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Abstract
As language models become integral to critical001
workflows, assessing their behavior remains a002
fundamental challenge – human evaluation is003
costly and noisy, while automated metrics pro-004
vide only coarse, difficult-to-interpret signals.005
We introduce natural language unit tests, a006
paradigm that decomposes response quality into007
explicit, testable criteria, along with a unified008
scoring model, LMUNIT, which combines009
multi-objective training across preferences,010
direct ratings, and natural language rationales.011
Through controlled human studies, we show this012
paradigm significantly improves inter-annotator013
agreement and enables more effective LLM de-014
velopment workflows. LMUNIT achieves state-015
of-the-art performance on evaluation bench-016
marks (FLASK, BigGenBench) and compet-017
itive results on RewardBench. These results val-018
idate both our proposed paradigm and scoring019
model, suggesting a promising path forward for020
language model evaluation and development.021

1 Introduction022

The evaluation of generative language models023

remains one of the most fundamental challenges024

in natural language processing (Jones and Galliers,025

1995; Deriu et al., 2021; Smith et al., 2022; Chang026

et al., 2024) – it determines how we measure027

progress and shapes the field’s trajectory. As028

these models transition from research prototypes029

to production systems, users increasingly rely on030

them for critical workflows (Lin et al., 2024a),031

creating an urgent need for evaluation methods that032

identify response strengths/weaknesses, ensure033

reliability, and prevent costly regressions. Yet034

current approaches fall short: human evaluation035

is expensive and struggles to discern subtle dif-036

ferences among top models (Hosking et al., 2023;037

Clark et al., 2021; Karpinska et al., 2021), while038

automated metrics compress response quality into039

coarse scores (Stent et al., 2005; Liu et al., 2016)040

that rely on implicitly learned, often biased criteria041

Figure 1: Natural Language Unit Tests: Overview of
the three-step process: (1) unit test creation, (2) LMUnit-
based scoring with natural language rationales, and (3)
score aggregation for overall quality assessment.

(Dubois et al., 2024a; Shankar et al., 2024; Zhang 042

et al., 2024a). As models become more deeply 043

integrated into essential workflows, it is imperative 044

that our evaluation methodologies evolve in 045

tandem, empowering LLM practitioners to reliably 046

detect subtle failures, meaningfully distinguish 047

among top-performing systems, and generate 048

actionable insights that drive improvements. 049

We focus on measuring response quality - one of 050

the most critical challenges in evaluating language 051

models. Defining “response quality” is inherently 052

complex, depending on multiple factors including 053

factual accuracy, logical coherence, and alignment 054

with user objectives, which vary by domain, ap- 055

plication, style, and context (Mehri and Eskenazi, 056

2020a; Ye et al., 2023; Krishna et al., 2023). 057

Existing approaches struggle with this complexity: 058

(1) reference-based comparisons fail in open-ended 059

scenarios where no single “correct” response exists 060

(Liu et al., 2016; Lowe et al., 2017), (2) human 061

evaluations become inconsistent as models grow 062

more capable and errors subtler (Walker et al., 063

2007; Pan et al., 2024; Christiano et al., 2023), and 064

(3) preference models and LLM judges compress 065

nuanced assessments into opaque metrics that are 066

difficult to interpret or steer (Dubois et al., 2024b; 067

D’Oosterlinck et al., 2024; Singhal et al., 2023). 068
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To address these limitations, we propose natural069

language unit tests, a paradigm that decomposes070

response quality into explicit, testable criteria071

that humans can define, refine, and guide over072

time (Figure 1). While this approach enhances073

transparency, reliably scoring and integrating these074

fine-grained assessments while maintaining human075

values alignment remains a key challenge.076

Building an effective scoring model for unit tests077

presents a significant challenge: it must accurately078

evaluate a wide range of criteria – ranging from079

broad notions of quality to detailed rubrics that cap-080

ture intricate, context-specific requirements. Ex-081

isting approaches each address part of the problem:082

prompted LLM judges can be instructed to consider083

certain criteria (Liu et al., 2023), but their accuracy084

is limited by generic instruction-following abilities085

and the inability to learn directly from preference086

data (Wang et al., 2024b; Zhong et al., 2022);087

preference models, while closely aligned with088

human judgments, lack promptability and struggle089

to handle more granular, human-defined criteria090

(Singhal et al., 2023; Lambert and Calandra, 2023).091

To address these challenges, we propose LMU-092

NIT, a unified modeling approach that optimizes093

large language models as preference models while094

supporting flexible, user-defined evaluation criteria.095

By combining diverse training signals with natural096

language rationales, LMUNIT achieves strong097

results across preference modeling, direct scoring,098

and fine-grained unit test evaluations, laying a099

robust foundation for more adaptive and transpar-100

ent evaluation methodologies. These rationales101

are optional at inference time but enabling them102

allows further interpretability of scores.103

To demonstrate our paradigm’s effectiveness104

in enabling human stakeholder intervention,105

we assess its real-world impact through human106

studies. In a controlled annotation study, expert107

raters achieved higher inter-annotator agreement108

when evaluating outputs against explicit unit tests109

compared to standard preference annotations.110

Additionally, in a case study with LLM developers,111

LMUNIT’s transparent, test-driven evaluations112

enabled identification of more errors than conven-113

tional LLM judges, demonstrating the value of our114

proposed paradigm115

Our key contributions include: (1) proposing the116

paradigm of natural language unit tests, and validat-117

ing it at scale, (2) developing LMUNIT as a unified118

scoring model that achieves state-of-the-art perfor-119

mance, (3) showing the benefits and challenges of120

effective unit test creation and weighting strategies, 121

(4) demostrating the importance of rationales when 122

incorporating them as part of the training data. (5) 123

validating our approach through human studies that 124

demonstrate improved inter-annotator agreement 125

and more effective LLM development workflows. 126

2 Related Work 127

2.1 Evaluation of Generative Language Models 128

While human evaluation remains the gold standard 129

for LLMs (Ouyang et al., 2022; Touvron et al., 130

2023), its scalability limitations (Hosking et al., 131

2023; Schoch et al., 2020) have driven the 132

development of automated approaches. These 133

include word overlap metrics (Papineni et al., 2002; 134

Lin, 2004), embedding-based scoring (Yuan et al., 135

2021; Zhang et al., 2019), model-based evaluations 136

(Lowe et al., 2017; Mehri and Eskenazi, 2020b; 137

Zhong et al., 2022; Saad-Falcon et al., 2023), 138

reward modeling (Christiano et al., 2017; Askell 139

et al., 2021; Kim et al., 2023), and LM judges 140

(Zheng et al., 2023; Liu et al., 2023; Es et al., 141

2023; Ravi et al., 2024; Kim et al., 2024a; Li et al., 142

2024b). However, automated methods often lack 143

interpretability and can show biases that diverge 144

from human judgments (Shankar et al., 2024; Wang 145

et al., 2023b; Chaudhari et al., 2024). Recent work 146

has focused on developing fine-grained evaluators 147

(Ye et al., 2023; Wang et al., 2024b; Ribeiro et al., 148

2020; Lin and Chen, 2023; Cook et al., 2024) and 149

unifying evaluation paradigms (Wang et al., 2024b; 150

Kim et al., 2024c; Wu et al., 2023). For code gener- 151

ation specifically, LLM-based unit test generation 152

has improved performance evaluation through 153

compiler-compatible synthetic tests (Chen et al., 154

2022; Yuan et al., 2023; Saad-Falcon et al., 2024). 155

2.2 LM Judges 156

LLMs can be prompted to evaluate responses with- 157

out additional training, showing high correlation 158

with human ratings (Liu et al., 2023; Wang et al., 159

2023a; Fu et al., 2023; Chiang and Lee, 2023; 160

Es et al., 2023; Kocmi and Federmann, 2023; Li 161

et al., 2024a). While some approaches focus on 162

in-context examples and evaluation instructions 163

(Fu et al., 2023), others leverage chain-of-thought 164

prompting (Liu et al., 2023) or fine-tune specialized 165

judges (Saad-Falcon et al., 2023; Tang et al., 2024). 166

However, these approaches face key limitations: 167

poor generalization across evaluation tasks (Es 168

et al., 2023; Saad-Falcon et al., 2023; Ravi et al., 169

2024) and systematic biases in position, verbosity, 170
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and self-preference (Chen et al., 2024; Pan et al.,171

2024; Zheng et al., 2023; Koo et al., 2023).172

2.3 Reward Models173

Reward models, while widely adopted for evalu-174

ating and aligning language models (Bradley and175

Terry, 1952; Christiano et al., 2017; Liu and Zeng,176

2024), face fundamental challenges: low inter-177

annotator agreement (65% - 75% - early RLHF178

papers) in human preference data (Askell et al.,179

2021; Ouyang et al., 2022; Wang et al., 2024a),180

noisy and inconsistent preferences (Dubois et al.,181

2024b), and spurious correlations like favoring182

longer responses (Lambert and Calandra, 2023;183

Singhal et al., 2023; Dubois et al., 2024a). Recent184

work shows promise in addressing these: Helpsteer-185

2 (Wang et al., 2023c) improved performance186

through better preference data collection. GenRM-187

COT (Zhang et al., 2024b) and EvalPlanner (Saha188

et al., 2025) used chain-of-thought reasoning for189

more reliable evaluation. However, challenges with190

reward underspecification and alignment persist191

(Eisenstein et al., 2023; Chaudhari et al., 2024).192

2.4 Fine-Grained Evaluators193

Breaking down complex evaluation problems has194

been foundational in NLP (Walker et al., 2000)195

and remains vital for language models (Saha et al.,196

2024). While early approaches used fixed evalua-197

tion dimensions (Liu et al., 2016; Lowe et al., 2017;198

Zhong et al., 2022), modern language models en-199

able more dynamic, fine-grained criteria (Mehri200

and Eskenazi, 2020a; Lin and Chen, 2023; Ye et al.,201

2023; Kim et al., 2024b), though pre-defined cri-202

teria may not generalize well to real-world set-203

tings (Shankar et al., 2024). Our work builds204

upon CheckList (Ribeiro et al., 2020), which intro-205

duced structured behavioral testing for NLP mod-206

els, TICK (Cook et al., 2024), which demonstrated207

decomposition benefits through model-generated208

criteria, and CheckEval (Lee et al., 2025), which209

showed that using a decomposition list of bi-210

nary questions can effectively improve the average211

agreement across evaluator models and also reduce212

the score variance for text-generation tasks. We ex-213

tend these approaches by training a dedicated scor-214

ing model that synthesizes multiple training sig-215

nals, conducting broader evaluations across diverse216

benchmarks, and validating through human studies.217

We have further discussion of how LMUNIT218

relates to recent work in Appendix A.4219

2.5 Unified Evaluators 220

Recent work has focused on unifying different 221

evaluation paradigms. DJPO (Wang et al., 2024b) 222

improves human correlation by training LM judges 223

through preference optimization (Rafailov et al., 224

2023), while Prometheus (Kim et al., 2024a,c) 225

combines direct assessment and pairwise ranking 226

capabilities through model weight merging. These 227

approaches, along with fine-grained reward 228

functions (Wu et al., 2023), show promise in both 229

human and automatic evaluations. 230

LMUNIT extends these unified approaches 231

while addressing limitations in interpretability, 232

generalization, and fine-grained control. It 233

decomposes evaluation into explicit testable 234

criteria defined and refined by human experts, 235

leveraging both LM judges (natural language 236

understanding, flexible criteria) and reward models 237

(precise scoring, preference learning) to enable 238

reliable, interpretable, and actionable evaluation 239

adaptable to diverse real-world requirements. 240

3 LMUNIT Methodology 241

To enable reliable scoring of natural language unit 242

tests, we develop LMUNIT, a unified modeling 243

approach that combines multi-objective training 244

with natural language rationale generation. The 245

key challenge lies in effectively integrating diverse 246

training signals while maintaining both high 247

accuracy and interpretable outputs. Here, we 248

detail our approach to addressing this challenge 249

through careful problem formulation, synthetic 250

data generation, and our training methodology. 251

3.1 Problem Formulation 252

The core challenge in language model evaluation 253

is developing scoring models that can reliably 254

evaluate responses against specific criteria while 255

providing interpretable reasoning. Our formulation 256

centers on unit tests: given a unit test u, prompt 257

p, and response r, we train models to generate 258

both rationales and scores through the mapping 259

f(u, p, r)→ rationale, score. 260

Our approach builds on two existing forms of 261

evaluation data: direct rating data (p,r)→ score 262

and preference data (p,r1,r2)→ preference. We 263

extend these into unit test-based formats: 264

1. Unit test direct data: (u, p, r) → score or 265

(u, p, r)→ rationale, score 266

2. Unit test preference data: (u, p, r1, r2)→pref 267

or (u, p, r1, r2)→ rationale1, rationale2, pref 268
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Figure 2: LMUNIT Training Setup: We leverage several different data sources (direct rating, preference, unit test
direct, unit test preference) along with three different loss functions, to optimize the fine-grained scoring of LMUNIT.

This formulation leverages two complementary269

data sources: naturally occurring preference and270

rating data to capture human preferences and271

calibrate against absolute quality scales, alongside272

synthetic data that enables fine-grained evaluation273

of specific criteria with interpretable rationales. At274

inference time, LMUNIT can flexibly operate with275

or without rationale generation.276

3.2 Synthetic Data Pipeline277

Our data generation pipeline operationalizes the278

unit test formulation through three key stages, pro-279

ducing examples scored on a 1-5 scale where higher280

scores indicate better satisfaction of the criteria:281

1. Unit Test Generation: For each prompt,282

we generate diverse unit tests targeting fine-283

grained quality criteria. To encourage focus284

on response-specific details, we optionally285

provide one or two responses during genera-286

tion. We also maintain a set of coarse-grained287

global tests (see Table 11 for details) to ensure288

broad coverage of general quality dimensions.289

2. Contrastive Response Generation: For290

each (u, p, r) triplet, we generate contrastive291

responses that vary systematically in how well292

they satisfy the unit test criteria. This creates293

rich training signal for learning fine-grained294

quality distinctions.295

3. Rationale and Score Generation: For a sub-296

set of examples, we generate chain-of-thought297

rationales that explicitly reason through the298

evaluation criteria. Each rationale concludes299

with a score that must align with any existing 300

seed data scores to maintain consistency. 301

We seed our synthetic data pipeline with prompts, 302

responses, tests and scores from diverse sources 303

including Nectar (Zhu et al., 2024), Prometheus 304

(Kim et al., 2024a), Tulu3 (Lambert et al., 305

2024a), Complex Instructions (He et al., 2024), 306

Infinity-Instruct (of Artificial Intelligence , BAAI), 307

and HelpSteer2 (Wang et al., 2024d,c). 308

3.3 Training 309

LMUnit combines the strengths of generative 310

judge models and classifier-based reward models 311

through a unique multi-objective training approach. 312

Given a unit test u, prompt p, and response r, 313

the model outputs a sequence of rationale tokens 314

rat = (rat1, ..., rT ) followed by a score token s. 315

The probability distribution over possible score 316

values k∈0,1,...,6 is: 317

P (s=k | u, p, r, rat)=softmax(hTWs)k (1) 318

We compute a continuous score prediction through 319

a weighted sum: 320

ŷ=

6∑
k=0

k ·P (s=k | u, p, r, rat) (2) 321

The training objective combines three losses. 322

First, SFT loss on the rationale and score tokens: 323

Lsft=−
T∑
t=1

logP (xt | u, p, r, x<t) (3) 324

where x1:t represents tokens in both rationale and 325

score sequences. 326

Second, MSE loss on the continuous score 327

prediction: 328

Lmse=(y−ŷ)2 (4) 329
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Third, preference loss:330

Lpref=−log
(
σ(ŷ1−ŷ2)

)
·1{pref=y1}331

−log
(
σ(ŷ2−ŷ1)

)
·1{pref=y2}332

+(ŷ1−ŷ2)
2 ·1{pref=tie} (5)333

Here, σ is the sigmoid function. The final loss334

is a weighted combination:335

L=αLsft + βLmse + γLpref (6)336

3.4 Post-Training of Rationales337

While our initial model learns to generate rationales338

through imitation learning, there is no guarantee339

that these rationales actually improve scoring340

performance. We address this by collecting pairs of341

desirable and undesirable rationales for direct pref-342

erence optimization (Rafailov et al., 2023), training343

the model to prefer rationales that lead to correct344

scoring. We employ several collection strategies:345

Through Refined, we collect on-policy rationales346

from our trained model and use the teacher to refine347

them through revisions (D’Oosterlinck et al., 2024)348

that improve scoring accuracy. With Harmonized,349

we provide the teacher with two model rationales350

from a preference pair to harmonize them with351

their samples’ relative quality. In the Teacher-352

based strategy, we sample teacher rationales on353

known-score samples, using those with correct354

outcomes as chosen samples and incorrect ones as355

rejected. We compare these approaches in Table 4.356

3.5 Bayesian Optimization of Global Unit Tests357

Natural language unit tests decompose evaluation358

into fine-grained criteria through K global tests359

that assess dimensions like accuracy, safety, and360

coherence. The aggregation of these assessments361

into an overall score is crucial for valid evaluation.362

Rather than using standard uniform weighting, we363

learn optimal weights w1,...,wK through Bayesian364

optimization over human preference data to365

maximize alignment between weighted test scores366

and human judgments. This process iteratively367

updates weights from a uniform initialization based368

on agreement with held-out human preferences.369

4 Experiments370

We conducted extensive experiments to evaluate371

LMUNIT and the natural language unit test372

paradigm. First, we evaluated the performance373

of LMUNIT on several evaluation benchmarks,374

comparing to LLMs as judges, reward models,375

and trained evaluation models. Next, we perform376

ablations to understand the impact of different377

methodologies, including loss functions and data378

mixture choices. Also, we examined improving 379

rationales through post-training and analyzed the 380

impact of decomposition through several unit test 381

strategies. Finally, as shown in Appendix A.1, 382

we also conducted two human subject studies to 383

validate the advantages of the LMUNIT paradigms 384

over LM judges 385

4.1 Experimental Setup 386

4.1.1 Model Configuration and Training Data 387

Our training data encompasses a diverse mix of 388

preference judgments, direct scores, and rationales 389

across multiple sources: (i) HELPSTEER 2 (50K 390

pairs with ratings spanning five dimensions), (ii) 391

PROMETHEUS (10K unpaired samples with rat- 392

ings), (iii) SYNTH NON-RUBRIC (11K pairs with 393

ratings and rationales), (iv) SYNTH RUBRIC (13K 394

unpaired samples with ratings and rationales). 395

We train several variants of LMUNIT initialized 396

from instruction-tuned LLaMa-3.1 models (8B, 397

70B). We train our models for 2000 steps using 398

fixed weights (i.e., α=β=γ=1) for the different 399

loss components, with a 5x loss multiplier applied 400

to the rationale samples. The training uses the 401

Adam optimizer (Kingma and Ba, 2017) with a 402

learning rate of 1e-6 and a cosine learning rate 403

scheduler, using a batch size of 64 and a sequence 404

length of 8K. 405

4.1.2 Evaluation Benchmarks 406

We evaluate our models on six benchmarks 407

spanning diverse capabilities: Direct scores 408

assessment (BigGenBench, Flask), Classification 409

(Internal Unit Test set, Infobench), and preference 410

evaluation (RewardBench , LFQA). At inference 411

time, we compute a continuous score as the 412

expected value of the possible scores in accordance 413

to our training strategy described in Sec. 3.3. For 414

dataset details, see Appendix A.2 415

4.2 Key Results 416

Our models demonstrate strong performance across 417

diverse evaluation settings (Table 1). On direct 418

assessment tasks, LMUNIT achieves state-of-the- 419

art results with correlations of 72.03 on FLASK 420

and 67.69 on BiGGen-Bench, where fine-grained 421

evaluation is particularly important. In aggregate, 422

LMUNIT achieves strong overall performance 423

with scores of 79.74 (eight weighted global unit 424

tests) and 79.29 (single unit test), outperforming 425

general-purpose models like GPT-4 (78.29) and 426

Claude-3.5 Sonnet (77.78). Even our smaller 427
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Model
Direct Assessment Classification Pairwise Ranking

Average*
Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA

GPT-4o 69.00 65.00 81.80 92.80 84.60 76.54 77.59
Claude-3.5 Sonnet 67.25 61.83 84.53 91.58 84.23 77.24 76.43

Prometheus-2-7B 47.00 50.00 75.58 48.60 72.0 72.31 57.98
Prometheus-2-8x7B 54.00 52.00 77.82 87.85 74.5 74.23 68.52
Prometheus-2-BGB-8x7B 31.00 44.00 78.57 83.87 68.3 71.54 59.74
Llama-3-OffsetBias-8B 29.00 21.00 68.15 72.15 84.0 63.08 53.85
Skywork-Critic-Llama-3.1-8B - - - - 89.0 64.23 -
SFR-LLaMA-3.1-8B-Judge 52.00 59.00 - 92.80 88.7 68.85 72.27
SFR-LLaMA-3.1-70B-Judge 66.00 65.00 - 92.58 92.7 75.00 78.26

LMUNITLLaMA3.1-8B 60.02 64.46 94.14 91.26 83.23 71.54 74.10
LMUNITLLaMA3.1-70B 72.03 67.69 93.63 89.00 91.56 76.15 79.29
LMUNITLLaMA3.1-70B−Decomposed 72.03 67.69 93.63 89.00 90.54 74.62 78.78
LMUNITLLaMA3.1-70B−Decomposed−Weighted † 72.03 67.69 93.63 89.00 93.45 76.53 79.74

Table 1: Comprehensive Model Performance Comparison: Evaluation results across multiple benchmarks showing
model performance on various tasks. Metrics: (i) Pearson correlation coefficient for direct assessment, (ii) binary
accuracy for classification tasks, and (iii) pairwise preference accuracy for pairwise comparisons. † represents our
result with Bayesian optimization over pairwise benchmarks for learning global unit test weights, as described in
Section 3.5. We learned dataset-level weights for LFQA and section-level weights for RewardBench by optimizing
over model predictions on a 50% split of the dataset, following prior work (Wang et al., 2024d). We only apply the
decomposed unit tests and weight optimization for RewardBench and LFQA since they lack fine-grained criteria for
evaluation. We confirm that this technique generalizes to a held-out split of RewardBench in Table 15. Note that the
Average column excludes Human-Internal scores in order to compare fairly against the non-public SFR-LLaMA
baselines (as of December 2024).

LMUNITLLaMA3.1-8B variant remains highly com-428

petitive with a 74.10 average score. For pairwise429

ranking tasks, using unweighted global unit tests430

slightly decreases overall performance to 78.78 (-431

0.96), but LMUNIT remains stronger than all other432

baselines. We recover this minor performance loss433

through Bayesian optimization of the global unit434

test weights while reaching 93.45 on RewardBench435

(+2.91) - though we note this weighting is learned436

on a subset of RewardBench itself, analogous to437

tuning hyperparameters on the test set (following a438

similar experimental setup as Wang et al. (2024d)).439

A more rigorous analysis using a proper held-out440

evaluation set is provided in Section 4.3.4, confirm-441

ing the generalization of this method. These strong442

results across direct assessment, classification, and443

pairwise ranking tasks validate the effectiveness of444

our synthetic data pipeline, training setup, and uni-445

fied scoring methodology, establishing LMUNIT446

as a state-of-the-art model for reliable evaluation.447

4.3 Ablation Studies448

We conduct extensive ablation studies to under-449

stand the key components driving LMUNIT’s450

performance. Our analysis focuses on three451

main aspects: (1) the impact of different training452

objectives and data mixture compositions, (2)453

the role of rationales in model performance, and454

(3) strategies for unit test decomposition and455

aggregation. Additionally, we perform supplemen-456

tary ablations on LMUNIT such as base-model457

architecture (A.3) unit test composition (A.3.2),458

Bayesian optimization with different models (3.5), 459

and LMUNIT weighted inference (A.3.3). 460

4.3.1 Impact of Loss Functions 461

Our ablation studies in Table 2 demonstrate that 462

combining training objectives (SFT, MSE, and 463

preference loss) yields measurable improvements 464

across our evaluation benchmarks (+0.5). LMU- 465

NIT-8B shows particularly significant gains on 466

fine-grained evaluation datasets—9% on FLASK 467

and 6% on BigGenbench—with more modest 468

improvements (1-3%) on pairwise datasets that 469

assess coarser-grained capabilities. These differ- 470

ential gains suggest our multi-objective approach 471

is especially beneficial when evaluating nuanced 472

LLM capabilities and when parametric capacity 473

is limited, as evidenced by smaller improvements 474

(+3%) at the 70B parameter scale. 475

4.3.2 Data Mixture Effects 476

We analyze how different compositions of training 477

data affect LMUNIT’s performance to identify 478

the most effective mixture for robust evaluation 479

capabilities. As shown in Table 3, rubric data is 480

essential for strong performance on fine-grained 481

direct assessment and that our synthetic data 482

pipeline provides dramatic performance gains 483

(+3.52) when synthetic rubric data is incorporated. 484

We also observe that non-rubric synthetic data is 485

most effective as preference pairs (+4.04) rather 486

than direct scoring data (-2.75), likely due to the 487

improved contrastive signal. 488
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Training Loss
Direct Assessment Classification PairWise Ranking

Average
Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA

LMUNITLLaMA3.1-8B

SFT 51.31 59.12 94.19 90.29 83.56 68.85 74.55
SFT + MSE 60.46 63.94 94.29 92.92 83.44 71.54 77.77
SFT + MSE + PREF 60.02 64.46 94.14 91.26 83.23 71.54 77.44

LMUNITLLaMA3.1-70B

SFT 69.09 67.14 93.88 90.83 89.98 76.15 81.18
SFT + MSE 70.25 67.34 93.73 87.59 91.03 75.77 80.95
SFT + MSE + PREF 72.03 67.69 93.63 89.00 91.56 76.15 81.68

Table 2: Training Loss Ablation Results: Adding SFT, MSE, and preference loss components each contribute modest
but consistent improvements to LMUNIT’s performance across direct assessment (Pearson correlation), classification
(binary accuracy), and pairwise ranking (preference accuracy) tasks.

Data Mix
Direct Assessment Classification PairWise Ranking

AverageFlask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA

Direct only

HS2 57.0 42.26 94.74 88.60 91.31 69.23 73.86
HS2 + SYNTH NON-RUBRIC 47.00 42.00 93.83 88.80 86.00 69.00 71.11
HS2 + PROMETHEUS 64.90 59.27 93.43 87.50 91.40 71.15 77.94
HS2+ PROMETHEUS + SYNTH RUBRIC 71.60 67.94 94.89 89.19 91.70 73.50 81.46

Preference only

SYNTH NON-RUBRIC 65.94 62.80 92.37 91.69 80.73 66.92 76.74
HS2 59.26 44.00 94.19 87.49 90.54 69.62 74.18
HS2 + SYNTH NON-RUBRIC 64.89 62.13 93.88 87.70 91.49 69.23 78.22

Full Data Mix
ALL 72.03 67.69 93.63 89.00 91.56 76.15 81.68

Table 3: Training Data Mix Ablations: Our direct-only synthetic mix with rubrics dramatically improves model
performance over baselines trained on open-source data only. Our synthetic preference data also strongly improves
performance even without rubrics, likely due to fine-grained contrastive signal. Training on our full data mix yields
our SOTA LMUNIT model. All models are initialized with Llama-3.1-70B. HS2 refers to HelpSteer2.

4.3.3 Impact of Rationales489

Moving beyond simple imitation learning of490

rationales, we examine strategies to optimize491

rationale generation for better evaluation. As492

shown in Table 4, training with rationales improves493

model performance even when rationales are not494

used at test time (+0.2). While including rationales495

during inference initially leads to lower scores,496

our post-training optimization through DPO helps497

recover performance, with teacher-based pairs498

providing the largest gains (+1.1).

Training Process Rationales? Benchmarks

Train Test RewardBench BigGenBench Flask Avg

LMUNIT Losses ✗ ✗ 91.1 67.4 72.1 76.9
LMUNIT Losses ✓ ✗ 91.6 67.7 72.0 77.1
LMUNIT Losses ✓ ✓ 83.8 62.1 64.2 70.0
LMUNIT Losses + DPO (H) ✓ ✓ 84.4 62.0 64.6 70.4
LMUNIT Losses + DPO (R) ✓ ✓ 84.2 61.8 65.0 70.3
LMUNIT Losses + DPO (T) ✓ ✓ 85.4 63.1 64.9 71.1

Table 4: Rationale Ablations: Training on rationale data im-
proves LMUNITLLaMA3.1-70B performance without test-time ra-
tionales, but test-time rationale generation decreases perfor-
mance. DPO post-training improves rationale generation fur-
ther.

499

4.3.4 Unit Test Decomposition Analysis 500

Our experiments with different unit test strategies 501

on RewardBench (Table 15) reveal two key 502

findings. First, global-level tests significantly 503

outperform query-level tests across all categories, 504

with section-level learned weights achieving 505

the strongest results (+2.4 over unweighted 506

aggregation). Second, the performance of fine- 507

grained query-level tests degrades substantially, 508

particularly on harder examples, though this can 509

be partially mitigated by placing greater weight 510

on earlier tests (+1.5). 511

These results highlight both the promise and 512

challenges of our approach: while global unit tests 513

provide a robust foundation for evaluation, devel- 514

oping effective fine-grained testing criteria remains 515

difficult. The success of weighted global unit 516

tests, coupled with the challenges of query-level 517

decomposition, suggests an important direction for 518

future work in developing more sophisticated test 519

generation and aggregation strategies. Additional 520

details of how decomposition is applied with 521
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Bayesian optimization and with different base522

models can be seen at A.3.5523

5 Discussion524

Our experiments and analyses reveal several525

key insights about the effectiveness of our unit526

test-based evaluation framework and highlight527

important directions for future work:528

LMUNIT Shows Benefits of Unified Training:529

Our empirical results validate the benefits of530

a unified scoring approach through three key531

findings: combining multiple training objectives532

improves performance across all evaluation533

settings (Table 2), incorporating diverse data types534

enhances model capabilities (Table 3), and LMU-535

NIT’s approach achieves state-of-the-art results on536

fine-grained evaluation benchmarks like FLASK537

and BiGGen-Bench (Table 1). These results sug-538

gest significant untapped potential in synthesizing539

different sources of evaluation signal – from human540

preferences and ratings to targeted synthetic data541

– particularly for fine-grained assessment tasks.542

Unit Tests Enable Rich Human-in-the-Loop543

Evaluation: Language model evaluation frame-544

works should enable precise human steering545

while reducing noise and manual effort. Our546

results show this paradigm achieves both goals:547

structured criteria dramatically improve evalua-548

tion consistency and inter-annotator agreement549

(Figure 4), while offering multiple meaningful550

intervention points. Humans can write or refine551

test criteria, optimize test weights (Table 15), and552

guide development through decomposed feedback -553

leading to significantly more detailed error analysis554

in practice (Appendix A.1). This suggests unit555

tests can enable deeper, more reliable human-AI556

collaboration in evaluation.557

Rationale Post-Training Improves Task558

Performance: A fundamental challenge in559

language models is developing genuine reasoning560

capabilities rather than simply learning to imitate561

human-like explanations. While training models562

to generate rationales through supervised learning563

can produce plausible-sounding explanations, this564

doesn’t necessarily improve their underlying ca-565

pabilities. Our work demonstrates two key insights566

about moving beyond imitation: first, training with567

rationales improves model performance even when568

not generating them at inference time (Table 4),569

and second, post-training optimization of rationales570

for task performance rather than imitation leads to571

further gains. This suggests a promising direction572

for developing better reasoning capabilities: using 573

rationales not just as outputs to mimic but as a 574

trainable intermediate step that can improve task 575

performance while maintaining interpretability 576

and enabling human feedback. Beyond LMU- 577

NIT, this approach can be extended to improve 578

general-purpose model reasoning by optimizing 579

rationales for downstream task performance rather 580

than merely imitating ground-truth rationales. 581

Query-Level Unit Test Creation Remains 582

Challenging: While our work advanced scoring 583

and evaluation methodology, generating effec- 584

tive query-specific unit tests proved difficult. 585

Global-level unit tests with learned weights 586

significantly outperform query-level unit tests 587

(Table 15), highlighting the need for better test 588

generation approaches. Future work should explore 589

end-to-end training of test generation, evaluate 590

human-created tests at scale, and investigate 591

when fine-grained decomposition justifies its 592

complexity. These findings collectively point to 593

both the promise and challenges of the unit testing 594

paradigm for language model evaluation. The 595

strong performance of LMUNIT demonstrates the 596

potential of unified training approaches, while our 597

human studies show how structured evaluation 598

can enable more reliable and meaningful human 599

oversight. Though challenges remain in test 600

generation and optimal decomposition strategies, 601

our results suggest this paradigm offers a practical 602

path toward more reliable, interpretable, and 603

human-aligned evaluation of language models. 604

6 Conclusion 605

This paper introduces natural language unit tests, 606

a paradigm for language model evaluation that en- 607

ables precise assessment through explicit, testable 608

criteria. To implement this paradigm effectively, 609

we develop LMUNIT, a unified scoring model 610

that combines multi-objective training across 611

preferences, direct ratings, and natural language 612

rationales to achieve state-of-the-art performance 613

on major evaluation benchmarks. Our results 614

validate both the broader paradigm of decomposed 615

evaluation and our novel scoring methodology. 616

Looking ahead, this work opens several promising 617

research directions: deeper integration of human 618

feedback loops, enhanced scoring models with 619

improved reasoning capabilities, and end-to-end 620

training of unit test generation and scoring. 621
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7 Limitations622

LMUNIT shows promising results across multiple623

evaluation settings, though some shortcomings624

remain that provide potential research directions.625

The generation of query-specific unit tests, while626

functional, could benefit from more sophisticated627

approaches to better capture fine-grained evalua-628

tion criteria. The framework’s reliance on human629

expertise for creating high-quality domain-specific630

unit tests, while valuable for ensuring evaluation631

quality, suggests opportunities for developing more632

automated test generation methods. Additionally,633

our synthetic data pipeline, which leverages634

existing datasets and language models for data635

generation, may inherit distributional biases that636

could influence evaluation outcomes. Although637

our results demonstrate strong performance despite638

these constraints, future work exploring automated639

test generation, reduced reliance on human640

expertise, and bias mitigation techniques could641

further enhance the framework’s capabilities.642

References643

Anthropic. 2024. Claude technical report.644
Https://www.anthropic.com/news/claude-3-family.645

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,646
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas647
Joseph, Ben Mann, Nova DasSarma, et al. 2021.648
A General Language Assistant as a Laboratory for649
Alignment. ArXiv Preprint arXiv:2112.00861.650

Ralph Allan Bradley and Milton E Terry. 1952. Rank651
Analysis of Incomplete Block Designs: I. The652
Method of Paired Comparisons. Biometrika,653
39(3/4):324–345.654

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,655
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,656
Cunxiang Wang, Yidong Wang, et al. 2024. A Survey657
on Evaluation of Large Language Models. ACM658
Transactions on Intelligent Systems and Technology,659
15(3):1–45.660

Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Mura-661
hari, Tanmay Rajpurohit, Ashwin Kalyan, Karthik662
Narasimhan, Ameet Deshpande, and Bruno Castro663
da Silva. 2024. RLHF Deciphered: A Critical664
Analysis of Reinforcement Learning from Human665
Feedback for LLMs.666

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,667
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.668
Codet: Code generation with generated tests. arXiv669
preprint arXiv:2207.10397.670

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng671
Jiang, and Benyou Wang. 2024. Humans or LLMs672

as the Judge? A Study on Judgement Bias. ArXiv 673
Preprint arXiv:2402.10669. 674

Cheng-Han Chiang and Hung-yi Lee. 2023. Can Large 675
Language Models Be an Alternative to Human 676
Evaluations? In Proceedings of the 61st Annual 677
Meeting of the Association for Computational 678
Linguistics (Volume 1: Long Papers). 679

Paul Christiano, Jan Leike, Tom B. Brown, Miljan 680
Martic, Shane Legg, and Dario Amodei. 2023. Deep 681
reinforcement learning from human preferences. 682
Preprint, arXiv:1706.03741. 683

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, 684
Shane Legg, and Dario Amodei. 2017. Deep Rein- 685
forcement Learning from Human Preferences. Ad- 686
vances in Neural Information Processing Systems, 30. 687

Elizabeth Clark, Tal August, Sofia Serrano, Nikita 688
Haduong, Suchin Gururangan, and Noah A Smith. 689
2021. All That’s ‘Human’ is Not Gold: Evaluating 690
Human Evaluation of Generated Text. Proceedings 691
of the 59th Annual Meeting of the Association for 692
Computational Linguistics and the 11th International 693
Joint Conference on Natural Language Processing 694
(Volume 1: Long Papers). 695

Jonathan Cook, Tim Rocktäschel, Jakob Foerster, 696
Dennis Aumiller, and Alex Wang. 2024. TICKing 697
All the Boxes: Generated Checklists Improve LLM 698
Evaluation and Generation. 699

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo 700
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark 701
Cieliebak. 2021. Survey on Evaluation Methods for 702
Dialogue Systems. Artificial Intelligence Review, 703
54:755–810. 704

Karel D’Oosterlinck, Winnie Xu, Chris Develder, 705
Thomas Demeester, Amanpreet Singh, Christopher 706
Potts, Douwe Kiela, and Shikib Mehri. 2024. 707
Anchored Preference Optimization and Contrastive 708
Revisions: Addressing Underspecification in 709
Alignment. ArXiv Preprint arXiv:2408.06266. 710

Yann Dubois, Balázs Galambosi, Percy Liang, and 711
Tatsunori B Hashimoto. 2024a. Length-Controlled 712
AlpacaEval: A Simple Way to Debias Automatic 713
Evaluators. ArXiv Preprint arXiv:2404.04475. 714

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi 715
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, 716
Percy S Liang, and Tatsunori B Hashimoto. 2024b. 717
AlpacaFarm: A Simulation Framework for Methods 718
that Learn from Human Feedback. Advances in 719
Neural Information Processing Systems, 36. 720

Jacob Eisenstein, Jonathan Berant, Chirag Nagpal, 721
Alekh Agarwal, Ahmad Beirami, Alexander Nicholas 722
D’Amour, Krishnamurthy Dj Dvijotham, Katherine A 723
Heller, Stephen Robert Pfohl, and Deepak Ramachan- 724
dran. 2023. Reward Model Underspecification in 725
Language Model Alignment. In NeurIPS 2023 726
Workshop on Distribution Shifts: New Frontiers with 727
Foundation Models. 728

9

https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741


Shahul Es, Jithin James, Luis Espinosa-Anke, and729
Steven Schockaert. 2023. RAGAs: Automated730
Evaluation of Retrieval Augmented Generation.731
ArXiv Preprint arXiv:2309.15217.732

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei733
Liu. 2023. GPTScore: Evaluate as You Desire.734
Proceedings of the 2024 Conference of the North735
American Chapter of the Association for Computa-736
tional Linguistics: Human Language Technologies737
(Volume 1: Long Papers).738

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and739
Yanghua Xiao. 2024. From complex to simple:740
Enhancing multi-constraint complex instruction741
following ability of large language models. ArXiv742
Preprint arXiv:2404.15846.743

Tom Hosking, Phil Blunsom, and Max Bartolo. 2023.744
Human feedback is not gold standard. ArXiv Preprint745
arXiv:2309.16349.746

David M Howcroft, Anya Belz, Miruna Clinciu, Dimitra747
Gkatzia, Sadid A Hasan, Saad Mahamood, Simon748
Mille, Emiel Van Miltenburg, Sashank Santhanam,749
and Verena Rieser. 2020. Twenty Years of Confusion750
in Human Evaluation: NLG Needs Evaluation Sheets751
and Standardised Definitions. In 13th International752
Conference on Natural Language Generation 2020,753
pages 169–182. Association for Computational754
Linguistics.755

Jessica Huynh, Jeffrey Bigham, and Maxine Eskenazi.756
2021. A Survey of NLP-Related Crowdsourcing Hits:757
What Works and What Does Not. ArXiv Preprint758
arXiv:2111.05241.759

Karen Sparck Jones and Julia R Galliers. 1995. Evaluat-760
ing natural language processing systems: An analysis761
and review.762

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.763
2021. The Perils of Using Mechanical Turk to764
Evaluate Open-Ended Text Generation.765

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne766
Longpre, Hwaran Lee, Sangdoo Yun, Seongjin Shin,767
Sungdong Kim, James Thorne, and Minjoon768
Seo. 2024a. Prometheus: Inducing Fine-grained769
Evaluation Capability in Language Models.770

Seungone Kim, Juyoung Suk, Ji Yong Cho, Shayne771
Longpre, Chaeeun Kim, Dongkeun Yoon, Guijin Son,772
Yejin Cho, Sheikh Shafayat, Jinheon Baek, Sue Hyun773
Park, Hyeonbin Hwang, Jinkyung Jo, Hyowon Cho,774
Haebin Shin, Seongyun Lee, Hanseok Oh, Noah Lee,775
Namgyu Ho, Se June Joo, Miyoung Ko, Yoonjoo Lee,776
Hyungjoo Chae, Jamin Shin, Joel Jang, Seonghyeon777
Ye, Bill Yuchen Lin, Sean Welleck, Graham Neubig,778
Moontae Lee, Kyungjae Lee, and Minjoon Seo.779
2024b. The BiGGen Bench: A Principled Benchmark780
for Fine-grained Evaluation of Language Models781
with Language Models.782

Seungone Kim, Juyoung Suk, Shayne Longpre,783
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham784

Neubig, Moontae Lee, Kyungjae Lee, and Minjoon 785
Seo. 2024c. Prometheus 2: An open source language 786
model specialized in evaluating other language 787
models. 788

Sungdong Kim, Sanghwan Bae, Jamin Shin, Soyoung 789
Kang, Donghyun Kwak, Kang Min Yoo, and 790
Minjoon Seo. 2023. Aligning large language 791
models through synthetic feedback. ArXiv Preprint 792
arXiv:2305.13735. 793

Diederik P. Kingma and Jimmy Ba. 2017. Adam: 794
A method for stochastic optimization. Preprint, 795
arXiv:1412.6980. 796

Tom Kocmi and Christian Federmann. 2023. Large 797
language models are state-of-the-art evaluators of 798
translation quality. ArXiv Preprint arXiv:2302.14520. 799

Dahyun Koo, Yejin Choi, and Eunsol Choi. 2023. 800
Cognitive Biases in Large Language Models as 801
Evaluators. ArXiv Preprint arXiv:2312.05441. 802

Kalpesh Krishna, Erin Bransom, Bailey Kuehl, Mohit 803
Iyyer, Pradeep Dasigi, Arman Cohan, and Kyle Lo. 804
2023. Longeval: Guidelines for human evaluation 805
of faithfulness in long-form summarization. ArXiv 806
Preprint arXiv:2301.13298. 807

Nathan Lambert and Roberto Calandra. 2023. The 808
alignment ceiling: Objective mismatch in reinforce- 809
ment learning from human feedback. ArXiv Preprint 810
arXiv:2311.00168. 811

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, 812
Shengyi Huang, Hamish Ivison, Faeze Brahman, 813
Lester James V Miranda, Alisa Liu, Nouha Dziri, 814
Shane Lyu, et al. 2024a. TÜLU 3: Pushing Frontiers 815
in Open Language Model Post-Training. ArXiv 816
Preprint arXiv:2411.15124. 817

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, 818
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, 819
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, 820
Noah A. Smith, and Hannaneh Hajishirzi. 2024b. 821
RewardBench: Evaluating Reward Models for 822
Language Modeling. 823

Yukyung Lee, Joonghoon Kim, Jaehee Kim, Hyowon 824
Cho, Jaewook Kang, Pilsung Kang, and Najoung 825
Kim. 2025. Checkeval: A reliable llm-as-a-judge 826
framework for evaluating text generation using 827
checklists. Preprint, arXiv:2403.18771. 828

Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad 829
Beigi, Chengshuai Zhao, Zhen Tan, Amrita Bhat- 830
tacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, 831
Kai Shu, Lu Cheng, and Huan Liu. 2024a. From 832
generation to judgment: Opportunities and challenges 833
of llm-as-a-judge. Preprint, arXiv:2411.16594. 834

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai 835
Zhao, and Pengfei Liu. 2023. Generative judge for 836
evaluating alignment. Preprint, arXiv:2310.05470. 837

10

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2403.18771
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2411.16594
https://arxiv.org/abs/2310.05470
https://arxiv.org/abs/2310.05470
https://arxiv.org/abs/2310.05470


Zhen Li, Xiaohan Xu, Tao Shen, Can Xu, Jia-Chen Gu,838
Yuxuan Lai, Chongyang Tao, and Shuai Ma. 2024b.839
Leveraging Large Language Models for NLG Evalua-840
tion: Advances and Challenges. In Proceedings of the841
2024 Conference on Empirical Methods in Natural842
Language Processing, pages 16028–16045.843

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu,844
Faeze Brahman, Abhilasha Ravichander, Valentina845
Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin846
Choi. 2024a. WILDBENCH: Benchmarking LLMs847
with Challenging Tasks from Real Users in the Wild.848
ArXiv Preprint arXiv:2406.04770.849

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu,850
Faeze Brahman, Abhilasha Ravichander, Valentina851
Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin852
Choi. 2024b. Wildbench: Benchmarking llms with853
challenging tasks from real users in the wild. Preprint,854
arXiv:2406.04770.855

Chin-Yew Lin. 2004. Rouge: A package for automatic856
evaluation of summaries. In Text summarization857
branches out, pages 74–81.858

Yen-Ting Lin and Yun-Nung Chen. 2023. Llm-eval:859
Unified multi-dimensional automatic evaluation860
for open-domain conversations with large language861
models. ArXiv Preprint arXiv:2305.13711.862

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael863
Noseworthy, Laurent Charlin, and Joelle Pineau.864
2016. How not to evaluate your dialogue system: An865
empirical study of unsupervised evaluation metrics866
for dialogue response generation. ArXiv Preprint867
arXiv:1603.08023.868

Chris Yuhao Liu and Liang Zeng. 2024. Sky-869
work Reward Model Series. https:870
//huggingface.co/Skywork.871

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,872
Ruochen Xu, and Chenguang Zhu. 2023. G-eval: Nlg873
evaluation using gpt-4 with better human alignment.874
ArXiv Preprint arXiv:2303.16634.875

Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan876
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,877
Feng Sun, and Qi Zhang. 2024. Hd-eval: Aligning878
large language model evaluators through hierarchical879
criteria decomposition. Preprint, arXiv:2402.15754.880

Ryan Lowe, Michael Noseworthy, Iulian V Serban,881
Nicolas Angelard-Gontier, Yoshua Bengio, and882
Joelle Pineau. 2017. Towards an automatic turing883
test: Learning to evaluate dialogue responses. ArXiv884
Preprint arXiv:1708.07149.885

Shikib Mehri and Maxine Eskenazi. 2020a. Unsuper-886
vised evaluation of interactive dialog with dialogpt.887
ArXiv Preprint arXiv:2006.12719.888

Shikib Mehri and Maxine Eskenazi. 2020b. USR:889
An Unsupervised and Reference Free Evaluation890
Metric for Dialog Generation. ArXiv Preprint891
arXiv:2005.00456.892

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming 893
Xiong, Yingbo Zhou, and Semih Yavuz. 2024. 894
Sfr-embedding-mistral:enhance text retrieval with 895
transfer learning. Salesforce AI Research Blog. 896

Jekaterina Novikova, Ondřej Dušek, and Verena 897
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A Appendix1101

A.1 LMUNIT Human Subject Studies1102

We conducted two studies to validate key claims about natural language unit tests: (1) Whether this1103

paradigm, implemented through LMUNIT, provides concrete advantages over traditional LM judges1104

for developers working on real systems, and (2) Whether decomposing evaluation into explicit criteria1105

can improve the quality of human preference data.1106

A.1.1 Case Study with LLM Developers1107

To evaluate whether decomposed evaluation helps developers better understand and improve language mod-1108

els, we conducted a controlled study with 16 researchers and engineers from NLP labs, covering domains1109

in finance, publishing, software, and hardware development. The surveyed individuals utilized LMUNIT1110

models over the course of 1-2 days, continuing their original evaluation workflows while comparing LMU-1111

NIT with traditional "LLM as a Judge" approaches. These researchers regularly develop LLM systems1112

that integrate 70B+ parameter models with retrieval systems, frequently undergoing additional instruction1113

fine-tuning and preference alignment datasets. When comparing evaluation approaches, LMUNIT enabled1114

substantially more detailed analysis: participants identified 157% more response attributes (10.8 vs 4.2)1115

and 131% more error modes (7.4 vs 3.2), rating both as significantly more important than those found1116

through LM judges. These demands necessitated the development of reliable evaluation systems for un-1117

derstanding 1) error modes of existing systems and 2) actionable steps for improving existing approaches.1118

The insights provided by LMUNIT proved instrumental for improving both RAG systems and LLM1119

systems more generally. 13 out of the 16 researchers surveyed stated that LMUNIT helped them identify1120

current error modes in their training pipelines, inspiring them to make data selection and preprocessing1121

decisions to address the failures directly. Eight researchers also said LMUNIT sparked them to make1122

training pipeline decisions surrounding hyperparameters, dataset weighting, and in-context learning.1123

Furthermore, six researchers reported these decisions led to a 10+ point boost in evaluation performance1124

for instruction-following and reasoning tasks. Most importantly, 15 of the 16 researchers expressed1125

interest in using unit test-based frameworks for building ML pipelines going forward, assuming they align1126

with evaluation metrics and human preferences for instruction-following and reasoning tasks. For detailed1127

analysis, we provide an overview of the annotation guidelines in Table 7, annotation row examples in1128

Table 5, and completed annotations in Table 6.1129

Figure 3: LMUNIT Favored Over LM Judges for Identified Response Attributes and Error Modes: LMUNIT is
favored by LM researchers and engineers surveyed, allowing users to find greater numbers of important response
attributes and error modes identified in LLM responses. Out of the 16 individuals surveyed, all of them favored
LMUNIT over traditional LM judges.

We also gathered some illustrative anecdotes from study participants to reflect the benefits of unit1130

test-based evaluation methods with LMUNIT:1131

• Motivating LM System Decisions: "We had suspected for a while that some of our training data was1132

not diverse enough, but it was hard to prove with just LM judge feedback. The LMUNIT unit tests1133
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Instruction Response #1 Response #2 LM Judge
Verdict

LMUNIT Unit Tests with
Verdicts for Better Response

Examples
#1

How does the integra-
tion of healthcare an-
alytics with electronic
health records (EHRs)
and the establishment of
common technical stan-
dards contribute to im-
proving patient care?

The integration of healthcare ana-
lytics with electronic health records
(EHRs) and the establishment of
common technical standards signif-
icantly contribute to improving pa-
tient care by providing a more co-
ordinated, efficient, and data-driven
approach to healthcare delivery...

**Integration of Healthcare Analyt-
ics with Electronic Health Records
(EHRs)**
* Enables the collection, aggregation,
and analysis of vast amounts of clini-
cal data from diverse sources, includ-
ing EHRs, medical devices, and lab-
oratory results.
* Provides insights and analytics
that help identify trends, predict out-
comes, and improve patient care.

Response
#1

- Does the response explain how healthcare an-
alytics integration with EHRs impacts patient
care? [Passed]
- Does the response mention the role of common
technical standards in improving interoperabil-
ity? [Passed]
- Does the response detail the major challenges
addressed by the ONC’s Federal Health IT Strate-
gic Plan 2015-2020? [Failed]
- Does the response cover how privacy concerns
are addressed according to the ONC’s plan?
[Passed]

Examples
#2

How might changes in
the regulation and public
perception of unmanned
aircraft systems (UAS)
influence the growth
and application of urban
drone technology?

The influence of changes in regu-
lation and public perception of un-
manned aircraft systems (UAS) on
the growth and application of drone
technology in urban environments
over the next decade is significant
and multifaceted...

**Regulations and Public Percep-
tion:**
**1. Regulatory Landscape:**
- Increased regulations governing
airspace usage, safety, and privacy.
- Stricter licensing and registration
processes for drone operators...

Response
#1

- Does the response adequately address how
changes in regulation might impact the growth
of UAS technology in urban environments?
[Passed]
- Does the response explain how changes in
public perception might influence the applica-
tion of UAS technology in urban environments?
[Passed]
- Does the response mention specific regulations
that could affect UAS usage in urban areas?
[Passed]

Table 5: Comparison of LMUNIT vs. LM Judge for Human Feedback

Instruction Response Response
Attributes Error Modes

Example
#1

How does the integration of healthcare
analytics with electronic health records
(EHRs) and the establishment of com-
mon technical standards contribute to
improving patient care, while address-
ing the challenges related to privacy,
data accuracy, and interoperability?

The integration of healthcare analytics
with electronic health records (EHRs)
and the establishment of common tech-
nical standards significantly contribute
to improving patient care by providing
a more coordinated, efficient, and data-
driven approach to healthcare delivery.
Several key strategies and challenges
need to be addressed to achieve these
improvements while safeguarding pri-
vacy, data accuracy, and interoperabil-
ity. Firstly, healthcare analytics...

Explanation of Healthcare Analytics In-
tegration, Discussion of EHRs (Elec-
tronic Health Records), Description
of Common Technical Standards, Ad-
dressing Privacy Concerns, Focus on
Data Accuracy, Discussion of Inter-
operability, Reference to ONC’s Fed-
eral Health IT Strategic Plan, Use of
Evidence-Based Examples, Explana-
tion of Cost Reduction in Healthcare,
Description of Stakeholder Collabora-
tion

Hallucination of Unrelated Informa-
tion, Omission of Key Concepts, Re-
dundancy in Explanation, Inconsistent
Use of Terminology, Lack of Coherence
between Sections, Incomplete Explana-
tion of Critical Points, Overly General-
ized Statements

Example
#2

How might changes in the regulation
and public perception of unmanned
aircraft systems (UAS) influence the
growth and application of drone tech-
nology in urban environments over the
next decade?

The influence of changes in regulation
and public perception of unmanned air-
craft systems (UAS) on the growth and
application of drone technology in ur-
ban environments over the next decade
is significant and multifaceted. Regu-
latory changes could impose stricter li-
censing and airspace regulations, while
public concerns about safety and pri-
vacy might limit drone use in specific
areas.

Explanation of UAS Regulation, Ref-
erence to Safety Standards, Discussion
of Operational Restrictions, Mention of
Air Traffic Management Systems, In-
tegration of Collision Avoidance Tech-
nologies, Privacy Concerns in Urban
Environments, Public Perception and
Security Issues, Transparency in Data
Capture and Processing

Failure to Address Privacy Concerns,
Overlooking Public Perception and Se-
curity Issues, Vague Discussion on
Commercial Applications, Inconsistent
Explanation of Regulatory Compliance,
Inaccurate Reference to Urban Growth
Impact, Failure to Mention Innovation
Amidst Regulations

Table 6: LMUNIT Case Study Responses with Annotation Results

revealed that the model was performing better on certain types of queries (i.e. summarization and 1134

multi-hop queries) while creating generic answers for others (i.e. analysis and calculation queries). 1135

This led us to augment the dataset with more varied examples and improve our retrieval process, 1136

leading to a performance increase for the LM system overall." 1137

• High-Resolution Feedback: "With LM judges, we would often get long-winded explanations that did 1138

not really explain the issue clearly, which made it hard to figure out what was going on. Sometimes the 1139

judge verdict did not align with the explanation at all! However, LMUNIT gave us clear Passed/Failed 1140

results with specific criteria, allowing us to know what went wrong and where to fix it." 1141

• Improved Annotator Alignment: "For our project, we noticed a frustrating gap between LM judge 1142

evaluations and the feedback from our annotators. The LM judges would pass responses that skipped 1143

crucial reasoning steps as long as the final answer was correct but annotators rejected responses 1144

for lacking logical progression. After switching to LMUNIT, the alignment with the annotators 1145

improved significantly. LMUNIT unit tests flagged responses that missed intermediate steps, just 1146

like the annotators. This allowed us to retrain the model with more targeted feedback, leading to 1147

better performance in tasks requiring step-by-step reasoning and saving us time on annotations." 1148

15



Instruction Response
#1

Response
#2

LM Judge
Verdict

LMUNIT Unit Tests +
Verdicts for Response#1

LMUNIT Unit Tests +
Verdicts for Response#2

{text} {text} {text} {#1 or #2} Bulleted Queries + Verdicts Bulleted Queries + Verdicts

Table 7: Information for Comparing LM Judge and LMUNIT: Given the following information, annotators then
provide the response attributes, error modes, and their importances identified by each evaluation approach. We provide
annotated row examples in Table 5 and completed annotations in Table 6.

A.1.2 Reducing Noise in Human Evaluation1149

Figure 4: LMUNIT Unit Test Scoring Improves Inter-
Annotator Agreement on Preference Data: Instructing
annotators to answer gold-standard unit tests improves
inter-annotated agreement by 48% and 20% compared
to pairwise judging of responses or rubric-based scoring
("Spec"), respectively.

Human preference data is crucial for training re-1150

ward models (Christiano et al., 2017; Askell et al.,1151

2021). However, inter-annotator agreement is of-1152

ten low (Wang et al., 2024a), with annotators1153

struggling to weigh different factors consistently1154

and give reliable signal (Howcroft et al., 2020).1155

Since reducing task ambiguity has been shown to1156

help improve agreement (Novikova et al., 2018;1157

Huynh et al., 2021; Rottger et al., 2022), we inves-1158

tigated the benefits of decomposing evaluation1159

into explicit criteria. We conducted an experi-1160

ment with 15 experienced annotators on express-1161

ing judgements with 20 queries, comparing three1162

approaches: unstructured preference judgments1163

(Control), standardized evaluation criteria (Spec-1164

ification), and unit test-based evaluation (Unit1165

Test). The Control group selected their preferred1166

response with no additional guidance. The Spec-1167

ification group assessed each response against a1168

five-point quality specification before selecting their preferred response. For the Unit test group, four1169

experienced annotators first used a Google Sheets interface to create 4-8 unit tests per query. These tests1170

were designed to verify that model responses were both accurate and grounded in the retrieved documents.1171

After this step, the Unit Test group was instructed to answer the gold-standard targeted unit tests before1172

picking.1173

As shown in Figure 4 and in more detail in Table 8, the Control group showed low inter-annotator1174

reliability (Fleiss’ Kappa = 0.04), while the Unit Tests group achieved substantially higher agreement1175

(Fleiss’ Kappa = 0.52), demonstrating that structured decomposition significantly improves consistency in1176

human evaluation. Annotators chose their preferred response after completing the unit tests and 89% of1177

the time they selected the response with the largest number of satisfied unit tests. This further shows that1178

answering unit tests guided their preference decisions.1179

Agreement
Overall

Kappa
Overall

# Cases with
100% Agreement

# Queries with
High Disagreement

Pairwise Judging 71% 0.04 3 12
Spec 80% 0.32 7 7
Unit Tests 86% 0.52 11 5

Table 8: Unit Tests Improve Inter-Rater Agreement: Unit test-based evaluation achieves substantially higher
agreement rates and fewer cases of high disagreement compared to alternative approaches, such as pairwise judging
and rubric-based scoring (i.e. "Spec"). High disagreement refers to queries in the 40-60% agreement range.
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A.2 Evaluation Benchmarks Details 1180

• RewardBench (Lambert et al., 2024b): A benchmark of pairwise model outputs across chat, reasoning, 1181

and safety domains. We measure agreement with human preference judgments. 1182

• LFQA (Xu et al., 2023a): A benchmark of long-form question answering responses. We measure 1183

agreement with expert preference judgments. 1184

• BiGGen Bench (Kim et al., 2024b): A comprehensive benchmark spanning 77 tasks across instruction- 1185

following, content refinement, grounding, and tool usage. We measure correlation with human assess- 1186

ment scores. 1187

• FLASK (Ye et al., 2023): An evaluation framework covering 12 skills across logical thinking, knowledge 1188

application, problem handling, and user alignment. We measure correlation with human assessment 1189

scores. 1190

• InfoBench (Qin et al., 2024): A collection of instruction-following tasks. Using the expert-validated 1191

split, we measure binary classification accuracy against expert consensus. 1192

• Internal Unit Test Set: A targeted evaluation of 190 questions in the finance and engineering domains, 1193

with an average of five validated unit tests per question. We measure binary classification accuracy 1194

against human expert annotations. 1195

A.3 Additional Ablations 1196

A.3.1 Model Architechture 1197

To validate LMUNIT with different base models, we trained it on LLaMA3.3-70b and Qwen2.5-72b. Our 1198

results in Table1 showed that LMUNIT consistently transforms these base models into strong evaluators 1199

across the benchmarks described in 4.1.2.

Model
Direct Assessment Classification Pairwise Ranking

Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA

LMUNITLLaMa3.3-70b 73.09 67.79 93.93 89.43 90.22 76.15
LMUNITQwen2.5-72b 73.85 69.56 94.44 88.67 91.13 73.85

Table 9: LMUNIT model ablations: Evaluation results across multiple model variations. Results show that LMUNIT
paradigm is applicable and effective to convert recent advancements of LLMs into strong evalutors

1200

A.3.2 Unit-Test Composition 1201

We evaluated how different information components from direct score benchmarks like Flask and BigGen- 1202

Bench contribute to improving the correlation between predicted scores and human ratings. These 1203

benchmarks provide three key elements: assessment questions, scoring rubrics (on a 1-5 scale), and 1204

reference answers. As shown in Table 10, incorporating additional information components incrementally 1205

improves the correlation with human ratings, with the combination of reference answers and rubrics 1206

yielding the strongest performance. 1207

A.3.3 LMUNIT Inference 1208

Inference Budget comparison: In our current setup, LMUNIT is computationally cheaper than our 1209

strongest baselines in 9. The strongest baselines such as SFR (Meng et al., 2024), Claude (Anthropic, 1210

2024), and GPT-4o (OpenAI, 2023) were evaluated by generating CoT rationales – see the exact prompt 1211

in Appendix A of Meng et al. (2024). These models are all either equal in size or larger than LMUNIT. 1212

LMUNIT advances SoTA without the use of generated rationales, generating only a couple of tokens 1213

for each input to produce the output score. LMUNIT only introduces additional tokens in the input 1214

(linearly proportional to the number of unit tests), which is far less expensive than additional output tokens 1215
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Unit-Test Format Direct Assessment

Flask BiGGen-Bench

LMUNITLLaMA3.1-8B

UNIT TEST QUESTION 58.35 56.47
UNIT TEST QUESTION + RUBRIC 58.20 61.56
UNIT TEST QUESTION + REFERENCE ANSWER 58.37 63.07
UNIT TEST QUESTION + RUBRIC + REFERENCE ANSWER 60.02 64.46

LMUNITLLaMA3.1-70B

UNIT TEST QUESTION 67.20 61.01
UNIT TEST QUESTION + RUBRIC 65.76 66.39
UNIT TEST QUESTION + REFERENCE ANSWER 70.01 65.61
UNIT TEST QUESTION + RUBRIC + REFERENCE ANSWER 72.03 67.69

Table 10: Unit-Test Composition Analysis. We analyzed how the composition of unit tests affects model performance.
We observed that enriching unit tests with detailed information, such as rubrics and reference answers, improves the
correlation with human ratings.

Test ID Unit Test

GUT-1 Is the response helpful and aligned with the spirit of what the prompt was asking for?

GUT-2 Does the response directly address the prompt’s query or topic?

GUT-3 Are the facts and information presented in the response correct and reliable?

GUT-4 Is the response articulated in a clear and understandable manner?

GUT-5 Does the response provide a thorough answer, covering all aspects of the prompt?

GUT-6 Is the response succinct without omitting essential information?

GUT-7 Does the response maintain the reader’s interest and encourage further thought or action?

GUT-8 Does the response adhere to ethical guidelines and avoid promoting harmful content?

Table 11: Global Unit Tests used for pairwise evaluations on RewardBench and LFQA

because input token processing is parallelized in modern systems. The roughly 8X increase in input1216

tokens (assuming 8 unit tests) is strongly outweighed by the roughly 6-12X reduction in required output1217

tokens (assuming CoT rationales are ~100-200 tokens, which is reasonable based on the examples shown1218

in Appendix B of (Meng et al., 2024).1219

Weighted Score Inference: To analyze the impact of our weighted score inference, which consists of1220

calculating the expected value over all possible score values k∈{0,1,...,6}, we conducted a comprehensive1221

evaluation across various tasks. As demonstrated in Table 12, the weighted score approach—which aligns1222

with our training methodology—yields an average performance improvement of 6% compared to the1223

baseline method.1224

The performance gains vary by task type: classification and direct assessment tasks show approximately1225

3% improvement, while pairwise ranking tasks exhibit more substantial gains ranging from 6% to 20%.1226

From a computational efficiency perspective, our method only requires logprob calculations up to the1227

5th token (where the “score (k)” token appears), resulting in negligible computational overhead.1228

A.3.4 Rationale Quality1229

Rationale generation capabilities in LMUNIT can enhance model interpretability and help humans1230

understand the scoring process, despite slightly degrading performance. To evaluate rationale quality, we1231
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Inference Method
Direct Assessment Classification PairWise Ranking

Average
Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA

LMUNITLLaMA3.1-70B

WEIGHTED SCORE 72.03 67.69 93.63 89.00 91.56 76.15 81.68
NOT-WEIGHTED SCORE 69.39 65.80 92.92 86.62 70.24* 68.46 75.57

Table 12: Ablation of our weighted score inference. Performance comparison of LMUNIT when calculating the
expected value over all possible scores compared to greedy text-generation

compared LMUNIT with a strong, presumably larger model—Claude Sonnet 3.5. Our evaluation involved 1232

400 randomly selected samples (200 from FLASK and 200 from BigGBench), using Sonnet 3.5 as an 1233

LLM evaluator to assess rationale quality on a 1-5 scale across three metrics: 1234

• Faithfulness: Evaluates how faithful/well-correlated the rationale is corresponding to the score and 1235

rubric. 1236

• Coverage: Evaluates how thoroughly the rationale covers all aspects of the evaluation criteria 1237

presented in the unit test and rubric. 1238

• Clarity: Evaluate how logically consistent and well-structured the rationale is. A sensible and 1239

coherent rationale presents reasoning that flows naturally, avoids contradictions, maintains topical 1240

focus, and creates a unified explanation. 1241

Table 13 shows that LMUNIT’s rationales achieve 92% of Sonnet 3.5’s quality, demonstrating strong 1242

interpretability potential. Despite a small quality gap, LMUNIT delivers high-quality rationales that 1243

effectively explain evaluation outcomes.

Metric Sonnet 3.5 LMUNIT Relative Performance

Faithfulness 4.87 4.40 90.3%
Coverage 4.72 4.23 89.6%
Clarity 4.48 4.31 96.2%

Table 13: Rationale quality analysis. Qualitative analysis of rationales generated by LMUNIT on Faithfulness,
Coverage, and Clarity

1244

A.3.5 Bayesian Optimization Details 1245

Preference-Guided Weight Optimization: LLM applications are judged along several partially com- 1246

peting quality criteria (helpfulness, faithfulness, style, safety , among others), and humans implicitly assign 1247

different importance to each. Benchmarks that score one criterion at a time such as FLASK (Ye et al., 1248

2023), BigGenBench (Kim et al., 2024b), Human-Internal, InfoBench (Qin et al., 2024) cannot reveal 1249

these trade-offs since the detailed unit tests are already present. 1250

By contrast, RewardBench (Lambert et al., 2024b) and LFQA (Xu et al., 2023b) provide pairwise 1251

human-preference labels (“chosen” vs. “rejected” response) but do not expose the underlying criteria. 1252

We bridge this gap by introducing a set of N = 8 global unit tests (Table 11) and learning a global 1253

weight vector w∈ [0,1]N such that a weighted sum of unit-test scores best reproduces human choices. 1254

Because the objective is non-differentiable and comparatively cheap to evaluate, we cast weight learning 1255

as black-box optimisation and employ Bayesian Optimization (BO). The specific methodology that we 1256

use is the following: 1257

1. We partition the collected pairwise preference data into disjoint development and test sets. 1258

2. For each response r in the development set, we compute scores si(r) across each of the N global 1259

unit tests, where i∈{1,2,...,N}. 1260
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3. We formulate an aggregation function f(r) that computes a final score for each response as a1261

weighted linear combination of its individual unit test scores:1262

f(r)=
N∑
i=1

wi ·si(r) (7)1263

where wi ∈ [0,1] are learnable weights shared across all samples. In our experimental setup, we1264

utilize N=8 global unit tests, resulting in 8 parameters to optimize.1265

4. We employ Bayesian optimization to iteratively refine the weight parameters {wi}Ni=1. Specifically,1266

we maximize the probability that for each preference pair (rc,rr) where rc is the chosen response1267

and rr is the rejected response, the aggregation function assigns a higher score to rc than to rr:1268

max
{wi}Ni=1

P(f(rc)>f(rr)) (8)1269

The optimization is conducted using the BayesianOptimization framework1 with the Probability of1270

Improvement acquisition function for 200 iterations and weight constraints wi∈ [0,1].1271

5. We evaluate the performance of the learned weights on the held-out test set, measuring how frequently1272

the aggregation function correctly ranks the chosen response higher than the rejected response.1273

Finally, it is worth noting that the learned weights are intended to be customized, reflecting the specific1274

human preferences in that dataset. They are not intended to generalize to other settings.1275

Additional Bayesian Optimization Experiments: As described in Sec. 3.5, we performed Bayesian1276

optimization method described in A.3.5 on our LMUNIT model to optimize the weights for unit tests in1277

RewardBench. We compared our approach with the two strongest open-source baselines: Prometheus-1278

2-8x7B and Prometheus-2-BGB-8x7B. Results demonstrate that while Bayesian optimization improves1279

both Prometheus baselines, they still underperformed compared to LMUNITLLaMA3.1-70B. Notably, even1280

the Bayesian-optimized Prometheus models failed to outperform the standard (non-optimized) LMUNIT.1281

These findings suggest that LMUNIT’s superior performance on Pairwise Ranking tasks stems primarily1282

from its core characteristics—specifically its training strategy and data collection methodology—rather1283

than from weight optimization techniques such as Bayesian optimization.1284

RewardBench LFQA

Model No-weighted Bayes opt. No-weighted Bayes opt.

LMUNITLLaMA3.1-70B 90.54 93.45 74.62 76.53
prometheus-bgb-8x7b-v2.0 76.38 79.79 67.31 71.54
prometheus-8x7b-v2.0 80.49 89.06 71.54 72.30

Table 14: Bayesian Optimization Ablation: Peformance comparison between the two strongest open-source
baseliens (Prometheus-2-8x7B, Prometheus-2-BGB-8x7B) and LMUNIT. LMUNIT outperforms both with and
without Bayesian optimization, highlighting the effectiveness of our training strategy and data collection.

A.4 LMUNIT in Relation to Prior Approaches1285

Our paradigm extends beyond prior criteria-based evaluation approaches by unifying five axes of evaluation1286

into a single framework, providing thorough ablations to demonstrate the contribution of each one.1287

1. Criterion type: Each unit test captures a distinct criterion.1288

2. Criterion granularity: Each unit test can be made more specific via the inclusion of more details, a1289

rubric, and/or a reference answer.1290

3. Criterion importance: Each unit test is assigned an importance weight, which can either be specified1291

by the user or learned directly from human preference data.1292

1https://github.com/bayesian-optimization/BayesianOptimization
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4. Score granularity: Our evaluator has been explicitly trained to express fine-grained differences in 1293

quality through a continuous score (unlike discrete or binary scores produced by most generative 1294

judge models). 1295

5. Natural language rationales: The interpretability of scores can be increased by enabling the generation 1296

of rationales while preserving granular (continuous) scoring ability. 1297

Most prior papers in LLM criteria-based evaluation focus on either criterion type or criteria granularity. 1298

Checklist (Ribeiro et al., 2020) is an earlier work that extends NLP model evaluation beyond accuracy to 1299

multiple criteria (unit tests). While being a foundational contribution, the paper does not consider the 1300

other axes mentioned above. Branch-Merge-Solve (Saha et al., 2024) shows the advantages of varying 1301

criterion type, but the criteria and score granularity are limited because the judge is not given a rubric to 1302

score against and has not been explicitly trained to distinguish fine-grained differences. Furthermore, the 1303

“merge” step aggregates criterion scores without considering their importance. Auto-J (Li et al., 2023) 1304

also shows the advantages of expanding criterion type while criteria granularity is quite under-specified 1305

(see Table 17 of their paper) and criterion importance is not addressed. Prometheus 2 (Kim et al., 2024c) 1306

directly addresses criterion granularity with fine-grained, query-specific rubrics, but their results and 1307

analysis neglect criterion type and criterion importance. HDEval (Liu et al., 2024) provides a principled 1308

approach for criterion importance, but their approach is focused on optimizing for coarse-grained task- 1309

level performance evaluation for a small set of tasks. Their training process is not optimized to distinguish 1310

fine-grained differences for a given criterion (limiting score granularity), and they do not evaluate on 1311

fine-grained criteria benchmarks. 1312

Our work expands LLM evaluation across all 5 axes above. We propose a novel approach to criterion 1313

importance, showing that we can directly learn the importance of arbitrary criteria at the global level via 1314

Bayesian optimization using pairwise preference data (Section 3.5). We also demonstrate gains from 1315

further score granularity via multi-loss optimization (Section 3.3) and test-time weighted scoring (Table 1316

12). 1317

Additional related work demonstrates consistent findings with our paper despite different goals. Wild- 1318

Bench (Lin et al., 2024b) focuses on developing an effective benchmark with automated metrics, sharing 1319

a set of queries with human-curated query-level criteria leading to more reliable scoring, consistent with 1320

the more general natural language unit test paradigm we explore in this paper. Thinking-LLM-as-a-Judge 1321

(Saha et al., 2025) proposes a DPO-based recipe to refine rationales that lead to reliable task-level perfor- 1322

mance evaluation. While similar to our DPO rationale experiments, this work does not investigate other 1323

axes of evaluation, such as criterion importance or improved score granularity. 1324

Technique RewardBench Subset

Chat Chat Hard Safety Reasoning Average

Global-Level Unit Tests
Single Test 96.1 86.0 92.7 91.6 91.6
Unweighted Tests 97.2 79.9 93.2 93.4 91.0
Dataset-Level Learned Weights 95.6 84.3 93.2 95.7 92.2
Section-Level Learned Weights 97.8 86.5 93.5 95.8 93.4

Query-Level Unit Tests
Single Test 92.8 78.6 84.1 83.7 84.8
Unweighted Tests 92.8 67.6 84.6 82.1 81.8
Exponentially Decaying Weights 93.9 72.9 84.9 81.4 83.3

Table 15: Unit Test Decomposition: RewardBench samples are scored using either 8 global tests (Table 11) or
8 query-specific tests generated by Claude-3.5-Sonnet. For learned weights, Bayesian optimization is applied to
LMUNITLLaMA3.1-70B predictions on 50% of RewardBench. For decaying weights, each nth test is weighted by
0.8n. Results reported on 50% held-out RewardBench data. Single test results use only the “Is the response helpful?”
global test or first query-level test.
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