Where to Edit? : Complementary Protein Property
Control from Weight and Activation Spaces

Nathan Choi* Armaity Katki*
California State University, Fullerton University of Georgia
mchoi2159@gmail.com armaitykatki@gmail.com
Son Sophak Otra George Flint!
Northeastern University University of California, Berkeley
sonsopheakotral2@gmail.com georgeflint@berkeley.edu
Kevin Zhu' Sunishchal Dev’
Algoverse Al Research Algoverse Al Research
kevin@algoverseacademy.com dev@algoverseairesearch.org
Abstract

Protein language models (PLMs) are powerful tools for protein engineering, but re-
main difficult to steer toward specific biochemical properties, where small sequence
changes can affect stability or function. We adapt two prominent unsupervised
editing methods: task arithmetic (TA; specifically, Forgetting via Negation) in
weight space and feature editing with a sparse autoencoder (SAE) in activation
space. We evaluated their effects on six biochemical properties: net charge at pH 7,
hydrophobicity, aromaticity, instability index, molecular weight, and isoelectric
point of generations from three PLMs (ESM3, ProGen2-Large and ProLLaMA).
Across models, we observe complementary efficacies: TA more effectively controls
some properties, while SAE more effectively controls others. Property response
patterns show some consistency across models. We suggest that the response
pattern of biochemical properties should be considered when steering PLMSEI

1 Introduction

Protein language models (PLMs) have emerged as important means for protein engineering, learning
patterns directly from amino acid data [Rives et al.|[2021} [Lin et al.| 2023]]. While these models have
assisted significant advances in protein structure prediction and functional understanding, approaches
to steering them remain underexplored in the literature.

In natural language processing (NLP), recent progress in model editing and interpretability has pro-
duced methods to modify model behavior without retraining, including task arithmetic (TA) [Ilharco
et al.}2022] and sparse autoencoder-based methods (SAEs) [Parsan et al., 2025]]. The efficacies of
these approaches suggest that learned representations can be decomposed and manipulated to control
specific output properties.

Steering protein language models (PLMs) presents distinct challenges compared to text generation.
In biology, generated sequences must remain functional - changes must preserve valid protein folding
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and maintain essential biological and chemical properties. Unlike text, where creative variation is
acceptable, small changes in amino acid sequences can heavily disrupt structure or function [Rives
et al.;|2021]. Additionally, important biological properties like charge or hydrophobicity are often
intertwined within the model’s internal representations, making it difficult to isolate and modify one
property without unintentionally altering others [Ilharco et al.,[2022, [Simon and Zoul [2024]].

This work investigates whether PLMs can be steered toward target properties using unsupervised
editing methods. We study two steering techniques, TA and SAEs, on three PLM models: ESM3,
ProGen2-Large, and ProLLaMA. We focus on six biologically meaningful properties: net charge
at pH 7, hydrophobicity using GRAVY (Grand Average of Hydropathy—the average Kyte—Doolittle
hydropathy per residue, measuring a sequence’s overall hydrophobic vs. hydrophilic character),
aromaticity, instability index, molecular weight, and isoelectric point.

Our study is guided by the following questions: (1) Can TA or SAEs steer PLMs toward sequences
with desired properties? (2) How do these methods compare in efficacy and stability?

To answer these questions, we fine-tune the models on non-examples of a target property and invert
the differences in weights—a task arithmetic process called “forgetting via negation" introduced in
[lharco et al.|[2022]. We also train SAEs to identify latent directions aligned with the biochemical
properties and perform linear edits in activation space. We then identify which steering method is
more effective for each property.

By bridging controllability techniques from NLP to protein design, this work contributes to a
general-purpose framework for interpretable, property-guided biological sequence generation, while
accounting for the dual-use risk surface of PLMs and broader misuse vectors [Ekins et al., 2023}
Pannu et al., 2025].

2 Related work

Protein language models (PLMs) have allowed for large-scale unsupervised learning of biological
sequence representations. [Rives et al.|[2021]] trained transformer models on protein sequences and
showed that they encode structural and functional information. [Lin et al.| [2023]] further demonstrated
that PLMs trained on large-scale evolutionary data can accurately predict detailed protein structures.
These works are the foundation for the use of PLMs such as ESM in generative protein engineering.

Ilharco et al.|[2022] introduced TA as a mechanism to modify the behavior of the model through
vector operations in weight space. A task vector is computed by subtracting the weights of a base
model from a fine-tuned model, and applying this vector to a new model transfers or removes specific
capabilities. We apply this method to biological domains by fine-tuning on nonexamples of a property
and using vector negation to steer model outputs toward the desired property.

Parsan et al.|[2025] used SAEs to reveal interpretable directions in neural sequence model activations.
Simon and Zou| [[2024]] introduced INTERPLM, applying SAEs to PLMs and showing alignment
with biochemical properties. [Banerjee et al.[[[2025]] advanced this by automating neuron labeling
and modulation to guide protein generation. |Ackerman| [2024] bridged activation- and weight-based
control by tuning activation vectors into model weights. Complementing these, |Lv et al.| [2024]
proposed ProLLaMA, a protein language model enabling multi-property control, serving as a strong
baseline. These works inform our SAE-based activation steering to shift protein outputs toward
desired properties. Unlike prior SAE applications on PLMs, we cast SAE feature editing as an
unsupervised steering primitive and systematically compare it to weight-space task arithmetic across
three PLMs and six properties [Simon and Zou), 2024, Banerjee et al., 2025]].

Although techniques for modifying large models have advanced in NLP, their application to biological
sequence generation remains underexplored. In this work, we examine how such methods translate to
protein models, where generated sequences must preserve biological validity.

3 Methods

We evaluate three pretrained protein language models: ESM3 [Rives et al.,[2021]], ProGen2-large
[Nijkamp et al.,|2022], and ProLLLaMA J*|For all models, we generate 500 protein sequences of length

*https://huggingface.co/GreatCaptainNemo/ProLLaMA



100 as the standard evaluation setting. Baseline property distributions are established by scoring these
generated sequences with Biopython’s ProteinAnalysis. For fine-tuning experiments, we follow
the PLMInterp protocol and use the train split from the Hugging Face protolyze/plminterp
dataset [[Parsan et al., [2025]], which we use without modification.

3.1 Fine-Tuning

Fine-tuning serves as a supervised steering baseline. For each biochemical property, we curate subsets
of the PLMInterp dataset containing 1,000-2,000 sequences, with average sequence lengths between
100-150 amino acids. Each base model is fine-tuned separately on sequences enriched for the target
property. After training, we sample the new sequences and compute property scores.

3.2 Task Arithmetic (Forgetting via Negation)

Task Arithmetic (TA) is implemented as weight-space manipulation. Let 0,5 denote the weights
of a base model, and Ofeqyned those of the same model fine-tuned on non-examples. The task vector
is defined as A0 = Operuned — Obase- We apply Forgetting via Negation by subtracting this vector
from the base model: Ogeered = Opase — A. This operation steers the model away from non-example
behavior and toward the desired biochemical property without requiring additional retraining.

3.3 Sparse Autoencoders

As a third axis of model steering, we implement latent-space manipulation via Sparse Autoencoders
(SAESs). Unlike fine-tuning or weight-space arithmetic, SAE-based steering operates directly on
hidden activations, offering a lightweight and interpretable alternative. We train SAEs on the
intermediate representations of ESM3, progen, and prollama and then using activations from the final
transformer layer across 10,000 sequences sampled from the PLMInterp training split.

The SAE architecture compresses these activations into sparse latent codes using L1 regularization,
encouraging disentanglement of biochemical properties. Each latent unit is evaluated for correlation
with target properties (e.g., hydrophobicity, aromaticity, charge at pH 7, instability index, molecular
weight, and isoelectric point), as computed by Biopython’s ProteinAnalysis. At inference time,
we steer generation by modifying specific latent dimensions and decoding the altered representations
back through the SAE decoder into model activations, which are then used by the original model to
produce sequence logits.

This approach enables property-specific control without retraining the base model. Compared to
fine-tuning and Task Arithmetic, SAE steering offers finer granularity and interpretability, allowing
us to isolate and edit biologically meaningful features. We evaluate the impact of latent edits by
generating new sequences and analyzing shifts in property distributions. [3]

4 Results

We report results from 500 generated sequences (each 100 amino acids long) with 95% confidence
intervals for each property and model. Below we summarize effects per model, then synthesize
cross-model patterns. All statements refer directly to Tables[TH3]

ESM3. SAE provides the strongest positive shifts for charge and isoelectric point, while TA yields
the largest gain in hydrophobicity. Neither TA nor SAE achieves the intended decrease in aromaticity,
and both increase the instability index relative to Base (less stable). Molecular weight shows
conflicting scales across methods (TA substantially below Base, SAE far above), suggesting a units
or preprocessing discrepancy; we therefore treat ESM3 molecular-weight outcomes as inconclusive.

ProGen2-Large. TA most strongly increases charge and pl, whereas SAE is best for hydrophobicity;
fine-tuning is generally weaker on these targets. TA and SAE also raise molecular weight above Base.
Because the Base entries for aromaticity and instability appear malformed in the table, we refrain
from interpreting direction on those two properties for ProGen?2.
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Figure 1: Effects of Task Arithmetic (TA), Sparse Autoencoder (SAE), Fine-Tuned, and Base
across six biochemical properties for ESM3, ProGen2, and ProLLaMA. Bars show means over 500
sequences of length 100; error bars = 95% CI. Steering direction is noted (+) and (-). Brackets show
pairwise significance (ns, *, **, #%¥),

ProLLLaMA. SAE achieves the largest improvements in charge, hydrophobicity, and pl (with
TA close on hydrophobicity). Aromaticity shows a small method-dependent trade-off (TA slightly
reduces it; SAE slightly increases it). As with ESM3, both TA and SAE increase the instability index.
TA and SAE markedly increase molecular weight relative to Base and fine-tuning.

Trends across models. Weight- and activation-space editing reliably achieve the desired increases
in charge and pl, with TA strongest in ProGen2 and SAE strongest in ESM3/ProLLaMA. Hy-
drophobicity generally favors SAE, except in ESM3 where TA leads. Aromaticity is not uniformly
suppressible (ESM3 moves in the wrong direction; ProLLaMA shows small, opposing effects by
method). Instability tends to increase under both TA and SAE. Molecular weight typically rises under
TA/SAE (ProGen2/ProLLLaMA), but ESM3 results are inconsistent.

5 Discussion

Our results indicate that biochemical properties respond differently to steering techniques. In line with
our objectives, charge, pl, and (often) hydrophobicity move in the desired directions under editing,
while aromaticity and the instability index are harder to control. We attribute the “easy wins” to
properties that are largely compositional and therefore linearly available in the model’s representation
once amino-acid statistics are well learned [Rives et al.} 2021} [Lin et al} 2023]|. In contrast, aromaticity
(multifunctional and low-frequency) and instability (a composite, position/dipeptide-dependent score)
are not well captured by a single latent axis, making them less responsive to broad edits
et al} [1990, [Kyte and Doolittlel [T982]]. For TA, this is heightened in low-data clinical contexts, where
non-examples are easier to obtain than positive exemplars.

Task Arithmetic (TA) perturbs the model in weight space along a single task vector and is most
effective when the target signal is broadly distributed and approximately linear (e.g., enriching
Lys/Arg and reducing Asp/Glu for fcharge and 1pl) [[harco et all,[2022]|. This matches our strongest
TA gains on charge and pl, particularly in ProGen2. Sparse autoencoders (SAEs) instead factorize
activations into sparse, more monosemantic directions; editing those directions exposes controllable
knobs for entangled residue-pattern biases such as hydrophobicity [Parsan et al.} 2025}, [Simon and
[Zoul 2024 |Villegas Garcia and Ansuinil [2025]]. Consistent with this, SAE often outperforms TA




on GRAVY in ProGen2 and ProLLaMA, while TA remains competitive or best on ESM3. Recent
work that translates activation-space edits into weight-space adjustments further suggests a principled
bridge between these regimes [[Ackerman, |2024].

Layer profiling of PLMs shows that local chemistry emerges early and accumulates through middle
layers, while more global, structure/function signals consolidate from middle to later layers [Rives
et al.| 2021} [Lin et al., [2023]]. TA’s layer-global perturbation is therefore well matched to properties
represented across many layers (charge, pI). SAEs, by contrast, let us target the specific blocks
where a concept is crisply encoded; prior PLM SAE work reports thousands of interpretable features
spanning middle/late blocks that align with biochemical attributes, which accords with our SAE gains
on GRAVY and several pl/charge cases [Parsan et al.,|2025} |[Simon and Zou, [2024, |Villegas Garcia
and Ansuini, 2025]].

Prior work suggests that fine-tuning performs best when the target property is locally encoded,
chemically distinct, and provides a stable optimization signal (e.g., charge, aromaticity, instability)
[Rives et al., 2021} |Guruprasad et al., [{1990]. It tends to struggle on properties that are entangled,
globally distributed, or in tension with other constraints (e.g., hydrophobicity, molecular weight,
pD [Kyte and Doolittle} 1982, [Expasy Bioinformatics Resource Portall, 2022] |Villegas Garcia and
Ansuini, 2025]. In our experiments, we observe partial alignment with these expectations: fine-tuning
is sometimes helpful for charge (ESM3) but comparatively weaker or even counter-directional on
hydrophobicity (ProGen2) and charge (ProLLaMA). These mixed outcomes reinforce the value of
unsupervised editing as a complementary tool rather than a replacement.

We find the following guidline: favor TA when the target is largely compositional or linearly separable
in existing representations (charge, pl), and favor SAE when the target exists but is entangled across
features (GRAVY). For composite or rare objectives (instability, aromaticity), layer- and feature-
specific edits are needed; combining SAE-identified units with small weight-space adjustments may
reduce unwanted co-movements [[Ackerman, 2024, |Parsan et al., [2025]).

Limitations. Our analysis is sequence-level and property-driven; we did not localize causality
layer-by-layer. Future work should pair per-layer SAE edits with activation patching and controlled
ablations to identify the mediating blocks for each property [Parsan et al.l 2025 [Simon and Zou),
2024], and incorporate structure-aware readouts alongside sequence-level scores [Rives et al.| 2021}
Lin et al.,[2023]].

Broader Impacts. This work develops techniques for steering protein language models toward
specific biological properties, enhancing controllability in protein design and accelerating bioengi-
neering. Positive impacts include enabling targeted sequence generation for drug discovery and
enzyme optimization, and constraining outputs to safer property ranges (e.g., avoiding extreme charge
or hydrophobicity) to reduce risks like aggregation or toxicity. Misuse, such as the generation of
harmful peptides, remains a concern.

6 Conclusion

We show that weight- and activation-based editing models yield complementary efficacies in steering
six biochemical properties with the Evolutionary Scale Modeling protein language model, and suggest
that different biochemical properties are encoded in distinct representational spaces.
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A Result Tables

Property TA SAE Fine-Tuned Base
charge at pH 7 mean=1.29 mean=1.41 mean=1.35 mean=0.97
std=1.60 std=1.98 std=10.20 std=8.28
95% CI==%0.020 95% CI==%0.012 95% CI==%0.89 95% Cl==10.22
hydrophobicity mean=1.91 mean=1.63 mean=1.68 mean=1.11
std=1.10 std=1.22 std=0.99 std=0.34
95% Cl=+0.21 95% CI1==%0.08 95% C1=%0.09 95% CI=+0.008
aromaticity mean=0.08 mean=0.05 mean=0.0022 mean=0.0018
std=0.12 std=0.07 std=0.0075 std=0.0052
95% CI=%0.0097  95% CI=%0.0049  95% CI=40.0065 95% CI==£0.0017
instability_index mean=20.88 mean=53.8912 mean=22.24 mean=19.87
std=30.44 std=41.9284 std=37.67 std=30.29

molecular_weight

isoelectric_point

95% CI=%2.11

mean=3874.43
std=1015.30

95% CI=%100.90
mean=4.50
std=1.32

95% Cl=+0.493

95% Cl=12.32
mean=42781.5
std=4291.7

95% CI=1255.716
mean=10.286
std=2.212

95% CI1=%£0.03961

95% CI=+3.35
mean=8280.03
std=1461.54

95% Cl=1129.94
mean=8.07
std=3.10

95% CI=10.27

95% Cl=%3.29
mean=7829.32
std=1392.28
95% Cl=+111.3
mean=3.89
std=1.29

95% CI=10.11

Table 1:

Results on 500 sequences of length 100 using the ESM3 model.

Property TA SAE Fine-Tuned Base
charge at pH 7 mean=9.085 mean=1.32 mean=0.0090 mean=-0.4224
std=12.15 std=1.73 std=9.010 std=3.2994
95% CI=+1.68 95% CI=10.05826 95% CI=%0.79 95% CI=10.4619
hydrophobicity mean=0.31 mean=1.65 mean=-0.20 mean=-0.1808
std=0.80 std=1.28 std=0.91 std=0.8492
95% CI==%0.11 95% CI=%0.08 95% CI==0.080 95% Cl==%0.1189
aromaticity mean=0.022 mean=0.04 mean=0.025 mean=0.0236
std=0.027 std=0.08 std=0.037 std=0.0367
95% CI=1+0.0038  95% CI=40.005 95% CI=10.003 95% CI=+0.0051
instability_index mean=39.49 mean=52.4 mean=100.09 mean=93.08
std=30.42 std=47.3 std=76.27 std=72.68

molecular_weight

isoelectric_point

95% Cl=14.22
mean=10685.89
std=642.44

95% CI=1+89.04
mean=10.79
std=2.23

95% Cl=+0.31

95% CI=%2.91

mean=42635.5
std=4330.7

95% Cl=1268.4
mean=9.92
std=2.41

95% Cl=10.15

95% Cl=16.72
mean=9243.45
std=1871.97

95% Cl=1164.09
mean=6.00
std=1.70

95% Cl=10.15

95% Cl=%6.37

mean=8994.6477
std=2097.8866

95% CI1=1290.7522
mean=6.0813
std=1.7428

95% Cl=10.2440

Table 2: Results on 500 sequences of length 100 using the ProGen2-Large model.



Property TA SAE Fine-Tuned Base
charge at pH 7 mean=1.54 mean=1.88 mean=-7.40 mean=-7.32
std=1.37 std=1.42 std=3.48 std=3.29
95% CI=%0.0471  95% CI=%0.03927 95% CI==%0.30 95% CI=%0.29
hydrophobicity mean=1.65 mean=1.72 mean=-0.12 mean=-0.11
std=1.21 std=1.35 std=0.20 std=0.19
95% CI=10.28 95% CI=+0.085 95% CI=+0.017 95% CI=+0.017
aromaticity mean=0.031 mean=0.045 mean=0.041 mean=0.042
std=0.076 std=0.98 std=0.014 std=0.19
95% CI=%0.0042  95% CI==%0.006 95% CI=%0.001 95% CI=%0.017
instability_index mean=39.7 mean=49.8 mean=29.86 mean=30.00
std=44.3 std=45.2 std=12.09 std=11.99
95% CI=%2.55 95% CI=+2.80 95% CI=%1.06 95% CI=%1.05
molecular_weight mean=41735.7 mean=42890.0 mean=10540.82 mean=10550.98
std=4189.3 std=4400.1 std=226.39 std=229.32
95% CI=1259.4 95% CI=%272.0 95% CI=119.84 95% CI=%20.10
isoelectric_point mean=9.45 mean=9.75 mean=4.70 mean=4.74
std=2.20 std=2.35 std=0.64 std=0.61

95% CI==%0.175

95% CI==%0.145

95% CI==%0.06

95% CI==%0.053

Table 3: Results on 500 sequences of length 100 using the ProLLaMA model.

B Compute Resources

B.1 Base Model

Base generations for ESM3, ProGen2-Large, and ProLLaMA were performed on the A40. For
each model, we generated 500 sequences of length 100 amino acids and computed properties with
ProteinAnalysis. Wall-clock time varied by model and batch size; no out-of-memory (OOM)
events occurred on the A40 configuration.

B.2 Fine-Tuning

Fine-tuning runs (per property and per model) were conducted on the same A40 instance. We used the
PLMInterp train split without modification and trained small property-specific adapters/checkpoints
as described in Section[3.1] After training, we sampled 500 sequences (100 aa) per run and scored
the same six properties. Training and evaluation completed reliably on the A40 with default mixed-
precision disabled unless otherwise specified.

B.3 Task Arithmetic

TA required one fine-tuned checkpoint per property to construct the task vector and a base checkpoint
for application. Both fine-tuning (for vector construction) and steered generation were executed on
the A40. Applying the task vector and subsequent sampling did not require additional optimization
steps and ran comfortably within A40 memory limits.

B.4 Sparse Autoencoder (SAE)

For the SAE, the training was conducted by using regular GPU for the runtime. Depending on the
different property we had to calculate for, that dictates the runtime for the results to display. For this
setup specifically, we imported an existing SAE github repo that ran a base model of ESM. Based on
the different runtimes, the average runtime was 15-20 minutes.



C Licenses and Attribution

We used the following external models and datasets in our experiments:

ESM3. We use the ESM3 model family as referenced in our paper (Section [3). Accessed
via the authors’ official distribution/model card; used under the license specified there. We
do not redistribute weights.

ProGen2-Large [Nijkamp et al.,[2022]]. Access via the authors’ distribution/model card;
used under the license specified by the authors. We do not redistribute weights.

ProLLaMA. Hugging Face model card. Used under the license on the model card. We do
not redistribute weights.

PLMInterp Dataset (Protolyze): We used the PLMInterp dataset provided by Parsan
et al. [Parsan et al.| 2025], available on Hugging Face at https://huggingface.co/
datasets/protolyze/plminterp. This dataset is provided under the CC BY 4.0 License.

Biopython Library: Used for computing protein properties (GRAVY, charge at pH 7).
Licensed under the Biopython License Agreement, compatible with the BSD License.
Available athttps://biopython.org/|

SAE Codebase: The SAE implementation was adapted from https://github.com/
johnyangl01/reticular-sae. Licensed under MIT License.

All external assets were used in accordance with their respective licenses. No modifications were
made that would violate redistribution or usage terms.


https://huggingface.co/GreatCaptainNemo/ProLLaMA
https://huggingface.co/datasets/protolyze/plminterp
https://huggingface.co/datasets/protolyze/plminterp
https://biopython.org/
https://github.com/johnyang101/reticular-sae
https://github.com/johnyang101/reticular-sae
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