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ABSTRACT

Synthesizing novel views for dynamic scenes from a collection of RGB inputs
poses significant challenges due to the inherent under-constrained nature of the
problem. To mitigate this ill-posedness, practitioners in the field of neural ra-
diance fields (NeRF) often resort to the adoption of intricate geometric regular-
ization techniques, including scene flow, depth estimation, or learned perceptual
similarity. While these geometric cues have demonstrated their effectiveness, their
incorporation leads to evaluation of computationally expensive off-the-shelf mod-
els, introducing substantial computational overhead into the pipeline. Moreover,
seamlessly integrating such modules into diverse dynamic NeRF models can be
a non-trivial task, hindering their utilization in an architecture-agnostic manner.
In this paper, we propose a theoretically grounded, lightweight regularizer by
treating the dynamics of a time-varying scene as a low-frequency change of a
probability distribution of the light intensity. We constrain the dynamics of this
distribution using optimal transport (OT) and provide error bounds under reason-
able assumptions. Our regularization is learning-free, architecture agnostic, and
can be implemented with just a few lines of code. Finally, we demonstrate the
practical efficacy of our regularizer across state-of-the-art architectures. Our code
is at https://github.com/samgregoost/OTDNeRF/

1 INTRODUCTION

Synthesizing novel views of a dynamic scene, given a sequence of monocular frames (Park et al.,
2010; Gao et al., 2022) or a set of time-synchronized cameras (Li et al., 2022), has recently gained
significant traction in the field (Brickwedde et al., 2019b; Park et al., 2021a;b; Pumarola et al., 2021;
Cai et al., 2022; Li et al., 2023a). The concept of novel-view synthesis originates from the realm of
image-based rendering (IBR) (Gortler et al., 1996), where the objective is to accurately aggregate
light intensity information from a dense collection of images to generate a desired novel view. One
of the most noteworthy recent developments in deep learning for IBR is NeRF (Mildenhall et al.,
2021), which can replicate the capabilities of a meticulously designed array of cameras using state-
of-the-art Structure from Motion (SfM) algorithms (Schonberger & Frahm, 2016).

Despite NeRF’s impressive results and robust performance, numerous recent works have embarked
on the challenging task of extending NeRF to dynamic scenes (Pumarola et al., 2021; Li et al.,
2023b; Park et al., 2021b; Fang et al., 2022; Ramasinghe et al., 2023). However, transitioning from
static to dynamic settings presents a non-trivial and challenging problem replete with complexities
(Deng et al., 2022). Notably, disentangling camera motion from object motion inherently constitutes
an ill-posed problem, further complicated by variations in lighting, non-rigid object deformations,
and their interplay. To address these additional complexities, explicit regularizations are imperative
to constrain the problem. Most existing approaches that employ such regularizations rely on geomet-
ric constraints (e.g., depth losses, flow-based losses) or learned priors (e.g., maintaining consistent
perceptual similarity across rendered frames over time) to guide dynamic NeRFs toward plausible
solutions.

However, these regularization techniques often entail adding additional deep networks on top of
already bulky NeRF models or involve expensive preprocessing steps. For instance, perceptual
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regularizers require backpropagation through pre-trained deep networks, while depth-based losses
demand capturing depth information (e.g., using LIDAR) or running off-the-shelf depth estimation
models during data preprocessing. Flow-based losses similarly necessitate extra preprocessing steps
involving external models. Furthermore, these regularizers enforce priors that are averaged over
large datasets, which may lead to domain gaps when applied to specific scenes with unique geome-
tries. Errors in estimating geometric cues can directly propagate from external models to the NeRF
optimization process.

In contrast, we introduce a straightforward plug-in regularizer that leverages statistical regularities of
rendered frames from fixed camera views to constrain optimization for unseen views during training.
Our central hypothesis is that the pixel intensity distribution of a scene, as rendered from a specific
fixed camera view, should remain approximately consistent within short time intervals. However,
due to object motion, pixel coordinates can change over time, making it challenging to minimize a
pixel-to-pixel distance function between two rendered frames. To address this limitation, we pro-
pose to minimize a dissimilarity measure between pixel intensity distributions to maintain statistical
regularity. One effective approach, in this vein, is to use a geometric divergence metric between
distributions. Two primary candidates include optimal transport (OT) based metrics and maximum
mean discrepancy (MMD), each with its own merits and downsides.

OT-based metrics exploit the geometry of the underlying ground space, making them more
favourable over MMD. However, there are two key challenges: 1) solving an OT problem is gen-
erally of O(n3) complexity, making it impractical to compute in each iteration, whereas MMD is
computationally efficient, since it can be expressed as a finite-dimensional inner product; and 2) ren-
dering the entire pixel distribution of a particular frame at each iteration consumes significant mem-
ory in the NeRF framework. To address the former, we employ a sliced-Wasserstein approximator,
which reduces OT computation complexity to O(n log n), significantly enhancing computational ef-
ficiency even compared to MMD. To overcome the latter, we obtain an unbiased estimator of the full
pixel distribution and further refine the estimator with interpolation for unsampled pixel coordinates.
Our experiments demonstrate that the sliced-Wasserstein approximator offers both faster computa-
tion and superior performance compared to MMD variants. We also show that the Wasserstein dis-
tance in our setting converges at competitive rates of O(n−1/2) with poly-logarithmic dependence
on the number of observed values in the image. Importantly, our regularizer can be seamlessly
integrated into any dynamic NeRF architecture without altering the existing model. Our method
assumes no prior knowledge about the scene and adapts dynamically at training. Empirically, we
demonstrate that the proposed regularizer enhances the performance of various dynamic NeRFs.
Moreover, ablation studies illustrate that our simple regularizer surpasses existing approaches that
rely on resource-intensive deep models or costly preprocessing steps.

2 RELATED WORK

D-NeRF Pumarola et al. (2021), demonstrated that in the context of a dynamic object-centric scene,
a canonical representation assumption could be made. This assumption allows for the optimization
of implicit motion and ray interactions with respect to a reference frame while treating neighboring
frames as small deformations. This paradigm involves the coordination of two Multilayer Percep-
trons (MLPs): the first one is responsible for deforming rays from the required view to the canonical
view, essentially inferring the delta ray bend; the second MLP applies the delta ray-bending from
the canonical reference frame to the desired view. The ray-bending paradigm with respect to a
canonical frame is effective, but, inherently under-constrained. Works by Tretschk et al. (2021),
Park et al. (2021a), and Park et al. (2021b) introduced several regularizations to constrain the al-
lowed ray deformations. NR-NeRF by Tretschk et al. (2021) regularized the magnitude of the ray
offsets, effectively limiting their deformation to reasonable changes, assuming that the motion is
not abrupt. However, due to the absence of explicit geometry, this regularization is applied to the
entire deformation volume, including occluded and unseen areas, requiring specific scheduling to
stabilize. Similarly, Park et al. (2021a) employed elastic regularization, which enforces constraints
on the singular values of the Jacobian of the deformation MLP, driving them towards zero. By doing
so, they achieve a uniform scale of changes in the deformation directions.

Nevertheless, it was observed that elastic regularization faced challenges in scenarios with complex
topological deformations. HyperNeRF (Park et al., 2021b), addressed discontinuities in the defor-
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mation field, particularly when changes in surface connectivity occur (e.g., opening a mouth, cutting
a lemon) or transient objects appear (e.g., fire or flame). To address this, HyperNeRF models frames
as the zero-level set of a higher-dimensional ambient space. Consequently, to infer novel views in
practice, HyperNeRF requires accurate slicing of the ambient space and obtaining a latent repre-
sentation, which is then used to model the ray-deformation. Similar to NR-NeRF, this approach
deals with complexity through over-parametrization, necessitating careful scheduling during opti-
mization. Drawing inspiration from Image-Based Rendering (IBR), researchers have also explored
the use of explicit geometry, such as monocular depth estimation (Ranftl et al., 2021) and scene flow
(Brickwedde et al., 2019a), as active regularization techniques for the ray-deformation operation.

3 METHODOLOGY

Sec. 3.1 presents a brief exposition of statistical divergence metrics and motivates our approach.
Sec. 3.2 delves deeper into the proposed regularizer.

3.1 STATISTICAL DIVERGENCES

Let Σ denote the standard Borel σ-algebra on Rd and P(Rd) to denote the set of Borel probability
measures (positively signed Borel measures with each µ ∈ P(Rd) satisfying µ(Rd) = 1. When it
comes to comparing two probability distributions, there are a plethora of different options, referred
to as divergences. A classic choice is the f -divergence (or the Czisar divergence (Csiszár, 1975))
which for two probability distributions µ, ν ∈ P(Rd) is defined as If (µ : ν) =

∫
Rd f(dµ/dν)dν if

µ is absolutely continuous with respect to ν and ∞ otherwise where f : (−∞,∞] → R is a convex
lower semicontinuous function such that f(1) = 0. In particular, this divergence is a generalization
of the well-known Kullback-Leibler (KL) divergence for the choice of f(t) = t log t. Despite
the widespread use of f -divergences, they are computationally intractable in the setting when only
samples are available and require absolute continuity between µ and ν which often surfaces as a
stringent requirement.

Natural remedies to this issue is to consider Integral Probability Metrics (IPM), which is the motiva-
tion of works in other domains such as generative models (Mroueh & Sercu, 2017) and distributional
robustness (Staib & Jegelka, 2019; Husain, 2020). There are two prevalent choices of IPMs that are
used: the (kernel) Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) and the p-Wasserstein
distance (Villani et al., 2009). The MMD is typically favoured for its computational tractability as
it can be computed in O(n2) time where n is the number of samples however relies on an appro-
priate choice of characteristic kernel function. On the other hand the p-Wasserstein distance utilizes
a ground metric on the support of the distributions and characterizes a divergence at the statistical
level. More formally, the p-Wasserstein distance between two probability measures µ, ν ∈ P(Rd)
is

W p
p (µ1, µ2) = infυ∈Π(µ,ν)

∫
Rd×Rd

||x− y||pdυ(x, y), (1)

where Π(µ, ν) is the set of all couplings: joint probability measures on Rd × Rd with marginals
µ and ν, and || · || is the Euclidean norm. The Wasserstein distances solve for a mass transporta-
tion problem by finding the minimal coupling υ and as such, alleviate issues with f -divergence
such as non-overlapping support. However Wasserstein distances remain analytically intractable for
all but a few cases. One straightforward way to solve the discrete OT problems is to use linear
programming based algorithms such as the Hungarian method Kuhn (1955), the auction algorithm
Bertsekas (1988) and the network simplex Waissi (1994), which are typically numerically robust.
Unfortunately, these methods pay a large price in algorithmic complexity, especially the memory
requirements for solving larger problems. However, in the 1-dimensional setting, we can com-
pute the p-Wasserstein distance in O(n log n) time. Consider two finitely support distributions:
µ̂ = 1

n

∑n
i=1 δxi

, ν̂ = 1
n

∑n
i=1 δyi

where xi, yi ∈ R where δz(z
′) is the dirac delta function that

corresponds to 1 if z′ = z and 0 otherwise. In this case, the p-Wasserstein distance can be computed
with W p

p (µ̂, ν̂)
p = 1

n

∑n
i=1 |x̃i − ỹi|p, where {x̃i} and {ỹi} are sorted variants of {xi} and {yi}

such that x̃1 < · · · < x̃n and ỹ1 < · · · < ỹn. This problem can be solved at O(n log n) cost,
which is the sorting cost. This property of the Wasserstein distance has been heavily leveraged in
many practical applications, using the Sliced-Wasserstein (SW) distance Rabin et al. (2012); Bon-
neel et al. (2015); Avraham et al. (2019). More specifically, Sliced Wasserstein distance provides a
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practical univariate approximation to the multi-dimensional case, with robust theoretical guarantees.
Let Sd−1 be the d-dimensional unit sphere and γ the uniform distribution on the surface of Sd−1. For
θ ∈ Sd−1, θ∗ : Rd → R denotes the linear form x → ⟨x, θ⟩ with ⟨·, ·⟩ the Euclidean inner-product.
Then, SW of order p is

SW (µ1, µ2) =

∫
Sd−1

Wp(θ
∗
#µ1, θ

∗
#µ2)dγ(θ), (2)

where for any measurable function f : Rd → R and ξ ∈ P(Rd) is the push-forward measure of ξ
by f : for any Borel set A in the σ-algebra of R, f#η(A) = η(f−1A), where f−1(A) = {x ∈ Rd :
f(x) ∈ A}.

In this work, we treat images as distributions with finite support. For a grayscale image I ∈
RW×H×1 of size W × H , let Ω ⊂ R denote the set of observed values in the true image. We use
P({r}) to denote the distribution from images whose observed values are {r}. Then, we present the
following theorem.

Theorem 1 For any two sets of samples P({r̂t1}) and P({r̂t2}) drawn i.i.d from t base distributions
P ({rt1}) and P ({rt2}) supported on a finite set of values Ω, the following holds

∣∣W1

(
P(

{
r̂t1

}
),P(

{
r̂t2

}
)
)
−W1(P(

{
rt1

}
),P(

{
rt2

}
))
∣∣ ≤ 4

√
|Ω|2

2n
log

(
2 |Ω|
δ

)
, (3)

with probability at least 1− δ.

(Proof in Appendix). It should be noted here that the rate of convergence depends on the size of |Ω|.
We can see from above that the 1-Wasserstein distance from empirical samples at two time-stamps
converges competitively. In practice, we observe that the performance increases with n (Table 7),
possibly due to the lower error in OT computation as predicted by the above result.

Figure 1: An example illustration of different divergence metrics over temporarily varying pixel dis-
tributions captured from a fixed camera. Top row: An image sequence extracted from the space-out test
sequence of the iPhone dataset. Bottom row: The heatmaps indicate the metric distance between the corre-
sponding images. As shown, pixel-to-pixel L2 loss does not reasonably capture the similarity between images
as the objects in the scene are dynamic. In comparison, geometric distances better capture the similarity of pixel
distributions, where sliced-Wasserstein distance performs best (zoom in for a better view). We notice that this
slight enhancement results in a notable boost in performance within the context of the more intricate dynamic
NeRF scenario, potentially due to its ability to effectively handle subtle variations in lighting conditions.

3.2 OPTIMAL TRANSPORT FOR IMPROVING THE CONVERGENCE OF DYNAMIC NERFS

We consider the scenario in which the provided data consists solely of a series of snapshots and
corresponding camera poses of a dynamic scene, captured by a single moving camera. This problem
is highly underconstrained, as it provides only one observation from a specific camera pose at any
given timestamp. Consequently, the NeRF model can potentially converge to degenerate solutions,
violating multi-view consistency, unless explicit regularization measures are imposed.

Notably, we observe that for a scene with reasonably smooth temporal dynamics, the pixel intensity
distributions when rendered from a fixed camera pose should remain similar within a short time
interval. However, the pixel coordinates change over time due to object movements. For example,
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consider the pixel distribution P(rt,p) of a rendered image from a camera pose p at time t, where
rt,p represents RGB intensities. Within a small time interval we assume ∆t, P(rt,p) ≈ P(rt+∆t,p)
1. Therefore, the minimization of D(P(rt,p),P(rt+∆t,p)), where D(·, ·) is a suitable divergence
metric that remains invariant with respect to pixel coordinates, should assist the model in converging
to a more robust solution. In fact, we have found that in real-world scenes, this approach effectively
regularizes the training of dynamic NeRFs on-the-fly, resulting in improved 3D reconstructions.

Fig. 1 is a toy example that illustrates the validity of this hypothesis. Note that as the person
moves, the L2 distance rapidly diverges from zero as the indices move away from the diagonal
of the heatmap. In comparison, geometric losses are able to maintain a low metric distance across
a larger area. We observe that the better performance of slice-Wassersein metric translates to a sig-
nificant performance improvement in the more complex dynamic NeRF setting, possibly owing to
its robustness to subtle light changes (see Sec. 4). Interestingly, we observe that sliced-Wasserstein
distance performs better even compared to the Sinkhorn divergence which is an efficient approxi-
mation to the Wasserstein distance and can be considered as an interpolation between OT and MMD
(Feydy et al., 2019). This particular behaviour allows us to enjoy both faster estimations (O(n log n)
as opposed to O(n2) complexity of MMD) and better convergence with sliced-Wasserstein distance.

One critical obstacle that impedes the regularization of dynamic NeRFs using rendered images as
inputs is their computational complexity. Rendering a complete projection of a 3D scene from a
given camera angle involves tracing a ray for each pixel and densely sampling the density and color
fields in 3D space. This necessitates the exhaustive evaluation of a NeRF backbone (typically an
MLP or a dense feature grid) for each rendering, often demanding compute power that is infeasible.
Consequently, methods utilizing image statistics for regularization are compelled to resort to using
small patch renderings for this purpose, which frequently provide inadequate approximations of the
global statistics of the entire projection. As these regularization methods require well-structured
pixel information as inputs, rendering sparse pixel samples to obtain better global statistics is not
a viable option (e.g., calculating LPIPS similarity between randomly sampled pixels from images
lacks meaning). In contrast, our regularization method is based on reducing the OT cost between
pixel distributions, and it is not hindered by the aforementioned obstacle. Instead, we can obtain an
unbiased estimator of the true population by rendering pixel values at random coordinates, enabling
us to efficiently regularize the scene with theoretical guarantees and manageable computational re-
quirements. Fig. 2 illustrates our method graphically.

Figure 2: A graphical demonstration of our approach. We min-
imize the OT distance D between the pixel intensity distributions
P(rt,p) and P(rt+∆t,p), where rt,p is the set of pixels rendered from
camera p at time t.

Further, we observed that
interpolating to unsampled
pixel coordinates leads
to better performance.
Therefore, we interpolate
to the full image resolution
after rendering random
pixels before computing
the sliced-Wasserstein
distance. It is important
to note that this only
minimally affects the
computational overhead
since we are not actually
rendering the missing
pixels. We conducted
experiments with more
complex interpolation
kernels; however, bilinear
interpolation with soft smoothing yielded the best results. For an ablation, please see Table 3. Our
method is outlined in Algorithm 1.

1See Sec. 5 for limitations.
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Algorithm 1 The proposed regularization loss for each optimization iteration.
Input:

• {pi}m
i=0 - Training camera poses, ∆t - Time interval, W - Width of rendered images, H - Height of rendered images, β - Scalar

loss weight, k - Number of random vectors used for sliced-Wasserstein distance, d - Number of pixels sampled for computing
sliced-Wasserstein distance, Lphoto - The usual photometric loss of dynamic NeRF

Output:

• Ltotal - The result of the algorithm.

1: Randomly sample a camera pose: pi

2: Sample t1 ∼ U(0, 1) and t̂ ∼ U(0,∆t)
3: Calculate t2 = t1 + t̂
4: Sample 2D coordinates: {(x1, y1), (x2, y2), . . . , (xd, yd)} ∼ U(0,W ) × U(0, H)

5: Render pixels at t1 and t2 from pi at sampled coordinates: R1, R2 ▷R1, R2 ∈ Rd×3

6: Sample vectors: u1,u2, . . . ,uk ∼ U(0, 1)3 ▷ ui ∈ R3

7: Normalize vectors: ||ui|| = 1

8: Create matrix: U = [u1;u2; . . . ;uk] ▷ U ∈ Rk×3

9: Compute sliced-Wasserstein distance:

1 U_r = U.reshape(n, 1, 3)
2 R1_r = R1.reshape(1, d, 3)
3 R2_r = R2.reshape(1, d, 3)
4

5 p = (U_r * R1_r).sum(dim = 2)
6 q = (U_r * R2_r).sum(dim = 2)
7

8 p, _ = torch.sort(p, dim=1)
9 q, _ = torch.sort(q, dim=1)

10

11 RegLoss = torch.mean(torch.abs(p - q) / (1 + (p - q) ** 2))

10: LTotal = Lphoto + βRegLoss ▷ Calculate total loss
11: Return LTotal

4 EXPERIMENTS
In this section, we empirically assess the effectiveness of the proposed regularization method by
integrating it into several recent dynamic NeRF models. We used β = 0.1. Although augmenting
∆t per scene leads to improved results, we opted to fix it to 0.1 across all scenes and datasets to
better demonstrate the robustness of our method. We used 256 or 512 for n and 2048 or 4096 for d,
depending on the model size.

4.1 DATASETS AND BASELINES

We use the iPhone dataset proposed by Gao et al. (2022), HyperNeRF interpolation dataset, and the
HyperNeRF vrig dataset (see Appendix) proposed by Park et al. (2021b) for evaluation. We choose
DNeRF (Gao et al., 2021), HyperNeRF (Park et al., 2021b), Nerfies (Park et al., 2021a), TiNeuVox
(Fang et al., 2022), and Hexplanes (Cao & Johnson, 2023) as baselines.

4.2 EVALUATION ON THE IPHONE DATASET

Many datasets used in dynamic NeRF setting do not represent practical in-the-wild capture. For
instance, the datasets contain limited motions and the test sets are small, hiding issues in incorrect
deformation and resulting geometry. For these reasons, Gao et al. (2022) proposed a new dataset
dubbed the iPhone dataset. It consists of sequences with non-repetitive motion, from various cat-
egories such as generic objects, humans, and pets. The dataset deploys three cameras for multi-
camera capture – one hand-held moving camera for training and two static cameras for evaluation.
Table 1 and Fig. 3 depict quantitative and qualitative improvements by our regularization, respec-
tively. We use the masked metrics proposed by the dataset that use covisibility masks.

4.3 EVALUATION ON THE HYPERNERF INTERPOLATION DATASET

HyperNeRF interpolation dataset contains six sequences with densely captured images. To make
the task more challenging, we train all the models by taking only every fourth frame for training.
For evaluation, we fix the first camera pose, and render frames from all the training time stamps.
This setting measures how robustly the models have captured the scene dynamics when deviating
from the ground truth pose, time pairs. Since we do not have the ground truth images for this eval-
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Apple Block Paper windmill
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
DNeRF 12.635 0.671 0.669 - - - 14.628 0.330 0.375
DNeRF w/ Reg 13.454 0.679 0.649 - - - 16.383 0.381 0.351

Nerfies 15.853 0.709 0.570 13.860 0.572 0.523 12.817 0.223 0.570
Nerfies w/ Reg 17.719 0.762 0.480 14.398 0.583 0.527 16.854 0.342 0.273

HyperNeRF 15.440 0.704 0.594 14.535 0.593 0.502 13.628 0.256 0.499
HyperNeRF w/ Reg 18.056 0.757 0.464 16.562 0.639 0.404 16.946 0.337 0.265

HexPlane 16.606 0.712 0.620 15.888 0.622 0.542 16.989 0.356 0.516
HexPlane w/ Reg 17.189 0.718 0.633 15.893 0.625 0.537 17.144 0.365 0.512

TiNeuVox 9.259 0.682 0.704 9.793 0.607 0.502 11.486 0.289 0.359
TiNeuVox w/ Reg 12.561 0.716 0.596 11.114 0.625 0.481 12.233 0.317 0.349

Space out Spin Teddy
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
DNeRF 16.740 0.606 0.410 16.384 0.502 0.451 - - -
DNeRF w/ Reg 17.080 0.628 0.363 15.825 0.484 0.506 - - -

Nerfies 15.709 0.571 0.397 13.900 0.471 0.505 13.073 0.542 0.442
Nerfies w/ Reg 16.545 0.607 0.349 13.324 0.485 0.547 14.147 0.556 0.417

HyperNeRF 16.000 0.560 0.422 14.441 0.479 0.497 13.382 0.546 0.438
HyperNeRF w/ Reg 17.090 0.613 0.337 15.314 0.502 0.486 14.361 0.565 0.389

HexPlane 17.081 0.581 0.540 16.125 0.493 0.563 13.051 0.517 0.627
HexPlane w/ Reg 17.197 0.593 0.560 16.170 0.495 0.558 13.126 0.519 0.629

TiNeuVox 11.377 0.610 0.422 10.179 0.473 0.616 8.219 0.543 0.551
TiNeuVox w/ Reg 12.372 0.627 0.411 14.799 0.635 0.531 9.161 0.562 0.514

Wheel Mean
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
DNeRF - - - 15.097 0.527 0.476
DNeRF w/ Reg - - - 15.685 0.543 0.467

Nerfies 10.109 0.333 0.511 13.617 0.489 0.503
Nerfies w/ Reg 11.308 0.392 0.381 14.899 0.532 0.425

HyperNeRF 9.741 0.314 0.537 13.881 0.493 0.498
HyperNeRF w/ Reg 11.863 0.389 0.386 15.742 0.543 0.390

HexPlane 13.044 0.407 0.577 15.541 0.527 0.569
HexPlane w/ Reg 13.228 0.434 0.564 15.707 0.536 0.570

TiNeuVox 5.801 0.330 0.604 9.444 0.504 0.536
TiNeuVox w/ Reg 5.995 0.335 0.590 11.176 0.545 0.496

Table 1: Evaluation of the proposed regularizer over the iPhone dataset. The proposed regular-
izer improves the performance of all the baselines across all scenes. We were not able to converge
DNeRF on some sequences.

Chickchicken Torchocolate Aleks-teapot
Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓ SSIM↑ LPIPS↓
TiNeuVox 0.723 0.551 0.844 0.384 0.770 0.486
TiNeuVox w/ Reg 0.796 0.381 0.859 0.377 0.834 0.441

Lemon Hand Mean
Method SSIM↑ LPIPS↓ SSIM↑ mLPIPS↓ SSIM↑ LPIPS↓
TiNeuVox 0.816 0.662 0.718 0.667 0.774 0.550
TiNeuVox w/ Reg 0.826 0.648 0.824 0.650 0.872 0.499

Table 2: Evaluation of the proposed regularizer over the HyperNeRF interpolation dataset.
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Kernel mPSNR↑ mSSIM↑ mLPIPS↓
Spline 10.113 0.441 0.599
Inverse quadratic 10.441 0.423 0.501
Gaussian 11.001 0.521 0.622
Cubic 9.993 0.425 0.513
Quintic 9.336 0.415 0.581
Multiquadric 10.661 0.445 0.522
Linear 11.176 0.545 0.496

Table 3: Comparison over different interpolation
kernels. A linear kernel performed best.

Regularization mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox (baseline) 9.444 0.504 0.536
Scene-flow 9.457 0.514 0.536
LPIPS 9.991 0.521 0.512
Depth 9.437 0.519 0.518
RB 9.332 0.518 0.518
SR 10.131 0.523 0.512
RB + SR + Depth 10.311 0.535 0.508
Ours 11.176 0.545 0.496
RB + SR + Depth + Ours 11.221 0.565 0.490

Table 4: Comparison over different regulariza-
tions. Depth and Scene-flow regularizations include
expensive preprocessing steps that involve evaluating
off-the-shelf models. LPIPS regularization requires
stacking a pre-trained deep network on NeRF at train-
ing time. In contrast, our regularization is more effi-
cient and performs better.

Figure 3: A qualitative illustration of the effect of the proposed regularization. As illustrated, our regular-
izer significantly stabilizes the 3D reconstruction task.

uation setting, we measure perceptual similarity between the ground truth image at time zero and
the rendered images at different time stamps where the camera pose is fixed at the first ground truth
pose. The quantitative and qualitative results are shown in Table 2 and Fig. 4, respectively. Inter-
estingly, we observed that HyperNeRF and Nerfies baselines already performed well in this setting
and our regularization did not have much effect. In contrast, TiNeuVox demonstrated difficulty in
converging to a plausible solution and our regularizer significantly improved the results.

4.4 ABLATION AGAINST OTHER REGULARIZATIONS AND DESIGN CHOICES
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Figure 4: A qualitative illustration of the effect of the proposed regularization on the HyperNeRF interpolation
dataset.

Method mPSNR↑ mSSIM↑ mLPIPS↓
Baseline 9.444 0.504 0.536

L2 8.313 0.407 0.697
KL-divergence 9.414 0.461 0.570
Total variation norm 9.471 0.426 0.597

Gaussian-MMD 10.011 0.523 0.511
Laplacian-MMD 10.114 0.522 0.500
Energy-MMD 10.746 0.513 0.521

Sinkhorn 10.888 0.533 0.498

Sliced-Wasserstein 11.176 0.545 0.496

Table 5: Comparison over different distant met-
rics used with the proposed regularization. Sliced-
Wasserstein yields the best results.

We compare the efficacy of the proposed
method against other regularizations. Results
are shown in Table 4. For depth regulariza-
tion, we use the LIDAR-based depth maps pro-
vided by the iPhone dataset for computing the
photometric error between the rendered depth
and ground-truth depths. For LPIPS regulariza-
tion, we minimize the LPIPS distance between
RGB patches rendered from a fixed camera, in
different time stamps (similar to our regular-
ization, but LPIPS is used instead of the OT
distance). We used a pre-trained AlexNet for
computing LPIPS. For scene-flow, we use the
method proposed in Wang et al. (2023) which
uses RAFT (Teed & Deng, 2020) for estimat-
ing optical flow. We also compared against a
sparcity regularizer Barron et al. (2022) and random background regularizer Weng et al. (2022)
which has been previously been used in the literature. Our regularization outperforms all the above
methods that use either additional devices, off-the-shelf models, or deep networks. Table 5 and
Table 3 depict comparison against other distance metrics and interpolation kernels. Interestingly,
sliced-Wasserstein outperformed all other metrics by a significant margin. We use TiNeuVox on the
iPhone dataset for these experiments.

5 LIMITATIONS
Our method assumes smooth motions and can fail with abrupt scene dynamics. However, note that
in most real world scenes, this is a fair assumption. Additionally, due to our method’s reliance on
an approximate OT distance, a pixel averaging effect can occasionally occur, resulting in a slight
blur. Interestingly, this effect can potentially lead to a minor degradation in renderings, particularly
when the baseline model already performs well in a given sequence. Moreover, if the baseline model
fails to converge entirely in a specific sequence, our regularization method may not yield significant
improvements in the results.

6 CONCLUSION
We propose an architecture-agnostic, simple regularizer that can be easily integrated into dynamic
NeRF models. We do not rely on deep architectures or expensive learned priors across a large
dataset. We leverage optimal transport (OT) to learn instance-based statistical priors on-the-fly
during training. To circumvent the need to solve an OT problem in each iteration, we employ a
sliced-Wasserstein approximation and derive theoretical bounds for to the convergence with respect
to sampling complexity. We show the effectiveness of our regularizer by evaluating it across chal-
lenging real-world dynamic scenes.
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A APPENDIX

A.1 PROOF OF THEOREM 1

In order to prove our result, we introduce some additional notation. For any probability measure
µ ∈ P(R), the support of the measure µ is

supp(µ) := {X ∈ R : if X ∈ NX open =⇒ P(NX) > 0} . (4)
Furthermore, for any set A ⊆ R, we use 1A(x) = 1 if x ∈ A and 0 otherwise to denote the
characteristic function of the set A. Furthermore, we use [[·]] to denote the Iverson bracket of an
event: [[A]] = 1 if A is true and 0 otherwise. We will require the use of a Lemma that will aid us in
the main proof

Lemma 1 For any measure µ ∈ P([0, 1]) with finite support: |supp(µ)| < ∞, let µ̂n =
1
n

∑n
i=1 δxi

where xi ∼ µ i.i.d, then we have

|µ(x)− µ̂n(x)| ≤

√
1

2n
log

(
2

δ

)
, (5)

for a fixed x ∈ R with probability 1− δ.

Proof Note that µ(x) = E[µ̂n(x)] and µ̂n(x) ∈ [0, 1]. Thus by a standard concentration inequality
such as Hoeffding’s inequality, we get

P [|µ̂n(x)− µ(x)| ≥ t] ≤ 2 exp
(
−2nt2

)
. (6)

Setting t =
√

1
2n log(2/δ) completes the proof.

Lemma 2 For any measure µ ∈ P([0, 1]) with finite support: |supp(µ)| < ∞, let µ̂n =
1
n

∑n
i=1 δxi

where xi ∼ µ i.i.d, then we have

W1(µ, µ̂n) ≤

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

)
, (7)

with probability at least 1− δ.

Proof We first invoke the Kantorovich-Rubenstein dual of the Wasserstein distance (Villani et al.,
2009):

W1(µ, µ̂n) = sup
h:[0,1]→R:|h(x)−h(x′)|≤|x−x′|

(Eµ[h]− Eµ̂n
[h]) (8)

(1)

≤ sup
h:[0,1]→R:|h(x)|≤1

(Eµ[h]− Eµ̂n [h]) (9)

(2)
= sup

A⊆[0,1]

(Eµ[1A]− Eµ̂n [1A]) (10)

(3)
= sup

A⊆[0,1]

 ∑
x∈supp(µ)

[µ(x) · 1A(x)]−
∑

x∈supp(µ)

[µ̂n(x) · 1A(x)]

 (11)

= sup
A⊆[0,1]

 ∑
x∈supp(µ)

[µ(x)− µ̂n(x)] · 1A(x)

 , (12)

where (1) is due to fact that |x− x′| ≤ 1 for x, x′ ∈ [0, 1], (2) is by dual formulation of the Total
Variation, and (3) is by the fact that µ̂n is support on supp(µ) by construction. Consider then the
following boolean variable

Hx = [[|µ(x)− µ̂n(x)| >

√
1

2n
log

(
2 · |supp(µ)|

δ

)
]], (13)
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we then have by Union bound inequality of probability:

P

 ⋃
x∈supp(µ)

Hx

 ≤
∑

x∈supp(µ)

P [Hx] (14)

≤
∑

x∈supp(µ)

δ

|supp(µ)|
(15)

= δ. (16)

Therefore, we have

P

W1(µ, µ̂n) ≥

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

) (17)

≥ P

 sup
A⊆[0,1]

 ∑
x∈supp(µ)

[µ(x)− µ̂n(x)] · 1A(x)

 ≥

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

) (18)

(1)

≥ P

 ⋃
x∈supp(µ)

Hx

 (19)

≥ δ, (20)

where (1) is due to the union bound argument, completing the proof.

We are now ready to complete the proof:

W1(P(
{
r̂t1

}
),P(

{
r̂t2

}
)) ≤ W1(P(

{
r̂t1

}
),P(

{
rt1

}
)) +W1(P(

{
rt1

}
),P(

{
r̂t2

}
)) (21)

≤ W1(P(
{
r̂t1

}
),P(

{
rt1

}
)) (22)

+W1(P(
{
r̂t2

}
),P(

{
rt2

}
)) +W1(P(

{
rt1

}
),P(

{
rt2

}
)) (23)

≤ 4

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

)
+W1(P(

{
rt1

}
),P(

{
rt2

}
)).

(24)

Similarly, we can apply the above argument to get

W1(P(
{
rt1

}
),P(

{
rt2

}
) ≤ 4

√
|supp(µ)|2

2n
log

(
2 · |supp(µ)|

δ

)
+W1(P(

{
r̂t1

}
),P(

{
r̂t2

}
)).

(25)

Merging these two together allows us to complete the proof.

A.2 EVALUATION ON HYPERNERF VRIG DATASET

The HyperNeRF dataset, initially introduced by Park et al. (2021a) and Park et al. (2021b), un-
derwent revisions after Gao et al. (2022) identified certain limitations. These limitations included
frames that transitioned abruptly between multiple camera viewpoints in consecutive time steps, a
scenario challenging to capture from a single camera, as well as scenes portraying quasi-static sce-
narios that do not accurately represent real-world dynamics. In response, Gao et al. (2022) proposed
an enhanced and more demanding version of this dataset, which we employ for our evaluation. This
augmented dataset comprises seven sequences in total, each enriched with keypoint annotations. It
encompasses 7 multi-camera captures and 7 single-camera captures, all featuring 480p resolution
videos. It is noteworthy that all dynamic scenes within this dataset are inward-facing. For our evalu-
ation, we apply masked metrics as introduced in Gao et al. (2022), which utilize covisibility masks.
Results are shown in Table 6 and Fig. 5.
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Broom Chicken Peel-banana
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ LPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox 19.633 0.609 0.659 24.103 0.777 0.264 21.558 0.863 0.267
TiNeuVox w/ Reg 20.955 0.774 0.628 26.006 0.949 0.196 22.313 0.891 0.274

3dprinter Tail Toby sit
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox 19.184 0.780 0.296 22.593 0.822 0.511 18.191 0.783 0.611
TiNeuVox w/ Reg 19.323 0.775 0.318 23.191 0.891 0.438 19.385 0.790 0.536

Table 6: Evaluation of the proposed regularizer over the HyperNeRF vrig dataset.

d = 128 d = 256 d = 512
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ LPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox w/ Reg 9.441 0.409 0.575 10.020 0.478 0.510 10.190 0.479 0.536

d = 1024 d = 2048 d = 4096
Method mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓ mPSNR↑ mSSIM↑ mLPIPS↓
TiNeuVox w/ Reg 10.325 0.489 0.544 10.841 0.525 0.555 11.176 0.545 0.496

Table 7: Ablation over the number of samples used for OT distance computation. Metrics are
calculated over the iPhone dataset. As the number of samples grow, the performance improves,
possible due to the lower error in OT computation as predicted by Theorem 1.

A.3 EFFICIENCY OF OUR REGULARIZER

The efficiency of our regularization approach is attributed to two key factors: 1) the elimination of
data pre-processing and 2) superior run-time computational efficiency.

For depth regularization, the main efficiency bottleneck is the necessity to pre-compute depth maps
for all frames. Although this adds minimal computational overhead during run-time, it is a signifi-
cant pre-processing step. In contrast, our method requires no such pre-processing, offering a clear
advantage.

More importantly, our method demonstrates substantial training time efficiency compared to both
scene-flow and LPIPS regularizations. The following table illustrates the average run-time for the
TiNeuVox on the iPhone dataset:

Method Time Required
Ours ∼ 3 hours
LPIPS ∼ 8 hours
Scene-flow ∼ 10 hours

Table 8: Comparison of Time Required for Different Methods
Scene-flow regularization demands pre-computing optical flows and solving integration problems
using the Runge-Kutta method during training, which is computationally intensive. Similarly, LPIPS
involves backpropagating through an additional deep network at training, adding to its computational
load.

In contrast, our method is significantly more lightweight, as it avoids these computationally demand-
ing steps.

A.4 FAILURE CASES

Since our method relies on an approximate OT distance, there can be instances where a pixel aver-
aging effect occurs, resulting in a subtle blur. Interestingly, this effect can potentially cause a slight
decline in the quality of renderings, especially when the baseline model already performs excep-
tionally well in a given sequence. Additionally, if the baseline model fails to converge completely
in a particular sequence, our regularization technique may not yield substantial improvements in the
results. Fig. 7 shows some examples.
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Figure 5: A qualitative illustration of the effect of the proposed regularization on the HyperNeRF vrig
dataset.
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Figure 6: A qualitative illustration of the effect of the proposed regularization on the HyperNeRF vrig
dataset.
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Figure 7: Example failure cases. Top row: baseline, bottom row: baseline with regularization. Due to
the pixel averaging effect that stems from the OT approximation sometimes degrade or does not improve the
results. We observed cases where the baseline model performs too poorly, leading to our regularization not
having much effect.
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