb{R}^p$ from a mixture of $K = 3$ latent
 1945 distributions. Specifically, we first generate X_i from a multinomial distribution, $mX_i \sim$
 1946 $\text{Multinomial}(N, \sum_{k \in [K]} W_i(k)\zeta_k)$ with $W_i = w_i$ fixed and total count $N = 1000$. For each sam-
 1947 ple in the training and calibration sets, we generate $W_i \sim \text{Dir}([2, 1, 1])$ and randomly shuffle the
 1948 elements to create a distribution that is more symmetric across vertices. Here, the density is higher
 1949 in the central part of the simplex. For test samples, we generate from the same distribution but do
 1950 not shuffle, to create a high concentration near one vertex of the 2-dimensional simplex (Figure 5).
 1951

1952 We sample the latent component $\zeta_k \in \mathbb{R}^p$ from a uniform distribution and normalize it so that
 1953 $\sum_{j \in [p]} \zeta_k(j) = 1$ for each $k \in [K]$. We estimate $\pi(X_i) = \mathbb{E}[W_i | X_i]$ with pLSI (Section B.1)
 1954 and use $\hat{\pi}(X_i)$ as inputs of SpeedCP, CondCP, PCP, and RLCP. For SpeedCP and CondCP, we
 1955 choose $\Phi^*(X_i) = (1, \mathbf{1}\{\arg \max_k \hat{\pi}_k(X_i) = 1\}, \dots, \mathbf{1}\{\arg \max_k \hat{\pi}_k(X_i) = K-1\})$ using the
 1956 estimated latent embeddings $\hat{\pi}(X_i)^\top$. The response Y_i is generated from a nonlinear function of
 1957 $Y_i \sim N(\sin(2\pi \cdot W_i(1)) + (W_i(2))^2 + W_i^\top \eta, 0.1^2)$ and $\eta_j \sim \text{Unif}(1, 10)$ for $j = 1, 2, 3$ and nor-
 1958 malized. In this setting, we aim to see whether each conformal method can guarantee 0.9 coverage
 1959 uniformly across the simplex, especially in boundaries (areas close to one vertex). We report our
 1960 results based on 50 independent runs of data generation. At each run, we split the data into 600
 1961 training points, 300 calibration points, and 100 test points.

1961 In Table 2, we report the computation time for two different predictors. We can see that SpeedCP is
 1962 faster compared to CondCP and PCP, which are the state-of-the-art conformal prediction methods
 1963 that account for the local or latent data structure. RLCP is fast but fails to attain target miscoverage
 1964 level as discussed in Section 3 of the main manuscript. In Figure 4, we show the coverage conditional
 1965 on the latent space of $\hat{\pi}(X)$ when the predictor is a neural network. The same plot for the linear
 1966 regression predictor is shown in Figure 1. In both plots, we observe that SpeedCP achieves 0.9
 1967 across the simplex most uniformly.



1982 Figure 4: Mean coverage on fine-gridded partitions on the latent space (a 2D simplex) when $\hat{\mu} =$
 1983 NN. The results are aggregated over 50 random generations. SpeedCP shows the most uniform 0.9
 1984 coverage across the simplex.



1996 Figure 5: Averaged calibration and test density over 50 random generations of data. We use kmeans
 1997 followed by Voronoi tessellation to partition the latent simplex into 10 bins.

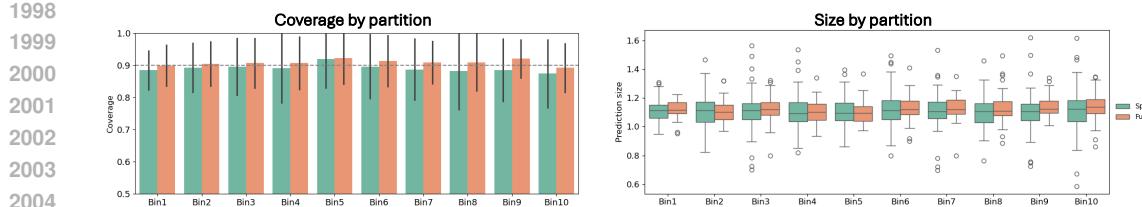


Figure 6: Conditional miscoverage and prediction set size for each fixed partition on the latent space. We observe small overestimation of coverage when we use the full calibration set instead of setting aside a dataset for tuning (γ, λ) . Overall, the two methods are marginally different.

D.1.1 COVERAGE ACROSS DIFFERENT SAMPLE SIZE n

We experiment with different values of the sample size n in Table 5. As the calibration set grows larger, we generally expect the coverage guarantee to be the same while the prediction set size decreases because the estimation error and the uncertainty of the kernel quantile estimator diminishes. Interestingly, we observe a slight increase in prediction size at $n = 2000$ followed by a decrease at $n=5000$. This fluctuation is likely due to finite-sample variability in both the estimated latent embeddings and the cross-validated hyperparameters. The computation time increases with n , which is consistent with the computational complexity of SpeedCP, which is approximately $O(n^3)$. Overall, for moderately large n , the method still remains computationally feasible.

Table 5: Mean prediction set size and computation time for SpeedCP (linear regression predictor).

n	Prediction set size	Computation time (seconds)
1000	1.376 ± 0.07	12.363 ± 4.10
2000	2.053 ± 0.11	23.956 ± 7.03
5000	1.030 ± 0.02	191.255 ± 29.36

D.1.2 CHOICES OF DIFFERENT $\Phi^*(X)$

We also discuss how conditional coverage changes with different choices of $\Phi^*(X)$ of our function class \mathcal{F}^* equation 17. When running a RKHS-based quantile regression on the scores, $\Phi^*(X)^\top \eta$ acts as the linear component with the design matrix $\Phi^*(X)$ and parameters η . $\Phi^*(\cdot)$ allows flexible modeling of different types of conditional coverage. For example, in this synthetic experiment, we can consider four different $\Phi^*(X)$ based on the estimated latent embedding $\hat{\pi}(X)$,

1. Taking $\Phi^*(X) = 1$ yields the marginal coverage.
2. Taking $\Phi^*(X) = \hat{\pi}(X)$ yields mixture- conditional coverage, where we guarantee coverage linearly reweighted with $\hat{\pi}(X)$.
3. (What we used) Taking $\Phi^*(X) = (\mathbf{1}, \mathbf{1}\{\hat{T}(X) = 1\}, \dots, \mathbf{1}\{\hat{T}(X) = K-1\})^\top$ or said $\Phi^*(X) = (\mathbf{1}\{\hat{T}(X) = 1\}, \dots, \mathbf{1}\{\hat{T}(X) = K\})^\top$ where $\hat{T}(X) = \arg \max_{k \in [K]} \hat{\pi}_k(X)$ yields topic-conditional coverage, where the topic is defined as the latent distribution with the highest mixture proportion weight.

Through our experiments we observed that in high-dimensional settings, coverage using SpeedCP is primarily affected by the RKHS component, f_{Ψ^*} rather than the linear term. If more prior information is available on the conditional distribution, and the goal is to achieve more precise conditional coverage at level $1 - \alpha$, one may instead calibrate scores using a function class restricted to the linear term, as in Gibbs et al. (2023). However, the inclusion of the RKHS component can lead to smaller prediction sets even without those additional prior structures. Further investigation is needed to determine whether choosing $\Phi^*(X)$ as the indicators of topics, or the latent embeddings, improves performance under varying covariate dimensionality p or the signal-to-noise ratio in X .

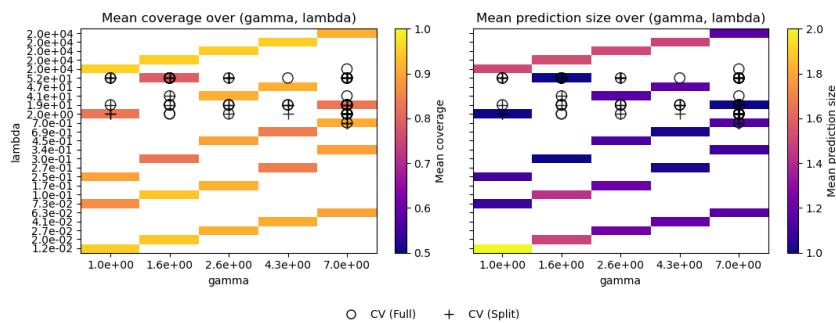
2052 D.1.3 USING CALIBRATION SET FOR TUNING (γ, λ)
2053

2054 In our experiments, we use the calibration set for selection of (γ, λ) instead of setting aside a separate
2055 validation set for efficiency. We agree that, in the current implementation, (γ, λ) is selected by cross-
2056 validation using the calibration data, so the chosen pair is technically data-dependent. Therefore,
2057 the dependence will introduce some bias and small finite-sample distortion of coverage. However,
2058 the selected pair (λ, γ) converges in probability to a deterministic value when the calibration set
2059 size is large. Recent work on adaptive coverage policies shows that it is empirically valid to use
2060 the calibration set itself to select regularization parameters via leave-one-out or cross-validation
2061 (Theorem 2.6 in Gauthier et al. (2025)). Gibbs et al. (2023) also show, the selection of λ using the
2062 calibration set does not affect the coverage significantly.

2063 To assess whether the calibration set can be reliably used for hyperparameter tuning, we compare
2064 it against a split strategy in which half of the calibration set is used for tuning and the remaining
2065 half for calibration, avoiding the potential issues discussed earlier. As shown in Figure 6, the two
2066 approaches have similar conditional coverage and prediction set sizes, with the full-calibration pro-
2067 cedure exhibiting only a slight overestimation of coverage. Also in Figure 7, we observe that the
2068 chosen (γ, λ) pairs from the two approaches are also similar.

2069 D.1.4 UNIFORM COVERAGE ON ANY (γ, λ)
2070

2071 We assess whether the uniform coverage guarantee assumed in Section 2.2 holds across all choices
2072 of (γ, λ) . We get the approximate joint hyperparameter by gathering results from running λ -path
2073 on each γ in the γ grid. We then select 25 pairs and run S -path to get coverage and prediction set
2074 size. We observe in Figure 7 that the coverage holds uniformly 0.9 across the pairs, affirming that
2075 the coverage is not affected by the choice of (γ, λ) . However, we observe that the prediction set size
2076 differs by the choice of (γ, λ) . Our cross validation approach chooses (γ, λ) in the region where
2077 prediction set size is small.



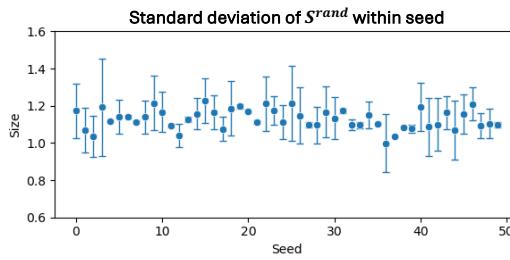
2079 Figure 7: Marginal coverage and prediction set size of 25 pairs of (γ, λ) on the joint hyperparam-
2080 eter space. We also show selected (γ, λ) 's using k -fold cross validation on calibration set (full)
2081 or validation set (split).

2082 D.1.5 EFFECT OF RANDOMIZATION ON S
2083

2084 As described in Section 2, we use the randomized cutoff $S^{rand}(X_{n+1}) = \sup\{S \mid \hat{v}_{S,n+1} < U\}$,
2085 where $U \sim Unif(-\alpha, 1-\alpha)$, to construct prediction sets. In practice, this randomization introduces
2086 little variability. This is because the S -path starts with a small value, and along the path, the S values
2087 along the path are generally smaller than \hat{g}_S , leading to $\hat{v}_{S,n+1} = -\alpha$. Figure 8, we observe that the
2088 standard deviation of S_i^{rand} 's for each run(seed) is small, confirming this behavior.

2089 D.2 REAL DATA EXPERIMENT
20902091 D.2.1 ARXIV ABSTRACTS
2092

2093 We sample 5000 abstracts from ArXiv metadata (Clement et al., 2019) in mathematics, statistics,
2094 and computer science categories. The processed abstract-word count matrix has a vocabulary size

Figure 8: Mean and standard deviation of S_i^{rand} 's for each seed.

of $p = 11,516$. We project the abstracts onto $K = 5$ latent mixture proportions, $\hat{\pi}(X_i)$, using pLSI, the topic modeling approach described in Section B.1. We use $\hat{\pi}(X_i)$ as inputs for all methods.

For SpeedCP and CondCP, we additionally set the linear representation $\Phi^*(X_i)$ as an one-hot encoding of the topic: $\Phi^*(X) = (\mathbf{1}\{\hat{T}(X) = \text{Geometry}\}, \mathbf{1}\{\hat{T}(X) = \text{Algebra}\}, \mathbf{1}\{\hat{T}(X) = \text{ML}\}, \mathbf{1}\{\hat{T}(X) = \text{Vision}\}, \mathbf{1}\{\hat{T}(X) = \text{Quantum}\})^\top$. Figure 9 displays the top words for each estimated topic, while Figure 10 shows the proportion of documents in each estimated topic. At a resolution of $K = 5$, the topics are readily interpretable and correspond to distinct subfields within mathematics, statistics, and computer science. pLSI estimates soft assignments $\hat{\pi}(X_i) \in \mathbb{R}^5$, representing mixture proportions over the topics, which we use as inputs to SpeedCP, CondCP, PCP, and RLCP.

The goal is to construct prediction intervals that achieve nominal level 0.9 across topics. CondCP is omitted because, in our experiments, it did not finish within the allotted time budget (30 hours). This occurred consistently across the larger datasets we evaluated. We present topic-conditional coverage and prediction set size in Table 6. To illustrate performance under a poor predictor, we choose linear regression of citation counts on raw word frequencies, which fails to extract any meaningful associations between words and citation counts. As a result, RLCP produces overly wide prediction intervals and PCP fails to uncover any latent mixture structure of $\hat{S}|\hat{\pi}(X)$ and becomes equivalent to SplitCP. In contrast, SpeedCP leverages kernel smoothing, resulting in tighter and more accurate prediction intervals.

Table 6: Mean coverage across topics and prediction set size of ArXiv dataset.

Method	Target coverage ($1 - \alpha = 0.9$)					Size	Time (seconds)
	Geometry	Algebra	ML	Vision	Quantum		
SpeedCP	0.880 ± 0.02	0.890 ± 0.05	0.730 ± 0.34	0.920 ± 0.02	0.822 ± 0.11	15.835 ± 3.05	8.682 ± 3.10
SplitCP	0.877 ± 0.02	0.876 ± 0.04	0.659 ± 0.35	0.926 ± 0.02	0.762 ± 0.08	15.661 ± 1.17	< 0.01
PCP	0.877 ± 0.02	0.876 ± 0.04	0.659 ± 0.35	0.926 ± 0.02	0.762 ± 0.08	15.661 ± 1.17	17.501 ± 0.54
RLCP	0.935 ± 0.02	0.958 ± 0.03	0.956 ± 0.16	0.923 ± 0.02	0.962 ± 0.04	42.493 ± 45.308	1.184 ± 0.01

D.2.2 MOLECULE GRAPHS

We provide additional results of the molecule dataset example in Section 3. For each dataset, we subsample 2000 molecule graphs at each run with 50 runs in total, and split into 1000/500/500 training, calibration, and test points. Using the 1000 molecule graphs, we train a GIN predictor $\hat{\mu}(\cdot)$ to extract the 64-dimensional last layer and compute conformal scores $S_i = |\hat{\mu}(X_i) - y_i|$. In this experiment, we consider the intercept for the linear term, $\Phi^*(X_i) = 1$ and $\pi(X_i)$ as the PC score. In Figure 11, we plot the Voronoi partitions on which we measure the coverage (Figure 12) as well the mean prediction set (Figure 13) at level $\alpha = 0.1$.

Our method, SpeedCP, and SplitCP construct the smallest prediction sets overall. However, while SplitCP applies a single global cutoff across the entire PC space, SpeedCP adapts to the local structure of the embeddings. For instance, in the QM9 dataset we find that SpeedCP produces slightly larger prediction sets in sparser regions of the PC space (e.g., partitions 2, 4, and 6), which allows it to maintain consistent 0.9 coverage across all partitions.

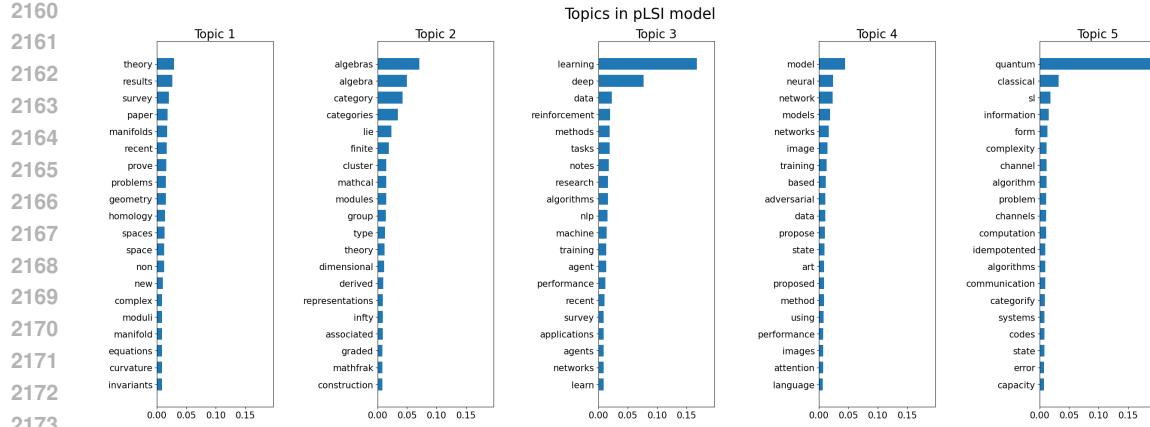


Figure 9: Latent topics of ArXiv abstracts identified by probabilistic latent semantic indexing (pLSI), a topic modeling approach. We plot the top 20 words with the largest weights for each topic. We name each topic as *Geometry*, *Algebra*, *Machine Learning*, *Computer Vision*, and *Quantum theory* based on the top words.

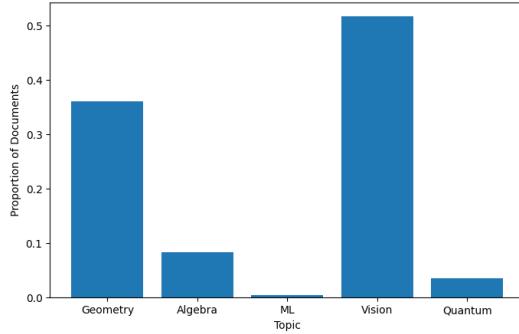


Figure 10: Distribution of the most likely topic over all abstracts with $n = 5000$.

D.2.3 BRAIN TUMOR MRI

We train a CNN classifier $\hat{\mu}(\cdot)$ on 2,000 images and extract the 256-dimensional NN features from the last layer. We report the performance of the CNN classifier $\hat{\mu}(\cdot)$ in Figure 14, which shows the evaluation metrics on the training and validation sets.

Using another 2,400 images for calibration, we compute conformal scores $S_i = |\hat{\mu}(X_i) - y_i|$ and apply our RKHS path-following quantile regression in the latent space to obtain thresholds at level $\alpha = 0.1$.

In this experiment, we evaluate both *marginal* coverage and *per-label* (predicted-label) coverage $\mathbb{P}(Y_{n+1} \in \hat{C}_{\text{rand}}^*(X_{n+1}) \mid \hat{\mu}(X_{n+1}) = \hat{y})$ using 600 test images over 50 simulation trials. We exclude CondCP from the analysis because a single simulation takes over 50,000 seconds and the algorithm fails to converge. For comparison, we perform calibration using the 256-dimensional neural network features directly as the embedding $\hat{\pi}(\cdot)$. To further reduce dimensionality, we apply a post hoc PCA to rank 8 on these features; the resulting principal components define $\hat{\pi} : \mathcal{X} \rightarrow \mathbb{R}^8$.

Using 256-dim features from NN. We include illustrative results corresponding to Table 4 from the main paper. Empirically, the cutoffs produced by SplitCP and RLCP are effectively identical in our high-dimensional setting. Intuitively, RLCP’s locality weights become uninformative in high dimensions (the distance metric loses discriminative power), so RLCP reduces to uniform weighting over the calibration set, recovering the SplitCP cutoff.

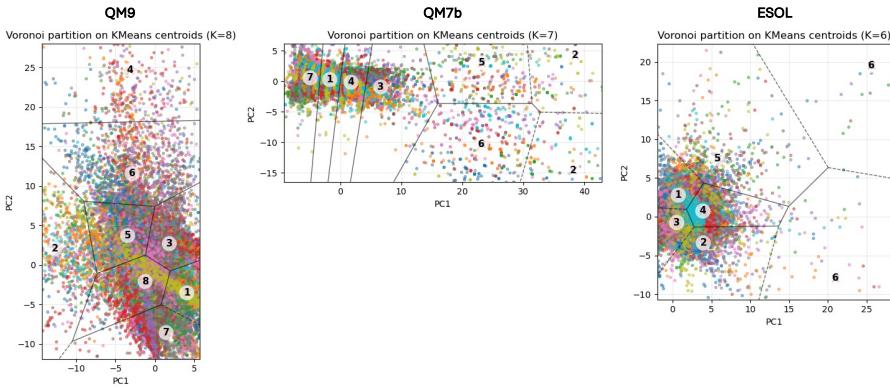


Figure 11: Voronoi tessellation of the PC space. We plot PC representation of graph embeddings where each color denotes each random subsample of the dataset.

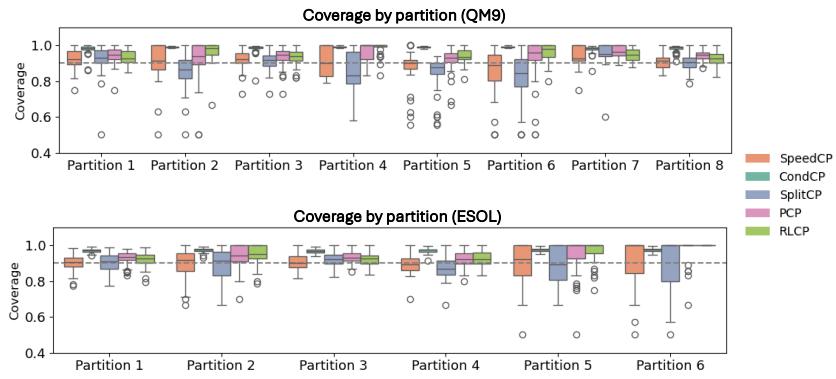


Figure 12: Coverage on fixed partitions of the PC space for QM9 and ESOL. We use PCA on the last layer embeddings of GNN with $K = 3$ dimensions. The dashed line denotes the target coverage rate $1 - \alpha = 0.9$.

Using principle components. To further reduce dimensionality, we extract features from the neural network and project them onto a low-rank embedding via PCA with $K = 8$, fitted on the first 2,000 training samples. SplitCP attains similar coverage but requires more conservative sets in lower-dimensional space, whereas our method delivers narrower sets with near-nominal predicted-label coverage. RLCP and PCP tend to over-cover, particularly for the healthy class as well, and exhibit unstable cutoffs with high variance and frequent near-zero values (see Table 9). Consequently, even after dimensionality reduction, RLCP and PCP produce overly conservative conditional coverage.

Compared to results using higher-dimensional features, the low-rank projection further reduces the cutoff without compromising conditional guarantees (comparing Table 4 with 8), thereby yielding narrower prediction sets.

D.3 DETAILS ON COMPUTATION RESOURCES

All experiments were conducted on a cloud-based computing cluster. Each job was allocated 4 CPU cores and 4 GB of memory. No GPUs were used. For CondCP, we used the MOSEK solver in CVXPY to solve the underlying convex optimization problems. All code was implemented in Python3 and run in a consistent computing environment to ensure reproducibility.

2268

2269

2270 Table 7: Summary statistics of conformal cutoffs (marginal and by predicted label) using the 256-dim features from NN as input space for conformal prediction.

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293 Table 8: Mean coverage and prediction set size across predicted labels in the MRI dataset under the
2294 PCA-based model.

Method	Target coverage ($1 - \alpha = 0.9$)			Prediction set size			Time (seconds)
	Marginal	Healthy	Tumor	Marginal	Healthy	Tumor	
SpeedCP(1)	0.910 \pm 0.01	0.901 \pm 0.02	0.915 \pm 0.01	0.239 \pm 0.07	0.230 \pm 0.07	0.244 \pm 0.08	286.1 \pm 14.2
SpeedCP(Φ^*)	0.905 \pm 0.02	0.898 \pm 0.03	0.900 \pm 0.02	0.247 \pm 0.08	0.241 \pm 0.08	0.251 \pm 0.08	294.5 \pm 20.9
SplitCP	0.901 \pm 0.01	0.893 \pm 0.02	0.906 \pm 0.01	0.350 \pm 0.00	0.350 \pm 0.00	0.350 \pm 0.00	< 0.01
PCP	0.906 \pm 0.02	0.925 \pm 0.03	0.895 \pm 0.02	0.230 \pm 0.27	0.279 \pm 0.26	0.200 \pm 0.26	130.1 \pm 28.9
RLCP	0.916 \pm 0.01	0.926 \pm 0.02	0.911 \pm 0.02	0.359 \pm 0.38	0.388 \pm 0.37	0.342 \pm 0.38	2.095 \pm 0.13

2295

2296

2297

2298

2299

2300

2301 Table 9: Summary statistics of conformal cutoffs (marginal and by predicted label) using PCA-based
2302 model. SpeedCP(Φ^*) calibrates scores with a linear term that includes predicted labels, whereas
2303 SpeedCP(1) uses an intercept-only term.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

Method	Mean	Std	Min	Max
Marginal				
SpeedCP(1)	0.2391	0.0738	0.0654	0.8641
SpeedCP(Φ^*)	0.2470	0.0805	0.0442	1.2279
SplitCP	0.3505	0.0087	0.3315	0.3729
RLCP	0.3594	0.3797	0.0000	0.9984
PCP	0.2301	0.2672	0.0000	0.9984
$\hat{y} = \text{healthy}$				
SpeedCP(1)	0.2300	0.0697	0.0654	0.7414
SpeedCP(Φ^*)	0.2409	0.0785	0.0442	1.2279
SplitCP	0.3506	0.0088	0.3315	0.3729
RLCP	0.3883	0.3711	0.0000	0.9984
PCP	0.2788	0.2654	0.0000	0.9984
$\hat{y} = \text{tumor}$				
SpeedCP(1)	0.2445	0.0756	0.1486	0.8641
SpeedCP(Φ^*)	0.2506	0.0815	0.0615	1.2225
SplitCP	0.3505	0.0087	0.3315	0.3729
RLCP	0.3420	0.3838	0.0000	0.9984
PCP	0.2009	0.2641	0.0000	0.9984

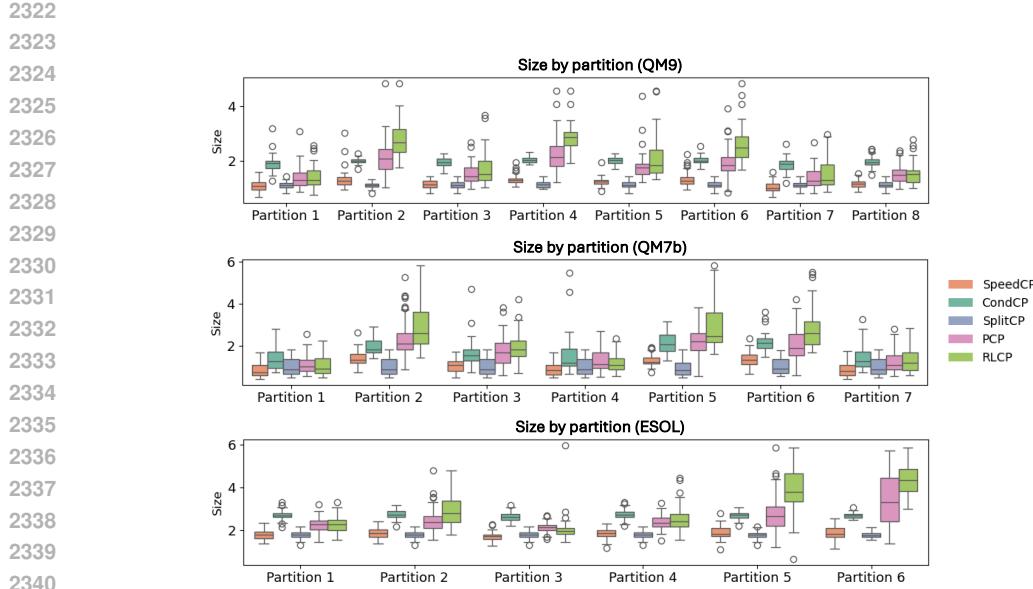


Figure 13: Prediction set size on fixed partitions of the PC space for each molecule dataset. We use PCA on the last layer embeddings of GNN with $K = 3$ dimensions.

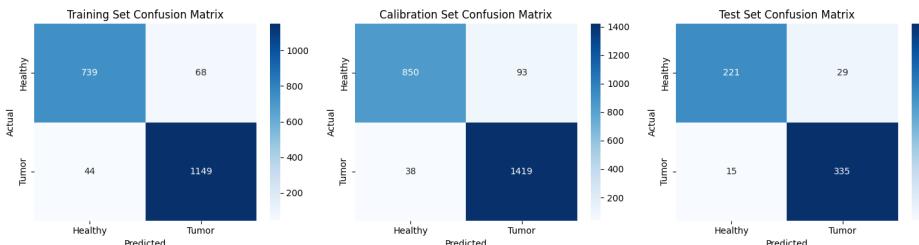


Figure 14: Evaluation of the CNN classifier on the Brain Tumor MRI dataset.

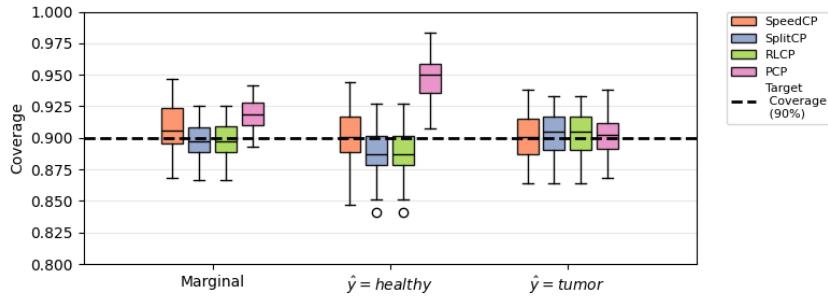


Figure 15: Predicted-label conditional coverage on the Brain Tumor MRI test set under the PCA-based model. Calibration is performed using the linear feature map $\Phi^*(X) = (\mathbf{1}\{\hat{\mu}(X) = \text{healthy}\}, \mathbf{1}\{\hat{\mu}(X) = \text{tumor}\})^\top$ under the 256-dim features layer from NN.

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

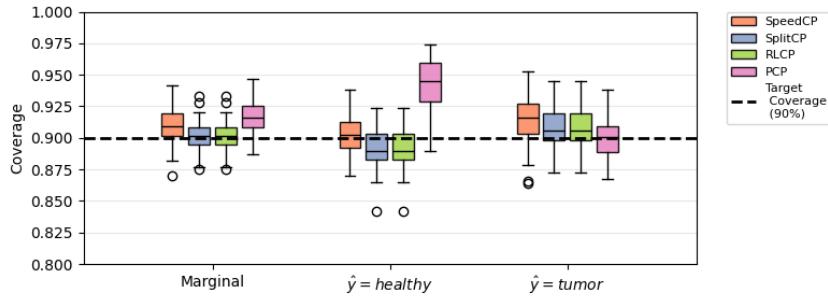


Figure 16: Predicted-label conditional coverage on the Brain Tumor MRI test set by calibrating with the intercept only $\Phi^*(X) = 1$ under the 256-dim features layer from NN.

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

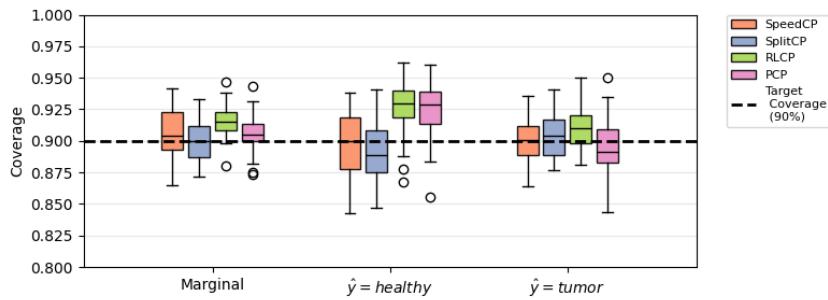


Figure 17: Predicted-label conditional coverage on the Brain Tumor MRI test set under the PCA-based model. Calibration is performed using the linear feature map $\Phi^*(X) = (1, \mathbf{1}\{\hat{\mu}(X) = \text{healthy}\}, \mathbf{1}\{\hat{\mu}(X) = \text{tumor}\})^T$.

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

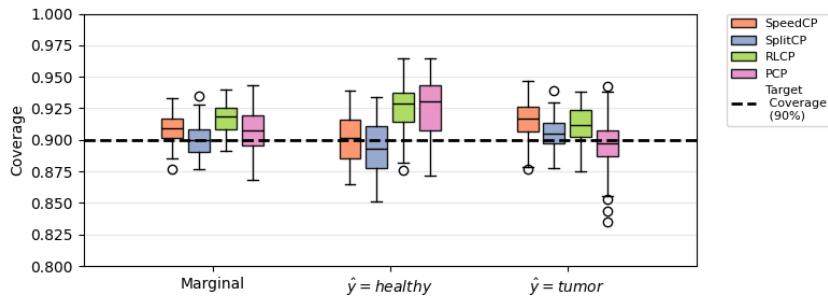


Figure 18: Predicted-label conditional coverage on the Brain Tumor MRI test set by calibrating with the intercept only $\Phi^*(X) = 1$.