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ABSTRACT

Conformal prediction provides distribution-free prediction sets with finite-sample
conditional guarantees. We build upon the RKHS-based framework of|Gibbs et al.
(2023)), which leverages families of covariate shifts to provide approximate condi-
tional conformal prediction intervals, an approach with strong theoretical promise,
but with prohibitive computational cost. To bridge this gap, we develop a sta-
ble and efficient algorithm that computes the full solution path of the regularized
RKHS conformal optimization problem, at essentially the same cost as a single
kernel quantile fit. Our path-tracing framework simultaneously tunes hyperpa-
rameters, providing smoothness control and data-adaptive calibration. To extend
the method to high-dimensional settings, we further integrate our approach with
low-rank latent embeddings that capture conditional validity in a data-driven la-
tent space. Empirically, our method provides reliable conditional coverage across
a variety of modern black-box predictors, improving the interval length of |Gibbs
et al.[(2023) by 30%, while achieving a 40-fold speedup.

1 INTRODUCTION

Conformal prediction is a framework for constructing prediction sets that are valid under minimal
distributional assumptions. Given a trained predictor (X ), and calibration data (X;,Y;);e[n) to-
gether with a test point X, 1, all drawn i.i.d. (or more generally, exchangeable) from an unknown
and arbitrary distribution P, conformal methods such as split conformal prediction (SplitCP) (Pa-
padopoulos et al.,[2002) calculate conformity scores on the calibration data to construct a prediction
set C (X,41). This procedure guarantees marginal coverage, ensuring that the resulting set includes
the true label Y,, 1 with probability at least 1 — «, for any specified o € (0, 1).

However, marginal coverage does not preclude significant variability in conditional coverage on
the test input X,, 1, defined as P(Y,, 1 € C’(Xn+1) | X411 = ) = 1 — « for all . This
limitation can be particularly problematic in high-stakes applications such as drug discovery or
socially sensitive decision-making, where systematic under-coverage on critical subgroups may lead
to unreliable or even harmful outcomes. Unfortunately, prior works (Vovkl 2012; Barber et al.,
2021)) have shown that in distribution-free settings, any interval satisfying conditional coverage must
have an infinite expected length, C’(X7l+1) = R, making meaningful prediction impossible without
further assumptions.

To address this issue, |Gibbs et al.| (2023) note that the conditional coverage can be equivalently
reformulated as a marginal guarantee over any measurable function f, i.e., E[f(X,41) - (1{Yn41 €
C(Xn41)} — (1 — @))] = 0. This observation motivates them to relax the objective by restricting
the requirement to a user-specified function class F:

E[f(Xps1) - (1{Vnt1 € C(Xpy1)} — (1 — )] =0, forall f € F. (1)

Different choices of F yield different notions of conditional validity. For example, taking F° =
{n : n € R} to be the set of all constant functions in equation [I| is equivalent to guaranteeing
marginal coverage. Taking F7 to be the set of piecewise constant functions over a set of pre-specified
(potentially overlapping) groups G, so that 79 = {ZGEQ ngl{z € G} : n € RIYI }, yields group-
conditional coverage (Vovk et al., 2003; Jung et al., 2022), i.e., P(Y,11 € C‘(Xn+1) | Xpny1 €
G)=1—aforal G e g.
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In this paper, we consider a more flexible class associated with a reproducing kernel Hilbert space
(RKHS) that is capable of achieving coverage guarantees under complex, nonlinear covariate shifts:

FREHS — {f4(-)+@() '+ fy € Fym e R[] )
with a given positive definite kernel ¢ : X x X — R and any covariate representation ¢ : X —
R<. The linear component ®(-) " 1) enables marginal, group-conditional, or other linear adjustments,
while the RKHS component f(-) controls smoothness over complex data structures. Notably, both
FO, F9 are special cases of FEEHS | For instance, setting f,, = 0 and choosing ®(X) = 1{X €
G} fora group G € G in equationrecovers group-conditional coverage.

Although RKHS function classes provide a promising surrogate for exact conditional coverage in the
setting of equation |1} their practical use remains limited. (Gibbs et al.| (2023)) established theoretical
guarantees under RKHS classes, but at a computational cost so prohibitive that the approach is not
deployable at scale.

To construct prediction sets, |Gibbs et al.|(2023)) fit an RKHS quantile regression on the n calibration
points (X, S;);ic[n), augmented with the test point (X, 41,.5), where S is an imputed score in a
manner reminiscent of full conformal prediction. The imputation of S is carried out via a binary
search, with each candidate value requiring a fresh RKHS regression on the n + 1 points. Because
of this already prohibitive computational burden, the authors fix the kernel bandwidth v and restrict
hyperparameter selection to cross-validation over a pre-specified grid for the regularization param-
eter \. While they demonstrate that (), ) do not affect marginal coverage, these hyperparameters
crucially shape the smoothness of the regression fit and thus the tightness of the resulting prediction
sets.

The primary objective of this paper is to improve upon the algorithm of |Gibbs et al.|(2023)) in order
to achieve conditional validity in the RKHS function class in reasonable time, guaranteeing cover-
age under complex covariate shifts. Like (Gibbs et al., [2023)), we frame the problem as regularized
RKHS quantile regression to recover score cutoffs for constructing prediction sets. To address the
previous limitations, we introduce a new (\, .S)-path algorithms. Our method builds solution paths
of regression parameters that are piecewise-linear in either the smoothness parameter A (the A—path)
or in the candidate score S (the S—path). The algorithm decides the next A or S by updating these
parameters only when an “event” occurs. At each step, the solution is based on the current elbow
set, a subset dramatically smaller than n+-1, yielding substantial computational savings. This for-
mulation makes conditional conformal prediction with RKHS both tractable and tunable, providing
prediction sets that are not only valid but also adaptively tight.

Our second objective is to deploy our method in high-dimensional settings when X € R? with p >
n. In such cases, conditional coverage on low-rank representation is often more interpretable and
relevant. Using raw covariates in kernel methods is often ineffective, as distance-based similarities
become less discriminative. Accordingly, we approximate each covariate vector X using a K-
dimensional latent embedding (i.e., latent mixture, principal component, or layer embedding of
a predictor network model) via a low-rank map 7 : R? — RX with K < p. We define the
kernel of the RKHS function class F5HS on this representation, resulting in improved signal-to-
noise ratios and enhanced predictive performance (Hastie et al., 2009} [Udell & Townsend, [2019).
This yields a different notion of conditional coverage: rather than directly guaranteeing P(Y, 11 €

C(Xni1)| X pg1), we wish to condition on P(Yyy1 € C(Xpy1)|7(Xpg1)).

Contributions Our contributions in this work are threefold:

* Methods: We extend conditional conformal prediction (Gibbs et al.l 2023) to high-
dimensional settings by conditioning on learned low-rank embeddings 7 (X ) within an
RKHS, and thus improving signal-to-noise and yielding better-calibrated prediction sets,
particularly in low-density data regions.

 Algorithm: We propose a fast and stable solution-path algorithm for RKHS-based confor-
mal prediction, enabling a closed-form solution for hyperparameter selection and higher-
quality prediction sets.

! Given a positive definite kernel ¢ : X x X — R, let F, denote the associated RKHS with an inner product
(, )y and a norm || - ||,4. Using the representer theorem (Kimeldorf & Wahbal [1971)), any function fy, € Fy
has a finite form fy (X) = 37,1, vt (X, X;) for some coefficient vector v € R™"!. The norm has form

| fu Hfb = (fo, fo)w = ZU vV (X5, X;). We provide notations used in the paper in Appendix
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* Theory: We provide finite-sample guarantees for approximate conditional coverage with
respect to latent embeddings, and quantify how the embedding estimation error impacts
validity in high-dimensional inference.

We illustrate our contributions in Figure [T} SpeedCP achieves uniform 0.9 coverage across the 2D
simplex, delivering smaller prediction sets while running nearly 50 times faster than CondCP (Gibbs
et all 2023). A detailed comparison with other conformal methods is provided in Appendix [A.2]
and further results are discussed in Section[3l
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Figure 1: Mean coverage on fine-gridded partitions on the latent space (a 2D simplex). The results
are aggregated over 50 random generations. SpeedCP shows the most uniform 0.9 (pale yellow)
coverage across the simplex.

2 METHODS

We begin by introducing preliminary notations. We partition the dataset {(X;,Y;)}iep into three
disjoint subsets: Dyrqin, Deativ, and Dyeg. A single test input is denoted as X, 1, since Y, is
unobserved. The training set Dy;.qip, is used to train a predictive model /i(-) while the calibration
set Deqiip provides conformity scores S; = S(X;,Y;) for i € Deqiip (We also use ¢ € [n] to denote
calibration points as |D.qip| = n). The feature map &* : X — R¢ allows modeling of different
linear covariate shifts. For high-dimensional covariates X € R™*P with p > n, we denote a low-
rank embedding map by 7 : X — R with K < p. Our procedure can accommodate any low-rank
embedding 7 (X ), provided that 7 (-) is fitted symmetrically across the calibration and test set. We
provide experiments on different low-rank methods in Section 3] When dimensionality reduction is
unnecessary, the identity map #(X) = X may be used.

Our goal is to construct prediction intervals for test points X,, 11 that achieve conditional coverage
defined in equation|[I]within the RKHS function class F*5 5 (equation[2). In the high-dimensional
setting, we instead define the kernel on low-rank embeddings yielding a subclass F* c FRKHS
tailored to the latent space. The associated kernel ¢* is designed to emphasize local coverage in the
latent embedding space:

(X1, Xa) = exp {7 - dr (7(X1), 7(X2))} 3)
where  is the kernel bandwidth and d (-,-) is a distance metric between the low-dimensional
embeddings (we detail this distance in Appendix [B.I)).

2.1 ALGORITHM: SPEEDCP

In this section, we present our method for constructing conditionally valid prediction sets. We fit a
regularized quantile regression in the same RKHS class F*. Recalling that the rank of a test point is
uniformly distributed over the calibration set plus the test point, we fit using n calibration covariate-
score pairs (X, S;);c[n) plus the test point (X, 1, Sn41). Because Sy, 11 is unobserved, we impute
it with an arbitrary candidate value S, which yields a regression function parameterized by S,

1 1 A
gs = i > la(Si = 9(X,) + ——La(S — g(Xn Zllge 2.1 @
gs arggrgp*nﬂ}e[] (8i = g(Xi)) + =7 la(S = 9(Xns1)) + S llgw w S
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where A > 0 is the regularization parameter and ¢, (z) = (1—a)[z]; +az] - denotes the pinball loss

atlevel a € (0, 1). The regularization penalty rules out the meaningless prediction set C (Xpt1) =
R that can arise in infinite-dimensional classes. Accordingly, the prediction set takes the form,

C*"(Xnt1) =1{y: S(Xns1,9) < 98(Xnsrp) (Xng1)}- 4)
Our method proceeds in two stages. First, using the calibration set, we trace the A-path, which
provides a solution path of RKHS regression along the regularization parameter A. This yields an
efficient way to explore different levels of smoothness without repeatedly solving the full optimiza-
tion problem. We then cross-validate on the bandwidth ~ of the kernel ¢)* to choose the optimal
(7, A) pair. Second, integrating with the test set, we construct the S-path, which traces maximum
score cutoff S that satisfies the condition in equation[5] The full procedure is detailed in Algorithm[I]
We begin by outlining the setup before describing the A- and S-paths.

For a given ), the solution to equation A has the following closed form:
n+1
9s(X) = ®*(X) s + 1 va (X, X,), (6)

where 7jg, Ug; are parameters when the score of the test point S, 11 is set to S. For numerical
stability of the algorithm, we assume the columns of ®*(X') are linearly independent. Plugging this
in equation {4} the objective becomes,

n+1 n+1 n+1

la(S; — ®*( - = a0 (X, X)) i (X, Xy 7
i D L s Z “21 vs 5, U7 (Xe X ). (D)
The Lagrangian formulation and the Karush—Kuhn—Tucker (KKT) conditions of equation[7jmotivate

us to define three index sets: the Elbow, Left, and Right set,
E = {Z 0 S; — gs(Xi) = O,Us,i € (—a, 1-— a)}
L= {’L : Sz — gS(Xz) < O,US’Z' = —a} (8)
R=1{i:S —gs(X;) >0,vs;, =1—a}.
We observe that for the left and right sets, the kernel parameters vg ; are fixed to either —a or 1 —
Thus, we only need to solve for vg ;’s in the elbow set, making the computation more efficient. The
algorithm reduces to tracking changes in this set for different A or .S values: an event occurs when

there is a change in the index sets: 1) a point leaves the elbow or 2) when a point from the left or
right set enters it.

2.1.1 A-PATH FOR SMOOTHNESS CONTROL

To select A, we rely exclusively on the n calibration observations to make the choice of optimal
X independent of the imputed test score S. The equations [6]f§] remain valid on this subset, so we
denote the index sets as (E(A), L(A), R(\)) as the sets evolve with A. Since no imputed score S is
required for S,, 11, we drop S from the subscripts. The kernel parameters ¥; (), along with 7(\) are
updated only at events. We initialize A at the largest value for which at least two points are in the
elbow, and define the step size to the next A as the smallest decrement that triggers such an event.
Importantly, both 0;(A)’s and 7j(\) evolve as a piecewise-linear function of A, which we formalize
in the following proposition.

Proposition 1 Let {)\ ti=1,2,3,... be the change points when an event occurs. For AL <N <AL
denote {0;(\) }iepn) and 17()\) as the solution ofequatlonl?]gtven A. Then, {0;(\)}ic[n) are affine in
A and 7j(\) is affine in 1/ .

The piecewise linearity allows us to track the whole A solution path, not just at the change points.
We provide the closed form representation of ©;(A)’s and 7(\) on A in Appendix To select
the optimal (v, A)-pair, we fix a grid of the kernel bandwidth values v, and run the A-path for each
fixed . The calibration set is further split into k folds, and we evaluate the quantile regression fit
for every (7, A) combination. The pair that minimizes the validation error is then chosen as the final
tuning parameters, which we fix during the construction of prediction sets.

2Let f(-) = fy= (-) +®*(-) 17 € F* denote the covariate-shift weighting of interest and §s(-) = Gy~ (-) +
®*(-)TH) € F* be the fitted results using imputed S over the same RKHS with kernel ¢)*. The RKHS class is
given by the optimal A such that Fy~ = {fy=(z) = % Dicinin Vv (@, Xi),v € R,
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2.1.2 S-PATH FOR CONSTRUCTING PREDICTION SETS

We proceed to constructing prediction sets with (%, ) selected from the A-path. We use the original
notations of the regression parameters, Ug; and g, since conditions now only depend on the
imputed test score S. Recall that the prediction set is defined as a set of y such that S(X,,+1,y) <
9S(Xns1.)(Xnt1). By equation 8} this is equivalent to Og(x,,,.y),nt1 < 1 — a. Moreover, the
mapping S — Ug is nondecreasing (which we prove in Proposition [3in Appendix [C). Thus, the
problem reduces to finding the largest value S* (X4 1) such that ¥g-(x, , ) nt+1 < 1 — a holds.

Conceptually, the S-path mirrors the A-path: it traces the evolution of the score cutoff S through
a sequence of events, where events are defined identically as before. The sets in equation [8| now
evolve with S. We initialize the S-path with the smallest S* such that the test point enters the elbow
set (i.e., g1 41 € (—,1 — «)) and then increment S to the next value at which an event occurs
while the test point is still in the elbow. We iterate until the test point exits the elbow and set the
final S as S*(X,41). Similar to the A-path, we prove that Ug ;’s and 7jg evolve as an affine function
of S between any two change points:

Proposition 2 Let {51}121727374.. be the change points when an event occurs. For S' < § < §H1
denote {Us,; }icn+1) and 1 as the solution ofequation[?] Then, {Us, }icn+1) and Ns are affine in

As shown in Appendix Lemmas and using the threshold S*(X,,+1) can inflate the conditional
coverage. To mitigate this, we instead prefer the randomized cutoff S™%"4(X,, ;) = sup{S |
Osnt1 < U}, where 1 — avis replaced by U ~ Unif(—a,1 — «). The final prediction set is then
defined as:

Crana(Xnt1) = {y : S(Xpp1.y) < ™" Xpi1) ) ©)

Computational complexity At each iteration of the A- and S-paths, we solve the inverse of
h Ve
0 o )

Here, &%, € RIPI*d and W3 . € RIPIXIPI denote submatrices with row indices and both row and
column indices in the current elbow set E, respectively. This requires inverting a (| E|+d) x (|E|+d)
matrix at each iteration. While the worst-case complexity is O((n + d)3), in practice |E| < n,
making our procedure more efficient than refitting the full RKHS quantile regression at every step.
We detail the initialization and update functions of the A-, and S-paths as well as the proofs of
Proposition 1,2 in Appendix

2.2 COVERAGE UNDER COVARIATE SHIFT

Since the solution path formulation allows us to fit the RKHS-based quantile regression model with
a pre-selective A from A-path, we can apply Theorem 3 from |Gibbs et al| (2023) to achieve the
conditional guarantee under the function class 7* (as shown in Appendix[C). Because F* is defined
in terms of an estimated low-rank projection 7 (-), we must generalize the conditional guarantee in
Theorem 3 of |Gibbs et al.| (2023)) to RKHS-augmented class F* under the latent space. To do so,
we need the following assumptions:

Assumption 1 {(X;, S;)}ic[n1) are exchangeable and {Y; | Xi}icin+1] i Py x.

Assumption 2 The projection 7 (-) is computed symmetrically with respect to the n + 1 inputs.

Assumption [1| relaxes the i.i.d. condition used in [Gibbs et al.| (2023) to exchangeability, which is
standard in conformal inference and accommodates latent-variable generative structures (e.g., ad-
mixture models such as LDA (Blei et al., 2003))) that induce dependence among {X;} while pre-
serving exchangeability (see Theorem [2]for details). Assumption[2]ensures the validity of conformal
prediction, regardless of the order of the data points.

Since F* is defined in terms of the estimated embedding # (-), rather than the true low-rank embed-
ding of covariates, the marginal coverage validity is robust to errors in 7(-). Estimation error only



Under review as a conference paper at ICLR 2026

Algorithm 1 SpeedCP
Input: Diyyin, DeativsDiest, latent map 7 : X — RE, (K < p), kernel bandwidth grid T,

miscoverage level «

Output: Conditionally calibrated prediction set for each test point
1. Train /i on Dypqin and get calibration scores: S; = S(X;,Y;), i € Degiip-
2. Get latent embeddings: @ cqiip = T(Xealiv)> Ttest = T(Xtest)
3. Optimize for hyperparameter pair (¥, \) using Deasip. (3, A) = arg ming, ) CV(y, A),
fory € I'do
forj=1,---kdo
{@g()\l)» o '@Z(/\l)w ﬁ”(Al)}z:Lz,-.. = )"path((ﬁ—calib\foldj ) Scalib\foldj ); 7)
§1(X) = (X)) (N) + 51 LieDarin\ fota, 07 (M) (X, X5)
CV; (1, X)) = Yicpora, (L= @)[Si = §"(X)]4 + afS; — §'(X;)]-) for 1 = 1,2, -
end for
CV(7,A) = £ 5% V(7 N forl = 1,2,
end for
4. For each test point X,,11, find the maximum score S* such that S* < gg«(X,41). Use
U ~ Unif[—a, 1 — a] to get the corresponding score S"%"? for a randomized prediction set,
for X,,11 € Diest do
Srand — S_path(X i1, Deativ; ¥ A U)
Corona(Xni1) = {y € V1 S(Xpi1,y) < ST
end for

impacts the conditional target, governing how the conditional guarantee given 7(-) deviates from
that defined on the true embedding. We illustrate this further via the following results.

To achieve a distribution-free guarantee for P(Y;, 1 € C* . (X, 11)|7 (X1 1)) without overly wide
intervals, we consider one standard relaxation of conditional coverage using kernel reweighting,
where coverage holds relative to a reweighted distribution over the latent space induced by the
kernel on 7(X) (as defined in equation . Accordingly, we set the reweighted function purely from
the RKHS component and let *(-) = 0.

i.

Theorem 1 Suppose {(X;,S;)}ien+1] AP oand Assumption 2| holds. Assume there exists a
density kernel 1V}, (w, ) on the latent space such that, for all z1,x2 € X, Vi, (T(x1), 7(x2)) =
*(z1,22). Let W' | Xppp1 = & ~ Y}y, (7(x), -), then we have

B> iena1) Osrana ithyy (W', 7 (X5))]
Elybyy (W, 7(X))]

B(Yis1 € Clyng(Xosr) | W) =1 - — (10)

This localized version of conformal prediction can be viewed as an approximation of conditional
coverage on the event that W’ =~ #(X,,11). It requires a stronger i.i.d. assumption than exchange-
ability in Assumption [I] in order to give more relevance to data points closer to the test point in
the latent space. The coverage gap on the right-hand side of equation [T0] following 1 — « arises
because we have no prior information on the distribution shift and use a flexible RKHS-based func-
tion class instead. Compared to the asymptotic coverage gap in Randomly Localized Conformal
Prediction (RLCP) (Guan| [2023)), the resulting coverage gap in equation [I0]can be explicitly mea-
surable (see Appendix [C.4.2)). Note, however, that equation [I0]is stated for neighborhoods centered
at the estimated embedding 7 (X, +1), not the true one. When 7(+) is a good approximation of the
true embedding 7 (-), the guarantee in equation [10]closely matches the conditional guarantee under
localization by the true latent representation, as shown in Appendix
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In addition, the guarantee can be generalized to any finite collection of groups encoded by the feature
map ®*(-). In particular, we can use ®*(-) to select the most likely latent component in an admixture
model. By restricting the covariate shift to the linear term ®*(-), we obtain the following theorem.

Theorem 2 Fix K > 2 and consider the latent mixture weights {W; € AX~1},c0, i P
and observations {X; | Wi}ticin) oy Pxw. Define n(X) := E[W | X] € A~ 10 be the
true embedding representatives, and #(X) € AKX~ 10 be an estimator of w(X). Let T(X

arg maxye(x) Tk (X) and T(X) := argmaxye(x) mx(X). Suppose the Assumptions (I| and |2| are
both satisfied. Assume P(T(X) = k) > 0 forany k € [K| and

T(X)=T(X) as. (11)

LetC%, (- ) be the randomized conformal set calibrated with the linear term ®*(X) = (1{T'(X) =
1},...,1{T(X) = K})7. Then for every k € [K],

P(Yus1 € Crona(Xnt1) | T(Xus1) =k) =1 a. (12)

Note that {(Xj, S;)}ie[n) in Theorem [2| are exchangeable but not independent because {X;}ic[n]
are generated conditionally on latent variables {W;};c[,,;. This structure violates the i.i.d. assump-
tion on {(X;,S;)} in [Gibbs et al|(2023), so we need to adapt their conformal guarantee to the
case with unobserved variables W. The alignment condition in equation [T holds under a margin
condition shown in Appendix Lemma 9] especially when a dominant cluster is present. Compared
with the near-nominal conditional coverage given by Posterior Conformal Prediction (PCP) (Meng,
1994), which requires the embeddings {7 (X;)}ic[n) to be highly concentrated around 7(X,,11),
our approach does not require such a concentration condition and thus remains robust even under
heterogeneous mixture proportions.

3 EXPERIMENTS

In this section, we evaluate SpeedCP across four diverse settings: synthetic admixture data, molec-
ular property prediction with GNNs, arXiv citation counts prediction, and brain tumor MRI analysis
with a CNN.

Synthetic experiments We evaluate the performance of our method using synthetic datasets in
the admixture setting where X is generated from a mixture of K = 3 latent distributions. We

use the mixture proportion 7 (X) as an input to all CP methods. In this case, 25:1 (X)) =1
and 7 (X) > 0, setting the latent space as a simplex. To test whether a method can adapt
well to a covariate shift, the mixture proportions of calibration points are sampled symmetrically
across vertices while those of test points are highly concentrated near one vertex. We assess con-
ditional coverage by dividing the simplex into 10 bins and evaluating coverage in each bin as
in Figure [l We summarize the results of SpeedCP and compare them with four other bench-
marks: CondCP (Gibbs et al., |2023)), SplitCP (Papadopoulos et al., [2002), PCP (Zhang & Candes,
2024), and RLCP (Hore & Barber} 2023) in Figure For SpeedCP and CondCP, we choose
o*(X;) = (1,1{argmaxy 7,(X;) = 1},...,1{argmaxy 7x(X;) = K}) using the estimated
latent embeddings 7(X)) T,

Overall, SpeedCP achieves miscoverage closest to the target level of 0.1 while producing the smallest
prediction sets. SplitCP attains near-target miscoverage in many bins, but fails in others (e.g., bins 3
and 5), which we show in Appendix correspond to low-density regions. Although, CondCP is
designed to guarantee conditional coverage, it fails to attain reasonable coverage in several bins, and
yields overly wide intervals. Both PCP and RLCP tend to overcover in most bins, and also has large
prediction sets. We discuss the synthetic data generation mechanism and provide additional details
on this example in Appendix

AR —fp eRF :0< 2, <1, > kepr) Tk = 1} is the (K — 1)-dimensional simplex.
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Figure 2: Conditional miscoverage and prediction set size for each fixed partition on the latent space.
SpeedCP achieves 0.1 miscoverage across bins consistently with the smallest prediction sets.

Molecule Graphs We evaluate our method on three molecular property prediction benchmarks:
QM9, QM7b, and ESOL (Wu et al} 2018])). For each dataset, we train a GNN to predict a molecular
property: the HOMO-LUMO gap for QM9, polarizability for QM7b, and solubility for ESOL. We
extract the last 64-dimensional graph embedding after pooling, and reduce it to three dimensions via
PCA. Our objective is to achieve nominal 0.9 coverage across this low-dimensional representation
of the molecular graphs. To assess conditional coverage, we partition the PC space into 6-8 regions
using Voronoi tessellation, and compute coverage within each region. We aggregate results over
50 random subsamples of 2000 graphs, and report the results in Figure 3] and Table [T We observe
that SpeedCP achieves nominal coverage consistently across all partitions, while achieving sharp
prediction sets. We provide more details on the prediction set size of each partition in Appendix[D.2}
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Figure 3: Coverage on fixed partitions of the PC space for each molecule dataset. We use PCA
on the last layer embeddings of GNN with K = 3 dimensions. The dashed line denotes the target
coveragerate 1 — a = 0.9.

Table 1: Mean prediction set size and computation time of QM9, QM7b, and ESOL
Method Prediction set size Computation time (seconds)
QM9 QM7b ESOL QM9 QM7b ESOL

SpeedCP  1.135 £0.25 0.902+0.44 1.789+0.38 31.061 +£2.94 33.056 +£7.23 15.442 £1.55
CondCP 1.922+040 1.447+1.17 2.683+£0.42 1531.15+£195.60 1890.38 £166.62  625.06 £64.54

SplitCP 1.1224+0.122  0.999£0.37  1.800£0.17 < 0.01 < 0.01 < 0.01
PCP 1.530+0.87 1.303+1.07 2.261£1.00 38.018 +3.48 47.218 £6.50 21.659 +2.36
RLCP 1.554+0.89 1.286+1.04 2.248+1.02 1.1574+0.02 1.148 +0.01 0.668 +0.00

ArXiv Abstracts We sample 5000 abstracts from ArXiv metadata (Clement et al., | 2019) in math-
ematics, statistics, and computer science categories, that have at least 10 citation counts. The pro-
cessed abstract-word count matrix has a vocabulary size of 11,516. We project the abstracts onto
K =5 latent topic dimensions using topic modeling and set the linear representation ®*(X;) as an
one-hot encoding of the estimated topic. The goal is to construct prediction intervals that achieve
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nominal level 0.9 across topics. CondCP is excluded from the analysis due to their computational
difficulty of handling large datasets. We present topic-conditional coverage and prediction set size
in Table [2] For the predictor, we choose linear regression of citation counts on raw word frequen-
cies, which fails to extract any meaningful associations between words and citation counts. As a
result, RLCP produces overly wide prediction intervals and PCP fails to uncover any latent mix-
ture structure of S|7(X) and becomes equivalent to SplitCP. In contrast, SpeedCP leverages kernel
smoothing, resulting in tighter and more accurate prediction intervals. We provide further details on
the estimated latent topics in Appendix

Table 2: Mean coverage across topics and prediction set size of ArXiv dataset.

Method Target coverage (1 — « = 0.9) Size Time (seconds)
Geometry Algebra ML Vision Quantum

SpeedCP  0.880£0.02 0.890£0.05 0.730+0.34 0.920+0.02 0.822+0.11 15.835 £3.05 8.682 +3.10

SplitCP 0.877+£0.02 0.876 £0.04 0.659 £0.35 0.926£0.02 0.762 +0.08 15.661 £1.17 < 0.01

PCP 0.877+£0.02 0.876 £0.04 0.659 £0.35 0.926 +£0.02 0.762 +0.08 15.661 £1.17 17.501 £0.54

RLCP 0.935+0.02 0.958£0.03 0.956£0.16 0.923 +0.02 0.962 +0.04 42.493 +45.308 1.184 +0.01

Brain Tumor MRI We evaluate on a brain—tumor MRI dataset from KaggleE] with labels
{healthy, tumor}. We train a CNN classifier fi(-) on 2,000 images and extract NN features from
the last layer for calibration (training details in Appendix [D.2.3). Table [3| shows that even with
intercept-only calibration (®*(X) = 1), our RKHS component alone gives a good approximation
for predicted-label coverage. When covariate shift aligns with label groups, adding linear terms for
the predicted label, ®*(X) = (1, 1{a(X) = healthy}, 1{i(X) = tumor})", provides better
conditional coverage. In contrast, Split CP achieves comparable coverage but requires more conser-
vative sets than ours, while RLCP fails to exploit locality in the 256-dimensional feature space and
effectively reduces to uniform weighting, thus converging to Split CP. PCP tends to overcover, espe-
cially for the healthy group, and their cutoffs are unstable with high variance and frequent near-zero
values (see Appendix Table [5)), thereby producing overly conservative conditional coverage.

Table 3: Mean coverage and prediction set size across predicted labels in the MRI dataset.

Method Target coverage (1 — a = 0.9) Prediction set size Time (seconds)
Marginal Healthy Tumor Marginal Healthy Tumor

SpeedCP(lﬂ 0.910+0.01  0.902+0.02 0.914+0.02 0.262+0.09 0.250+0.09 0.275+0.08 244.1+9.2

SpeedCP(® 0.908 £0.02  0.902+0.02 0.901+0.02 0.282+0.08 0.266+0.08 0.295+0.08 270.5+13.9

SplitCP 0.898 £0.01 0.888+0.02 0.903-+£0.02 0.348+0.00 0.3484+0.00 0.348 +0.00 < 0.01

PCP 0.918 £0.01 0.945+0.02 0.902+0.02  0.231+0.27 0.281+0.26 0.201 +0.28 162.1 £+ 13.9

RLCP 0.898 £0.01 0.888+0.02 0.903+0.02 0.348+0.00 0.3484+0.00 0.348 +0.00 3.48+ 0.08

4 LIMITATIONS AND FUTURE DIRECTIONS

While we believe our algorithm can be broadly applicable in high-dimensional problems, especially
when prior knowledge is limited, we highlight several limitations and directions for future work:
(1) We currently fix the miscoverage level « for all test points. However, o could be made adap-
tive based on latent structure or user-specified utility. For example, one might use a stricter « for
subpopulations deemed more critical (e.g., medical risk groups), thereby allocating tighter guaran-
tees where they matter most. Our method is easy to adapt to the a-path in |Takeuchi et al.| (2006).
(2) Our current method uses unweighted quantile loss in RKHS-based calibration. Incorporating
weights into the quantile regression based on uncertainty or embeddings’ importance could further
refine coverage and interpretability (Jang & Candes| |2023). Although we focus on scalar regres-
sion tasks, the RKHS-based framework can be extended to structured prediction problems such as
text generation (Sun et al., [2023} |[Farquhar et al., |2024), image completion (Angelopoulos et al.,
2020; [Wieslander et al.,2020), molecular design (Su et al.| 2024; Shahrokhi et al., [2025)), and other
multivariate problems (Xu et al., [2024; [Messoudi et al.| [2021; Johnstone & Ndiaye, [2022) where
uncertainty quantification over complex outputs is crucial.

“https://www.kaggle.com/datasets/murtozalikhon/brain-tumor-multimodal-image-ct-and-mri
3For the Brain Tumor MRI data, we use SpeedCP(®*) to denote calibration with a linear term that includes
predicted labels, whereas SpeedCP(1) uses an intercept-only linear term with ®*(X) = 1.
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Ethics Statement. This work adheres to the ICLR Code of Ethics. Our research does not in-
volve human subjects, sensitive personal data, or applications with foreseeable risks of misuse. The
datasets employed are publicly available and widely used in prior work. We have carefully consid-
ered issues of fairness, privacy, and security, and do not anticipate any ethical concerns arising from
our methodology or findings.

Reproducibility Statement. We have taken significant steps to ensure the reproducibility of our
results. All theoretical results are stated with clear assumptions and complete proofs provided in
the appendix. The experimental setup, including data preprocessing procedures, hyperparameter
choices, and evaluation metrics, is described in detail in the main text and appendix. Anonymized
code and instructions to reproduce all experiments will be made available in the supplementary
material. Together, these resources allow independent researchers to fully reproduce and validate
our findings.

Use of Large Language Models (LLMs). In preparing this work, we used large language mod-
els (LLMs) only as general-purpose assistive tools. Specifically, LLMs were employed to help
with tasks such as grammar correction, polishing the clarity of exposition, rephrasing sentences for
readability, adjusting mathematical notation for consistency, and correcting minor issues in code
formatting. All research ideas, methodological contributions, theoretical results, and experimental
designs were conceived and executed by the authors. We carefully verified all LLM-assisted text
and code to ensure correctness and originality, and we take full responsibility for the content of this
paper. LLMs were not used for generating research insights, proofs, experiments, or results, and
therefore are not considered contributors or authors.
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A NOTATION AND RELATED WORKS

A.1 NOTATION

For any set G, let |G| denote its cardinality. Given a vector 7 € RP, we use 1)(7) or 7); to represent the
i-th entry. For any n € N, let [n] denote the index set {1, ..., n}. Throughout this paper, we denote
the sets of variables with simple bold letters (e.g. X € R"*? = (X1, Xo,...,X,,)"). Let capital
letter P denote the joint distribution and Px denote the marginal distribution of X.

Given a value 2, let [z] 4 = max(z,0) and [z]_ = max(—z,0). Let Pg,, P : RE — R denote
the projection operators onto sets 3,,, B, respectively. We use (1, to denote the empirical 1 — «
quantile of the conformal scores.

Let a,, and b,, be sequences of real-valued random variables or deterministic quantities indexed by
n € N. We use the following asymptotic notation:a,, = O(b,,) means there exists a constant ¢ > 0
such that |a,| < c|by,| for all sufficiently large n. a,, = Op(b,) means that for any € > 0, there
exists ¢ > 0 and N. € N such that P(Ja,| > cc|bn|) < € for all n > N.. We use small ¢ to
represent a constant, which may vary line by line.

A.2 RELATED WORKS ON CONFORMAL PREDICTION

In standard split conformal prediction, the data is partitioned into three sets: the training set which
is used to train a predictive model fi(-), the calibration set { X;, Y; };c[) Which is used to calibrate
conformity scores, and finally, the test point X, ; with unknown response Y, ;. Throughout this
paper, we work with split conformal prediction, which generates the prediction interval for Y, ; as:

C(Xnp1) = {y: SXnpry) <a'}, (13)
where ¢ is chosen as the (1 — «)-quantile of the set {S;}ic[n+1]. The resulting prediction set
contains all values y for which the conformity score S(X,,+1,y) is sufficiently small.

We demonstrate below how the various coverage can be achieved depending on the information
available about the predictive model /i(-).

Marginal coverage Suppose we know that the predictive model performs equally well across the
entire feature space, and the (n + 1)-th conformity score is drawn i.i.d. from the same distribution
as the first n scores. By the replacement lemma in /Angelopoulos et al.|(2024), the prediction set in
equation [13|can be obtained by the threshold ¢ = Q1-a(Xicpn] 5108 + n%rléﬂo). It is well

known that the set C°(X,,1) given by ¢° has marginal validity such that P(Y;,;; € C°(X,,11)) >
1 — « (Papadopoulos et al.,[2002)). As an alternative strategy, (Gibbs et al.| (2023) proposed obtaining
coverage threshold ¢" in equation using an intercept-only quantile regression within the constant
function class F°. Let S denote an imputed value for the unknown score S, ;1 and define the pinball
loss for level « as £, (2) = (1 — a)[z]+ + afz] . Then they fit

1 1
~0 .
= —_— E Lo (Si — —— (S —q), 14
s arg;g"gn—kl i€[n] ( q)+n+1 ( 9 14)
and output the nonrandomized prediction set CO(X,41) = {y : S(Xps1,y) < Q% (x, 1.4 They
show that this procedure also satisfies the marginal validity guarantee.

Applying conformal prediction in settings with latent structure is nontrivial. There exist several
challenges for conformal prediction with low-rank structure: (1) misspecification of fi(-) may pre-
vent the latent structure of X from being faithfully reflected in the distribution of S' | X; (2) if the
embedding 7 (-) is inaccurate or incomplete so that there are few neighbors near the test point in the
embedding space, prediction intervals can become overly conservative or excessively wide; and (3)
an inappropriate choice of rank K may undermine the conditional validity.

One prominent approach is Posterior Conformal Prediction (PCP) (Zhang & Candes, [2024), which
has been detailed as follows.

Posterior conformal prediction Zhang et al. [Zhang & Candes|(2024) proposed a posterior con-
formal prediction (PCP) framework under the assumption that X exhibits a latent low-rank structure,

14
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and the predictive model /i(-) is well-specified. Specifically, they assume the conditional distribution
of the conformity score S | X follows a mixture model:

Sil Xine D2, XDy

where (1, ..., (x are distinct probability densities, and 7 (X;) represent cluster membership prob-
abilities. Adapting ideas from weighted conformal prediction, the prediction set is constructed as:

CPP(Xnpa) = {y 0 8(Xnt1,9) < Qi-a (Zie[n] w;idg, + wn+15+oo> } .

where weights {w; }¢[,, 1] are determined by the similarity between latent structures. Let m# ~
Multinomial(m, 7(X,,4+1)). In the randomized setting, the weights wj; rqnq are proportional to

exp{ Zk 1 M7y - log %} In the nonrandomized setting, weights are proportional to

exp {—mDxy, (m(X,+1) || 7(X;))}. Under the randomized setting, Zhang & Candes| (2024) show
that PCP provides conservative conditional coverage guarantees.

l—a<P (Yn+1 € P (X)) | w) <1—a+E [maxiep iy Wirana | 7). (15)

This approach relies on the assumption that the predictive model fi(-) is well-specified, so that the
latent structure of X can be faithfully reflected in the mixture structure of the conditional distribution
of the scores given X. When fi(+) is inaccurate, the scores S can exhibit higher variability, and the
distribution of S' | X may not display a meaningful latent structure.

Instead of assuming latent structure in the noise model S | X, we directly leverage latent embed-
dings in the covariates X. By calibrating conformity scores as a function of 7 (X) within an RKHS,
rather than assuming their relationships a priori, our method remains robust under model misspeci-
fication and provides reliable uncertainty quantification.

Localized conformal prediction Another related method is randomly-localized conformal pre-
diction (RLCP) Hore & Barber| (2023, which aims to capture heterogeneity in the conformity
score by adjusting the distribution based on proximity to the test point X, ;. Specifically, LCP
assigns higher weights, instead of 1/(n + 1) for ¢" in marginal coverage, to data points closer to
the test point X,, 1. These weights on Jg,, for instance, are proportional to the kernel distance
exp(—||X; — Xp11]|?) for a bandwidth parameter v > 0. While Hore & Barber| (2023) showed
LCP achieves marginal validity under a randomization step, increasing the bandwidth parameter v
can significantly widen the prediction interval, especially in high-dimensional settings.

To do the low-rank projection, RLCP applies a Gaussian reweighting to conformity scores based on
distances in a latent embedding space between the test point and calibration points. This approach
relies on carefully chosen embeddings that maximize the mutual information between conformity
scores and covariates. When either fi(-) or #(-) is inaccurate or incomplete so that there are few
neighbors near the test point in the embedding space, RLCP often produces overly conservative or
excessively wide prediction intervals by increasing .

In contrast, our method uses A-path adapted to the local calibration density, allowing greater flex-
ibility in sparse regions. This selects (v, A) to leverage the global low-rank structure and produce
more stable, calibrated prediction intervals (See Figure [I)).

Conditional conformal Suppose no prior information is available about the covariate shift, unlike
the settings discussed in LCP and PCP. In this general setting, let 7 : X x X — R be a positive
definite kernel, and let F,, denote the associated RKHS with an inner product (-, -),, and a norm
|| - || (Gibbs et al. (2023) proposed the regularized kernel quantile regression for class FRKHS in
equation 2}

1
SCC . _ ; _ A - 2
95 marg min g D0 ba(Si = 9(X0) + o la(S = 9(Knr) + Mlgull-
(16
They constructed the nonrandomized prediction set as C°“(X,41) == {y : S(Xpi1,y) <

gg&n+l y) (Xn“’l)}
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Lemma 3 (Theorem 3 in|Gibbs et al. (2023)) Ler ¢ : X x X — R be a positive definite kernel,
and ® : X — R? qa finite dimensional feature map. Consider the RKHS-based function class
FREHS gssociated with 1) and ®. Assume that {(X;, S;)}iejn1) are exchangeable. Then for all

f e FREHS e have
E[£(Xo41) - (1{Yas1 € COC(Kan)} = (1= ) ) | = =20E [(95, o £0)] + leiutl,
where the interpolation error €;y,; satisfies |€;nt| < E {f(Xi)l{Si = gg‘nﬁl (Xl)}}

The interpolation term €;,; can be removed when randomized prediction sets are used (see Lemma

4.

Similar to the challenges faced in localized conformal prediction, solving the optimization problem
equation [ using a kernel +/ defined over the original high-dimensional feature space can lead to
oversmoothing and wider prediction intervel. In particular, when p >> n the RKHS norm ||gy ||y
becomes large unless regularization A is increased significantly, which in turn flattens the estimated
quantile function gs(-) As a result, the prediction set may have poor local adaptivity, leading to
wider intervals and coverage gaps.

B COMPUTATIONAL DETAILS FOR SPEEDCP

B.1 LOW-RANK PROJECTION USING ADMIXTURE MODEL

In this work, we consider high-dimensional covariates X € R? with p >> n and denote its low-rank
representation map as 7 : X — R¥ with K < p. A simple choice of 7(-) is principal component
analysis (PCA), where 7(X) = X TV, with K principal directions V € PP*¥  Alternatively, prob-
abilistic models such as latent Dirichlet allocation (LDA) (Blei et al., 2003) provide interpretable
embeddings, representing each X as a mixture of latent components {Cx }xe[x]- In deep learning
models, one can also consider applying low-rank projections on layer embeddings. For the simula-
tion experiments and experiments with ArXiv abstracts, we consider the admixture model under the
probabilistic Latent Semantic Indexing (pLSI)(Hofmann, |1999),

mX; | Wi = w; ~ Multinomial (m,  _  wi(k)Gr) (17)

ke[K
where W; € AK~1 denotes the latent mixture proportions and ¢, represents the latent distribution.

m denotes the document length. This shows E[X; | W;] = ¢ TW,. However, this decomposition
in general may not be unique, but under the separability condition Donoho & Stodden| (2003)) or
anchor word condition |Arora et al.|(2012)), ¢ is identifiable.

When applying RKHS methods to compositional data such as mixture proportions (X ), it is essen-
tial to first transform the simplex into Euclidean space. If we perform kernel regression or smoothing
over 7 directly, the output might be outside the simplex. Suppose 7 (X;) lies in the open simplex
such that all entries are positive, then the log-ratio transformation (such as additive, centered, and
isometric log-ratio transformations)(Aitchison, |1982) can be used.

Centered log-ratio transformation (clr) If 7, (X;) > 0 for all 7, ,

. . 1 .

9“@ = 10g Wk(Xi) — ? Z log 7Tj (XZ)
Given this transformation, we define the kernel similarity between points as:

pLSI using SVD  Let X := Xypqin U Xearip U Xiest € R™a20XP. Here, we present one of the
algorithms used to estimate the latent embeddings 7 := w(X) = E[W | X] from X. When
m — oo, the posterior mean E[W; | X;] concentrates around the true mixture proportion wj.
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Assume 7 and ¢ are full-rank matrices and the K -th largest singular value satisfies A\ (7¢ T) >0,
we start with the singular value decomposition of matrix 7w ¢ T,

(T =BAV’ — E=a¢ VA '.=xH

with some nonsingular matrix H. Notice that each row of w € R <K is a probability vector
(i.e., nonnegative and sums to 1). Given this simplex structure, we can recover the matrix H from
= using nonnegative matrix factorization techniques. In particular, methods such as the Successive
Projection Algorithm (SPA) |Aragjo et al.| (2001); |Gillis & Vavasis| (2013) and Archetypal Analysis
Javadi & Montanari (2020) are effective in recovering the extreme points (vertices) of the convex
hull.

Algorithm 2 pLSTI using SVD [Klopp et al.|(2021)
Input: X € R"«u*P latent dimension K
Output: i, Tealivs Ttest = T(X, K)
1. Get the rank-K SVD of X = EAV T
2. (Vertex hunting algorithm) Apply the vertex hunting algorithm on the rows of E to get the

vertices H
3. Set #(X) = EH ! and thus #(X;) = (H 1) TZE,.

B.2 DERIVATION OF A\-PATH AND S-PATH

In this section, we provide technical details on our path-tracing approaches of A and S. Our approach
for A-path is inspired by the work of |Li et al.| (2007)), who derives the solution path of A in a RKHS
quantile regression setting. Similar approaches have been studied extensively for the lasso|Tibshirani
(1996; |2011), generalized linear models [Friedman et al.| (2010), and quantile regression [Koenker
(20035); ILi et al.| (2007). In our work, we build on the solution path algorithm for RKHS quantile
regression developed by [L1 et al.| (2007)) and adapt it to our RKHS function class F*, which has an
extra linear component ®*(X) ' ng,

Fr={fo-()+ () n: fyr € Fyrn R} (18)
We begin with some preliminaries.

Denote S; = S(X;,Y;) as the score of the i‘" point in the calibration set for i € [n] and S, as
the score of a test point. To decide the score cutoff we use for a prediction set, we proceed to fit a
RKHS quantile regression on n calibration points together with the test point. Since the true score
of the test point, S, 41 is unknown, we set the score of the test point, S,, 1, as an arbitrary value S.
Let o € (0, 1) be a user-specified miscoverage level. The objective then becomes,

2
s = arg Ig;gwrl ZZ ))+7€ (S — g(Xns1)) + 2., (19
with the known solution in finite form:
n+1
9s(X) = ®*(X) "iis + 1 szm (X, X)), (20)

We define ®*(X) € R? as any feature representation of X and 7s,; as the coefficient of ®*(X);,
j € [d]. Plugging this in, the objective becomes,

n+1 n+1 n+1
min Zl S D" ( 775—72115,/ (X, X,7) ZUSZUSZ (X, X;).

S,Us
! i'=1 111

17
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with the Lagrangian primal function as

n+1 n+1 1
_ . . = o To*
L,= (1—a);pz+a;qz+ 2)\1}5\11 Vg
n+1 nt1
+ ) 0il(Si = gs(Xs) —pi) = Y TS — gs(Xi) + 4:) 2D
i=1 i=1
n+1 n+1

- Z KipPi — Z Pidi,
i=1 i=1

and o, 7, K, p are nonnegative Lagrangian multipliers. Here, ¥* € R("*+1*("+1) denotes the kernel
matrix where its (7,7 ) element denotes ¢*(X;, X,/ ). Setting the derivatives of L,, at 0,

OLy oo
aUS,i - USi = 04 A
8L n+1 n+1
3 p_ : Zgi‘b(xi)j = ZTi‘I)(Xz‘)j7 Jj € [d]
s = i=1 (22)
L
aapf 201':1—0[—/431'
L
aaqf LTy = O — 4.
The Karush—Kuhn-Tucker (KKT) conditions give
0i(Si — 9s(Xi) —pi) =0
7i(Si — 9s(Xi) +¢:) =0 23)
Kipi =0
piq =0

Since Lagrangian multipliers are nonnegative, 0 < 0; < 1 — a and 0 < 7; < «, combining
equation [22) and equation 23] we can easily see that,

Si—gs(Xi)>0 = p;>0,Kk=0,0=0a,17=0 = Us’izl—a
Si—9s(Xi) <0 = ¢>0,p=0,=1-0,0;,=0 = vg; =—« 24)
Si—9s(Xi) =0 = pi=¢=0,0,€(0,1-0a], € (0,0 = vs;€(~a,1—a)

With 7g ; := S; — §s(X;), the KKT conditions induce three index sets:

Ei={i: 75, =0, 05, € (~a,1 - )}, (25)
L= {’L : ?S,i < 07 @S,i = 704}, (26)
R:={i: 7g;>0, 0g;=1—a}. Q27)

B.3 DERIVATION OF A-PATH

We use A-path to tune the regularization (or smoothness) parameter A, which we combine with
cross validation on the kernel bandwidth v to determine the optimal hyperparameter pair. The same
equation[I9equation 23] hold, but the RKHS quantile regression is now estimated with n calibration
points. The motivation for this is to fix the hyperparameters before constructing prediction sets,
which is necessary for our theoretical guarantees. The index sets (E, L, R) evolve with different
A values. We denote them as (E(\), L()\), R(A)). Since we no longer use an imputed value S of
Sn+1 (we do not use the test point at all), we drop all S from the subscript.

We start with a sufficiently large initial value A\! and decrease it toward 0. As A decreases, data
points move from the left of the elbow, stay in the elbow, then move to the right of the elbow (or
vice versa). Any change in the elbow set is denoted as an “event”. The next A is updated as the
largest value where such event occurs. At each update, we calculate ©; for the points in E()) since
0;’s in L(A), R(\) are fixed.

18



Under review as a conference paper at ICLR 2026

B.3.1 PROOF OF PROPOSITIONII]

We now prove Proposition |1} which states affine relationship of ©;(A)’s and 7(\) on A between two
change points of A. If ©;(\)’s and #j(\) are affine in A between any change points, then it holds that
they are piecewise-linear on )\, which makes the solution path tractable for any A < A\!. We provide
a more detailed version of the proof in Section [B.4.1] which has identical steps as Proposition I}

Proof.  Let{\'};_1 23, be the change points when an event occurs. Consider an interval A'*1 <
A < Al during which the sets stay the same, i.e., (E()\), L(A), R(\)) = (E(\D), LAY, R(AY).
Denote ©;(\) and 7)()\) as the solution of equation |19 given A. In this proof, denote £ = E()\) =
E(\), L = L(\) = L(\), and R = R(\) = R(\!). Assume the columns of ®* € R"*9 are
linearly independent. Denote ®7% as a submatrix of ®* whose row indices are in set A. Also denote
W* 5 as a submatrix of ¥* € R™*™ whose row indices are in set A and column indices are in set
B. Let two quantities.

* * * * * -1 *
dp = X((—a) Ui 1+ (1 —a) Uhalg), Ng =1 — o5 (P5 ) @3 .

Let Sg := (Si)icr,dg = (di)icr, ®% € RIEXP % ¢ RIFIXIEL By the definition of the
elbow set combined with equation 20}

R 1.
Sp=®n(\) + By VerpUE(N) +dE. (28)

Projecting with ITg eliminates 7(\),
NP5 0p(\) = Ag(Sgp —dg). (29)
Moreover, the second KKT constraint in equation 22| gives ®* ¢ = 0. This is equivalent to,
&3 op(\) =a®i 1, — (1 —a)®% 15.
Define A := IIy ¥}, I15. Using its Moore—Penrose inverse (denoted by superscript 1),
Hpop(\) = AT (Sp — dE)
—a A%, 05 (P &) '@ 1, (30)
+(1- ) AT Ty 05 (0} ®5) @5 1k
Thus, the minimum-norm solution on Im( IIg) is,

O5(\) = AATE(SE — dp)

_ (€29)
[l — AW ]85 (95 &) [a®) 1, — (1—a) @} 1]
Thus, 0 () is affine in A on the interval. From equation 28]
~ * * 0\ — * 1 * ~
i) = (@3 ®5) 783 [Sp — dp — 5 Vhpos(V)], (32)
hence 7j(A) is affine in 1/\. We have shown that,
b
op(A)=a+ b, (N =al) + - (33)

with a,b € RIFI al) b(1) € R constant on the segment. Fori € L(\), R(\), 0; is constant,
making it affine in A as well. Finally, for any i € [n],
b® 1
§(X:) = @7 (") + =) + ¥ pa+ Ab) +d;
. A A (34)

— X(@;ﬁb(l) + ;] pa) + rat) + U7 b+ d;,

which makes the residual r;(\) = S; — §(X;) affine again in 1/ on the interval. [ |

19
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B.3.2 UPDATE OF \!

Let \! denote the value after the /*" event. The elbow set E(\!) is updated when one of the following
events occurs,

* A point i in either L(A\!) or R(A!) enters the elbow set (residual S; — §(X;) becomes 0).

e A point i in E(A!) leaves to the left or right set (0;(\),i € E(\!) becomes —a or 1 — a).
We take A1 as the largest A < A that triggers one of the events and update (E, L, R) accordingly.
Here, let E = E(\) = E(A!). Denote the linear parameter ﬁ;\ = Mj;(A) for j € [d]. From
equation 20} for A"+ < X < \!, the fit at \ is,

§(X0) = LA + WL D)

1
() + X(\If;jE@E(A) — a1+ (1 —a)¥] plg)

(@70 + V) op(N) + di),

where
di = —aV; 1; + (1 — a)¥; g1g.

Let §'(X;) be the estimated function with \!. Now, we can express §(X;) with A and ¢'(X;),

l l
9(X0) = (X))~ 59 (X) + 39'(X)
:%@Hﬂ7#5+wﬂwwfﬁ@»+¢f¢+vwxm (35)
= S[RE ) (00 — 5ON) + NG ().

Recall from the second KKT condition equation we have v; = o; — 7; and Z?:l (0:— ;) (b;j _
Y vi®; =0forj=1,---,d.

Component-wise,

&5 op(\) —a®; 1, + (1 - )@y 15 =0,
and
o op\) —a® 1,4+ (1 — )@ 12 =0,

leading to

&3 (0p(\) — 0s(X)) = 0. (36)

Denote v; = 0;(\)—0;(A!) fori € Eand 7; = ﬁ?‘— 7 forj € [d]. Forany m € E', §(X,,) = Spn.
Let Sg be the stacked scores for E. Then, equation [35]becomes,

O+ Wt = (- \)SE
Combining with equation [36]and representing in a matrix form,
L Whe)\ (1) _ N (SE
(§ 2) (1) -0-n(%
AlB=(A=\)S,
b= (AH)~'S,,
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where b = 3/(A — A!). Let b, = 77/(A — A!) and b, = ©/(\ — A!). Plugging by, b, back to
equation we reexpress the estimated function as a function of b,
X A
9(Xy) = ;[gl(Xi) — h(X3)] + 7' (X3)
where

hH(X;) = @} by + U] gb,
for ¢ € E. Finally, to decide M1 we choose which event (whether a point enters or exits the elbow
set). The first event will happen for A such that a point in L(A!) or R(\!) set satisfies §(X;) = S;,
leading to,

b _ a0 (XKa) = BIXG) {ﬁl(Xi) - (X)) 1}
1€L(AL),R(AY) S; — hl(X,L) S; — ht (Xz) - ’
Here, the indicator is to ensure that the updated ) is smaller than A’ so that the path is monotonically

decreasing. To find A such that a point leaves £ ()\l),
— ’lAjl()\l) l—a-— ’lA)Z()\l)

Afbleave — AUy max {z € , <0
7'€E(/}\(l { { bv,i bv,i }| o }
We then take AT' = max {AFLAE )\IrLleave ) We also update (F,L,R) =

(BE(AFY, L) R(AY)) accordingly based on which event occurred. Finally, parameters
0;(ANF1)’s, A(AFT) can be updated by solving for the new elbow,

¥ @) (v Sp— 3(—a¥y 1+ (1 — ) ¥he1R) 37)
@*T 0 n a@*TlL—(l—a)fI'*Tlg

B.3.3 INITIALIZATION OF \

We describe our strategy for selecting a sufficiently large initial value A'. At \° = oo, from equa-
tion we can see that §(X) = 7 7). In this case, we have only one point in the elbow, which
we denote as i’ that satisfies S;o = §(X;0) = @7, 7. We choose i® as the (1 — «)th quantile of
scores, i.e. Sjo = S[(n41)(1—a)]- Then, points that satisfy S; < Sjo are in L(A%), and points such
that S; > S;o are in R(\?).

To make the parameters identifiable, we set 7);- (\°) = S/ CDZO for one j* € [d] and set other

parameters 7);(A"), j # j* to 0. When &7, is one-hot encoded, j* is any index such that $}, g+ =1L
If @7 is continuous, we choose j* to be any arbitrary index. From equation E we have the
condition Y3, 0;®; ; = 0 for j € [d]. Since 1° is the only point in E(A?). This leads to,

aYicro0).ra0) Phis — Licroo) e

D (A0) = (38)

*
iU,j*

Next, we find the next A', which will be the initial value of our solution path. This will be the largest
A < oo such that another point from either L(\°), R(A\°) enters the elbow. Let i! be the new point
entering the elbow. Then, i1 satisfies,

* ~ 1 * *
S,L'l = ¢i1,j*nj* ()\ ) Al ( i1 ZOUZ ()\O) — a\Ijil,L()\O)]'L(XO) + (1 — a)\I}i17R()\0)1R(>\O)>
= ‘I’fl,j*ﬁj*()\ )+ ﬁf(Xil)
Since 4 is still in the elbow set, it should also satisfy,

* ~ 1 * ~ * *
Sio = ®jo j-1);- (A% + N (‘I’io,iovio(/\o) —aWo ooy lrpey + (1 - a)\DiO,R(AO)]‘R()\O))

" R 1
= Djo -1+ (\%) + ﬁf(XiO)
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Putting it all together, we can choose A as,

J(Xi) = (7 5+ /o ;) f(Xio)
max :
i#i9,i€[n] Si = (P j+/Pjo ;)50
and the corresponding 4 that maximizes equation 39| becomes i'. We proceed with the same ©(\°),
7(A°) as our initial parameters and our initial elbow set as E(A\!) = {i°,41}.

A=

(39)

B.4 DERIVATION OF S-PATH

We fix the hyperparameters 7, X selected by the A\-path. Conceptually, the S-path mirrors the A-path,
and the conditions [T9H25]apply. Now recall the prediction set we defined for a test point X, 41,

C*(Xnt1) =y S(Xns+1,9) < d5(xsr.0)(Xnt1)}-
By equation [25] this is equivalent to,

C*(XnJrl) = {y : ﬁS(X,l+1,y),n+l <1l-— Oé}.

The problem reduces to finding the largest test score S*(X,,11) such that g (x, . )41 < 1 — .
By Proposition [3} the mapping S +— ©g is monotone, which allows us to recover the prediction set
as,

C*(Xn1) = {y: S(Xns1,y) < S*(Xnp1)}-

It remains to find the maximum S™* (X, 41 ), the test score cutoff, such that g+ (x,, il <1l—a
holds, i.e., S*(X,,41) = sup{S | Osn+1 < 1 — a} which is the role of S-path. Denote the index
sets,

E(S) := {z : Ts; =0, Ug; € (—a, 1 — a)}, (40)
L(S) = {Z : 7“\5'}1‘ <0, ﬁS,i = —a}, (41)
R(S) := {z 1 Tg, >0, 0g;=1-— a}. (42)

These sets now evolve with S. We initialize S-path with the smallest S* such that the test point is
in the elbow set (i.e., S' = §51(X,,+1)) and find the smallest increment to the next .S such that
an event occurs while the test point is still in the elbow. We use the same notion of an “event” as
before—any change in the elbow set. We iterate until the test point exits the elbow and use the final
S as S*(Xpt1)-

B.4.1 PROOF OF PROPOSITION[2|

Proof. Let {S 1}121,27374.. be the change points when an event occurs. Consider an interval S' b <
S < S™*! during which the sets stay the same, i.e., (E(S), L()\), R(S)) = (E(SY), L(SY), R(S')).
Denote Ug,; and 7jg as the solution of equationgiven S. In this proof, denote F = E(S) = E(S!),
L =L(S) = L(S"),and R = R(S) = R(S"). Here, \ is fixed as the selected hyperparameter from
the previous step. We also assume the columns of ®* € R(™*1)* are linearly independent. The
dimension of ¥* is now R(*+1)x(n+1),

For every index ¢ we have,

1

45 (X0) = ®Lijs + L V] 0
~ 1 * A~ * *
= @lis + (Vi pdsp — oWl + (1 - )V plx) 43)
1
= Qs + X‘IffE@SE +d;,
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where )
d; = X(—Q\I’ZL]_L + (1 — Oé)\I/ZR]_R).

From the second KKT condition in equation we have v; = o; — 7 and Y1 (0 — )P} ; =
Yo vi®f; =0forj=1,--- ,d. In compact form,
O s p=a® 1, - (1—a)®y 1.
This means that,
5 (PL p) '@ Osp = a ®p(RY @) 'L 1L — (1 - a) BH(PL L) @R 1k
Let Sg == (S)iem, dp = (d)icr, ®% € RIFI*P w3 e RIPIXIEl Equation 43| for i € E
becomes,

. 1.
Sgp=®p0s + X Vhptse +de. (44)

Define the orthogonal projector, Il g := I|g| — ®% (<I>*ET‘I>*E) 71<I’*ET. Because Il @7}, = 0, multi-
plying equation[44]by II gives,
1

HESE = h\

NpY%Lp s+ ede. (45)

Write S = S@E"ed + Sent1, Where S‘:‘E’“"d has a zero in the (n+1)-st row and e,, 1 selects that row.
Equation 5] becomes,

Wy s p = AE(SE —dg) + ASTge,.. (46)

Since Iy = 5 (P} %) “'®1T 4 I, the previous equation yields,

OpWh,Mpisp = -MpPy @585 85) @3 055 + AIE(SE —dg) + ASTge,.
47)

Now, we know that:

OpPpp®h(Ry @5) '@ 0sp = allp Wi p @y (2L @) '@ 1~ (1-a) Hp P i @5 (2} @) ' @41k,

Because Il is an orthogonal projector (H% = Ilg), the matrix IIg ¥}, oIl is positive definite
on the image of ITg. Using its Moore—Penrose inverse (denoted by superscript 1) gives the unique
minimum-norm solution,

Mg = A (MpWhpTlg) T (S8 —dy + Se, 1)
—a (MWl T W &5 (85 ®5) @571, (48)
+ (1 — @) (MW ,TE) MWy, &5 (85 &) &7 15
Therefore, since Og g = I ig g + P4 (P ®%) 1 @4 Og 5
b5 = A (MW Tg) T (S — dp + Se,ts)
— o (MW MWy &5 (85 ®5) @571,
+(1— ) (W ,TE) MWy, &5 (85 &) '8 14
+ad®iL (L @) e 1,
—(1—a) ®5(®L @) '®% 1r
— A (MW T g) T (S5 — dp + Senis)
+allip — (MpPhpllp) MpPhp | 05(2E @5) '@ 1,
—(1—a)[ g — (MWL) e}, 5(®L %) @7 15

(49)
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In particular, the kernel parameter of the test point, Ug 1, is affine in .S on every segment where
the index sets (E, L, R) stay unchanged. Likewise, the linear coefficient satisfies,

A 1,
SE = ‘E'*EUS + X‘I’EEUS,E + dE
1
@5 Sp = 03 ®uis + X‘I)ET‘I’Z“E@S,E + @5 dp
~ * * | — * 1 * * | — * ~ * * | — *
= nNs = (‘I’ET‘I’E) 1‘I’ETSE - X(q)ET(I)E) 1‘I’ET‘I’Z“EUS,E - (‘I’ET‘I’E) 1‘I’ETCIE
~ * * — * X * * — * 1 * * — * A~ * * — *
= nNs = (‘I’ET‘I’E) 1‘I‘ETS?Jed + S(‘I’ET‘I’E) 1‘I’ETenH - X((I)ET(I’E) 1‘I’ET‘I’75EUS,E - (‘I’ET‘I'E) 1‘I’ETCZE
- 1
= (@3 ®5) '@y [S%Xed +Sepi1 —dp — X YhpUs,E|,
(50)
and thus, we have shown that,
bsp=c+58d, fg=ch+5a0. (51
with c,d € R|E|, c(l),d(l) € R? constant on the segment St< § < gttt
Insert equation[51]back to equation[43] For any i € [n + 1],
A A 1 A
9s(X;) = @i fis + X Uin s g+ d; (52)
1
= ®;. (M + Sa) + 1 Vip(c+ Sd) +di (53)
1) 4 Lgx W 4 Ly
= (@icW + 1 Uipe+d;) +8 ((©.dV + S Uipd). (54)
::ggo) :3951)

Thus gs(X;) = g§°) +S ggl) is affine in S. There are two cases for the residual r;(.S) = S; —§s(X;):
1. Calibration index i < n. The score S; is fixed, hence
ri(S) =9 — 9\”] = S gV,

Both S; — g§°) and ggl) are constants on the segment.
2. Test index i = n + 1. Here S, 11 = 5, so

Tnt1(S) =8 — 97(321 - 59&21 =1 —97(#)1] S —gffl)u

which is again affine in S.

Because every r;(S) is an affine function, each index outside the elbow can cross the zero-residual
line at most once on the segment. Likewise each v;(.S) in equation [51|can hit the bounds 1 — « or
—a at most once. Hence the overall solution path is piecewise affine with break-points occurring
exactly when either (a) a coefficient in F hits its bound, or (b) a residual for an index in L U R
reaches zero, completing the argument used by the S-path algorithm.

B.4.2 UPDATE OF S!

Let S! the value after the I*" event. The elbow set E(S') is updated when one of the following
events occurs:

s A point i in either L(S’) or R(S") enters the elbow set (residual S; — Gg: (X;) becomes 0).
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« A point i in E(S') leaves to the left or right set (0 ; becomes —a or 1 — o).

For the first event, note that 6%7(35) = —(®;.dW + $U7.d) in equation Then We have,

. ) ,
I+1,hit _ gl : (ql a4 Ly Ll IR S
5 g +z‘eL(gll)lg:z(Sl)r’(S )/ (@:d™ + )\\I/zEd)l(Tz(S )/ (@AY + )\\I'lEd) > 0)

To find S such that a point leaves E(S"), recall 2224 = d, for i € E(S") (equation .

o — @Sl,i l—a-— ’OS[,’L

Sl+1,leavezsl . c _ ’ <0
v ety a— o
We then take S'™' = min{StH1hit Ghrlleavel We also update (E,L,R) =

(E(S'Y), L(S'), R(S')) accordingly based on which event occurred. Parameters Ogi+1 s,
fgt+1 can be updated by solving for the new elbow,

UL ®%) (v _ (Se—x(—a®i 1+ (1 —a)PhelR) 55)
' 0 )\n a®;T1, — (1- )@y 1p

B.4.3 INITIALIZATION OF S
Let us first assume that the imputed test score S is small enough so that S < §s(X,,11). Then, the

test point n + 1 € L(.S). We use the notation Ogmay and fisman (instead of Og and 7jg), to denote the
regression parameters. In this case, the residual 7,11 (S) = S — Jeman (Xn+1) = S — 71, Msmall —

%\P;‘L +1,‘ﬁsma" is linear in .S. We can therefore track the moment when it enters the elbow set E(S).
This happens as soon as:

" 1 .
S = (I):;J,-L.nsmall + X\I/:L+17.Usmall-

We thus solve for Ogpay and fgman With Ugmann+1 = —a (as the test point is in the left set). Let
vfi*ed ¢ R"F1 be the vector defined as equal to vg on all entries except the (n + 1), where it is set
to O:

’Uﬁxed _ 'USJ‘ lfl ;’é n+ 1
o \0ifi=n+1.

This allows us to write,

fixed
Usmall = U — 0€p41,

where e,, | ; is the indicator vector of the (n + 1) coefficient,
ent1,;, =0ifi#Fn+1, eprinp1 =1

The problem then becomes,
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n+1 n+1
(1-a sz +a Z‘Jz 2)\ small‘Il Usmall
n+1 n+1
+ Z i(Si = gaman(Xi) = pi) = > 7i(Si = geman (X3) + ¢:)
i=1
n+1 n+1
= kipi— Y pis
= =
n+1 n+1
= Z oip; + Z Tiqi + )\ qmall\Il Usmall
n+1 n+1
+ Z — 73)(Si = @7 Nsman — )\\I’f.vsman) - Z(Uipi + 7iqi) (56)

i=1

1
_ fixed T 1y~ (, fixed
- ﬁ(vsmall - Oéen+1) v (Usmall - aen+1)

\I’?.(vfn’ii?l —aeny1))

+ Z . Tz S (I) 775mdll )\

- a(S - (I)n+1,-775mall - X\I/:z-&-Ll:n(U;;g(ljl - aen-ﬂ))
2
.
= *5 W10 — )\‘I’Z+11n5+ 3\ Uit nt

+ 6 (Sl:n - ¢>‘1<:n,~’rlsmall ‘Ill n,l: n5 + \Ill n n+1)

A
1

— a(S — (I):H_L.Wsmall - X\IJ:H-LLWL(S + X\I’:H-l,n—&-l))?

with § € R" the vector whose entries are defined as: 6; = 0; — 7; = Usman,;-

We also know that (0 — 7)T®* = 0 = Vj € [d, Y/ (0i — 7)®; = —(0n41 —
Tn+1)q);kL+l,j = OZ‘I)ZH,]*

Therefore, taking derivatives with respect to § yields the following system:
Wi, @) (0p ) L (e K(ca¥h, oWl (-0 ¥inle)) o
q)*T O Tlsmall ()éq)*+1 + Oéé* 1L — (1 — Oz)@*T]_R

We can therefore solve for both dg and 7y, by inverting the previous system of equations.

When S > g(X,,11). Similarly, when we start with a large S so that the test point is in the right
set, we can derive the coefficients for both v and 1 by the same derivations as for the small case:

%‘I’*EE Q*E 5E — SE - %(( ) E n+1 Q‘PELIL + (1 - a)‘PERlR) (58)
‘I)*ET 0 T)small ( )4)211 + a<I>’£T1L — (1 — Oé)'I)ETlR

B.4.4 COMPUTATIONAL COMPLEXITY

Complexity At each step of A- and S-path we take inverse of matrices whose size are at most
|E| + d. The overall cost is O((n + d)?) in the worst case, but empirical paths have | E| < n and at
most 2(n + 1) break-points, making the routine fast in practice.

Practical consequences
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* Threshold evaluation Because S +— wvg 1 is affine on each segment, the conformal
threshold §(X,,41) = sup{S : vg n+1 < 1 —a} is found by a single root computation, not
by binary search.

+ Randomization By Lemma[4] using the final update of S-path, 5*(X,,;1), can inflate the
conditional coverage. To mitigate this, we can use the randomized cutoff S™*"(X,,, 1) =
sup{S | Ognt1 < U}, for U ~ Unif(—a,1 — «). The procedure of S-path stays the
same but we stop the algorithm as soon as g 41 > U.

Summary of modifications versus the \—path

Component A—path S—path (fixed \)
Moving parameter A0 ST

Active sets E(\),L(\),R(N\) E(S),L(S),R(S)
Triggering event Elbow set changes  Elbow set changes
Segment law A= O(A) affine S +— Vg affine
Break-points critical values of A critical values of S
Output A (v,n) S (v,n)

The resulting algorithm furnishes an explicit, efficient score-path for any fixed A, enabling local
density—adaptive conformal prediction and other post-hoc analyses.

C THEORETICAL PROOF

C.1 GUARANTEE FOR RANDOMIZED INTERVAL

To incorporate the structured RKHS-based function in equation [f] into the conformal calibration
framework in |Gibbs et al.| (2023)), we need to show two propositions. Firstly, we show the mono-
tonicity of the solution path for S. Namely, the mapping .S +— vg 41 is nondecreasing in S. Second,
we require the low-rank projection 7 (+) to be trained symmetrically across the input data. With these
properties established, we are able to prove that our path algorithm satisfies exactly the same type
of results as|Gibbs et al.|(2023)):

Lemma 4 Consider the function class F* in equation[I8} where RKHS component is given with the

optimal \ such that Fpr = {fp-(x) = i Zie[n+1] vih*(z, X;),v € R}, Suppose assumptions

[[|and2)are both satisfied. Then, for all f € F*, SpeedCP gives
E[/(Xn1) - (1¥ar1 € Clana(Xns)} = (1 = )] = =3E [(G5rana g, fur)]
where jgrana y+(X) = i Dicnt1) Osrana ;™ (X, X;).

This result aligns with the randomization version of Theorem 3 in|Gibbs et al.| (2023) — but adapted
here to our algorithm and choice of RKHS class F,-. While in|Gibbs et al.| (2023)) v; can be any

arbitrary value, we involve the optimal \ in the definition of fu=. In this type of RKHS class, the
relationship between S to vg 1 is explicit, while Gibbs et al.| (2023)) depends on a dual analysis,
making the parameter less interpretable. Furthermore, the coverage gap E[(ggrand =, fy+)] arises
because we have no prior information on the distribution shift and use a flexible RKHS-based func-
tion class instead. While it may lead to deviations from the nominal level 1 — oo when fy« # 0, this
deviation is measurable as shown by |Gibbs et al.| (2023)); we detail how to estimate this deviation in

the latent-space setting in Appendix
Proof.

By Proposition [3} S+ vg 41 is non-decreasing in S. Furthermore, strong duality holds for the
optimization problem in equation [/| (this has been shown in |Gibbs et al.| (2023))), and the KKT
conditions are satisfied as shown in Now consider a random variable U ~ Unif(—a,1 — «).
Then we have the equivalence under the randomization for a given S, 1 = S(X,,11,¥):

1{5714'1 < g5n+1 (Xn-‘rl)} — 1{@Sn+17n+1 < U}
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Thus,
E [f(Xn+1) (1 {@Sn+1,n+1 < U} - (1 - Oé))]

=E[Ey [f(Xn+1) (1 {05, 1 m+1 SU} — (1= @) | Xng1, 08,11 n41]]

= —E [f(Xn41)05,41011]

Using the Lagrangian in Proposition |3} we follow the calculation in the proof of Proposition 4 of
Gibbs et al.| (2023). By the exchangeability of the data and the symmetry of gg, . ,, we have

-E [f(Xn+1)@Sn,+1,n+1] =—2E [>\<gSn+1,¢*7f'¢v* >] .

Therefore, we replace S, with the randomized cutoff S""¢ and X\ with the optimal A to obtain
the desired result. ]

Proposition 3 For all maximizers {vg n+1}ser of the optimization problem in equation@ the map-
ping S +— vUg p41 Is non-decreasing in S.

Proof.  Recall the objective in equation[7}
n+1 71+1 n+1
min Zl S " ( ZUS,/ (X, X7) ZUSZUSZ (X, X;).

S,Us
! 7,71 111

Let U* = (¢* (24, 75))i jeini1) € ROFD*(+1) be the positive semidefinite kernel matrix. Follow-
ing the structure in |Li et al.| (2007), this objective is equivalent to the following quadratic program
for a fixed imputed value S (with S,,+1 = .5),

min (1 —a) Zp,—&—an@ ve Wrug,

7ns,Vs
subject to
— ¢ <5 —gs(w:i) < pi,
¢,p;i >0, i=1,...,n+1,

where
n+1

gs(x;) = @*(x) 'ns + < ZUSz/ (zi,z), i=1,....,n+1.

Note that the proof of Proposition [3] follows the argument structure of Theorem 4 in |Gibbs et al.
(2023)), but with a key distinction that the function gg(z) in our case incorporates an RKHS-based
component that depends on A. The Lagrangian primal function is then defined as in equation 21}
Setting the partial derivatives of L, with respect to ¢ and p to zero, we obtain

oL

ap’_).oizl—oz—m

8Lp,T‘_a_ , &9)
s T = Pi

Since minimizing with respect to v yields v; = 0; — 7, we can substitute this into the derivative
expressions in Equation equation[59] We have

l-a)-1—-v=k+T7
a-l+v=p+o
Since k, o, T, p are all non-negative, this can be simplified to
(1-a)-1>wv
—a-1<wv
Let Q*(v) = —minger- ﬁUT@*U - Z:LJT v;9(X;). Therefore, the dual formulation for
equation [21]is,

maximize,, Z VS + Up11S — Q* (V)

i=1
subjectto —a<v; <1—qa,1 <1 <n+1
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Note we use notation vg to denote the solution for a particular input S. Assume for the sake of
contradiction that there exists S > S such that

VS n+1 < VUSn+1-

Observe that >, v;S; — Q*(v) does not depend on S. The contradiction assumption implies that

(S—89)- (vg,nJrl - Us,n+1) <0,

or equivalently,

S (US,nH - US,n-H) <S- (Ug,n+1 - US,n-H) .

On the other hand, by the optimality of vg, we have that

ZUS',iSi - Q" (vg) + S- V3 ng1 2 ZUSJS%, — Q" (vs) + S vsnt1
= =1

= 5'(U§,n+1—vs,n+1) ZUSzS Q" (vs) ZUSZS Q*(vg)-

Applying inequality given by assumption above, we conclude that

S - (US',n-s—l — 'US,n+1) Z’USZSZ Q" (vs) sz Si — Q% (vg),

which yields the contradiction

ZUS‘,iSi - Q*(’Ug) + S "V nt1 > ZUS,iSi — Q*(US) + 5. USnt1
=1

i=1

Remark 5 In this proof we treat \ as fixed. Because ) is pre-selected before entering the S-path,

the nondecreasing property of Ug holds for each A—including the optimal \ selected by the SIC
criterion along the \-path.

C.2 PROOF OF THEOREM[I]

First, we consider the setting that (X;,Y7),...,(X,,Y,) are independent of (X, 1, Y11, W').
Since 7(-) is a deterministic function (not a random variable), #(X7),...,#(X,,) are also in-
dependent of 7(X,,4+1). Since #(:) is a pre-trained map from the covariate space to the latent
space, we write 7 : X — WV, where WV denotes the latent representation space. Given this em-
bedding, we define a kernel directly on the latent space 97, : W x W — R. Consequently,
*(x,2") = iy (7 (x), 7 (2")). Let P = Px x Py|x. By the definition of W', the joint distribution
of (Xp41, Ynt1, W) is defined by

Xnt1 ~ Px;
Yot1 | Xnt1 ~ Pyx;
W' | (Xns1, Yogr) ~ ¥ (Xns1, )

By definition of ¢};,, we equivalently have W' | (7#(X,,41), Yo41) ~ ¥ (7(X541), -). Then, the

conditional distribution (X,, 41, Y,+1) | W’ is given by

(Px o Py (A(Xni1),w')) X Py|x
Sy (Px 0 Uiy (F(Xnia), w')) X Py|xdady
Yy (7 (z), w')
B[y (7(X), w')]

(Xn+17Yn+1) \ W' =w ~

dPx y)(z,y) by the symmetric of 7 (-)
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Thus conditioning on W/, we get
E [1{Yns1 € Clona(Xnt1)} = (1= ) | W]

_ Yy (T (), W') M a )
/ E[y5, (7(X), W] (1{ € rand( )y =@ )) dPx y(z,y)

E [0y (F(Xos1), W) - (1Vas1 € Cppa(Xns1)} = (1= )]
E[)"(X,2')
B [y Osrona /- i (R(X), W)
- B[ (X)) by Lemmaf}
= " [Zie[nﬂ] Osrene, Wiy (X)W )} by the structure of Ggrand -«

E[yyy, (7(X), W)

C.3 PROOF OF THEOREM [2]

By the definitions in Theorem forall i € [n]

W, ~ Pw;

Xi | Wi ~ Pxws

Yi | Xi ~ Py|x.
In this procedure, we say Y is conditionally independent of W given X. In practice, the latent
variables { W)} ;c[,+1) are unobserved. Firstly, for the joint distribution, we have {(W;, X;,Y:) }ic[n]

independent of (W, 41, X;,41, Y+1). In this framework, we consider the covariate shifts such that
f(X) = 1{arg maxy¢[k] T (X) = k} for a fixed k. Therefore,

f(XnJrl)

Xng1, Whg1 ~ WP(X,W);
Yo | Xong1 ~ Pyix.
This gives that
~ f(Xn+1) o f(XnJrl)
Xovs ~ | Figcayy P POV = gy | PP (9)aw
_ J(Xap)
T Ex 0l X

Under this setting, we have for any set C
E[1{Y, 41 € C(Xnt1) — (1 —a)}]
f(Xn+1)

_Ef(Xnt1) A{Ynpa € C(Xppa) = (1 = @))]
E[f(X)]
By the Lemma ] we see the numerator equals zero since the function f selected does not depend
on the RKHS part. Lastly, by the definition of f(-) and assumptlon. we then have

E[f (Xn+1) (H{Yn11 € C(Xpt1))]

dPx Py |x

E[f(X)]
:P(Yn+1 € C(Xn+41), T(Xn41) = k) _ P(Ynt1 € C( n+1)aT(Xn+1) k)
P(T(Xn41) = k) P(T(Xp41) = k)

=P(Yp+1 € C(Xp41) | arg max @ (Xpy1) = k)
k' €[K]

30



Under review as a conference paper at ICLR 2026

Remark 6 While the RKHS class F* is specified using the estimated low-rank embedding 7 (-), it is
not meaningful to define the covariate-shift function f using a data-dependent estimate fitted on the
training sample 7 (-). For the purpose of tilting, f must be treated as fixed and known prior to train-
ing. Accordingly, we do not define the corresponding covariate shift f directly over F*. Instead, we
assume that f is induced by a population-level quantity determined by the latent structure. To con-
nect this population construction to the target class F*, we impose the topic-alignment assumption

(Assumption [T1).

Furthermore, we avoid expressing f in terms of the latent variable W, which is unobserved and
random, because this makes it difficult to control the embedding-estimation error. The posterior
mean 7(X) = E[W | X| provides a deterministic, stable summary that facilitates theoretical
analysis.

C.4 SOME TECHNICAL PROOFS

Lemma7 Fix K > 2 and let m; = (mk)ff:l be the true embedding representative and ©t; =
(ﬁik)le With T, Tk € (O, 1) Deﬁne

K K
1 . . 1 .
Oik := log ik, — ?Zlogﬂm Oik := log 7rix, — ?Zlogﬂm
(=1 =1
and write vectors 0; = (0;x)5%_,, 0; = (éik)le. Let rij, := i, — ik and Amwgy = rip /7, and
define the centered vector

K
~ 1 ~ ~
A?Tik = ATFik—E;Aﬂ'M (k‘:l,...,K)7 Aﬂ'i = (Aﬂ'ik)le.

Let Ay 5 = 2(0; — 0;, Am; — Axj) + ||Am; — Arj||3. Assume max; i |Amig| < 1, then
16: = 6115 — 16; — 0515 = Ay + Asij, (60)
for an absolute constant C with |Ag;;| < C((maxk |A7m€|)3 + (max;€ |A7Tjk)3>. For the
Gaussian kernel ;; := exp( — 7||0; — 6;(|3) and i = exp( — = @H%) we have
Vi = Q/Ajij(l — A1, + O(|Azs] + 72Aiij)) . (61)
Proof.  Write m;;, = 7, (1 + Amyy). Then

K

A 1
O — 0i1. = 10g(1 —+ Aﬂ'ik) — ? Zlog(l + Aﬂ'w).
/=1

For [u| < 3,log(1 + u) = u — 3u? + r(u) with |r(u)| < 2|ul?. Hence
~ 1 K 3
91']c — 92’]@ = Aﬂ'ik — é(ATerk — ? ;ATFZQZ> + fik, |7zzk‘ § 2<m]?X|A7TZk|) .
Letg; := 6, — 0, — Am; where g; collects the centered quadratic and remainder terms; then ||g; |2 <
(maxy, |Am;x|)?. Consequently,
Gi — Gj = (éz — éj) + (Aﬂ'i — Aﬂ'j) + (qi - Qj),

and expanding the squared norm yields equation [60] with

Noij=200; — 0;, i — ¢;) + 2(Am; — Arj, ¢ — ;) + llai — a51/3,
which is bounded as stated by Cauchy—Schwarz and the displayed bounds on g;, g;.

For the kernels, write with ciistij = Héz — éjH% and Adistij = ||9l — 9]”% — CZ’L'Stij,

Vi; = 1[)1']' exp(—vAdistij) = 1;0 (1 — ’yAdiStij + O(’yzAdiSt?j)),
and substitute equation [60]to obtain equation [61] |
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Lemma 8 (Kernel perturbatlon against a fixed value) Fix K > 2. Let Ay, := (mi — Tk )/ Tk
and the centered version Ay, as in Lemmalz Fix any w € RX and define the Gaussian kernels

Yi(w) = eXP( —0; — wH%)v 1[%'(11)) = eXp( - ’Y||9z' - w||§)-

Assume maxy, |Amp| < 3. Then, writing Ay ;(w) = 2<él —w, A?Ti> + HAmH%, we have the

2
distance expansion
R 3
16 = wll3 = 1165 — w[l3 = Avi(w) + Aoy, [Agy| < C(mgxlAml) : (62)

for an absolute constant C. Consequently,

w) = |1hi(w) =i (w)| < hi(w) (’7 | Ay (w)] + C((m]?X|A7Tik|)3 +’72A1,¢(w)2)) . (63)

Proof.  Write m;;, = 7;1(1 + Am;i). Using the proof in Lemma we have now
165 — wll3 — [16; — wl|3 = 2(0; — w, Ami) + [|Ami5 + Aayi,

with
Aoy =2(0; — w,q;) + 2(Ami, qi) + il 2,

which obeys |Ag ;| < C(maxg |A7rlk|) by Cauchy—Schwarz and the bounds on g;. This proves
equatlon For the kernels, let dist;(w) := ||6; — w||2 and Adist;(w) := ||6; — wl|2 — dist;(w).
Then

Yi(w) =exp (— ~(dist;(w) + Adist;(w))) = i (w) (1 — vAdist;(w) + O(VQAdisti(w)Q)).

Substitute equationfor Adist;(w) and take absolute values to obtain equation ]

Lemma 9 Let m(X) := m(1)(X) — m(2)(X) be the (pointwise) top-1 margin, where 1y > m(g) >
- are the order statistics of {mp(X)H< . If

then T(X) = T(X) a.s.
Proof. Letk :=T(X),som,(X) — me(X) > m(X) for all £ # a. Then
T — g = (T — ™) + (Fe — ™) — (F¢ — mg) 2 m(X) = 2[|F — 7[os >0,
soT(X) = k. [
C.4.1 APPROXIMATE CONDITIONAL VALIDITY UNDER EMBEDDING ERROR

Lemma 10 Let W' be drawn according to the true neighborhood law W' | w(X,y1) ~
Uiy (m(Xn41), ). Assume the conditions in Lemma|S|are all satisfied, then

B[S e ) Dsrana 0 (W', 7(X; /
BVrs € O (ny) | W =) =1 = = mo et b LTI )
(64)

where

|Err(w’)| < (65)

with Aj(w') = |, (7(X,), w') — ¥y (r(X3),0')].
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Proof.  Starting from the displayed decomposition in Theorem [I]
E[1{Yas1 € Cluna(Xns1)} = (1= ) | W]

_E[w%(”(XnH) ) (Vi1 € Crppa(Xnsn)} — (1 - 04))}

E[gy (m(X), W)

If we replace the true w(X;) by the estimated #(X;), define N(W')
E[gyy (n(X), W) - Z(X, V)],  DW') = E[gy@(X), W), and NW') =
E[gfy (7(X), W) - Z(X,Y)l, DW') = E[j (R(X), W] with Z(X,Y) = LY &
C* . (X))} — (1 —a) € [~1,1]. A standard ratio perturbation yields

NOV) NOV)| ROV = NOV)L | INOV)] DOV = DOV

pwry DW= DW) D(W) pwrn
since D(W'), D(W’) > 0. Next, with A;(W') = |45 (7(X;), W) — ¢ (n(X;), W')| and
AW') == E[Ax(W')], we have

MOV =N W) = B[ G (X), W) iy (x(X), W) Z(X, V)] | < B[Ax (W)] = AW,
and similarly | D(W’) — D(W’)| < A(W’). Using |[N(W’)| < D(W’) (because | Z| < 1) gives
E[1{Yat1 € Clapa(Xns1)} = (1= a) | W]

E 6y (7 (Xnt1), W) - (1{¥nt1 € Cyg(Xnta)} = (1= )] ,
- Bl (7 (), W) e
-E {Zz‘e[n-s-l} @Sm"d,ﬂ/Jﬁ/(ﬁ(X)a W/)}
B E[iy (7(X), W)
where the general bound is in equation [65] If A;(w’) — 0, then Err(w’) — 0 as well. Therefore,

equation[I0|closely approximates the COIldlthIlal guarantee with respect to the true latent represen-
tation. |

+ Err(W'), Lemmald]

C.4.2 COVERAGE GAP ESTIMATION

The idea behind estimating the coverage gap A Rg’“g{ f“&;‘]’” Jue] is to leverage results from n-
sample quantile regression, applied specifically to the calibration data points. As shown in Propo-
sition 2 of |Gibbs et al.| (2023)), the estimation error in their setting (using raw covariates) can be
bounded by O(y/dlogn/n). We adapt their arguments to the latent-space setting, where the feature
map satisfies |®*(X)||; = 1. The following result, Proposition[4] provides a sharper bound on this
estimation error under our setting.

To simplify the notation, let

Lo (gy+,m) Z€ Si — " (Xi) ' — gy~ (X4))

1€[n]
Loo(gyesm) = E [La(Si = ®*(Xs) 'n — gy (Xi))]
denote the empirical and population losses with low-rank projection 7 (-).

Recall the closed form solution in equation [6] shows the estimated coefficients are functions of .
For a fixed A\, we denote the solution class parameterized by A as

1
Pae ={gue g (@) = 5 D vt (@, Xo)} (66)

i€[n+1]
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Define the objective

En(gd)*an) = ‘Cn(gw*an) +A- ||9w* 12[;*
Loo(gy>1) = Loo(gy=,1) + A lgy= 17

which is strictly convex in gy+ and 7. Let (Gn g+, Bn), (95, 4+ B

)

K
€ Fay x 28 denote the

minimizers of min(,, . pers Ln(gy+,n), mingg, . ner- Loo(gy+,n), respectively.
Note we write g(z) = ®*(x) "1 + gy~ () with arbitrary (gy-, ). Let

() = () T, + glo - (x) for ms, € B,

gn() = @ () "itn + G,y (@) for i € By

Let e(g, %) = Loo(gys 1) = Loo(92 4+ PB21)-

Assumption 3 (Population strong convexity) Let d(gy-,n) = inf,- cp= [0 — nill2 + [|gy- —
Goo |l denote the distance from (gy=,m) to the nearest population minimizer. Suppose S | X

has positive density on R and is continuous. If d(gy-,n) < € for some constant ¢; > 0, then there
exists some constant C; > 0 such that

e(g,95) > Crd(gy-,n)?

This assumption is mild under the some assumptions on the distribution of S | X since V%EOO =
E[Psg)x (0)X X '] Tan et al.| (2022).

Assumption 4 There exist some constants cf, Cr,cy s > 0 such that
Sup. E[[f(Xi)|2] < s E(IF (XN, E[lf(X)|S7] < s, sE[IF(X)]]

inf  E[|®*(X) " nl] = cx, E[[|®*(X3)13] < co,
n:|nll2=1,n€R?

sup B[ f(X)|2*(X:)|[3] < e1B[If(X3)]].
fer*

Furthermore, we assume that E[|S?|] < oo and sup,, ¥*(z,z) = 1.

This assumption is stronger than Assumption 1 in|Gibbs et al.|(2023)), which requires the following
moment bounds:

E[| ®*(X)[I3] < cod, Sup, E[|f(Xa)[lle*(X3)[3] < er Bl f(X3)[]d

In contrast, we assume a bounded-norm feature map in the latent space, specifically ||®*(X)[|2 < ¢
which does not grows with feature dimension d. In particular, when ®*(X) is an indicator vector
over a finite partition, in which case || ®*(X)||; = 1 as well.

Proposition 4 Suppose the assumptions are satisfied. Under the settings in LemmaWd| Define
the n-sample kernel quantile regression estimate with a fixed A
1

.o Tin) = ar min — 0o (S; — gu (X;) — (X)) + N[ g
(Grpe Tin) 8 e € Fr o mERI " (Si = gy~ (Xi) — ©°(X4) ' n) + Algy

2
Yo

and for any € > 0, let
Fo={fC)=fo- () + @ ()T e F || fy

v+ lInllz < LE[F(X)]] = €}

§0p< logn>
n

Then,

fer: n 21:1 |f(X1)| E[% Zi:l |f(X2)H

() o)y Yok El{qg M Yo
sup |2 1<9n,w s foe ) 9) (G, 41,9% fo=)w=]
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Proof. By the results in Section 4.1.2 in|Boucheron et al.[(2005) and ||®*(X)||2 < co, we know

that {fy-(-) + @*(-)n : || fu~llw= + lImll2 < 1} has Rademacher complexity at most O(y/1/n).
Following the proof for Proposition 2 in |Gibbs et al.| (2023)), we can show

1. Let & = {|ln — Pp=_nll2 < €1, |lgy~ — Goopellp= < €21 61,62 > 0}. We have

E { sup L (gy+ 1) — Ln(go .y PB21) = (Loo(gyr, 1) = Loo (9o 4=+ PB=1)) I}

1,9y* EE2
< O((e1 + €2)v/1/n)

2. Supfe]_—:

L e F(X0) = E[E ey IF(XD]| = O(/1/m)
=0(1)

3. SUP £, € Fy g A |E[<§Sn+1qw*’f¢*>w*]

< OIP’( log(n) )

- n

4. SUP £ €Fx il Fupr [lox <1 A |<gn,1/)*af1/1*>w* — E[(8,11.0% for )y+]

Using the claims above, we thus get the desired results through some calculations. |

D ADDITIONAL DETAILS ON EXPERIMENTS

D.1 SYNTHETIC EXPERIMENTS

In this section, we provide additional details on the synthetic experiments and further discussion on
the results.

In all of our experiments, we generate X; € RP from a mixture of K = 3 latent
distributions. ~ Specifically, we first generate X; from a multinomial distribution, mX; ~
Multinomial(m, 3. ) Wi(k)Ck) with Wi = w; fixed and total count m = 1000. For each sam-

ple in the training and calibration sets, we generate W; ~ Dir([2, 1,1]) and randomly shuffle the
elements to create a distribution that is more symmetric across vertices. Here, the density is higher
in the central part of the simplex. For test samples, we generate from the same distribution but do not
shuffle, to create a high concentration near one vertex of the 2-dimensional simplex (Figure ). In
this setting, we aim to see whether each conformal method can guarantee 0.9 coverage in boundaries
(areas close to one vertex). We sample the latent component (; € R? from a uniform distribution
and normalize it so that 3, Gx(j) = 1 for each k € [K]. We estimate 7(X;) = E[W; | X;]
with pLSI (Section |B.1)) and use 7(X;) as inputs of SpeedCP, CondCP, and RLCP. The response Y;
is generated from a nonlinear function of Y; ~ N (sin(27 - W;(1)) + (W;(2))? + W, ,0.1%) and
n; ~ Unif(1,10) for j = 1,2, 3 and normalized. We report our results based on 50 independent
runs of data generation. At each run, we split the data into 400 training points, 400 calibration
points, and 200 test points.

In Table[d] we report the marginal coverage and computation time for the same experiment in Fig-
ure2] We can see that SpeedCP is faster compared to CondCP and PCP, which are the state-of-the-art
conformal prediction methods that account for the local or latent data structure. RLCP is fast but
fails to attain target miscoverage level as discussed in Section [3|of the main manuscript.

Table 4: Marginal miscoverage and computation time in seconds. This is the same synthetic experi-
ment as the one shown in Figure

Method Marginal Miscoverage Time (s)
SpeedCP 0.105 £0.07 22.054 + 6.22
CondCP 0.123 +0.13 1332.67 +129.93
SplitCP 0.107 £ 0.07 0.000 £ 0.00
PCP 0.076 + 0.06 141.64 + 14.48
RLCP 0.092 +0.07 0.917 £ 0.11
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Figure 4: Averaged calibration and test density over 50 random generations of data. We use kmeans
followed by Voronoi tessellation to partition the latent simplex into 10 bins.

Comparison of different choices of ®*(X) in SpeedCP We also discuss how conditional cover-
age changes with different choices of ®*(X) of our function class F* equation When running
a RKHS-based quantile regression on the scores, ®*(X) "7 acts as the linear component with the
design matrix ®*(X) and parameters 7. ®*(-) allows flexible modeling of different types of condi-
tional coverage. For example, in this synthetic experiment, we can consider four different ®*(X)
based on the estimated latent embedding 7 (X),

1. Taking ®*(X) = 1 yields the marginal coverage.

2. Taking ®*(X) = #(X) yields mixture- conditional coverage, where we guarantee cover-
age linearly reweighted with 7 (X).

3. (What we used) Taking ®*(X) = (1{T'(X) = 1},...,1{T(X) = K})T where T'(X) =
arg maxye[x) Tx(X) yields topic-conditional coverage, where the topic is defined as the
latent distribution with the highest mixture proportion weight.

Through our experiments we observed that in high-dimensional settings, coverage using SpeedCP is
primarily affected by the RKHS component, fy« rather than the linear term. If more prior informa-
tion is available on the conditional distribution, and the goal is to achieve more precise conditional
coverage at level 1 — o, one may instead calibrate scores using a function class restricted to the linear
term, as in |Gibbs et al.| (2023). However, the inclusion of the RKHS component can lead to smaller
prediction sets even without those additional prior structures. Further investigation is needed to de-
termine whether choosing ®*(X) as the indicators of topics, or the latent embeddings, improves
performance under varying covariate dimensionality p or the signal-to-noise ratio in X.

D.2 REAL DATA EXPERIMENT

D.2.1 MOLECULE GRAPHS

We provide additional results of the molecule dataset example in Section[3] In this experiment, we
consider the intercept for the linear term, ®*(X;) = 1. We plot the Voronoi partitioning in Figure
and mean prediction set size across partitions in Figure [f] Here, we subsample 2000 molecule
graphs at each run with 50 runs in total, and split into 1000/500/500 training, calibration, and test
points. Our method, SpeedCP, and SplitCP construct the smallest prediction sets overall. However,
while SplitCP applies a single global cutoff across the entire PC space, SpeedCP adapts to the local
structure of the embeddings. For instance, in the QM9 dataset we find that SpeedCP produces
slightly larger prediction sets in sparser regions of the PC space (e.g., partitions 2, 4, and 6), which
allows it to maintain consistent 0.9 coverage across all partitions.

D.2.2 ARXIV ABSTRACTS

We apply pLSI, the topic modeling approach described in Section [B.I} to the abstract-word fre-
quency matrix to uncover latent topics. We use the estimated mixture proportions 7 (X) as in-
puts for all methods. For SpeedCP and CondCP, we additionally set the linear representation
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Figure 5: Voronoi tessellation of the PC space. We plot PC representation of graph embeddings
where each color denotes each random subsample of the dataset.
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Figure 6: Prediction set size on fixed partitions of the PC space for each molecule dataset. We use
PCA on the last layer embeddings of GNN with K = 3 dimensions.

®*(X;) as an one-hot encoding of the topic: ®*(X) = (1, 1{T(X) = Geometry}, 1{T(X) =

Algebra}, 1{T(X) =ML}, 1{T(X) = Vision}, 1{T(X) = Quantum})T. Figuredisplays
the top words for each estimated topic, while Figure [§] shows the proportion of documents in each
estimated topic. At a resolution of K = 5, the topics are readily interpretable and correspond to
distinct subfields within mathematics, statistics, and computer science. pLSI estimates soft assign-
ments 7(X;) € R, representing mixture proportions over the topics, which we use as inputs to
SpeedCP, CondCP, PCP, and RLCP.
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Figure 7: Latent topics of ArXiv abstracts identified by probabilistic latent semantic indexing (pLSI),
a topic modeling approach. We plot the top 20 words with the largest weights for each topic. We
name each topic as Geometry, Algebra, Machine Learning, Computer Vision, and Quantum theory
based on the top words.
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Figure 8: Distribution of the most likely topic over all abstracts with n = 5000.

D.2.3 BRAIN TUMOR MRI

We train a CNN classifier /i(-) on 2,000 images and extract the 256-dimensional NN features from
the last layer. We report the performance of the CNN classifier ji(-) in Figure EL which shows the
evaluation metrics on the training and validation sets.

Test Set Confusion Matrix

Training Set Confusion Matrix Calibration Set Confusion Matrix
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Figure 9: Evaluation of the CNN classifier on the Brain Tumor MRI dataset.
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Using another 2,400 images for calibration, we compute conformal scores S; = |1(X;) — y;| and
apply our RKHS path-following quantile regression in the latent space to obtain thresholds at level
a=0.1.

In this experiment, we evaluate both marginal coverage and per-label (predicted-label) coverage
]P’(Yn+1 € é:and(Xn"rl) | f(Xpt1) = y) using 600 test images over 50 simulation trials. We
exclude CondCP from the analysis because a single simulation takes over 50,000 seconds and the
algorithm fails to converge. For comparison, we perform calibration using the 256-dimensional
neural network features directly as the embedding 7 (-). To further reduce dimensionality, we apply

a post hoc PCA to rank 8 on these features; the resulting principal components define 7 : X — RS,

Using 256-dim features from NN. We include illustrative results corresponding to Table |3| from
the main paper. Empirically, the cutoffs produced by SplitCP and RLCP are effectively identical
in our high-dimensional setting. Intuitively, RLCP’s locality weights become uninformative in high
dimensions (the distance metric loses discriminative power), so RLCP reduces to uniform weighting
over the calibration set, recovering the SplitCP cutoff.

Table 5: Summary statistics of conformal cutoffs (marginal and by predicted label) using the 256-
dim features from NN as input space for conformal prediction.

Method Mean Std Min Max

Marginal
SpeedCP(1) 0.2662 0.0908 0.0012  0.9985
SpeedCP(®*)  0.2828 0.0820 0.0025 0.9714

SplitCP 0.3482 0.0091 0.3271 0.3660
RLCP 0.3482 0.0091 0.3271 0.3660
PCP 0.2310  0.2899  0.0000  0.9984

g = healthy
SpeedCP(1) 0.2500 0.0954 0.0012  0.9938
SpeedCP(®*)  0.2662 0.0819 0.0025 0.9533

SplitCP 0.3482 0.0091 0.3271 0.3660
RLCP 0.3482 0.0091 0.3271 0.3660
PCP 0.2818 0.2904 0.0000 0.9984

9 = tumor
SpeedCP(1) 0.2758 0.0866 0.0963 0.9985
SpeedCP(®*)  0.2925 0.0805 0.0952 0.9714

SplitCP 0.3482 0.0091 0.3271 0.3660
RLCP 0.3482 0.0091 0.3271 0.3660
PCP 0.2012  0.2855 0.0000 0.9984
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Figure 10: Predicted-label conditional coverage on the Brain Tumor MRI test set under the PCA-
based model. Calibration is performed using the linear feature map ®*(X) = (1, 1{a(X) =

healthy}, 1{a(X) = tumor})T under the 256-dim features layer from NN.
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Figure 11: Predicted-label conditional coverage on the Brain Tumor MRI test set by calibrating with
the intercept only ®*(X) = 1 under the 256-dim features layer from NN.

Using principle components. To further reduce dimensionality, we extract features from the neu-
ral network and project them onto a low-rank embedding via PCA with K = 8§, fitted on the first
2,000 training samples. SplitCP attains similar coverage but requires more conservative sets in
lower-dimensional space, whereas our method delivers narrower sets with near-nominal predicted-
label coverage. RLCP and PCP tend to over-cover, particularly for the healthy class as well, and ex-
hibit unstable cutoffs with high variance and frequent near-zero values (see Table[7). Consequently,
even after dimensionality reduction, RLCP and PCP produce overly conservative conditional cover-
age.

Compared to results using higher-dimensional features, the low-rank projection further reduces the
cutoff without compromising conditional guarantees (comparing Table [3] with [§), thereby yielding
narrower prediction sets.

Table 6: Mean coverage and prediction set size across predicted labels in the MRI dataset under the
PCA-based model.

Method Target coverage (1 — a = 0.9) Prediction set size Time (seconds)
Marginal Healthy Tumor Marginal Healthy Tumor
SpeedCP(1) 0.910+£0.01  0.901 +£0.02 0.915+0.01 0.239+0.07 0.230+0.07 0.244 +0.08 286.1 £14.2
SpeedCP(®*) 0.9054+0.02 0.898 +£0.03 0.900£0.02 0.247+0.08 0.241+0.08 0.251 +0.08 294.54+20.9
SplitCP 0.901 £0.01 0.893+0.02 0.906+0.01 0.3504+0.00 0.3504+0.00 0.350+0.00 < 0.01
PCP 0.906 £0.02  0.925+0.03 0.895+0.02  0.230£0.27 0.279+0.26  0.200 £0.26 130.1 £ 28.9
RLCP 0916+0.01 0.926+0.02 0.9114+0.02 0.359+0.38 0.388+0.37 0.3424+0.38 2.095 £0.13
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Figure 12: Predicted-label conditional coverage on the Brain Tumor MRI test set under the PCA-
based model. Calibration is performed using the linear feature map ®*(X) = (1, 1{a(X)

healthy}, 1{i(X) = tumor})T.
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Figure 13: Predicted-label conditional coverage on the Brain Tumor MRI test set by calibrating with
the intercept only ®*(X) = 1.

Table 7: Summary statistics of conformal cutoffs (marginal and by predicted label) using PCA-based
model. SpeedCP(®*) calibrates scores with a linear term that includes predicted labels, whereas
SpeedCP(1) uses an intercept-only term.

Method Mean Std Min Max

Marginal

SpeedCP(1) 0.2391 0.0738 0.0654 0.8641
SpeedCP(®*)  0.2470 0.0805 0.0442 1.2279

SplitCP 0.3505 0.0087 0.3315 0.3729
RLCP 0.3594 0.3797 0.0000 0.9984
PCP 0.2301 0.2672  0.0000 0.9984

Y = healthy

SpeedCP(1) 0.2300 0.0697 0.0654 0.7414
SpeedCP(®*)  0.2409 0.0785 0.0442 1.2279

SplitCP 0.3506 0.0088 0.3315 0.3729
RLCP 0.3883 0.3711 0.0000 0.9984
PCP 0.2788 0.2654 0.0000 0.9984

Y = tumor
SpeedCP(1) 0.2445 0.0756 0.1486 0.8641
SpeedCP(®*)  0.2506 0.0815 0.0615 1.2225

SplitCP 0.3505 0.0087 0.3315 0.3729
RLCP 0.3420 0.3838 0.0000 0.9984
PCP 0.2009 0.2641  0.0000 0.9984
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D.3 DETAILS ON COMPUTATION RESOURCES

All experiments were conducted on a cloud-based computing cluster. Each job was allocated 4
CPU cores and 4 GB of memory. No GPUs were used. For CondCP, we used the MOSEK solver
in CVXPY to solve the underlying convex optimization problems. All code was implemented in
Python3 and run in a consistent computing environment to ensure reproducibility.
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