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ABSTRACT

Conformal prediction provides distribution-free prediction sets with finite-sample
conditional guarantees. We build upon the RKHS-based framework of|Gibbs et al.
(2023)), which leverages families of covariate shifts to provide approximate condi-
tional conformal prediction intervals, an approach with strong theoretical promise,
but with prohibitive computational cost. To bridge this gap, we develop a sta-
ble and efficient algorithm that computes the full solution path of the regularized
RKHS conformal optimization problem, at essentially the same cost as a single
kernel quantile fit. Our path-tracing framework simultaneously tunes hyperpa-
rameters, providing smoothness control and data-adaptive calibration. To extend
the method to high-dimensional settings, we further integrate our approach with
low-rank latent embeddings that capture conditional validity in a data-driven la-
tent space. Empirically, our method provides reliable conditional coverage across
a variety of modern black-box predictors, improving the interval length of |Gibbs
et al.|(2023) by 30%, while achieving a 40-fold speedup.

1 INTRODUCTION

Conformal prediction is a framework for constructing prediction sets that are valid under minimal
distributional assumptions. Given a trained predictor /(X), and calibration data (X, Y;);e[n to-
gether with a test point X,, 1, all drawn i.i.d. (or more generally, exchangeable) from an unknown
and arbitrary distribution P, conformal methods such as split conformal prediction (SplitCP) (Pa-
padopoulos et al., 2002) calculate conformity scores {.9;};c,) on the calibration data to construct a

prediction set C (Xy41)- This procedure guarantees marginal coverage, ensuring that the resulting
set includes the true label Y,, 1 with probability at least 1 — «, for any specified « € (0, 1).

However, marginal coverage does not preclude significant variability in conditional coverage on
the test input X, 1, defined as P(Y,,41 € C(Xpt1) | Xpp1 = ) = 1 — o for all 2. This
limitation can be particularly problematic in high-stakes applications such as drug discovery or
socially sensitive decision-making, where systematic under-coverage on critical subgroups may lead
to unreliable or even harmful outcomes. Unfortunately, prior works (Vovk, 2012; Barber et al.,
2021) have shown that in distribution-free settings, any interval satisfying conditional coverage must
have an infinite expected length, C (Xn+1) = R, making meaningful prediction impossible without
further assumptions.

To address this issue, |Gibbs et al.| (2023) note that the conditional coverage can be equivalently
reformulated as a marginal guarantee over any measurable function f, i.e., E[f(X,41) - (1{Yn41 €
C(Xni1)} — (1 — a))] = 0. This observation motivates them to relax the objective by restricting
the requirement to a user-specified function class F:

E[f(Xps1) - (1{Ynt1 € C(Xp41)} — (L —a))] =0, forall f € F. (1)

Different choices of F yield different notions of conditional validity. For example, taking F° =
{n : n € R} to be the set of all constant functions in equation [1| is equivalent to guaranteeing
marginal coverage. Taking F7 to be the set of piecewise constant functions over a set of pre-specified
(potentially overlapping) groups G, so that 79 = {ZGEQ ngl{z € G} : n € RIYI }, yields group-
conditional coverage (Vovk et al., 2003; Jung et al., 2022), i.e., P(Y,11 € C‘(Xn+1) | Xpy1 €
G)=1—aforal G e g.
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In this paper, we consider a more flexible class associated with a reproducing kernel Hilbert space
(RKHS) that is capable of achieving coverage guarantees under complex, nonlinear covariate shifts:

FREHS — {f4(-)+@() '+ fy € Fym e R[] )
with a given positive definite kernel ¢ : X x X — R and any covariate representation ¢ : X —
R<. The linear component ®(-) " 1) enables marginal, group-conditional, or other linear adjustments,
while the RKHS component f(-) controls smoothness over complex data structures. Notably, both
FO, F9 are special cases of FEEHS | For instance, setting f,, = 0 and choosing ®(X) = 1{X €
G} fora group G € G in equationrecovers group-conditional coverage.

Although RKHS function classes provide a promising surrogate for exact conditional coverage in
equation|[T] their practical use remains limited. |Gibbs et al|(2023) established theoretical guarantees
under RKHS classes, but, contrary to simpler classes of shifts for which their method is fast, the
computational cost of RKHS classes is so prohibitive that the approach is not deployable at scale.

To construct prediction sets, |Gibbs et al.|(2023)) fit an RKHS quantile regression on the n calibration
points (X, S;);c[n), augmented with the test point (X, 11, S), where S is an imputed score for un-
seen value S,, ;1. The imputation of .S is carried out via a binary search, with each candidate value
requiring a fresh RKHS regression on the n + 1 points. Because of this already prohibitive com-
putational burden, the authors fix the kernel bandwidth ~ and restrict hyperparameter selection to
cross-validation over a pre-specified grid for the regularization parameter . While they demonstrate
that (A, ) do not affect marginal coverage, these hyperparameters crucially shape the smoothness
of the regression fit and thus the tightness of the resulting prediction sets.

The primary objective of this paper is to improve upon the algorithm of|Gibbs et al.[(2023) in order to
achieve conditional validity in the RKHS function class in reasonable time, guaranteeing coverage
under complex covariate shifts. Like (Gibbs et al) [2023), we frame the problem as regularized
RKHS quantile regression to recover score cutoffs for constructing prediction sets. To address the
previous limitations, we introduce two new (A, S)-path algorithms. Our method builds solution
paths of regression parameters that are piecewise-linear in either the smoothness parameter A (the
A—path) or in the candidate score .S (the S—path). The algorithm decides the next A or S by updating
these parameters only when there is a change in the elbow set. At each step, the solution is based on
the current elbow set, a subset dramatically smaller than n+-1, yielding substantial computational
savings. This formulation makes conditional conformal prediction with RKHS both tractable and
tunable, providing prediction sets that are not only valid but also adaptively tight.

Our second objective is to deploy our method in high-dimensional settings when X € R? with p >
n. In such cases, conditional coverage on low-rank representation is often more interpretable and
relevant. Using raw covariates in kernel methods is often ineffective, as distance-based similarities
become less discriminative. Accordingly, we approximate each covariate vector X using a K-
dimensional latent embedding (i.e., latent mixture, principal component, or layer embedding of
a predictor network model) via a low-rank map # : R? — RX with K < p. We define the
kernel of the RKHS function class FRXHS on this representation, resulting in improved signal-to-
noise ratios and enhanced predictive performance (Hastie et al., |2009; Udell & Townsend, [2019).
This yields a different notion of conditional coverage: rather than directly guaranteeing P(Y;, 11 €

C(Xn41)| Xny1), we wish to condition on P(Y,, 41 € C(Xpi1)|7(Xpg1)).

Contributions Our contributions in this work are threefold:

* Methods: We extend conditional conformal prediction (Gibbs et al., 2023) to high-
dimensional settings by conditioning on learned low-rank embeddings 7(X) within an
RKHS, and thus improving signal-to-noise and yielding better-calibrated prediction sets,
particularly in low-density data regions.

» Algorithm: We explore the affine relationship between the imputed score .S and the RKHS
coefficients v, 7, and leverage this structure to design a fast, stable solution-path algorithm
for RKHS-based conformal prediction, yielding a closed-form solution for hyperparameter
selection and higher-quality prediction sets.

! Given a positive definite kernel ¢ : X x X — R, let F, denote the associated RKHS with an inner product
(, )y and a norm || - ||,4. Using the representer theorem (Kimeldorf & Wahbal [1971)), any function fy, € Fy
has a finite form fy (X) = 37,1, vt (X, X;) for some coefficient vector v € R™"!. The norm has form

| fo Hfb = (fo, fo)w = Zu vV (X5, X;). We provide notations used in the paper in Appendix
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* Theory: We establish finite-sample guarantees for approximate conditional coverage with
respect to data-driven latent embeddings, instead of pre-specified functions of X, and char-
acterize how embedding estimation error affects validity in high-dimensional inference.

We illustrate our contributions in Figure [T} SpeedCP achieves uniform 0.9 coverage across the 2D
simplex, delivering smaller prediction sets while running nearly 50 times faster than CondCP (Gibbs
2023). A detailed comparison with other conformal methods is provided in Append
and further results are discussed in Section[3
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Figure 1: Mean coverage on fine-gridded partitions on the latent space (a 2D simplex). The results
are aggregated over 50 random generations. SpeedCP shows the most uniform 0.9 (pale yellow)
coverage across the simplex.

2 METHODS

We begin by introducing preliminary notation. We partition the dataset {(X;,Y;)};cp into three
disjoint subsets: Dirqin, Deativ, and Dyeqe. A single test input is denoted as X, 41, since Yy, 11 is
unobserved. The training set Dyyqip, is used to train a predictive model /i(-) while the calibration
set Dcqiip provides conformity scores S; = S(X;,Y;) for i € Deqpi (We also use i € [n] to denote
calibration points as |D.qiip| = n). For high-dimensional covariates X € R™*P with p > n, we
denote a low-rank embedding map by # : X — R¥ with K < p. Our procedure can accommodate
any low-rank embedding 7 (X), provided that 7 (+) is fitted symmetrically across the calibration and
test set. We provide experiments on different low-rank methods in Section[3] When dimensionality
reduction is unnecessary, the identity map 7 (X ) = X may be used.

Our goal is to construct prediction intervals for test points X, ; that achieve conditional coverage
defined in equationwithin the RKHS function class FREHS (equation. In the high-dimensional
setting, we instead define the kernel on low-rank embeddings yielding a subclass F* c FRKHS
tailored to the latent space. The associated kernel ¢* is designed to emphasize local coverage in the
latent embedding space:

"/)*(XMXQ) :eXp{_'V'dﬂ' (ﬁ-(Xl),ﬁ-(XQ))}’ 3)

where 7 is the kernel bandwidth and d (-, -) is a distance metric between the low-dimensional em-
beddings (we detail this distance in Appendix.The feature map ®* : R® — R? is defined using
the estimated embedding space generated by 7(-), thereby allowing linear modeling of covariate
shifts within the latent representation space. The specific form of ®* depends on the application and
will be specified in the theorem statements and experimental settings later.

2.1 ALGORITHM: SPEEDCP

In this section, we present our method for constructing conditionally valid prediction sets. We fit
a regularized quantile regression in the RKHS class F* with fixed v > 0. Recalling that the rank
of a test point is uniformly distributed over the calibration set plus the test point, we fit using n
calibration covariate-score pairs (X;, S;)ic[n) plus the test point (X, 11, S,11). Because S,y is
unobserved, we impute it with an arbitrary candidate value S, which yields a regression function
parameterized by S,
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1 Ao
gs := arg rgm* 1 Z;[n]g Xi)) + ﬁfa(s —9(Xny1)) + 5”9111* w* “)

where A > 0 is the regularization parameter and £, (2) = (1—a)[z] . +a[z] - denotes the pinball loss

atlevel o € (0, 1). The regularization penalty rules out the meaningless prediction set C'(X,,41) =
R that can arise in infinite-dimensional classes. Accordingly, the prediction set takes the form,

é*(Xn+1) {y S( nt+1,Y )<§S(Xn+1,y)(Xn+1)}' )

Note that the RKHS class 7* and the corresponding quantile regressor in equation[dare well defined
for any fixed pair (v, A). Our method proceeds in two stages. First, we aim to select a sufficiently
good pair of hyperparameters (-, A) for the RKHS quantile regression. Using a separate data set,
Dipiit, disjoint from both the calibration and test sets, we trace the A-path for each prefixed v,
which provides a solution path of RKHS regression along the regularization parameter A. This
yields an efficient way to explore different levels of smoothness without repeatedly solving the full
optimization problem. We then cross-validate on the bandwidth ~ of the kernel ©)* to choose the
optimal (¥, ;\) pair. We therefore define the RKHS class F* in equation EI and in all subsequent
theorems with respect to this selected pair (7, 5\) Second, integrating with the test set, we construct
the S-path, which traces maximum score cutoff S that satisfies the condition in equation [S| The
full procedure is detailed in Algorithm [T We begin by outlining the setup before introducing the
(A, S)-paths.

For a given A, the solution to equation 4] has the following closed form:

n+1
9s(X) = ®*(X)"iis + 1 szlw (X, X,), (6)

where 7)g, Ug,; are parameters when the score of the test point .S, is set to S. For numerical
stability of the algorithm, we assume the columns of ®*(X) are linearly independent. Plugging this
in equation 4] the objective becomes,

n+1 n+1 n+1
nrgiq}xls;za(si—@ Tis = 5 z_jlvslf (Xi, X) “z:lvswsZ (X0, Xp). (D

The Lagrangian formulation and the Karush—Kuhn—Tucker (KKT) conditions of equation[7]motivate
us to define three index sets: the Elbow, Left, and Right set,

E={i:5 —g9s(Xi) =0,vg,; € (—a,1 — )}
L= {l : Si — gs(Xi) < 0,1)571' = 705} (8)
R = {Z 0 S; —gs(Xi) > O,USJ' =1- O(}.

We observe that for the left and right sets, the kernel parameters vg ; are fixed to either —a or 1 —
Thus, we only need to solve for vg ;’s in the elbow set, making the computation more efficient. The
algorithm reduces to tracking changes in this set for different A or S values: an event occurs when
there is a change in the index sets: 1) a point leaves the elbow or 2) when a point from the left or
right set enters it.

2.1.1 A-PATH FOR SMOOTHNESS CONTROL

To select A, we rely exclusively on the separate 1 observations in Dg;;; to choose optimal A inde-
pendent of calibration and test sets. The equations [6}{8] remain valid on this subset m, so we denote
the index sets as (E'(\), L(A), R(A)) as the sets evolve with A. Since no imputed score S'is required
for S,, 41, we drop S from the subscripts. We initialize X at the largest value for which at least two
points are in the elbow, and define the step size to the next A as the smallest decrement that triggers
an event. Importantly, the resulting coefficients {0y (\) } /[,y and 7)(A) evolve as a piecewise-linear
function of A, which we formalize in the following proposition.

2Let f(-) = fy= (-) +®*(-) 17 € F* denote the covariate-shift weighting of interest and §s(-) = Gy~ (-) +
®*(-)T7) € F* be the fitted results using imputed S over the same RKHS with kernel ¢* (with optimal 4). The
RKHS class is given by the optimal A such that Fy« = {fy=(z) = i Dicinin ViV (@, Xi),v € R,
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Proposition 1 Let {)\l}l:m,g,“. be the change points when an event occurs. For AL << AL
denote {0y (\) }ivefm) and 1)(\) as the solution of equation Egiven A. Then, {1 (A) }ire[m) are affine
in A and H)(X\) is affine in 1/ .

The piecewise linearity allows us to track the whole A solution path, not just at the change points.
To select the optimal (v, A)-pair, we fix a grid of the kernel bandwidth values ~, and run the A-
path for each fixed . We then perform k-fold cross validation to choose the combination (-, \)
that minimizes the quantile loss. It is worth noting that our coverage guarantee, established in
Section holds for any (-, A). However, we want to choose parameters that reflect an appropriate
level of smoothness of gg, which leads to tighter prediction sets. We provide additional details
on the derivation of the closed-form expressions for 0,/ (A)’s and 7()), as well as the effect of

hyperparameter tuning in Appendix and

2.1.2 S-PATH FOR CONSTRUCTING PREDICTION SETS

We proceed to constructing prediction sets with (%, \) selected from the A-path. We use the original
notations of the regression parameters, 0s; and 7)g, since conditions @-@ now only depend on the
imputed test score S. Recall that the prediction set is defined as a set of y such that S(X,,11,y) <
98(Xpi1,w)(Xnt1). By equation this is equivalent to Ug(x, ., ,y),n+1 < 1 — . Moreover, the
mapping S +— Og is nondecreasing (which we prove in Proposition [3| in Appendix [C). Thus, the
problem reduces to finding the largest value S* (X4 1) such that ¥g-(x, , ) nt+1 < 1 — a holds.

Conceptually, the S-path mirrors the A-path: it traces the evolution of the score cutoff S through
a sequence of events, where events are defined identically as before. The sets in equation [§| now
evolve with S. We initialize the S-path with the smallest S* such that the test point enters the elbow
set (i.e., g1 p+1 € (—,1 — @)) and then increment S to the next value at which an event occurs
while the test point is still in the elbow. We iterate until the test point exits the elbow and set the
final S as S*(Xp41). Similar to the A-path, we prove that U ;’s and 7jg evolve as an affine function
of S between any two change points:

Proposition 2 Let {51}1:1)273,... be the change points when an event occurs. For S* < § < SHH1,
denote {Us; }icn+1) and fs as the solution ofequationlz Then, {Us,i }icn+1) and s are affine in

As shown in Appendix Lemmas and using the threshold S*(X,,41) can inflate the conditional
coverage. To mitigate this, we instead prefer the randomized cutoff S™%"4(X,, 1) = sup{S |
Osm+1 < U}, where 1 — o is replaced by U ~ Unif(—a, 1 — ). The final prediction set is then
defined as:

C:and(Xn-‘rl) = {y : S(Xn+1,y) S Srand(Xn+1)}' (9)

Computational complexity At each iteration of the A\- and S-paths, we solve the inverse of
* 1=
(q)E /\‘I’EFE . Here, ®%, € RIFI¥d and %, € RIFIXIE| denote submatrices with row indices
0 i
and both row and column indices in the current elbow set E, respectively. This requires inverting a
(|E| + d) x (|E| + d) matrix at each iteration. While the worst-case complexity is O((n + d)?),
in practice |E| < n, making our procedure more efficient than refitting the full RKHS quantile
regression at every step. We detail the initialization and update functions of the A-, and S-paths as
well as the proofs of Proposition 1,2 in Appendix [B.2]

2.2 COVERAGE UNDER COVARIATE SHIFT

In our setting, covariate shift is encoded by a tilting function f € F*, which reweights the original
distribution P to emphasize specific regions or subpopulations of the embedding space on which we

seek to condition, dPy(x) = % dP(x). Since the solution-path formulation allows us to fit
the RKHS-based quantile regression model for any pre-selected A and -, we can apply Theorem 3
of [Gibbs et al| (2023)) to obtain a conditional guarantee with respect to all such tilts f € F* under
selected (7, ;\) (as shown in Appendix . Because F* is defined in terms of an estimated low-rank

projection 7(-) directly rather than the unknown true embedding of the covariates, the coverage
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Algorithm 1 SpeedCP
Input: Dyyain, Dspiits Deatibs Drest, latent map 7 : X — RE | (K < p), kernel bandwidth grid
I", miscoverage level o

Output: Conditionally calibrated prediction set for each test point
1. Train /i on Dypqin and get calibration scores: S; = S(X;,Y;),¢ € Deai_total-
2. Get latent embeddings: Teql total = ﬁ(AXcantal), Trest = ﬁ(XtAest).
3. Optimize for hyperparameter pair (7, A) using D,,;;; Solve (4, A) = argmin(, ) CV (v, A),
for v € I" do using,
forj=1,---kdo
{7 (A, -0, (AL, i (A =12, = A-path ((Fespiin fotd, > Ssplit\ foid; )3 V)
X)) = @ (X)) + 5 Siep, o fora, 07 A (X, X))
CV; (1, X)) = Yic pora, (L= @)[Si = §'(Xi)]4 + afS; — §'(X;)]-) for 1 = 1,2, -~
end for
CV(y, Ny = L1528 CVy(y, A forl =1,2,
end for
4. For each test point X1, find the maximum score S* such that S* < §g+(Xp41). Use
U ~ Unif[—a, 1 — a] to get the corresponding score S"%"? for a randomized prediction set,
for X,,+1 € Diest do
Srand — S_path(X i1, Deativ; ¥, A U)
CAva’fzmd(Xle) ={ye¥:S(Xps1,y) < 57"}
end for

validity is robust to errors in 7(-). Estimation error only impacts the effectiveness of prediction
set size and the deviation from conditional guarantee given the true embedding 7 (-) directly. We
illustrate this further via the following results. To do so, we need the following assumptions:

Assumption 1 {(X;, S;)}ic[n1) are exchangeable and {Y; | Xi}icin1) S Py x.

Assumption 2 The projection 7 (-) is computed symmetrically with respect to the n + 1 inputs.

Assumption|T]relaxes the i.i.d. condition used in|Gibbs et al.| (2023) to exchangeability, which is stan-
dard in conformal inference and accommodates latent-variable generative structures (e.g., admixture

models such as LDA (Blei et al.,2003)) that induce dependence among { X} while preserving ex-
changeability (see Theorem 2] for details). Assumption [2]ensures the validity of the tilt function f
and exchangeability of n + 1 samples under P;.

To achieve a distribution-free guarantee for P(Y, 11 € C*, (X, 11)|7(X,y1)) without overly wide
intervals, we consider one standard relaxation of conditional coverage using kernel reweighting
such that the tilt f(x) := ¢*(x,2’) with a given fixed point 2/, that emphasizes coverage in a
neighborhood around the latent embeddings of «’. In this analysis, we focus purely on the RKHS
component and set *(-) = 0.

Theorem 1 Suppose {(X;,S;)}ien+1] P and Assumption El holds. Assume there exists a

density kernel ¥}, (w, ) on the latent space such that, for all z1,xo € X, i, (7(x1), 7(z2)) =

*(z1,22). Let W' | Xppp1 = & ~ Y}y, (7(x), -), then we have

E[Zie[n+1] @Sm"d,ﬂﬁv(W,v ﬁ(sz
Bl (W, #(X))]

This localized version of conformal prediction can be viewed as an approximation of conditional

coverage on the event that W’ =~ #(X,41). The coverage gap on the right-hand side of equa-
tion [T0] quantifies the difficulty of achieving conditional coverage in the neighborhood emphasized

B(Yis1 € Clyng(Xosr) | W) =1 - — (10)
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by W = w’ after projecting on the RKHS. When W’ (or said 7(X,,11)) lies in a dense region of
the embedding, this gap is small. It requires a stronger i.i.d. assumption than exchangeability in As-
sumption [I]in order to give more relevance to data points closer to the test point in the latent space.
In other words, the coverage gap term becomes more stable. Rather than showing the gap is asymp-
totically zero with strong distribution and modeling assumption, this decomposition
makes the source of deviation explicit and directly estimable (see the method in Appendix [C.4.2]
using n-points quantile regression). Note, however, that equation [L0] is stated for neighborhoods
centered at the estimated embedding 7 (X,,+1), not the true one. When #(-) is a good approxi-
mation of the true embedding 7(-), the guarantee in equation [10| closely matches the conditional
guarantee under localization by the true latent representation, as shown in Appendix [C.4.1]

In addition, the guarantee can be generalized to any finite collection of groups encoded by the feature
map ®*(-). When the covariates are generated from an underlying latent structure, such as mixture
components or clusters, our approach yields tighter and more informative prediction intervals when-
ever the feature map captures the most informative low-rank projection of that structure. In the
ideal setting where a true embedding 7(+) is available, we run the quantile regression in equationEl
directly based on 7 (-) to obtain the conditional coverage as below.

Theorem 2 (Oracle setting) Fix K > 2 and consider the latent mixture weights {W; €
AR 1Y) %0 P and observations {X; | Wi}icin) < Px\w. Define m(X) := E[W |
X] € AX=L 10 be the true embedding representatives. Let T(X) := arg maxye () m(X). Sup-
pose the Assumptions[I|and 2| are both satisfied. Assume P(T(X) = k) > 0 for any k € [K]. Let
C* () be the randomized conformal set calibrated with the linear term ®*(X) = (1{T(X) =

rand

1}, ...,{T(X) = K})". Then for every k € [K],

JP>(Yn+1 e (Xntt) ’ T(Xni1) = k) —1-a. (11)

Note that {(X;, ;) }ie[n) in Theorem are exchangeable but not independent because { X };¢[) are
generated conditionally on latent variables {W;};c[,. This structure violates the i.i.d. assumption
on {(X;,S;)} in|Gibbs et al|(2023), so we need to adapt their conformal guarantee to the case
with unobserved variables W. In practice, neither W nor 7(-) is observed, so we condition on
the estimated representation 7(-) and its induced group 7'(X). The finite-sample guarantee with
respect to estimated groups 7'(X,, 1) hold for any low-rank projection 7(-) (see Corollarylél). In the
Appendix, we further quantify how the finite-sample guarantee based on the estimated embedding
(X)) deviates from this oracle guarantee. The accuracy of 7(X) relative to m(X) does not affect
coverage guarantee, but affect prediction sets. In particular, a coarser embedding still maintains
coverage but may yield wider and less efficient sets. Compared with the near-nominal conditional
coverage given by Posterior Conformal Prediction (PCP) which relies on a latent
structure built from residuals and requires the embeddings {7(.X;)};c[,, to be highly concentrated
around 7(X,,4+1), our guarantee in equationis on the latent space induced by covariates directly
and thus remains robust even under highly heterogeneous mixture proportions.

3 EXPERIMENTS

In this section, we evaluate SpeedCP across four diverse settings: synthetic admixture data, molec-
ular property prediction with GNNs, and brain tumor MRI analysis with a CNN. We also analyze
citation-count prediction on the arXiv dataset using topic-modeling features (see Appendix [D.2.1)).

Synthetic experiments We evaluate the performance of our method using synthetic datasets
in the admixture setting where X is generated from a mixture of K = 3 latent dis-
tributions. ~ We use the mixture proportion #(X) as an input to all CP methods. In

this case, Zszl 7x(X) = 1 and 7x(X) > 0, yielding the latent space as a simplex.

AR —fp eRF :0< 2, <1, > kepr) Tk = 1} is the (K — 1)-dimensional simplex.
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To test whether a method can effectively adapt to a covariate
shift, we symmetrically sample the calibration mixture propor-
tions over the simplex, but sample the test mixture proportions

Table 1: Summary of parameters

highly concentrated near one vertex (see the density plots in  pata n p K d

Figure 5). We also consider two different predictors, a linear -

regression and a two-layer neural network, to assess the model- ~ Synthetic 2K 1K 3 3

agnostic behavior of the conditional conformal methods. We ~ Molecule 2K 64 3 1
MRI 2K 256 8 2

assess conditional coverage by dividing the simplex into 10 bins

and evaluating coverage in each bin as in Figure[T] We summa-
rize the results of SpeedCP and compare them with four other benchmarks: CondCP

2023)), SplitCP (Papadopoulos et al., 2002), PCP (Zhang & Candés}, [2024), and RLCP (Hore &
Barber| 2023) in Figure[2]
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Figure 2: Conditional miscoverage and prediction set size on each fixed partition on the latent
space when the predictor /i is a linear regression. SpeedCP achieves 0.1 miscoverage across bins
consistently with the smallest prediction sets.

Table 2: Marginal miscoverage, prediction set size, and computation time.

Method Marginal miscoverage (o« = 0.1) Prediction set size Time (seconds)
LR NN NN LR

SpeedCP  0.105 +0.07 0.098 +0.02 0.804 +0.06 22.05 £6.22

CondCP  0.123 £0.13 0.124 +£0.05 2.126 +£0.31 1332.67 £129.93

SplitCP 0.107 +£0.07 0.114 +£0.02 0.780 +0.06 < 0.01

PCP 0.076 +0.06 0.088 +0.02 0.910 +£0.13 141.64 +14.48

RLCP 0.092 +£0.07 0.089 +0.02 0.864 +0.07 22.05 £0.07

Overall, SpeedCP achieves miscoverage closest to the target level of 0.1 while producing the small-
est prediction sets. SplitCP attains near-target miscoverage in many bins because a single global
threshold works reasonably well when the calibration points are approximately uniform over the
simplex. However, near the vertex (bins 3 and 5. See also Figure 4 in Appendix), sparsity makes the
global threshold governed by denser regions, weakening its ability to capture local scores under co-
variate shift. CondCP solves the same regularized quantile regression problem, but it fails to achieve
reasonable coverage in several bins and produces overly wide intervals. This happens because the
optimization solver it relies on does not return exact solutions and output conservative approxima-
tions. In contrast, our path algorithm uses a stable piecewise-linear structure of the problem and
tracks boundary events precisely, yielding tighter and more accurate prediction sets. Both PCP and
RLCP tend to overcover in most bins and produce large prediction sets, as their performance is sen-
sitive to the quality of the base predictor /i(-). We provide additional details of the experimental
design, the full NN results, and comparisons across different values of n in Appendix [D.1]

Molecule Graphs We evaluate our method on three molecular property prediction benchmarks:
QM9, QM7b, and ESOL 2018). For each dataset, we train a GNN to predict a molecular
property: the HOMO-LUMO gap for QM9, polarizability for QM7b, and solubility for ESOL. We
extract the last 64-dimensional graph embedding after pooling, and reduce it to 3 dimensions via
PCA. Our objective is to achieve nominal 0.9 coverage across this low-dimensional representation
of the molecular graphs. To assess conditional coverage, we partition the PC space into 6—8 regions
using Voronoi tessellation, and compute coverage within each region. We aggregate results over
50 random subsamples of 2000 graphs, and report the results in Figure 3] and Table[3] We observe
that SpeedCP achieves nominal coverage consistently across all partitions, while achieving sharp
prediction sets. We provide additional results for each dataset in Appendix [D.2]
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Coverage by partition (QM7b)
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Figure 3: Coverage on fixed partitions of the PC space for QM7b. We use PCA on the last layer
embeddings of GNN with K = 3 dimensions. The dashed line denotes the target coverage rate
1—a=0.9

Table 3: Mean prediction set size and computation time of QM9, QM7b, and ESOL

Method Prediction set size Computation time (seconds)

QM9 QM7b ESOL QM9 QM7b ESOL
SpeedCP  1.135 £0.25 0.902+0.44 1.789 +0.38 31.061 +2.94 33.056 +7.23 15.442 +1.55
CondCP 1.922+040 1.447+1.17 2.683+0.42 1531.15+195.60 1890.38 £166.62  625.06 +64.54
SplitCP 1.122+0.122  0.999 +0.37  1.800+0.17 < 0.01 < 0.01 < 0.01
PCP 1.530+0.87 1.303+1.07 2.261+1.00 38.018 +3.48 47.218 £6.50 21.659 +2.36
RLCP 1.5544+0.89 1.286+1.04 2.248+1.02 1.157 £0.02 1.148 £0.01 0.668 £0.00

Brain Tumor MRI We evaluate on a brain—tumor MRI dataset from Kaggl with labels
{healthy, tumor}. We train a CNN classifier /i(-) on 2,000 images and extract NN features from
the last layer for calibration (training details in Appendix [D.2.3). Table [] shows that even with
intercept-only calibration (®*(X) = 1), our RKHS component alone gives a good approximation
for predicted-label coverage. When covariate shift aligns with label groups, adding linear terms for
the predicted label, ®* (X ) = (1{ji(X) = healthy}, 1{ji(X) = tumor}) ", provides better condi-
tional coverage. In contrast, SplitCP achieves comparable coverage but requires more conservative
sets than ours, while RLCP fails to exploit locality in the 256-dimensional feature space and effec-
tively reduces to uniform weighting, thus converging to Split CP. PCP tends to overcover, especially
for the healthy group, and their cutoffs are unstable with high variance and frequent near-zero values
(see Appendix Table[7), thereby producing overly conservative conditional coverage.

Table 4: Mean coverage and prediction set size across predicted labels in the MRI dataset.

Method Target coverage (1 — a = 0.9) Prediction set size Time (seconds)
Marginal Healthy Tumor Marginal Healthy Tumor

SpeedCP(lf; 0.9104+0.01  0.902+0.02 0.91440.02 0.262+0.09 0.250+0.09 0.275+0.08 244.1 £9.2

SpeedCP(® 0.908 £0.02  0.902+0.02 0.901 £0.02 0.282+0.08 0.266+0.08 0.295 +0.08 270.5+13.9

SplitCP 0.898 £0.01 0.888+£0.02 0.903+£0.02 0.348+0.00 0.348+0.00 0.348 £0.00 < 0.01

PCP 0.9184+0.01 0.9454+0.02 0.9024+0.02  0.231+0.27 0.281+0.26 0.201 +0.28 162.1+ 13.9

RLCP 0.898 £0.01 0.888+0.02 0.903+£0.02 0.348+0.00 0.3484+0.00 0.348 +0.00 3.48+ 0.08

4 LIMITATIONS AND FUTURE DIRECTIONS

While we believe our algorithm can be broadly applicable in high-dimensional problems, especially
when prior knowledge is limited, we highlight several limitations and directions for future work: (1)
We currently fix the miscoverage level « for all test points. However, « could be made adaptive
based on latent structure or user-specified utility. For example, one might use a stricter « for sub-
populations deemed more critical (Takeuchi et al.| |2006; (Gauthier et al., |2025)), thereby allocating
tighter guarantees where they matter most. (2) Incorporating weights into our quantile regression
based on uncertainty or embeddings’ importance could further refine coverage and interpretability
(Jang & Candes, [2023)). Although we focus on scalar regression tasks, the RKHS-based framework
can be extended to structured prediction problems such as text generation (Sun et al., [2023; [Far-
quhar et al.| 2024} Su et al} [2024; [Shahrokhi et al., 2025)), image completion (Angelopoulos et al.,
2020; ' Wieslander et al.,2020), and other multivariate problems (Messoudi et al., 20215 Johnstone &
Ndiayel 2022} | Xu et al.| 2024)) where uncertainty quantification over complex outputs is crucial.

“https://www.kaggle.com/datasets/murtozalikhon/brain-tumor-multimodal-image-ct-and-mri
3For the Brain Tumor MRI data, we use SpeedCP(®*) to denote calibration with a linear term that includes
predicted labels, whereas SpeedCP(1) uses an intercept-only linear term with ®*(X) = 1.
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Ethics Statement. This work adheres to the ICLR Code of Ethics. Our research does not in-
volve human subjects, sensitive personal data, or applications with foreseeable risks of misuse. The
datasets employed are publicly available and widely used in prior work. We have carefully consid-
ered issues of fairness, privacy, and security, and do not anticipate any ethical concerns arising from
our methodology or findings.

Reproducibility Statement. We have taken significant steps to ensure the reproducibility of our
results. All theoretical results are stated with clear assumptions and complete proofs provided in
the appendix. The experimental setup, including data preprocessing procedures, hyperparameter
choices, and evaluation metrics, is described in detail in the main text and appendix. Anonymized
code and instructions to reproduce all experiments will be made available in the supplementary
material. Together, these resources allow independent researchers to fully reproduce and validate
our findings.

Use of Large Language Models (LLMs). In preparing this work, we used large language mod-
els (LLMs) only as general-purpose assistive tools. Specifically, LLMs were employed to help
with tasks such as grammar correction, polishing the clarity of exposition, rephrasing sentences for
readability, adjusting mathematical notation for consistency, and correcting minor issues in code
formatting. All research ideas, methodological contributions, theoretical results, and experimental
designs were conceived and executed by the authors. We carefully verified all LLM-assisted text
and code to ensure correctness and originality, and we take full responsibility for the content of this
paper. LLMs were not used for generating research insights, proofs, experiments, or results, and
therefore are not considered contributors or authors.
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A NOTATION AND RELATED WORKS

A.1 NOTATION

For any set G, let |G| denote its cardinality. Given a vector 7 € RP, we use 1)(7) or 7); to represent the
i-th entry. For any n € N, let [n] denote the index set {1, ..., n}. Throughout this paper, we denote
the sets of variables with simple bold letters (e.g. X € R"*? = (X1, Xo,...,X,,)"). Let capital
letter P denote the joint distribution and Px denote the marginal distribution of X.

Given a value 2, let [z] 4 = max(z,0) and [z]_ = max(—z,0). Let Pg,, P : RE — R denote
the projection operators onto sets 3,,, B, respectively. We use (1, to denote the empirical 1 — «
quantile of the conformal scores.

Let a,, and b,, be sequences of real-valued random variables or deterministic quantities indexed by
n € N. We use the following asymptotic notation:a,, = O(b,,) means there exists a constant ¢ > 0
such that |a,| < c|by,| for all sufficiently large n. a,, = Op(b,) means that for any € > 0, there
exists ¢ > 0 and N. € N such that P(Ja,| > cc|bn|) < € for all n > N.. We use small ¢ to
represent a constant, which may vary line by line.

A.2 RELATED WORKS ON CONFORMAL PREDICTION

In standard split conformal prediction, the data is partitioned into three sets: the training set which
is used to train a predictive model fi(-), the calibration set { X;, Y; };c[) Which is used to calibrate
conformity scores, and finally, the test point X, ; with unknown response Y, ;. Throughout this
paper, we work with split conformal prediction, which generates the prediction interval for Y, ; as:

C(Xnp1) = {y: SXnpry) <a'}, (12)
where ¢ is chosen as the (1 — «)-quantile of the set {S;}ic[n+1]. The resulting prediction set
contains all values y for which the conformity score S(X,,+1,y) is sufficiently small.

We demonstrate below how the various coverage can be achieved depending on the information
available about the predictive model /i(-).

Marginal coverage Suppose we know that the predictive model performs equally well across the
entire feature space, and the (n + 1)-th conformity score is drawn i.i.d. from the same distribution
as the first n scores. By the replacement lemma in /Angelopoulos et al.|(2024), the prediction set in
equation |12 can be obtained by the threshold ¢ = Q1-a(Xicpn] 5108 + n%rléﬂo). It is well

known that the set C°(X,,1) given by ¢° has marginal validity such that P(Y;,;; € C°(X,,11)) >
1 — « (Papadopoulos et al.,[2002)). As an alternative strategy, (Gibbs et al.| (2023) proposed obtaining
coverage threshold ¢" in equation using an intercept-only quantile regression within the constant
function class F°. Let S denote an imputed value for the unknown score S, ;1 and define the pinball
loss for level « as £, (2) = (1 — a)[z]+ + afz] . Then they fit

1 1
~0 .
= —_— E Lo (Si — —— (S —q), 13
s arg;g"gn—kl i€[n] ( q)+n+1 ( 9 (13)
and output the nonrandomized prediction set CO(X,41) = {y : S(Xps1,y) < Q% (x, 1.4 They
show that this procedure also satisfies the marginal validity guarantee.

Applying conformal prediction in settings with latent structure is nontrivial. There exist several
challenges for conformal prediction with low-rank structure: (1) misspecification of fi(-) may pre-
vent the latent structure of X from being faithfully reflected in the distribution of S' | X; (2) if the
embedding 7 (-) is inaccurate or incomplete so that there are few neighbors near the test point in the
embedding space, prediction intervals can become overly conservative or excessively wide; and (3)
an inappropriate choice of rank K may undermine the conditional validity.

One prominent approach is Posterior Conformal Prediction (PCP) (Zhang & Candes, [2024), which
has been detailed as follows.

Posterior conformal prediction Zhang et al. [Zhang & Candes|(2024) proposed a posterior con-
formal prediction (PCP) framework under the assumption that X exhibits a latent low-rank structure,
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and the predictive model /i(-) is well-specified. Specifically, they assume the conditional distribution
of the conformity score S | X follows a mixture model:

Sil Xine D2, XDy

where (1, ..., (x are distinct probability densities, and 7 (X;) represent cluster membership prob-
abilities. Adapting ideas from weighted conformal prediction, the prediction set is constructed as:

CPP(Xnpa) = {y 0 8(Xnt1,9) < Qi-a (Zie[n] w;idg, + wn+15+oo> } .

where weights {w; }¢[,, 1] are determined by the similarity between latent structures. Let m# ~
Multinomial(m, 7(X,,4+1)). In the randomized setting, the weights wj; rqnq are proportional to

exp{ Zk 1 M7y - log %} In the nonrandomized setting, weights are proportional to

exp {—mDxy, (m(X,+1) || 7(X;))}. Under the randomized setting, Zhang & Candes| (2024) show
that PCP provides conservative conditional coverage guarantees.

l—a<P (Yn+1 € P (X)) | w) <1—a+E[maxicpy Wirana | 7). (14)

This approach relies on the assumption that the predictive model fi(-) is well-specified, so that the
latent structure of X can be faithfully reflected in the mixture structure of the conditional distribution
of the scores given X. When fi(+) is inaccurate, the scores S can exhibit higher variability, and the
distribution of S' | X may not display a meaningful latent structure.

Instead of assuming latent structure in the noise model S | X, we directly leverage latent embed-
dings in the covariates X. By calibrating conformity scores as a function of 7 (X) within an RKHS,
rather than assuming their relationships a priori, our method remains robust under model misspeci-
fication and provides reliable uncertainty quantification.

Localized conformal prediction Another related method is randomly-localized conformal pre-
diction (RLCP) Hore & Barber| (2023, which aims to capture heterogeneity in the conformity
score by adjusting the distribution based on proximity to the test point X, ;. Specifically, LCP
assigns higher weights, instead of 1/(n + 1) for ¢" in marginal coverage, to data points closer to
the test point X,, 1. These weights on Jg,, for instance, are proportional to the kernel distance
exp(—||X; — Xp11]|?) for a bandwidth parameter v > 0. While Hore & Barber| (2023) showed
LCP achieves marginal validity under a randomization step, increasing the bandwidth parameter v
can significantly widen the prediction interval, especially in high-dimensional settings.

To do the low-rank projection, RLCP applies a Gaussian reweighting to conformity scores based on
distances in a latent embedding space between the test point and calibration points. This approach
relies on carefully chosen embeddings that maximize the mutual information between conformity
scores and covariates. When either fi(-) or #(-) is inaccurate or incomplete so that there are few
neighbors near the test point in the embedding space, RLCP often produces overly conservative or
excessively wide prediction intervals by increasing .

In contrast, our method uses A-path adapted to the local calibration density, allowing greater flex-
ibility in sparse regions. This selects (v, A) to leverage the global low-rank structure and produce
more stable, calibrated prediction intervals (See Figure [I)).

Conditional conformal Suppose no prior information is available about the covariate shift, unlike
the settings discussed in LCP and PCP. In this general setting, let 7 : X x X — R be a positive
definite kernel, and let F,, denote the associated RKHS with an inner product (-, -),, and a norm
|| - || (Gibbs et al. (2023) proposed the regularized kernel quantile regression for class FRKHS in
equation 2] with a fixed hyperparameter A > 0:

1
SCC . _ ; _ A - 2
95 marg min g B0 ba(Si = 9(X0) + o la(S = 9(Knr) + Mlgull-
(15)
They constructed the nonrandomized prediction set as C°“(X,41) == {y : S(Xpi1,y) <

gg&n+l y) (Xn“’l)}
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Lemma 3 (Theorem 3 in|Gibbs et al. (2023)) Ler ¢ : X x X — R be a positive definite kernel,
and ® : X — R? qa finite dimensional feature map. Consider the RKHS-based function class
FREHS gssociated with 1) and ®. Assume that {(X;, S;)}iejn1) are exchangeable. Then for all

f e FREHS e have
E[£(Xo41) - (1{Yas1 € COC(Kan)} = (1= ) ) | = =20E [(95, o £0)] + leiutl,
where the interpolation error €;y,; satisfies |€;nt| < E {f(Xi)l{Si = gg‘nﬁl (Xl)}}

The interpolation term €;,; can be removed when randomized prediction sets are used (see Lemma

4.

Similar to the challenges faced in localized conformal prediction, solving the optimization problem
equation [ using a kernel +/ defined over the original high-dimensional feature space can lead to
oversmoothing and wider prediction interval. In particular, when p >> n the RKHS norm ||gy ||y
becomes large unless regularization A is increased significantly, which in turn flattens the estimated
quantile function gs(-) As a result, the prediction set may have poor local adaptivity, leading to
wider intervals and coverage gaps.

B COMPUTATIONAL DETAILS FOR SPEEDCP

B.1 LOW-RANK PROJECTION USING ADMIXTURE MODEL

In this work, we consider high-dimensional covariates X € R? with p >> n and denote its low-rank
representation map as 7 : X — R¥ with K < p. A simple choice of 7(-) is principal component
analysis (PCA), where 7(X) = X TV, with K principal directions V € PP*¥  Alternatively, prob-
abilistic models such as latent Dirichlet allocation (LDA) (Blei et al., 2003) provide interpretable
embeddings, representing each X as a mixture of latent components {Cx }xe[x]- In deep learning
models, one can also consider applying low-rank projections on layer embeddings. For the simula-
tion experiments and experiments with ArXiv abstracts, we consider the admixture model under the
probabilistic Latent Semantic Indexing (pLSI)(Hofmann, |1999),

mX; | Wi = w; ~ Multinomial (m,  _  wi(k)Gr) (16)

ke[K
where W; € AK~1 denotes the latent mixture proportions and ¢, represents the latent distribution.

m denotes the document length. This shows E[X; | W;] = ¢ TW,. However, this decomposition
in general may not be unique, but under the separability condition Donoho & Stodden| (2003)) or
anchor word condition |Arora et al.|(2012)), ¢ is identifiable.

When applying RKHS methods to compositional data such as mixture proportions (X ), it is essen-
tial to first transform the simplex into Euclidean space. If we perform kernel regression or smoothing
over 7 directly, the output might be outside the simplex. Suppose 7 (X;) lies in the open simplex
such that all entries are positive, then the log-ratio transformation (such as additive, centered, and
isometric log-ratio transformations)(Aitchison, |1982) can be used.

Centered log-ratio transformation (clr) If 7, (X;) > 0 for all 7, ,

. . 1 .

9“@ = 10g Wk(Xi) — ? Z log 7Tj (XZ)
Given this transformation, we define the kernel similarity between points as:

pLSI using SVD  Let X := Xypqin U Xearip U Xiest € R™a20XP. Here, we present one of the
algorithms used to estimate the latent embeddings 7 := w(X) = E[W | X] from X. When
m — oo, the posterior mean E[W; | X;] concentrates around the true mixture proportion wj.
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Assume 7 and ¢ are full-rank matrices and the K -th largest singular value satisfies A\ (7¢ T) >0,
we start with the singular value decomposition of matrix 7w ¢ T,

7l =BAV — E=x¢ VA !':=7H

with some nonsingular matrix . Notice that each row of 7w € R <K is a probability vector
(i.e., nonnegative and sums to 1). Given this simplex structure, we can recover the matrix H from
= using nonnegative matrix factorization techniques. In particular, methods such as the Successive
Projection Algorithm (SPA) |Aragjo et al.| (2001); |Gillis & Vavasis|(2013) and Archetypal Analysis
Javadi & Montanari (2020) are effective in recovering the extreme points (vertices) of the convex
hull.

Algorithm 2 pLSTI using SVD [Klopp et al.|(2021)
Input: X € R™u*P Jatent dimension K
Output: Tgin, Tealiby Trest = T(X, K)
1. Get the rank-K SVD of X = EAVT
2. (Vertex hunting algorithm) Apply the vertex hunting algorithm on the rows of E to get the

vertices H
3. Set #(X) = EH ! and thus #(X;) = (H1)T =,

B.2 DERIVATION OF A-PATH AND S-PATH

In this section, we provide technical details on our path-tracing approaches of A and S. Our approach
for A-path is inspired by the work of |Li et al.|(2007), who derives the solution path of A in a RKHS
quantile regression setting. Similar approaches have been studied extensively for the lasso|Tibshirani
(1996; |2011), generalized linear models [Friedman et al.| (2010), and quantile regression [Koenker
(2005)); L1 et al.[ (2007). In our work, we build on the solution path algorithm for RKHS quantile
regression developed by |Li et al.| (2007 and adapt it to our RKHS function class /™, which has an
extra linear component ®*(X) ' g,

Fr={for () + () n: fyr € Fyeyn €R'}. (17)

We begin with some preliminaries.

Denote S; = S(X;,Y;) as the score of the i*" point in the calibration set for i € [n] and S,,;1 as
the score of a test point. To decide the score cutoff we use for a prediction set, we proceed to fit a
RKHS quantile regression on n calibration points together with the test point. Since the true score
of the test point, S, 41 is unknown, we set the score of the test point, .S;, 1, as an arbitrary value S.
Let o € (0, 1) be a user-specified miscoverage level. The objective then becomes,

1 A )
gs = arg min ——— Z la(Si = 9(Xi) + = a(S = 9(Xni1)) + S llgw- 5, (18)

with the known solution in finite form:

n+1
gs(X) = @*(X) "ijs + va (X, X)), (19)

We define ®*(X) € R? as any feature representation of X and ns,; as the coefficient of ®*(X);,
j € [d]. Plugging this in, the objective becomes,

n+1 n+1 n+1
min Zl S *( ﬁs—*ZUSz XZ,X 2)\ Z vs,ivs, v U (X, Xir).

ns,Vs
=1 7,4/ =1

17
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with the Lagrangian primal function as

n+1 n+1 1
_ . . = T+
L= 0-0 S radlas K
n+1 n+1
Jrzdi(si*QS(Xi)*pi) *ZTi(Sz'*gS(Xi)JF(Ji) (20)
=1 =1
n+1 n+1

- Z KiPi — Z Pidi,
i=1 i=1

and o, T, k, p are nonnegative Lagrangian multipliers. Here, ¥* € R("t1*(7+1) denotes the kernel
matrix where its (4, ") element denotes * (X;, X;/). Setting the derivatives of L,, at 0,

OLp .\ gt
8'US,Z‘ - US,i — Uy %
8L n+1 n+1
3 pl : Zoi@*(Xi)j = ZTi‘I’*(Xi)j7 j€ld
s = i=1 1)
oL
apf o =1l—-a—k;
oL
8qf LT = 0 — P4
The Karush—Kuhn—Tucker (KKT) conditions give
0i(Si — 9s(Xi) —pi) =0
7i(Si — 9s(Xi) +¢:) =0 22)
kip; =0
piq; =0

Since Lagrangian multipliers are nonnegative, 0 < ¢; < 1 —a and 0 < 7; < «, combining
equation [21] and equation 22} we can easily see that,

Si—gs(Xi) >0 = pi>0,k=0,0=1-a, =0 = vg;,=1—a
Si—9s5(Xi) <0 = ¢>0,p,=0,T3=0a,0,=0 = vg; =—« (23)
Si—95(Xi) =0 = pi=¢=0,0,€(0,1-a], € (0,0] = vs; € (~,1—0q)

With 7s ; := S; — gs(X;), the KKT conditions induce three index sets:

FE = {Z : ?S,i =0, 0g; € (_O‘v I a)}’ 24
L:={i: 7s; <0, 0g; = —a}, 23)
R = {Z : ?57,' > 07 @S,i =1- OL}. (26)

B.3 DERIVATION OF A-PATH

We use A-path to tune the regularization (or smoothness) parameter A, which we combine with
cross validation on the kernel bandwidth v to determine the optimal hyperparameter pair. The same
equation [T8}equation [24] hold, but the RKHS quantile regression is now estimated with m separate
points. The motivation for this is to fix the hyperparameters before constructing prediction sets,
which is necessary for our theoretical guarantees. The index sets (E, L, R) evolve with different \
values. We denote them as (E(\), L(A), R(A)).

We start with a sufficiently large initial value A\! and decrease it toward 0. As A decreases, data
points move from the left of the elbow, stay in the elbow, then move to the right of the elbow (or
vice versa). Any change in the elbow set is denoted as an “event”. The next A is updated as the
largest value where such event occurs. At each update, we calculate ©; for the points in E()) since
{0i }iremm) in L(A), R(A) are fixed.

18
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In this section, we let the columns of m points projection ®* € R™*¢ are linearly independent.
Denote ®7 as a submatrix of ®* whose row indices are in set A. Also denote W7, 5 as a submatrix
of ¥* € R™*™ whose row indices are in set A and column indices are in set B.

B.3.1 PROOF OF PROPOSITION[]

We now prove Proposition which states affine relationship of 0;/(\)’s and 7j(A) on \ between two
change points of A. If 0, (A)’s and /() are affine in A between any change points, then it holds that
they are piecewise-linear on )\, which makes the solution path tractable for any A < A'. We provide
a more detailed version of the proof in Section[B.4.1] which has identical steps as Proposition[I]

Proof. Let {)\l }i=1,2,3,... be the change points when an event occurs. Consider an interval A <
A < A during which the sets stay the same, i.e., (E()\), L(\), R(\)) = (E(\), L(AY), R(\)).
Denote ¥,/ (A) and 7j(\) as the solution of equation 18| given A. In this proof, denote E = E(\) =
E\Y, L =L(\) = L(\),and R = R(\) = R(\"). Define two quantities.
1 * * * * w\— 1 x«
dp = X((_a) Wprly + (1 —a)¥pplg), Op = Ijg — p(®L %) @%'

Let Sg := (Si)ier,dp = (dit)yep, ®%5 € RIEXP @% ¢ RIFIXIEL By the definition of the
elbow set combined with equation [I9}

1

Projecting with ITg eliminates 7j(\),
NpP5e0p(\) = Alg(Sg —dg). (28)
Moreover, the second KKT constraint in equation gives ®* 70 = 0. This is equivalent to,
&3 op(\) =a®; 1, — (1 — )@ 15.
Define A := IIp W7, ;I15. Using its Moore—Penrose inverse (denoted by superscript 1),
Npop(\) = AT (Sp — dE)

—a AP}, 05 (R} ®5) @3 1, (29)

+(1—a) AU}, 05(2} &5) @3 1k
Thus, the minimum-norm solution on Im( I1g) is,

op(\) = AATIg (Sg — di)

(30)
+ I — AT W )85 (85 &%) [a @3 1, — (1) &% 1],
Thus, O (A) is affine in X on the interval. From equation[27]
~ * * | — * 1 * ~
i) = (@3 ®5) 7' @5 [Sp — dp — 5 Vhp0s(V)], (3D
hence 7j(A) is affine in 1/\. We have shown that,
e
op(\) =a+Xia, A\ =aP + - (32)

with a,b € RIFI a1 (1) ¢ R? constant on the segment. For i € L()\), R(\), 0y is constant,
making it affine in A as well. Finally, for any i’ € [m)],

a 1

9(Xi) = @ (o' + =) + T 97 pla+ Aa) +dy

. A (33)
= X(<I>;‘,,0L(1) + ¥} pa) + @5 .0V + ¥l pa+dy,

which makes the residual r;:(A) = Sy — §(X;) affine again in 1/ for ¢’ € [m] on the interval. W
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B.3.2 UPDATE OF \!

Let A! denote the value after the I** event. The elbow set E£(\!) is updated when one of the following
events occurs,

* A point i in either L(A\') or R(A\!) enters the elbow set (residual S; — §(X;) becomes 0).

* A point i in F(A!) leaves to the left or right set (0;(\),7 € E(A\!) becomes —a or 1 — a).
We take A'*1 as the largest A < A! that triggers one of the events and update (E, L, R) accordingly.
Here, let E = E(\) = E(\). Denote the linear parameter 7 = Aij;()) for j € [d]. From
equation for N1tL <\ < N, the fit at \ is,

3(Xi) = ®5AN) + ~ 85 0()

A
~ 1 * ~ * *

1
= X(<1>;‘,_77A + W7 pop(A) +di),

where
di/ = —a‘I’;7L1L —+ (1 — O[)‘Il;k/7R1R

Let §'(X;) be the estimated function with \!. Now, we can express §(X;/) with Al and §'(X ),

P Al
9(Xi) = 9(Xir) — Xﬁl(Xi’) + XQZ(X%)
= %[ 2 =)+ @ (0 = 0 (V) + di — i + NG (X)) (B4
1 L
= X[ DN =0N) + 8 go(N) — oH(N) + Mg (X))

Recall from the second KKT condition equation we have vy = oy — 7 and Y . (0 —
) By ;=i ve®f ; =0forj=1,---,d.

Component-wise,

&3 op(\) —a®; "1, + (1 - )@y 15 =0,
and
o op\) —a® 1,4+ (1 — )@ 15 =0,

leading to

& (0p(\) —op(\D)) = 0. (35)

Denote 0y = Dy (\) — i (A!) fori’ € Fand 7j; = A’-\—ﬁ]’-\L forj € [d]. Foranyi € E', §(X;) = S;.
Let Sg be the stacked scores for E. Then, equation [34|becomes,
DL+ Uyt =\ —\)Sg

Combining with equation [35]and representing in a matrix form,

(3 5)()-0-(%)
AlB= (x-S
a=(AHY71S,,
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where a = 8/(A — A). Leta, = /(A — A) and a, = ©/(A — \). Plugging a.,, a, back to
equation we reexpress the estimated function as a function of a,
. M
9(Xir) = y[gl(Xi’) — W' (X)) + BH(X)
where

W(Xy) = ®).au+ ¥} gay

fori’ € E. Finally, to decide A*1 we choose which event (whether a point enters or exits the elbow
set). The first event will happen for A such that a point in L(\!) or R(\!) set satisfies §(X;/) = Sy,
leading to,

i Xl’) gl(X ) hl(Xl’)
A\FLhit _ )\19 ( i) — ( 1 <1l
lleLgll%?(R()\]) SZ’ - hl( Z’) { S’i' — ( ) - }

Here, the indicator is to ensure that the updated ) is smaller than A’ so that the path is monotonically
decreasing. To find A such that a point leaves E ()\l),
—0v(\) 1—a—0x(\)

)\H—l leave __ )\l c < 0
+ i’ énEaé}il {x { Ay i ’ Qy it } | v }

We then take AT1 = max {ATLhE \IFLleavel We also update (E,L,R) =
(E(AHY), L(AHY), R(AH)) accordingly based on which event occurred. Finally, parameters
Oy (AF1)’s, (A1) can be updated by solving for the new elbow,

%‘I’EE Q*E v SE — 7( a‘IP;Z‘LlL + (1 - a)‘I’ERlR) (36)
@ET 0 n OLCI’*TlL — (1 - Oé)@*TlR

B.3.3 INITIALIZATION OF A\

We describe our strategy for selecting a sufﬁciently large initial value A\'. At A’ = oo, from equa-
tion we can see that §(X; ) = @, 7). In this case, we have only one point in the elbow, which

we denote as i, that satisfies S;o = g(X ) = ®%.7). We choose i° as the (1 — a)th quantile of
scores, i.e. Sjo = S[(m)(1—a)]- Then, points that satisfy S;; < Sjo are in L(\?), and points such
that S; > S;o are in R(A\?).

To make the parameters identifiable, we set 7;« (A\°) = S;o/ <I>;"0 .. for one j* € [d] and set other
parameters 7); (A%, j # j*to 0. When 7, is one-hot encoded, j* is any index such that @7, g = =1

If @7, is continuous, we choose j* to be any arbltrary index. From equation E we have the
condition Y 5", 0@}, ; = 0 for j € [d]. Since i° is the only point in E(\Y). This leads to,

@ ZiEL(AO),R(AO) D7 — ZiER(AO) @7 -
¢,>;0’j*

D0 (\) = (37)

Next, we find the next A!, which will be the initial value of our solution path. This will be the largest
A < oo such that another point from either L(\?), R(A\°) enters the elbow. Let i be the new point
entering the elbow. Then, 11 satisfies,

1
Sp = @5 ,j*ﬁj*()‘o) + Y (‘I’fl,ioﬁio@o) - O“Ilrl,L(AO)lL(AO) +(1 - Oé)'l’fl,R(AO)lR(/\“))

. 1
= ‘I’il,j*m*(AO) + ﬁf(le)
Since 4 is still in the elbow set, it should also satisfy,

Sio = ®jo j-1)j- (A + ﬁ (‘I’:O,ioﬁio()‘o) —aW¥io pooylrpe) + (1 - a)'I’IO,R(,\O)lR(AO))

=P .7+ (\%) + ﬁf(XiO)
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Putting it all together, we can choose A as,

X)) —(®F ./ ) f(X;
A= max f&e) = (% ] / 2. J[(Xe) (38)
i/ #10,4/ €[m] Sy — ((P;,j*/(b:o,j* )Sio

and the corresponding 7’ that maximizes equation [38|becomes i'. We proceed with the same ©(\"),
7(A°) as our initial parameters and our initial elbow set as E(A\!) = {i°,41}.

B.4 DERIVATION OF S-PATH

We fix the hyperparameters 7, ) selected by the A-path. Conceptually, the S-path mirrors the A-path,
and the conditions[T8H24] apply. Now recall the prediction set we defined for a test point X, 1,

C*(Xnt1) = {y: S(Xns1,9) < d5(xsr.)(Xnt1)}-

By equation [24] this is equivalent to,

é*(Xn+1) = {y : ﬁS(Xn+1,y),n+1 <1-— a}.

The problem reduces to finding the largest test score S*(X,,11) such that g (x, . )41 < 1 — .
By Proposition [3] the mapping S +— g is monotone, which allows us to recover the prediction set
as,

C*(Xn41) = {y: S(Xnt1,9) < " (Xnp1)}-

It remains to find the maximum S* (X, 1), the test score cutoff, such that Og-(x,, ) nt1 <1 —
holds, i.e., S*(Xp4+1) = sup{S | Os.nt1 < 1 — a} which is the role of S-path. Denote the index
sets,

E(S):={i: 75, =0, 0g; € (—a,1 —a)}, (39)
L(S) := {z D Tg <0, Ug; = —oz}, (40)
R(S) = {i: 75, >0, 0g; =1—a}. 41)

These sets now evolve with S. We initialize S-path with the smallest S! such that the test point is
in the elbow set (i.e., S' = §51(X,+1)) and find the smallest increment to the next .S such that
an event occurs while the test point is still in the elbow. We use the same notion of an “event” as
before—any change in the elbow set. We iterate until the test point exits the elbow and use the final
Sas S*(Xpt1)-

In this section, we assume the columns of ®* € R(n+1)xd gpe linearly independent. The dimension
of ¥* is now R(+1)x(n+1)

B.4.1 PROOF OF PROPOSITIONZ]

Proof.  Let {S'};_1 23, be the change points when an event occurs. Consider an interval S! <
S < S'*1! during which the sets stay the same, i.e., (E(S), L(\), R(S)) = (E(SY), L(S!), R(SY)).
Denote ©s,; and 7jg as the solution of equation|18|given S. In this proof, denote £ = E(S) = E(S"),
L=L(S) = L(S"),and R = R(S) = R(S'). Here, ) is fixed as the selected hyperparameter from
the previous step.

For every index 7 we have,
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1
A
~ 1 * oA * *

= ®7i)s + X(‘I’LEUS,E —aW¥i 1+ (1 - a)‘I’i,RlR) (42)
1
A

9s(Xi) = ®ins + LW Og

= ®is + <] gls,p + di,

where
1
di = X(—O{‘I’ZL]_L + (1 — a)\IlleR).

From the second KKT condition in equation we have v; = 0; — 7; and Z;L:l(ai - Ti)‘I);j =
Dy v;®;;, =0forj=1,---,d. In compact form,

@ET{/&E = oz<I>2T1L — (1 — Oz) ‘I’}TIR.
This means that,

(L ) @ 0s.p = a PL(PL @)@ 1L — (1 - ) @H(PL L) @% 1k,

Let Sg = (Si)icr,dg = (di)icp, P € R'E‘X?’,\II*EE e RIEIXIE] Equationfori € F
becomes,
1

Sp = ®pils +

‘I’EE @SA,E + dE- (43)

Define the orthogonal projector, Iy := I |5 — @7}, ((PET@*E)T@*ET. Because I ®% = 0, multi-
plying equation 3| by Iz gives,

1

HESE = \

Write Sp = Sixd 4+ Se,, 1, where S has a zero in the (n+1)-st row and e,, 1 selects that row.
Equation #4] becomes,
Wy osp = AE(SE —dg) + ASTge,.. (45)

Since Ip = ®% ((I)*ET@E)T‘E‘; + I, the previous equation yields,

NpWhOpisp = -MpPy @585 ®5) @5 05 p + AN(SE — dg) + A STpe,i1.
(46)

Now, we know that:

Np¥pPp(Ry @5) @) 0s.p = allpPEp®h(Ry @5) @1 1, —(1-0) Hplh @5 (2% @5) @41k,

Because IIg is an orthogonal projector (I1% = Ilg), the matrix I1z W% I is positive definite
on the image of ITg. Using its Moore—Penrose inverse (denoted by superscript 1) gives the unique
minimum-norm solution,

Mpos s = A (Mp®h,Tls) e (S5 — dp + Se,is)
—a (MpWypTle) TpWs @50} ®5) @571, (47)
+(1— o) (MW Mg) Ty, &5 (85 5) 85 15

Therefore, since 05 5 = Hpig p + 5P} ®3) @4 05 5:
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Vs g = A (HE‘I’}}EHE) (SE —dp + Sept)
—a(Mp¥yE) (55 P ST AR SNE AR Y
+(1—a) (TpW; EHE)THE\IJ’;E@*E(¢*ET¢-*E)T¢-§T1R
+a®y (L L) @
-(1-0o) ‘I>E(<I>*ET¢*E>T¢ET1R
=\ (MpWh,Tle) T (S5 — dp + Sen 1)
+al[lp — ApWhpIE) ¥y, |@5(@5 1) @11,
— (1= ) [{1p) — W5 pTE) T pW;, @55 @) 07 1

(43)

In particular, the kernel parameter of the test point, Ug 1, is affine in .S on every segment where
the index sets (E, L, R) stay unchanged. Likewise, the linear coefficient satisfies,

. 1
SE: E”S‘FX

Sy =@ ®hig +

‘I'EE@S e+dp

(I)E ‘I’*E@SE+¢'E di

A
— s = (25 ®3) @5 55 — (217 @) @ Whpos s — (27 @) @7 do )
— ﬁS ((}*T{)* )T@*Tsﬁxed + S((I)ET¢*E)T¢Z7 ent1
- X(‘I’ET‘PE)T‘I)*ET‘I’EE%,E — (@ ®p)'eL dp
1 N
= (@ ®p) @ | + Sent1 —dp — Y Vg US,E}
and thus, we have shown that,
bsp=c+8d,  fg=cY+8dD. (50)
with ¢,d € RIPI ¢ (1) ¢ R? constant on the segment S! < § < SiH1,
Insert equation [50] back to equation[42] For any i € [n + 1],
N . 1 N
gs(Xi) = @415 + X Uiy Us, g+ di (51)
1
=&, (M + SaV) + 1 ¥ie(c+ Sd) +d; (52)
(<I> PO \II c+di) +S(q> 4V 4 /\lI’ d) (53)
::g(o) ::g(l)

Thus gs(X;) = gZ —I—Sg is affine in S. There are two cases for the residual r;(S) = S; —gs(X;):
1. Calibration index i < n. The score S; is fixed, hence
ri(S) =[S — "] - S gV

Both §; — ggo) and 91(1) are constants on the segment.
2. Testindex i = n + 1. Here S, 11 = S, so

0 1 1 0
ras1(8) =5 — g% Sl = [1- 9] 5~ o),

which is again affine in S.
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Because every r;(S) is an affine function, each index outside the elbow can cross the zero-residual
line at most once on the segment. Likewise each v;(.S) in equation [50| can hit the bounds 1 — « or
—a at most once. Hence the overall solution path is piecewise affine with break-points occurring
exactly when either (a) a coefficient in F hits its bound, or (b) a residual for an index in L U R
reaches zero, completing the argument used by the S-path algorithm.

B.4.2 UPDATE OF S

Let S! the value after the I** event. The elbow set E(S') is updated when one of the following
events occurs:

* A point 7 in either L(S') or R(S") enters the elbow set (residual S; — Gs: (X;) becomes 0).

* A point i in E(S") leaves to the left or right set (0g: ; becomes —a or 1 — o).

For the first event, note that 6%7595) = —(®;.dV + +W¥,d) in equation 53| Then we have,

. 1 1
I+1,hit _ gl : (al (1) R\ 15 (al (1) ol /5 >
s S' L min (8D (@ed® ¢ @)1 (ri(5)/ (@M + S ¥ipd) > 0)

To find S such that a point leaves £(S'), recall aggi = d, fori € E(S') (equation .

—a—0gq; 1—a—10g,
Sl+1,lea1}e — Sl . c St St <0
tan el g e
We then take S'! = = min {SITLRE GiFLIcavel  We also update (E,L,R) =

(E(S'1), L(S'1), R(S'1)) accordingly based on which event occurred. Parameters Ogi+1 ;s
Nsi+1 can be updated by solving for the new elbow,

P ®%) (v _ (Se—x(—a®i 1+ (1 - a)Phelk) (54)
& 0 )\»n a®iT1, — (1 - )@y 1p

B.4.3 INITIALIZATION OF S

Let us first assume that the imputed test score S is small enough so that S < §s(X,,11). Then, the
test point n + 1 € L(S). We use the notation Ogmyy and 7jsman (instead of Og and 7)g), to denote the
regression parameters. In this case, the residual 7,11 (S) = S — Gsman (Xn41) = S — P 41, Tlsmant —
%\Il;; +1,,®Sman is linear in S. We can therefore track the moment when it enters the elbow set E(.S).
This happens as soon as:

1

S = Q:‘H_L.ﬁsmall + 2

* ~
‘I’7l+17.vsmall-

We thus solve for Ugpan and fsman With Usmann+1 = —o (as the test point is in the left set). Let
vixed ¢ R7F1 be the vector defined as equal to vg on all entries except the (n -+ 1), where it is set
to O:

T |oifi=n+1.

This allows us to write,
fixed

Usmall = UV — Q€nt1,
where e,, | 1 is the indicator vector of the (n + 1) coefficient,

€nt1,i = 0if s # n + 1, €nt+in+l = 1.
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The problem then becomes,

n+1 n+1
p - 1 e sz + a Z Qz qma]]\Il Usmall

n+1 n+1

+ Z Uz i gsmall X ) pi) - Z TZ(S’L - gsmall(Xi) + Qi)

i=1

n+1 n+1

- Z KiPi — Z Pidi
i=1 i=1

n+1 n+1

= Z o;pi + Z Tiq; + /\ smdu‘Il Usmall

n+1 n+1

. 1,
+ Z S P’ ,-Msmall — X\Ilzﬂvsmall) — Z(Uipi + TiQi)
i=1 (55)
1 o
= O —0en) W ek~
+ Z = 7)(Si = ®; Tsman — A‘I'f.(vﬁéiﬁ —ae,i1))
1

* * fixed
- Q(S - ‘I’n+1,-77sma11 - X‘Iln+1,1:n('usmall - aen+1))

5704

2
TE* o X g
= 75 v X‘I’n+1,1-n5 + 3\ ¥ it

2\ 1:n,1:in
+6T(515n - (I)T:n,-nsmﬁll )\‘Illn 1n5+ A‘Illnn+1)

. 1
— a(S’ - @nJrL.nsmall - X\Il"+1 1: n(; + )\‘I’nJrl n+1))

with § € R™ the vector whose entries are defined as: §; = 0; — T; = Usmall ;-

We also know that (0 — 7)T®* = 0 = Vj € [d], Y (0i —7)®; = —(0n41 —
T7l+1)q);kL+1,j = a®2+1,j~

Therefore, taking derivatives with respect to J yields the following system:
%lIleE P% o) _ S —%( a¥y g — a®r 1l + (1 —a)PLelgR) (56)
3 0 Tsmall a®:l, +a®; "1, — (1 - )@y 1k
We can therefore solve for both dz and 7sma by inverting the previous system of equations.

When S > g(X,,11). Similarly, when we start with a large S so that the test point is in the right
set, we can derive the coefficients for both v and n by the same derivations as for the small case:

Y @) (dp ) L (Sp 51— @)W — a1+ (1 ) Whpla)\ (o
& 0 ) \Msman (=)@l +a®;"1, — (1—a)®} 15

B.4.4 COMPUTATIONAL COMPLEXITY
Complexity At each step of A- and S-path we take inverse of matrices whose size are at most

|E| + d. The overall cost is O((n + d)?) in the worst case, but empirical paths have | E| < n and at
most 2(n + 1) break-points, making the routine fast in practice.
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Practical consequences

* Threshold evaluation Because S +— vg 41 is affine on each segment, the conformal
threshold §(X,,4+1) = sup{S : vg n+1 < 1 —a} is found by a single root computation, not
by binary search.

+ Randomization By Lemmafd] using the final update of S-path, S*(X,,11), can inflate the
conditional coverage. To mitigate this, we can use the randomized cutoff S™*"4 (X, ) =
sup{S | Ogn+1 < U}, for U ~ Unif(—a,1 — «). The procedure of S-path stays the
same but we stop the algorithm as soon as Og 1 > U.

Summary of modifications versus the \—path

Component A—path S—path (fixed \)
Moving parameter AL0 ST

Active sets E(\),L(\),R(\) E(S),L(S),R(S)
Triggering event Elbow set changes  Elbow set changes
Segment law A= O(A) affine S +— Dg affine
Break-points critical values of A critical values of S
Output A (v, 1) S (v,n)

The resulting algorithm furnishes an explicit, efficient score-path for any fixed A, enabling local
density—adaptive conformal prediction and other post-hoc analyses.

B.5 CROSS VALIDATION ON =y

In this section, we provide additional details on the selection of (¥, 5\) described in Algorithm

We first select a fixed grid of +’s, denoted as I'. For each v € I, we measure k-fold validation error.
This is done by running a A-path for each ~ that yields a sequence of A values, (A\*, A2, ---). The
error of (v, A!) for the j-th fold is then defined as the quantile regression loss,

CVi(,X) = > (1= a)[Sy — 3" (X)l+ +alSy — §'(X:)]-)
i' € fold;

A common practice is to get the mean of CV (7, A1) over k folds and choose the pair that minimizes
it. However, running a A\-path for each ~ does not guarantee that the A values on the path will be all
equivalent. To avoid this issue, we proceed with a two-step approach that first aggregates the error
over all \’s to get the optimal 7,

CV;(7) = min CV;(7,X)
k
y = argmin CV(y) = i CV,
4 = arg IH’YIII (v) = arg HE}IIZ ()

J=1

This selects 7 that reflects the best smoothness of the function overall. Once we select 7, we run the

A-path again on the full dataset (m points) and choose )\ that minimizes the Schwarz information
criterion (SIC) (Schwarz| [1978), which is a commonly used alternative to cross validation error in

kernel quantile regression for model selection (Li et al.|, [2007)).

C THEORETICAL PROOF

C.1 GUARANTEE FOR RANDOMIZED INTERVAL

To incorporate the structured RKHS-based function in equation [§] into the conformal calibration
framework in [Gibbs et al| (2023), we need to show two propositions. Firstly, we show the mono-
tonicity of the solution path for S. Namely, the mapping S +— vs 41 is nondecreasing in S. Second,
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we require the low-rank projection 7 (+) to be trained symmetrically across the input data. With these
properties established, we are able to prove that our path algorithm satisfies exactly the same type
of results as |Gibbs et al.|(2023):

Lemma 4 Consider the function class F* in equation[I7} where RKHS component is given with the
optimal X such that Fy« = { fy-(z) = % Zie[n+1] vih* (2, X;), v € R}, Suppose assumptions
[[|and2)are both satisfied. Then, for all f € F*, SpeedCP gives

E[f(Xns1) - (1Yis1 € Clana(Xni1)} = (1= )| = =AE [(g5rena o, fi)]
where Jgrana y+ (X) = i Zie[nﬂ] Ograna ;" (X, X5).

This result aligns with the randomization version of Theorem 3 in|Gibbs et al.| (2023 — but adapted
here to our algorithm and choice of RKHS class F,-. While in|Gibbs et al.| (2023)) v; can be any

arbitrary value, we involve the optimal A in the definition of fuy=. In this type of RKHS class, the
relationship between S to vg 41 is explicit, while Gibbs et al.| (2023)) depends on a dual analysis,
making the parameter less interpretable. Furthermore, the coverage gap E[(Ggrana =, fy+)] arises
because we have no prior information on the distribution shift and use a flexible RKHS-based func-
tion class instead. While it may lead to deviations from the nominal level 1 — « when fy,« # 0, this
deviation is measurable as shown by |Gibbs et al.|(2023)); we detail how to estimate this deviation in

the latent-space setting in Appendix
Proof.

By Proposition 3} S +— vg 41 is non-decreasing in S. Furthermore, strong duality holds for the
optimization problem in equation /| (this has been shown in |Gibbs et al.| (2023))), and the KKT
conditions are satisfied as shown i Now consider a random variable U ~ Unif(—a,1 — ).
Then we have the equivalence under the randomization for a given S, 11 = S(Xp,41,¥):

1{Sn11 < 95,0 (Xng1)} = s, n41 < U}
Thus,
E [ (Xur1) (1 {05, me1 < U} — (1~ )]
=E[Ey [f(Xn+1) (1 {@Sn+1,n+l < U} —-(1- a)) | Xn+1v”:’5n+1.,n+1]]
=-—E [f(Xn+1)@Sn+1,n+1]

Using the Lagrangian in Proposition [3] we follow the calculation in the proof of Proposition 4 of
Gibbs et al.| (2023). By the exchangeability of the data and the symmetry of gg we have

—E [f(Xn+1)08,11m41] = —2E [MGspsr,05 fur)] -

Therefore, we replace S,, 1 with the randomized cutoff S™@"? and A with the optimal A to obtain
the desired result. u

n+1?

Proposition 3 For all maximizers {vg n+1}ser of the optimization problem in equation[7] the map-
ping S — Vg p41 is non-decreasing in S.

Proof.  Recall the objective in equation[7}

n+1 TL+1 n+1
min Zl S; — O*( ng—vaSl/ (X, X;7) szlvst (X, X;).

ns,vs 71 el
Let * = (v* (24, 7;))i jejnr1) € ROTDX(FD be the positive semidefinite kernel matrix. Follow-
ing the structure in |Li et al.| (2007), this objective is equivalent to the following quadratic program
for a fixed imputed value S (with S, 1 = 5),

min (1 —a) +a +¥*ug,
D D S AT
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subject to
— ¢ < Si —gs(w:) < pi,
qi»pi207 2'21,...,77,—‘,—17

where
n+ 1

gs(xi) = " () "'ns + ~ szw (i, mr), i=1,...,n+1

Note that the proof of Proposition [3] follows the argument structure of Theorem 4 in |Gibbs et al.
(2023)), but with a key distinction that the function gg(z) in our case incorporates an RKHS-based
component that depends on A. The Lagrangian primal function is then defined as in equation
Setting the partial derivatives of L, with respect to ¢ and p to zero, we obtain

L
%p.Uizl—Ol—lﬁi
Pi

5
oL, __ . %)
aqi- i Pi

Since minimizing with respect to v yields v; = 0; — 7, we can substitute this into the derivative
expressions in Equation equation 58] We have

l-a)-1—-v=k+T
a-l+v=p+o
Since k, o, T, p are all non-negative, this can be simplified to
1-a)-1>v
—a-1<wv
Let Q*(v) = —minger- 55 —v' ¥ — S w;g(X;). Therefore, the dual formulation for
equation 20]is,
n
maximize,, Z V;S; + V1S — Q% (v)
i=1
subjectto —a<v; <1—-a,1<i<n+1
Note we use notation vg to denote the solution for a particular input S. Assume for the sake of
contradiction that there exists S > S such that

V3 n+1 < VUSn+1-

Observe that >, v;S; — Q*(v) does not depend on S. The contradiction assumption implies that
(S — S) . <U§7n+1 — US,n+1) <0,

or equivalently,

5" (Ué',nJrl - USq,n—i-l) <S- (Ug,n+1 - Usan+1) :
On the other hand, by the optimality of vg, we have that

ZUS',iSi —Q*(vg)+ S+ V§ng1 2 ZUSJS%, —Q"(vs) + S vsnt1
3 =1

At S (U§’n+1 _US,n+1) ZU&S Q Us ZUS zS Q )
Applying inequality given by assumption above we conclude that

S (Ug)n+1 - US,71,+1) Z g, S — Q US Z vg, lS Q )

which yields the contradiction

ng,isi - Q" (vg) + S- VG ns1 = ZUS,iSi —Q%(vs) + 5 vsm1

i=1
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Remark 5 In this proof we treat ) as fixed. Because )\ is pre-selected before entering the S-path,

the nondecreasing property of Ug holds for each A—including the optimal \ selected by the SIC
criterion along the \-path.

C.2 PROOF OF THEOREM[I]

First, we consider the setting that (X;,Y7),...,(X,,Y,) are independent of (X, 1, Y41, W').
Since 7(-) is a deterministic function (not a random variable), #(Xy),...,#(X,,) are also in-
dependent of 7(X,,4+1). Since 7(:) is a pre-trained map from the covariate space to the latent
space, we write 7 : X — W, where W denotes the latent representation space. Given this em-
bedding, we define a kernel directly on the latent space v5;, : W x W — R. Consequently,
v*(x,2’) = Y3y, (7(z), #(2")).In our construction, ¥* is already normalized, so ¢}, (w, ) is a den-
sity kernel in its second argument with respect to a base measure on W, i.e.,

/ iy (w, w")dw' =1 for each w € W.
w
Let P = Px x Py|x. By the definition of 1V, the joint distribution of (X, 41, Yy,41, W) is defined
by
Xn+1 ~ PX;
Yo | Xng1 ~ Pyix;
W' (Xng1, Yag) ~ " (X1, ).

By definition of v;,, we equivalently have W’ | (71(Xp41), Yoq1) ~ ©3y (7(Xn41), ). Then, the
conditional distribution (X, 41, Y1) | W' is given by

(Px o ¥y (7(Xpg1), w')) X Pyix
Jwy (Px 0 Uiy (7(Xng1),w')) x Py |xdady
Yy (7 (z), w')
B[y (7(X), w')]

Thus conditioning on W', we get

(Xn41, Yng1) | W =w' ~

dPx y)(z,y) := dP;(x) by the symmetric of 7(-)

E[1{¥ut1 € Clana(Xns1)} = (1= a) | W]
-/ iy (), W)
B[y (7(X), W]
B [0y (¢ (Xa). W) - (1Yot € Clpa(Xnin)} — (1= )]
B[ (X, )]
—AE > e Ograna ;i /X -y (71(X5), W)
- [ [ +E][¢;V(7}(X),W')] ] by Lemmald]
-E [Zie[nJrl] @Smnd,ﬂ/’;}/ (ﬁ(X)7 W’)}

= — by the structure of Ggrand
B[y (7(X), W) T

(1 € Clana@)} = (1= @)) dPx.y (w,)

C.3 PROOF OF THEOREM [2

By the definitions in Theorem forall i € [n]

Wi ~ Pw;
Xi | Wi ~ Pxyw;
Yi | Xi ~ Py|x.
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In this procedure, we say Y is conditionally independent of W given X. In practice, the latent
variables { W)} ;c[,+1) are unobserved. Firstly, for the joint distribution, we have {(W;, X;,Y:) }ic[n]
independent of (W, 11, X, 11, Ynt1). In this framework, we consider the covariate shifts such that
the tilt function f(X) = 1{arg max;¢c|x) mr (X) = k} for a fixed k. Therefore,

f(x) ,
B[ (X)) W
Yn+1 | Xn+1 ~ PY|X'

Xn+17 Wn+1 ~

This gives that

f(2) i)
Ko [ 0 POV = gzt [ P POna
@)

- mdPX(x) := dPs(x)

Under this setting, we have for any set C' under the distribution d Py (x)
E[1{Y,41 € C(Xnt1) — (1 — )}

f(Xn-i-l)

= [ (H{Yn+1 € C(Xpnt1) — (1 — @) =<

[0 € CX) = (1 - o)

_E[f(Xng1) Y1 € C(Xnga) = (1 = @))]
ELf(X)]

Note that in the oracle setting, the prediction set is constructed directly using the true embedding
m(-). In this case, the RKHS class 7* used in our quantile regression is defined over the latent space
induced by 7, and we can therefore apply Lemma [ with such a 7*. By the Lemmaf] we see the
numerator equals zero since the function f selected does not depend on the RKHS part. Therefore,
we have

dPx Py x

E[f(Xnt1) A{Yn+1 € C(Xnt1))]
E[f(X)]
_P(YfH—l € C(Xn+1)vT(Xn+1) - k)
P(T(Xpt1) = k)
=P(Yp41 € C(Xpy1) | arg ,j%?%] T (Xny1) =k)=1—«

Next, we establish group-conditional coverage when groups are defined via the estimated low-rank
embedding 7(+).

Corollary 6 Fix K > 2 and let the latent mixture weights {W; € AK’I};L:I satisfy W; i Py,

i.1.d.

with observations {X; | W;}i_, "~ Pxw. Suppose we have an estimated embedding 7t : X —
RE for 7(-) which is defined in Theorem and define T(X) := arg maxye(g] T (X). Assume

Assumptions andEl hold, and that P(T(X) = k) > 0 for all k € [K]. Let C%,_,(-) be the
randomized conformal set calibrated using the linear feature map
. . p T
" (X) = (l{T(X) =1} ..., {T(X) = K}) .
Then, for every k € [K],
P(YnH € O g (Xns1) ] T(Xps1) = k;) ~1-a. (59)

Proof.  The proof follows the same argument as Theorem 2. The only difference is that the tilting
function is now taken to be

f(z) = 1{T(z) =k},  forafixed k € [K],

so the reweighted distribution corresponds to conditioning on the estimated dominated group
T(X) = k. All other steps remain identical. Since the RKHS class F* is now defined with respect
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to the estimated embedding 7 (-), we applying Lemma [i] with this tilting function yields the de-
sired group-conditional guarantee. To connect representation-conditional guarantee in equation [59]

to equation we apply the law of total probability such that, for any set C (X),
P(Y € C(X) | T(X))

K
+ 3 [P(Y € O(X)|T(X), T(X) = k) —B(Y € C(X)
k=

F(X) = K)] - PFCY) = [T(X)).

—

The term P(Y € C(X)|T(X),T(X) = k) = P(Y € C(X)|T(X) = k) for all k if the conformity
score is sufficient for T given 7', i.e., S L T(X) | T'(X). In this case, representation-conditional
coverage transfers to true-group coverage. However, the condition, S L T'(X) | T(X ), is generally
not hold, since score S depends on (X, Y") and X depends on the unobserved variable W beyond T.
It does hold under the ideal alignment 7'(X) = T'(X) a.s., which is the setting in Theorem@ The

condition 7(X) = T'(X) a.s. holds when 7'(X) is essentially the Bayes-optimal argmax classifier
or a marginal condition holds as shown in Lemma [0}

Remark 7 While the RKHS class F* is specified using the estimated low-rank embedding 7 (-), the
tilt function [ = 1{T(X) = k} used for group-conditional coverage must be fixed with respect to

the calibration sample. To ensure this, the low-rank projection 7(-) and the induced partition T'(-)
are computed using an algorithm that is invariant under re-orderings of the input data. In this way,
f is data-dependent but non-random relative to the calibration set and test point, which preserves
the exchangeability conditions for our finite-sample guarantee.

This construction can be viewed as an empirical proxy for a population-level tilt determined by the
latent structure. The posterior mean embedding w(X) = E[W | X] serves as the ideal population
target, as it is a deterministic, stable summary of the latent variable W, thus yielding the most
efficient prediction sets under the settings in Theorelel Our estimated embedding 7 (-) and groups

T'(-) approximate this structure from data. From the Corollaryléland the adaptivity of the tilt function
f to 7 (), the coverage guarantee remains robust to the errors in 7 (+).

C.4 SOME TECHNICAL PROOFS

Lemma 8 Fix K > 2 and let m; = (mk)szl be the true embedding representative and ©; =
(7ir) K| with 7k, 7k € (0,1). Define

K K
1 p . 1 .
Oik = log mi, — == > logmie, O :=log i — e > log e,
=1 =1
and write vectors 0; = (0;x)5_,, 0; = (éik)szl. Let rij, := i, — Tk and Amwgy = rix /7, and
define the centered vector

K
B 1 . .
A = Amg — 74 ;Am—g (k=1,...,K), Am; = (Amy)E_,.
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Let Ay 5 = 2(0; — 0;, Am; — Axj) + ||Am; — Anj||3. Assume max; i |Amig| < 1, then
16: — 6513 — 116: — ;113 = Avij + Do, (60)
for an absolute constant C with |A ;5| < C((maxk |A7Tik|>3 + (maxk |A7rj;€)3). For the
Gaussian kernel V;; := exp( — 7[|0; — 6;(|3) and 1[11-]- :=exp(— ~)16; — @H%) we have
Vi =i (1= 78155+ O(|Az4] + 7741 ) - 61)
Proof.  Write m;;, = 7;1.(1 + Ak ). Then

K

A 1

O — 0i1. = 10g(1 —+ Aﬂ'ik) — ? E log(l + Aﬂ'ig).
/=1

For [u| < $,log(1 +u) = u — $u? + r(u) with |r(u)| < 2|ul>. Hence
| X 3
Hik - eik = A?T,L'k. - ;(Aﬂ'?k - E ;A?T'?@) + lf;ika |7:zk‘ S 2<m]§tX|A7T,Lk|) .

Letg; :=6; — 6, — Am; where g; collects the centered quadratic and remainder terms; then ||g; |2 <
(maxy, |Am;x|)?. Consequently,

0i = 0; = (0: — 0;) + (Ami — Amy) + (4 — q5),
and expanding the squared norm yields equation [60] with
Dy = 2(0i = 05, 4 — 45) + 2(8mi = Ay, g0 = q5) + llai — 45115,
which is bounded as stated by Cauchy—Schwarz and the displayed bounds on g¢;, g;.
For the kernels, write with Jistl-j = ||6; — 0}”3 and Adist;j == |0; — 6|13 — cfistij,
wij = ’(/A)ij exp(—’yAdistij) = l;ij (1 — ’yAdiStij + O(’yzAdZ’St?j)),
and substitute equation [60]to obtain equation [61] |

Lemma 9 (Kernel perturbation against a fixed value) Fix K > 2. Let Ay, := (7 — Fik) [ Tik

and the centered version A, as in Lemmalg Fix any w € RX and define the Gaussian kernels
vi(w) = exp(—y[l0: —wl3),  bi(w) = exp(—l0; — w]3).

Assume maxy, |Amip| < 3. Then, writing Ay ;(w) = 2<é2 — w, Am> + ||Am;||2, we have the

distance expansion

N 3
16; — wll3 — [10; — w||3 = Ayi(w) + Az, |Ag 4| < C(mgxlAml) , (62)

for an absolute constant C. Consequently,

Aj(w) = |1/)1(w)—77/}z(w)| < i (w) <7 |A1,i(w)} + C((m’?X|Amk|)3 —+ 72A1,i(w)2)> . (63)
Proof.  Write m;;, = 7;1(1 + Am;i). Using the proof in Lemma we have now
10; — wl|3 = 10; — wl|3 = 2(0; — w, Am;) + | Amil|3 + Ags,
with . _
Agi = 2(0; — w, q;) + 2(Ami, i) + laill3,
which obeys |Ay ;| < C(maxy |Am|)® by Cauchy-Schwarz and the bounds on g;. This proves

equation For the kernels, let dist;(w) := ||0; — wl||2 and Adist;(w) := ||0; — w]|2 — dist;(w).
Then

Yi(w) = exp (— v (dist;(w) + Adist;(w))) = Ui (w) (1 — yAdist;(w) + O("yzAdisti(w)Q)).
Substitute equation [62]for Adist;(w) and take absolute values to obtain equation [ |
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Lemma 10 Let m(X) := 7(1)(X) — 7r(2)(X) be the (pointwise) top-1 margin, where w1y > () >
- are the order statistics of {my(X)}< .

() — m(X >||oo < Lm(X) as.
then T(X) = T(X) a.s.
Proof.  Letk :=T(X),som(X) — m(X) > m(X) for all £ # a. Then
fp — o = (kg — ) + (7 — 7) — (e — m) > m(X) = 2|7 — 7]|0o > 0,

soT(X) = k. [ |

C.4.1 APPROXIMATE CONDITIONAL VALIDITY UNDER EMBEDDING ERROR

Lemma 11 Let W' be drawn according to the true neighborhood law W' | w(Xp41) ~
Uiy (m(Xn41), ). Assume the conditions in Lemmal9)are all satisfied, then

]E[Zie[n+1] Ograna ;9" (W', #(X5))]

P(Yoi1 € Clypa(Xnsa) [ W =w') =1—a— E[*(w', #(X))] + Err(w’).
| (64)
where
o AQw) Blun GO0.0)]  Aw)
B = B G0w] R0, B G0w
with A;(w') = |y (R(X5), w') — iy (7(X;),w')|. and A(w') = E[A;(w')].
Proof.  Starting from the displayed decomposition in Theorem [I]
E[1{Yas1 € Cluna(Xns1)} = (1= a) [ W]
_E[w;v(ﬂ(Xn-i-l)aW) (1{Yni1 € Clppa(Xnia)} — (1= a))}
B B[y (w(X), W) '
If we replace the true wm(X;) by the estimated @(X;), define \ (W)
Elggy (r(X), W) - Z(X, Y], AD(W’) = Bl (r(X), W], and NW') =
E[ygy (7(X), W) - Z(X,Y)], D(W E[ggy (7(X), W] with Z(X,Y) = L{Y €
rma X)) -1 —a) € [ 1,1]. A standard ratio perturbation yields
NW') NW) |N(W’) ~NW)| INW)| |DW) - DW)]
DWW’y DW’) D(W) DW) D(W’) ’
since D(W'), D(W’) > 0. Next, with A;(W') = |45 (7(X;), W) — ¢ (n(X;), W')| and

AW') = E[Ax(W')], we have

W)= N (W) = [ [y (G(X), W)~ (m(X), W) Z(X, V)] < E[Ax(W)] = AW,

and similarly | D(W’) — D(W’)| < A(W'). Using |[N(W’)| < D(W') (because | Z| < 1) gives
E[1{Ys1 € Clana(Xas1)} = (1 =) | W]

7E|:¢;V(7?F(Xn+1) ) (1{Yn+1 € Crand( n+1)} B (1 B a))i| -+ E (W,)
= E[ygy (7(X), W] :

—E [Zie[nﬂ] Ograna i iy (7(X), W’)}
E[gy (7(X), W)
where the general bound is in equatlonn If A;(w') — 0, then Err(w’) — 0 as well. Therefore,

equation[I0|closely approximates the condltlonal guarantee with respect to the true latent represen-
tation. |

+ Err(W'), Lemmal]
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C.4.2 COVERAGE GAP ESTIMATION

The idea behind estimating the coverage gap XE[Q}T“’]LET;&{]”’*M’*] is to leverage results from n-

sample quantile regression, applied specifically to the calibration data points. As shown in Propo-
sition 2 of |Gibbs et al.| (2023)), the estimation error in their setting (using raw covariates) can be

bounded by O(y/dlogn/n). We adapt their arguments to the latent-space setting, where the feature
map satisfies ||®*(X)||; = 1. The following result, Proposition[4] provides a sharper bound on this
estimation error under our setting.

To simplify the notation, let

Lalgy,n) = % D la(Si = @ (Xi) T — gy (X4)

i€[n]
Loo(gyesn) = E [£a(S; — D*(Xi) T — gy (X,))]
denote the empirical and population losses with low-rank projection 7 (-).

Recall the closed form solution in equation [6] shows the estimated coefficients are functions of .
For a fixed )\, we denote the solution class parameterized by \ as

1
P =gy 1 gy (2) = 1 > vt (z, Xi)} (66)
i€[n+1]

Define the objective

Ln(gyesn) = La(gy=>m) + A+ llgy- 13-

which is strictly convex in gy- and 1. Let (Gn g+, Bn), (9% 4+ B) € Fap- X 2% denote the

minimizers of min,, . ,)ecr- Lo (g, n), ming, . mers Loo(gy+,1n), respectively.
Note we write g(z) = ®*(x) "1 + gy~ () with arbitrary (gy-, 7). Let

oo(@) = % () T3, + g e (2) form, € By,

() = @*(2) "M + un,y- () for i, € By

Lete(g, g5) = Loo(gy+ 1) — Loo(g5e > Pra1)-

Assumption 3 (Population strong convexity) Let d(gy~,n) = inf,: ep= |1 — n5ll2 + [[gy~ —
Gro o Iy denote the distance from (gy=,m) to the nearest population minimizer. Suppose S | X
has positive density on R and is continuous. If d(gy-,n) < € for some constant ¢, > 0, then there

exists some constant Cy > 0 such that

e(g,9%) > Crd(gy-,n)?

This assumption is mild under the some assumptions on the distribution of S | X since V%Eoo =
E[Pg)x (0)X X '] Tan et al.| (2022).

Assumption 4 There exist some constants c¢, cr,cf.s > 0 such that

Sup. E[lf(X)P] < c;E[IF GO, E[lf(X0)IS7] < crsE[If(X)]]

inf  E[|®*(X) " nl] = cx, E[[|®*(X3)13] < co,
n:|nll2=1,neR?

sup B[ f(X)|2*(X:)|[3] < e1B[If(X3)]].
feF*
Furthermore, we assume that E[|S?|] < oo and sup, ¢*(z,x) = 1.
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This assumption is stronger than Assumption 1 in|Gibbs et al.| (2023)), which requires the following
moment bounds:

Efl|®*(X)|3] < cod, Sup, E[|f(Xa)[lle*(X3)|3] < er Bl f(X3)[]d

In contrast, we assume a bounded-norm feature map in the latent space, specifically ||®*(X)||2 < ¢o
which does not grows with feature dimension d. In particular, when ®*(X) is an indicator vector
over a finite partition, in which case || ®*(X)||; = 1 as well.

Proposition 4 Suppose the assumptions 3| [ are satisfied. Under the settings in Lemma )] Define
the n-sample kernel quantile regression estimate with a fixed A

1

.o Tin) = ar min — 0o (S; — gu (X;) — (X)) + N[ g
(Gnap* s Tin) ggw*eﬂ,w,newniw (Si = gy~ (Xi) — ©°(X5) ' n) + Algy

2
P

and for any € > 0, let
Fo={fO) = for )+ ()€ F* i (| fprly~ + lInll2 < LE[S(X)]] > €}

<O]P’< logn)
n

Proof. By the results in Section 4.1.2 in|Boucheron et al.[(2005) and ||®*(X)||3 < co, we know

that {fy-(-) + @*(-)n : || fu~|lw= + lImll2 < 1} has Rademacher complexity at most O(y/1/n).
Following the proof for Proposition 2 in|Gibbs et al.|(2023), we can show

Then,

<gn,w*a f’L/)*>'¢J* E[<§Sn+1,w*7fw*>w*]
2\ — 2\
rer | IS )] ER S, (X))

L. Let& = {[|n — Ppx_nll2 < €1, [|gyp+ — g5y llo~ < €21 €1, €2 > 0}. We have

E { sup L (gy+ 1) = Ln(go .y PB21) = (Loo(gue, 1) = Loo (9o 4=+ PB=1)) I}
17,94* €€2
< O((e1 + €2)v/1/n)

LS e (X0 = B ey 1F(X0)]| = Ox(/1/m)
= 0(1)

2. supjer-

3. supy, ez, o AE[GS, 00,00 for dye]

< OIP’( log(n) )

n

4. SUP £ €Fx il Fupr [lox <1 A ‘(gn,w* o E[<gsn+l7¢* s o )]
Using the claims above, we thus get the desired results through some calculations. ]
Remark 12 Under the setting in Theorem 1, the tilt function f*'(x) = ¢, (7 (x),w') emphasizes

coverage in a neighborhood around the fixed point w' in the latent space. As shown in Propo-
9 ]E[ZZE[7L+1] f)sru.n,{i_lu’var’(wﬂtﬁ—<xl)>]

sition W} this coverage gap [, (W7 (X))] admits a data-driven approximation
setnl OnL ity (w7 (X5)) L . o o i
Xi clnl L ] where W' = w' is fixed and {’Un‘i},,;e[”] are the empirical coefficients from
n Zzé[n] ’l/‘vVV(uy (X)) ’

gn,pﬂ:*-

D ADDITIONAL EXPERIMENTS

D.1 SYNTHETIC EXPERIMENTS

In this section, we provide additional details on the synthetic experiments and provide further ex-
periment results.
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In all of our experiments, we generate X; &€ RP from a mixture of K = 3 latent
distributions. ~ Specifically, we first generate X; from a multinomial distribution, mX; ~
Multinomial(N, 3~ ¢ k) Wi(k)Ck) with Wi = w; fixed and total count N' = 1000. For each sam-

ple in the training and calibration sets, we generate W; ~ Dir([2, 1,1]) and randomly shuffle the
elements to create a distribution that is more symmetric across vertices. Here, the density is higher
in the central part of the simplex. For test samples, we generate from the same distribution but do
not shuffle, to create a high concentration near one vertex of the 2-dimensional simplex (Figure [5).

We sample the latent component (; € RP from a uniform distribution and normalize it so that
> icpp Ck(7) = 1foreach k € [K]. We estimate 7(X;) = E[W; | X;] with pLSI (Section
and use 7(X;) as inputs of SpeedCP, CondCP, PCP, and RLCP. For SpeedCP and CondCP, we
choose ®*(X;) = (1, 1{argmaxy 7, (X;) = 1},...,1{argmaxy 77 (X;) = K — 1}) using the
estimated latent embeddings (X)) ". The response Y; is generated from a nonlinear function of
Y; ~ N(sin(2m - W;(1)) + (W;(2))2 + W, n,0.12) and n; ~ Unif(1,10) for j = 1,2,3 and nor-
malized. In this setting, we aim to see whether each conformal method can guarantee 0.9 coverage
uniformly across the simplex, especially in boundaries (areas close to one vertex). We report our
results based on 50 independent runs of data generation. At each run, we split the data into 600
training points, 300 calibration points, and 100 test points.

In Table 2] we report the computation time for two different predictors. We can see that SpeedCP is
faster compared to CondCP and PCP, which are the state-of-the-art conformal prediction methods
that account for the local or latent data structure. RLCP is fast but fails to attain target miscoverage
level as discussed in Section[3]of the main manuscript. In Figure[] we show the coverage conditional
on the latent space of 77(X) when the predictor is a neural network. The same plot for the linear
regression predictor is shown in Figure [I] In both plots, we observe that SpeedCP achieves 0.9
across the simplex most uniformly.

SpeedCP CondCP SplitCP

PCP RLCP £

Figure 4: Mean coverage on fine-gridded partitions on the latent space (a 2D simplex) when f =
NN. The results are aggregated over 50 random generations. SpeedCP shows the most uniform 0.9
(pale yellow) coverage across the simplex.

Calibration set averaged Density Test set averaged Density

Figure 5: Averaged calibration and test density over 50 random generations of data. We use kmeans
followed by Voronoi tessellation to partition the latent simplex into 10 bins.
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Figure 6: Conditional miscoverage and prediction set size for each fixed partition on the latent space.
We observe small overestimation of coverage when we use the full calibration set instead of setting
aside a dataset for tuning (v, \). Overall, the two methods are marginally different.

D.1.1 COVERAGE ACROSS DIFFERENT SAMPLE SIZE n

We experiment with different values of the sample size n in Table[f} As the calibration set grows
larger, we generally expect the coverage guarantee to be the same while the prediction set size de-
creases because the estimation error and the uncertainty of the kernel quantile estimator diminishes.
Interestingly, we observe a slight increase in prediction size at n = 2000 followed by a decrease at
n=5000. This fluctuation is likely due to finite-sample variability in both the estimated latent em-
beddings and the cross-validated hyperparameters. The computation time increases with n, which is
consistent with the computational complexity of SpeedCP, which is approximately O(n?). Overall,
for moderately large n, the method still remains computationally feasible.

Table 5: Mean prediction set size and computation time for SpeedCP (linear regression predictor).

n Prediction set size Computation time (seconds)

1000 1.376 + 0.07 12.363 + 4.10
2000 2.053 + 0.11 23.956 + 7.03
5000 1.030 £ 0.02 191.255 £ 29.36

D.1.2 CHOICES OF DIFFERENT &*(X)

We also discuss how conditional coverage changes with different choices of ®*(X) of our function
class F* equation When running a RKHS-based quantile regression on the scores, ®*(X) "7
acts as the linear component with the design matrix ®*(X) and parameters 7. ®*(-) allows flexible
modeling of different types of conditional coverage. For example, in this synthetic experiment, we

can consider four different ®*(X) based on the estimated latent embedding 7 (X ),

1. Taking ®*(X) = 1 yields the marginal coverage.

2. Taking ®*(X) = #(X) yields mixture- conditional coverage, where we guarantee cover-
age linearly reweighted with 7 (X).

3. (What we used) Taking ©*(X) = (1, {T(X) = 1},...,{T(X) = K —1})" or said
O*(X) = (L{T(X) = 1},....1{T(X) = K})" where T(X) = arg maxyex] 7 (X)
yields topic-conditional coverage, where the topic is defined as the latent distribution with
the highest mixture proportion weight.

Through our experiments we observed that in high-dimensional settings, coverage using SpeedCP is
primarily affected by the RKHS component, fg~ rather than the linear term. If more prior informa-
tion is available on the conditional distribution, and the goal is to achieve more precise conditional
coverage at level 1 — «, one may instead calibrate scores using a function class restricted to the linear
term, as in |Gibbs et al.[(2023). However, the inclusion of the RKHS component can lead to smaller
prediction sets even without those additional prior structures. Further investigation is needed to de-
termine whether choosing ®*(X) as the indicators of topics, or the latent embeddings, improves
performance under varying covariate dimensionality p or the signal-to-noise ratio in X.
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D.1.3 USING CALIBRATION SET FOR TUNING (7, A)

In our experiments, we use the calibration set for selection of (-, \) instead of setting aside a separate
validation set for efficiency. We agree that, in the current implementation, (y, A) is selected by cross-
validation using the calibration data, so the chosen pair is technically data-dependent. Therefore,
the dependence will introduce some bias and small finite-sample distortion of coverage. However,
the selected pair (), ) converges in probability to a deterministic value when the calibration set
size is large. Recent work on adaptive coverage policies shows that it is empirically valid to use
the calibration set itself to select regularization parameters via leave-one-out or cross-validation

(Theorem 2.6 in|Gauthier et al.| (2025)). |Gibbs et al.[(2023)) also show, the selection of A using the

calibration set does not affect the coverage significantly.

To assess whether the calibration set can be reliably used for hyperparameter tuning, we compare
it against a split strategy in which half of the calibration set is used for tuning and the remaining
half for calibration, avoiding the potential issues discussed earlier. As shown in Figure [} the two
approaches have similar conditional coverage and prediction set sizes, with the full-calibration pro-
cedure exhibiting only a slight overestimation of coverage. Also in Figure[7} we observe that the
chosen (7, \) pairs from the two approaches are also similar.

D.1.4 UNIFORM COVERAGE ON ANY (7, )

We assess whether the uniform coverage guarantee assumed in Section 2.2 holds across all choices
of (y,A). We get the approximate joint hyperparameter by gathering results from running A-path
on each v in the ~ grid. We then select 25 pairs and run S-path to get coverage and prediction set
size. We observe in Figure [7] that the coverage holds uniformly 0.9 across the pairs, affirming that
the coverage is not affected by the choice of (v, \). However, we observe that the prediction set size
differs by the choice of (v, A). Our cross validation approach chooses (7, \) in the region where
prediction set size is small.

Mean coverage over (gamma, lambda) Mean prediction size over (gamma, lambda)
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Figure 7: Marginal coverage and prediction set size of 25 pairs of (y, A) on the joint hyperparam-
eter space. We also show selected (y, A)’s using k-fold cross validation on calibration set (full) or
validation set (split).

D.1.5 EFFECT OF RANDOMIZATION ON S

As described in Section we use the randomized cutoff S™*"4(X,, 1) = sup{S | Vgnt1 < U},
where U ~ Uni f(—a, 1—a), to construct prediction sets. In practice, this randomization introduces
little variability. This is because the S-path starts with a small value, and along the path, the S values
along the path are generally smaller than gs, leading to U5 5,41 = —a. Figure@, we observe that the

standard deviation of S{'“’"’d’s for each run(seed) is small, confirming this behavior.

D.2 REAL DATA EXPERIMENT
D.2.1 ARXIV ABSTRACTS

We sample 5000 abstracts from ArXiv metadata (Clement et al, 2019) in mathematics, statistics,
and computer science categories. The processed abstract-word count matrix has a vocabulary size
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Figure 8: Mean and standard deviation of S7%"?’s for each seed.

of p = 11,516. We project the abstracts onto K = 5 latent mixture proportions, 7 (X;), using pLSI,
the topic modeling approach described in Section We use 7(X;) as inputs for all methods.

For SpeedCP and CondCP, we additionally set the linear representation ®*(X;) as an one-hot en-
coding of the topic: ®*(X) = ( 1{T'(X) = Geometry}, 1{T(X) = Algebra}, 1{T'(X) =

ML}, 1{T(X) = vision}, 1{T(X) = Quantum})T. Figure|§|displays the top words for each
estimated topic, while Figure[T0] shows the proportion of documents in each estimated topic. At a
resolution of K = 5, the topics are readily interpretable and correspond to distinct subfields within
mathematics, statistics, and computer science. pLSI estimates soft assignments 7(X;) € R®, repre-
senting mixture proportions over the topics, which we use as inputs to SpeedCP, CondCP, PCP, and
RLCP.

The goal is to construct prediction intervals that achieve nominal level 0.9 across topics. CondCP is
omitted because, in our experiments, it did not finish within the allotted time budget (30 hours). This
occurred consistently across the larger datasets we evaluated. We present topic-conditional coverage
and prediction set size in Table [§] To illustrate performance under a poor predictor, we choose
linear regression of citation counts on raw word frequencies, which fails to extract any meaningful
associations between words and citation counts. As a result, RLCP produces overly wide prediction
intervals and PCP fails to uncover any latent mixture structure of S|7(X) and becomes equivalent
to SplitCP. In contrast, SpeedCP leverages kernel smoothing, resulting in tighter and more accurate
prediction intervals.

Table 6: Mean coverage across topics and prediction set size of ArXiv dataset.

Method Target coverage (1 — « = 0.9) Size Time (seconds)
Geometry Algebra ML Vision Quantum

SpeedCP  0.880 £0.02 0.890 +0.05 0.730+0.34 0.920 £0.02 0.822+0.11 15.835+3.05 8.682 +3.10

SplitCP 0.877 £0.02 0.876 +0.04 0.659 +£0.35 0.926+0.02 0.762+0.08 15.661 +1.17 < 0.01

PCP 0.877 £0.02 0.876 +0.04 0.659 +£0.35 0.926+0.02 0.762+0.08 15.661 +1.17 17.501 +0.54

RLCP 0.9354+0.02 0.958£0.03 0.956+£0.16 0.923+0.02 0.962+0.04 42.493 +45.308 1.184 4+0.01

D.2.2 MOLECULE GRAPHS

We provide additional results of the molecule dataset example in Section 3] For each dataset, we
subsample 2000 molecule graphs at each run with 50 runs in total, and split into 1000/500/500
training, calibration, and test points. Using the 1000 molecule graphs, we train a GIN predictor /i(-)
to extract the 64-dimensional last layer and compute conformal scores S; = |/i(X;) — y;|. In this
experiment, we consider the intercept for the linear term, ®*(X;) = 1 and 7w (X;) as the PC score.
In Figure[IT] we plot the Voronoi partitions on which we measure the coverage (Figure [12)) as well
the mean prediction set (Figure[T3) at level a = 0.1.

Our method, SpeedCP, and SplitCP construct the smallest prediction sets overall. However, while
SplitCP applies a single global cutoff across the entire PC space, SpeedCP adapts to the local struc-
ture of the embeddings. For instance, in the QM9 dataset we find that SpeedCP produces slightly
larger prediction sets in sparser regions of the PC space (e.g., partitions 2, 4, and 6), which allows it
to maintain consistent 0.9 coverage across all partitions.
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Figure 9: Latent topics of ArXiv abstracts identified by probabilistic latent semantic indexing (pLSI),
a topic modeling approach. We plot the top 20 words with the largest weights for each topic. We
name each topic as Geometry, Algebra, Machine Learning, Computer Vision, and Quantum theory
based on the top words.
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Figure 10: Distribution of the most likely topic over all abstracts with n = 5000.

D.2.3 BRAIN TUMOR MRI

We train a CNN classifier /i(-) on 2,000 images and extract the 256-dimensional NN features from
the last layer. We report the performance of the CNN classifier ji(+) in Figure which shows the
evaluation metrics on the training and validation sets.

Using another 2,400 images for calibration, we compute conformal scores S; = |i(X;) — y;| and
apply our RKHS path-following quantile regression in the latent space to obtain thresholds at level
a=0.1.

In this experiment, we evaluate both marginal coverage and per-label (predicted-label) coverage
]P’(Yn+1 € C‘;‘and(XnH) | f(Xny1) = g)) using 600 test images over 50 simulation trials. We
exclude CondCP from the analysis because a single simulation takes over 50,000 seconds and the
algorithm fails to converge. For comparison, we perform calibration using the 256-dimensional
neural network features directly as the embedding 7 (-). To further reduce dimensionality, we apply

a post hoc PCA to rank 8 on these features; the resulting principal components define 7 : X — RS,

Using 256-dim features from NN. We include illustrative results corresponding to Table [] from
the main paper. Empirically, the cutoffs produced by SplitCP and RLCP are effectively identical
in our high-dimensional setting. Intuitively, RLCP’s locality weights become uninformative in high
dimensions (the distance metric loses discriminative power), so RLCP reduces to uniform weighting
over the calibration set, recovering the SplitCP cutoff.
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Figure 11: Voronoi tessellation of the PC space. We plot PC representation of graph embeddings
where each color denotes each random subsample of the dataset.
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Figure 12: Coverage on fixed partitions of the PC space for QM9 and ESOL. We use PCA on the
last layer embeddings of GNN with K = 3 dimensions. The dashed line denotes the target coverage
rate 1 —a =0.9.

Using principle components. To further reduce dimensionality, we extract features from the neu-
ral network and project them onto a low-rank embedding via PCA with K = 8§, fitted on the first
2,000 training samples. SplitCP attains similar coverage but requires more conservative sets in
lower-dimensional space, whereas our method delivers narrower sets with near-nominal predicted-
label coverage. RLCP and PCP tend to over-cover, particularly for the healthy class as well, and ex-
hibit unstable cutoffs with high variance and frequent near-zero values (see Table ). Consequently,
even after dimensionality reduction, RLCP and PCP produce overly conservative conditional cover-
age.

Compared to results using higher-dimensional features, the low-rank projection further reduces the
cutoff without compromising conditional guarantees (comparing Table [ with [§), thereby yielding
narrower prediction sets.

D.3 DETAILS ON COMPUTATION RESOURCES

All experiments were conducted on a cloud-based computing cluster. Each job was allocated 4
CPU cores and 4 GB of memory. No GPUs were used. For CondCP, we used the MOSEK solver
in CVXPY to solve the underlying convex optimization problems. All code was implemented in
Python3 and run in a consistent computing environment to ensure reproducibility.
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Table 7: Summary statistics of conformal cutoffs (marginal and by predicted label) using the 256-
dim features from NN as input space for conformal prediction.

Method Mean Std Min Max

Marginal
SpeedCP(1) 0.2662 0.0908 0.0012  0.9985
SpeedCP(®*)  0.2828 0.0820 0.0025 0.9714

SplitCP 0.3482 0.0091 0.3271 0.3660
RLCP 0.3482 0.0091 0.3271 0.3660
PCP 0.2310 0.2899  0.0000 0.9984

9 = healthy
SpeedCP(1) 0.2500 0.0954 0.0012 0.9938
SpeedCP(®*)  0.2662 0.0819 0.0025 0.9533

SplitCP 0.3482 0.0091 0.3271 0.3660
RLCP 0.3482 0.0091 0.3271 0.3660
PCP 0.2818 0.2904 0.0000 0.9984

g = tumor
SpeedCP(1) 0.2758 0.0866 0.0963 0.9985
SpeedCP(®*)  0.2925 0.0805 0.0952 0.9714

SplitCP 0.3482 0.0091 0.3271 0.3660
RLCP 0.3482 0.0091 0.3271 0.3660
PCP 0.2012  0.2855 0.0000 0.9984

Table 8: Mean coverage and prediction set size across predicted labels in the MRI dataset under the
PCA-based model.

Method Target coverage (1 — a = 0.9) Prediction set size Time (seconds)

Marginal Healthy Tumor Marginal Healthy Tumor

SpeedCP(1) 0.910+0.01  0.901+£0.02 0.915+0.01 0.239+0.07 0.230+0.07 0.244 £+0.08 286.1 £14.2
SpeedCP(®*) 0.905+0.02 0.898 £0.03 0.900 £0.02  0.247 £0.08 0.241+0.08 0.25140.08 294.54+20.9

SplitCP 0.9014+0.01 0.8934+0.02 0.906 £0.01 0.3504+0.00 0.350£0.00 0.350 £0.00 < 0.01
PCP 0.906+0.02 0.925+0.03 0.895+0.02  0.230+£0.27 0.279+0.26 0.200 +-0.26 130.14+28.9
RLCP 0.9164+0.01 0.926+0.02 0.911+0.02 0.359+0.38 0.388+0.37 0.34240.38 2.095+0.13

Table 9: Summary statistics of conformal cutoffs (marginal and by predicted label) using PCA-based
model. SpeedCP(®*) calibrates scores with a linear term that includes predicted labels, whereas
SpeedCP(1) uses an intercept-only term.

Method Mean Std Min Max

Marginal

SpeedCP(1) 0.2391 0.0738 0.0654 0.8641
SpeedCP(®*)  0.2470 0.0805 0.0442 1.2279

SplitCP 0.3505 0.0087 0.3315 0.3729
RLCP 0.3594 0.3797 0.0000 0.9984
PCP 0.2301 0.2672  0.0000 0.9984

Y = healthy

SpeedCP(1) 0.2300 0.0697 0.0654 0.7414
SpeedCP(®*)  0.2409 0.0785 0.0442 1.2279

SplitCP 0.3506  0.0088 0.3315 0.3729
RLCP 0.3883 0.3711 0.0000 0.9984
PCP 0.2788 0.2654 0.0000 0.9984

g = tumor
SpeedCP(1) 0.2445 0.0756 0.1486 0.8641
SpeedCP(®*)  0.2506 0.0815 0.0615 1.2225

SplitCP 0.3505 0.0087 0.3315 0.3729
RLCP 0.3420 0.3838 0.0000 0.9984
PCP 0.2009 0.2641  0.0000 0.9984
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Figure 13: Prediction set size on fixed partitions of the PC space for each molecule dataset. We use
PCA on the last layer embeddings of GNN with K = 3 dimensions.
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Figure 14: Evaluation of the CNN classifier on the Brain Tumor MRI dataset.
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Figure 15: Predicted-label conditional coverage on the Brain Tumor MRI test set under the PCA-
based model. Calibration is performed using the linear feature map ®*(X) = (1{a(X) =

healthy}, 1{(X) = tumor}) " under the 256-dim features layer from NN.
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Figure 16: Predicted-label conditional coverage on the Brain Tumor MRI test set by calibrating with
the intercept only ®*(X) = 1 under the 256-dim features layer from NN.
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Figure 17: Predicted-label conditional coverage on the Brain Tumor MRI test set under the PCA-

based model. Calibration is performed using the linear feature map ®*(X) = (1, 1{Aa(X)

healthy}, 1{i(X) = tumor})T.
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Figure 18: Predicted-label conditional coverage on the Brain Tumor MRI test set by calibrating with
the intercept only ®*(X) = 1.
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