
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

AN IMPROVED SAMPLE COMPLEXITY FOR RANK-1
MATRIX SENSING

Zhihang Li ∗ Zhizhou Sha† Zhao Song‡ Mingda Wan§

ABSTRACT

Matrix sensing is a problem in signal processing and machine learning that in-
volves recovering a low-rank matrix from a set of linear measurements. The goal
is to reconstruct the original matrix as accurately as possible, given only a set of
linear measurements obtained by sensing the matrix [Jain, Netrapalli, Sanghavi,
STOC 2013]. In this work, we focus on a particular direction of matrix sens-
ing, which is called rank-1 matrix sensing [Zhong, Jian, Dhillon, ALT 2015]. We
present an improvement over the original algorithm in [Zhong, Jian, Dhillon, ALT
2015]. It is based on a novel analysis and sketching technique that enables faster
convergence rates and better accuracy in recovering low-rank matrices. The al-
gorithm focuses on developing a theoretical understanding of the matrix sensing
problem and establishing its advantages over previous methods. The proposed
sketching technique allows for efficiently extracting relevant information from the
linear measurements, making the algorithm computationally efficient and scal-
able.
Our novel matrix sensing algorithm improves former result [Zhong, Jian, Dhillon,
ALT 2015] on in two senses,

• We improve the sample complexity from Õ(ϵ−2dk2) to Õ(ϵ−2(d+ k2)).

• We improve the running time from Õ(md2k2) to Õ(md2k).

The proposed algorithm has theoretical guarantees and is analyzed to provide in-
sights into the underlying structure of low-rank matrices and the nature of the
linear measurements used in the recovery process. It advances the theoretical
understanding of matrix sensing and provides a new approach for solving this
important problem.

1 INTRODUCTION

The matrix sensing problem is a fundamental problem in signal processing and machine learning
that involves recovering a low-rank matrix from a set of linear measurement. This problem arises
in various applications such as image and video processing Fowler et al. (2012); Bouwmans et al.
(2018) and sensor networks Middya et al. (2017); Wimalajeewa & Varshney (2017). Mathematically,
matrix sensing can be formulated as a matrix view of compressive sensing problem Jain et al. (2013).
The rank-1 matrix sensing problem was formally raised in Zhong et al. (2015).

The matrix sensing problem has attracted significant attention in recent years, and several algorithms
have been proposed to solve it efficiently. In this paper, we provide a novel improvement over
the original algorithm in Zhong et al. (2015), with improvement both on running time and sample
complexity.

Matrix sensing is a fundamental problem in signal processing and machine learning that involves
recovering a low-rank matrix from a set of linear measurements. Specifically, given a matrix
W∗ ∈ Rd×d of rank k that is not directly accessible, we aim to recover W∗ from a set of linear

∗ lizhihangdll@gmail.com. Huazhong Agricultural University.
† shazz20@mails.tsinghua.edu.cn. Tsinghua University.
‡ magic.linuxkde@gmail.com. The Simons Institute for the Theory of Computing at UC Berkeley.
§ dylan.r.mathison@gmail.com. Anhui University.

1

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

measurements b ∈ Rm applied to the ground truth matrix W ∗ where

bi = tr[A⊤
i W∗], ∀i = 1, . . . ,m,

where Ai are known linear operators. The measurements bi are obtained by sensing the matrix W∗
using a set of linear measurements, and the goal is to reconstruct the original matrix W∗ as accurately
as possible. This problem arises in various applications such as image and video processing, sensor
networks, and recommendation systems.

The matrix sensing problem is ill-posed since there may exist multiple low-rank matrices that satisfy
the given linear measurements. However, the problem becomes well-posed under some assumptions
on the underlying matrix, such as incoherence and restricted isometry property (RIP) Candes & Tao
(2005); Candes et al. (2006); Gurevich & Hadani (2008) , which ensure unique and stable recovery
of the matrix. A well-used method to solve this problem is to use convex optimization techniques
that minimize a certain loss function subject to the linear constraints. Specifically, one can solve the
following convex optimization problem:

min
W∗

rank(W∗)

s.t. tr[A⊤
i W∗] = bi,∀i = 1, . . . ,m.

However, this problem is NP-hard Tillmann & Pfetsch (2013) and intractable in general, and hence,
various relaxation methods have been proposed, such as nuclear norm minimization and its variants,
which provide computationally efficient solutions with theoretical guarantees. In this work, we
focus on the rank-one independent measurements. Under this setting, the linear operators Ai can be
decomposed into the form of Ai = xiy

⊤
i , where xi ∈ Rd, yi ∈ Rd are all sampled from zero-mean

multivariate Gaussian distribution N (0, Id).

Our work on improving the matrix sensing algorithm is based on a novel analysis and sketching
technique that enables faster convergence rates and better accuracy in recovering low-rank matrices.
We focus on developing a theoretical understanding of the proposed algorithm and establishing its
advantages over previous methods. Our analysis provides insights into the underlying structure of
the low-rank matrices and the nature of the linear measurements used in the recovery process. To
summarize, we improve both the running time of the original algorithm Zhong et al. (2015) from
O(md2k2) to O(md2k), and the sample complexity from Õ(ϵ−2dk2) to Õ(ϵ−2(d+k2)). Formally,
we get the following result,
Theorem 1.1 (Informal, combination of Theorem 3.7, Theorem D.7 and Theorem F.8). Let ϵ ∈
(0, 1) be some specific parameter. For ground truth matrix W∗ ∈ Rd×d, there is a matrix sensing
algorithm (Algorithm 1) that with Õ(ϵ−2(d+ k2)) sample complexity, and takes Õ(md2k) time for
each iteration, finally outputs a matrix W ∈ Rd×d such that

(1− ϵ)W∗ ⪯W ⪯ (1 + ϵ)W∗

with high probability.

Roadmap. We organize the following paper as follows. In Section 2 we provide some tools and
existing results for our work. In Section 3 we state the main result of this paper. In Section 4 we
provide the technique overview for our paper. We provide discussion in Section G. In Section 5, we
state the conclusion of our results.

2 PRELIMINARY

In this section, we provide preliminaries to be used in our paper. In Section 2.1 we introduce
notations we use. In Section 2.2 we introcude the randomness facts.

We state some matrix concentration in Section 2.3. In Section 2.4 we introduce the important defi-
nition of restricted isometry property. In Section 2.5 we provide results for rank-one estimation. In
Section 2.6 we introduce the rank-one independent Gaussian operator.

2.1 NOTATIONS

Let x ∈ Rn and w ∈ Rn
≥0, we define the norm ∥x∥w := (

∑n
i=1 wix

2
i)

1/2. For n > k, for any matrix
A ∈ Rn×k, we denote the spectral norm of A by ∥A∥. Let A ∈ Rn×k, we denote the Frobenius

2

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

norm of A by ∥A∥F . For any square matrix A ∈ Rn×n, we denote its trace by tr[A]. For any
A ∈ Rn×d and B ∈ Rn×d, we denote ⟨A,B⟩ = tr[A⊤B]. Let A ∈ Rn×d and x ∈ Rd be any
matrix and vector, we have that ∥Ax∥22 = ⟨Ax,Ax⟩ = ⟨x,A⊤Ax⟩ = x⊤A⊤Ax. We denote the
Moore-Penrose pseudoinverse matrix of A as A† ∈ Rk×n, i.e., A† := V Σ−1U⊤. For A ∈ Rn1×d1 ,
B ∈ Rn2×d2 , we define kronecker product ⊗ as (A⊗B)i1+(i2−1)n1,j1+(j2−1)n2

= Ai1,j1Bi2,j2 for
all i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2] and j2 ∈ [d2]. For any full-rank matrix A ∈ Rn×m, we define
A = QR its QR-decomposition, where Q ∈ Rm×n is an orthogonal matrix and R ∈ Rn×n is an
non-singular lower triangular matrix. We use R =QR(A) ∈ Rn×n to denote the lower triangular
matrix obtained by the QR-decomposition of A ∈ Rm×n. Let A ∈ Rk×k be a symmetric matrix.
The eigenvalue decomposition of A is A = UΛU⊤, where Λ is a diagonal matrix. If a matrix A is
positive semidefinite (PSD), we denote it as A ⪰ 0 Similarly, we say A ⪰ B if x⊤Ax ≥ x⊤Bx
for all vectors x. For any matrix U ∈ Rn×k, we say U is an orthonormal basis if ∥Ui∥ = 1 for
all i ∈ [k] and for any i ̸= j, we have ⟨Ui, Uj⟩ = 0. Here for each i ∈ [k], we use Ui to denote
the i-th column of matrix U . For any U ∈ Rn×k (suppose n > k) which is an orthonormal ba-
sis, we define U⊥ ∈ Rn×(n−k) to be another orthonormial basis that, UU⊤ + U⊥U

⊤
⊥ = In and

U⊤U⊥ = 0k×(n−k), where we use 0k×(n−k) to denote a k × (n − k) all-zero matrix. We say a
vector x lies in the span of U , if there exists a vector y such that x = Uy. We say a vector z lies
in the complement of span of U , if there exists a vector w such that z = U⊥w. Then it is obvious
that ⟨x, z⟩ = x⊤z = z⊤x = 0. For a matrix A, we define σmin(A) := minx ∥Ax∥2/∥x∥2. Equiv-
alently, σmin(A) := minx:∥x∥2=1 ∥Ax∥2. Similarly, we define σmax(A) := maxx ∥Ax∥2/∥x∥2.
Equivalently, σmax(A) := maxx:∥x∥2=1 ∥Ax∥2 Let A1, · · · , An denote a list of square matrices.
Let S denote a block diagonal matrix S = diag(A1, A2, · · · , An). Then ∥S∥ = maxi∈[n] ∥Ai∥.
We use Pr[] to denote probability. We use E[] to denote expectation. Let a and b denote two
random variables. Let f(a) denote some event that depends on a (for example f(a) can be
a = 0 or a ≥ 10.). Let g(b) denote some event that depends on b. We say a and b are in-
dependent if Pr[f(a) and g(b)] = Pr[f(a)] · Pr[g(b)]. We say a and b are not independent if
Pr[f(a) and g(b)] ̸= Pr[f(a)] · Pr[g(b)]. Usually if a and b are independent, then we also have
E[ab] = E[a] · E[b]. We say a random variable x is symmetric if Pr[x = u] = Pr[x = −u]. For
any random variable x ∼ N (µ, σ2). This means E[x] = µ and E[x2] = σ2. We use Õ(f) to denote
f · poly(log f). We use Tmat(a, b, c) to denote the time of multiplying an a× b matrix with another
b× c matrix. We use ω to denote the exponent of matrix multiplication, i.e., nω = Tmat(n, n, n).

2.2 RANDOMNESS FACTS

Here we introduce some facts about randomness.

Fact 2.1. We have

• Part 1. Expectation has linearity, i.e., E[
∑n

i=1 xi] =
∑n

i=1 E[xi].

• Part 2. For any random vectors x and y, if x and y are independent, then for any fixed
function f , we have Ex,y[f(x)f(y)] = Ex[f(x)] · Ey[f(y)].

• Part 3. Let A ∈ Rd×d denote a fixed matrix. For any fixed function f : Rd → Rd×d, we
have Ex[f(x) ·A] = Ex[f(x)] ·A.

• Part 4. Given n events A1, A2, · · ·An. For each i ∈ [n], if Pr[Ai] ≥ 1− δi. Then taking a
union bound over all the n events, we have

Pr[A1 and A2 · · ·An] ≥ 1−
n∑

i=1

δi.

2.3 MATRIX CONCENTRATION

We now discuss matrix concentration inequalities, which form the basis for analyzing the behavior
of sums of random matrices, particularly through tools such as the Matrix Bernstein Inequality.

Theorem 2.2 (Matrix Bernstein Inequality, Theorem 1.6 of Tropp (2012)). Given a finite sequence
X1, · · · , Xm ⊂ Rn1×n2 of independent random matrices, all with dimension n1 × n2, let Z =

3

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

∑m
i=1 Xi. Assume that

E[Xi] = 0,∀i ∈ [m], ∥Xi∥ ≤M, ∀i ∈ [m].

Let Var[Z] be the matrix variance statistic of the sum:

Var[Z] = max{∥
m∑
i=1

E[XiX
⊤
i]∥, ∥

m∑
i=1

E[X⊤
i Xi]∥}.

Then the following results hold:

E[∥Z∥] ≤ (2Var[Z] · log(n1 + n2))
1/2 +M log(n1 + n2)/3.

Further, for all t ¿ 0 ,

Pr[∥Z∥ ≥ t] ≤ (n1 + n2) · exp
(
− t2/2

Var[Z] +Mt/3

)
.

2.4 RESTRICTED ISOMETRY PROPERTY

This subsection introduces the Restricted Isometry Property (RIP), which characterizes the near-
isometric behavior of linear operators on low-rank matrices and serves as a foundational tool in
compressive sensing and matrix recovery.
Definition 2.3 (Restricted isometry property (RIP), see Definition 1 in Zhong et al. (2015)). A
linear operator A : Rd×d → Rm satisfies the RIP if, for all W ∈ Rd×d such that rank(W) ≤ k,
the following holds:

(1− ϵk) · ∥W∥2F ≤ ∥A(W)∥2F ≤ (1 + ϵk) · ∥W∥2F
where ϵk > 0 is a constant that depends only on k.

2.5 RANK-ONE ESTIMATION

The goal of matrix sensing is to design a linear operator A : Rd×d → Rm and a recovery algorithm
so that a low-rank matrix W∗ ∈ Rd×d can be recovered exactly using A(W∗). Then we define:
Definition 2.4 (Low-rank matrix estimation using rank one measurements). Given a ground-truth
matrix W∗ ∈ Rd×d. Let (x1, y1), · · · , (xm, ym) ∈ Rd × Rd denote m pair of feature vectors. Let
b ∈ Rm be defined

bi = x⊤
i W∗yi, ∀i ∈ [m].

The goal is to use b ∈ Rm and {(xi, yi)}i∈[m] ⊂ Rd × Rd to recover W∗ ∈ Rd×d.

2.6 RANK-ONE INDEPENDENT GAUSSIAN OPERATOR

We formally define Gaussian independent operator, here.
Definition 2.5 (Gaussian Independent (GI) Operator). Let (x1, y1), · · · , (xm, ym) ⊂ Rd × Rd

denote i.i.d. samples from Gaussian distribution. For each i ∈ [m], Ai := xiy
⊤
i . We define

AGI ∈ Rd×md as (GI denotes Gaussian Independent):

AGI := [A1 A2 · · · Am] .

2.7 MATRIX ANGLE AND DISTANCE

We list several basic definitions and tools in literature.
Definition 2.6 (Definition 4.1 in Gu et al. (2023)). Let X,Y ∈ Rn×k denote two matrices.

For any matrix X , and for orthonormal matrix Y (Y ⊤Y = Ik) we define

• tan θ(Y,X) := ∥Y ⊤
⊥ X(Y ⊤X)−1∥

For orthonormal matrices Y and X (Y ⊤Y = Ik and X⊤X = Ik), we define

4

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• cos θ(Y,X) := σmin(Y
⊤X).

– It is obvious that cos(Y,X) = 1/∥(Y ⊤X)−1∥ and cos(Y,X) ≤ 1.

• sin θ(Y,X) := ∥(I − Y Y ⊤)X∥.

– It is obvious that sin θ(Y,X) = ∥Y⊥Y
⊤
⊥ X∥ = ∥Y ⊤

⊥ X∥ and sin θ(Y,X) ≤ 1.
– From Lemma 2.8, we know that sin2 θ(Y,X) + cos2 θ(Y,X) = 1.

• dist(Y,X) := sin θ(Y,X)

Lemma 2.7 (Lemma A.7 in Gu et al. (2023)). Let X,Y ∈ Rn×k be orthogonal matrices, then

tan θ(Y,X) =
sin θ(Y,X)

cos θ(Y,X)
.

Lemma 2.8 (Lemma A.8 in Gu et al. (2023)). Let X,Y ∈ Rn×k be orthogonal matrices, then

sin2 θ(Y,X) + cos2 θ(Y,X) = 1.

3 MAIN RESULT

This section presents the main theoretical results of this work, including the foundational definitions,
operator properties, and the convergence guarantees. Section 3.1 introduces critical definitions such
as the target matrix, its condition number, and the measurement framework. Section 3.2 formalizes
the concentration properties of operators and the initialization criteria essential for our analysis.
Finally, Section 3.3 states and proves the main convergence theorem, which guarantees the success
of the alternating minimization method under specific conditions on the initialization and operator
properties.

3.1 KEY CONCEPTS

This subsection establishes the key concepts that will be used in subsequent theoretical develop-
ments, including the characterization of matrix components, condition numbers, and measurement
definitions.
Definition 3.1. We define W∗ ∈ Rd×d as W∗ = U∗Σ∗V

⊤
∗ , where U∗ ∈ Rn×k are orthonormal

columns, and V∗ ∈ Rn×k are orthonormal columns. Let σ∗
1 , σ

∗
2 , · · ·σ∗

k denote the diagonal entries
of diagonal matrix Σ∗ ∈ Rd×d.
Definition 3.2 (Condition number). Let W∗ be defined as Definition 3.1. We define κ to the condition
number of W∗, i.e., κ := σ1/σk. It is obvious that κ ≥ 1.
Definition 3.3 (Measurements). For each i ∈ [m], let xi, yi denote samples from N (0, Id).

For each i ∈ [m], we define Ai = xiy
⊤
i and bi = x⊤

i W∗yi.

3.2 PROPERTIES OF OPERATORS

This subsection defines the initialization and concentration properties of operators, providing tools
for analyzing their behavior in high-dimensional settings.
Definition 3.4 (Initialization). For each i ∈ [m], let Ai and bi be defined as Definition 3.3.

We define

W0 :=
1

m

m∑
i=1

biAi.

We say initialization matrix W0 ∈ Rd×d is an ϵ-good operator if

∥W0 −W∗∥ ≤ ∥W∗∥ · ϵ.

Definition 3.5 (Concentration of operators Bx, By). For any vectors u, v, we define

5

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Bx := 1
m

∑m
l=1(y

⊤
l v)

2xlx
⊤
l

• By := 1
m

∑m
l=1(x

⊤
l u)

2yly
⊤
l

We say B = (Bx, By) is ϵ-operator if ∥Bx − I∥ ≤ ϵ and ∥By − I∥ ≤ ϵ.

Definition 3.6 (Concentration of operators Gx, Gy). For any vectors u, v ∈ Rd. We define

• Gx := 1
m

∑m
l=1(y

⊤
l v)(y

⊤
l v⊥)xlx

⊤
l

• Gy := 1
m

∑m
l=1(x

⊤
l u)(x

⊤
l u⊥)yly

⊤
l

u, u⊥ ∈ Rd, v, v⊥ ∈ Rd are unit vectors, s.t., u⊤u⊥ = 0 and v⊤v⊥ = 0. We say G = (Gx, Gy) is
ϵ-operator if ∥Gx∥ ≤ ϵ and ∥Gy∥ ≤ ϵ.

3.3 MAIN RESULT

Now, we prove our main convergence result as follows:

Theorem 3.7 (Formal version of Theorem 1.1). Let W∗ ∈ Rd×d be defined as Definition 3.1, and
W∗ has rank-k and condition number κ. Also, let A : Rd×d → Rm be a linear measurement
operator parameterized by m matrices, i.e., A = {A1, A2, · · · , Am} where Al = xly

⊤
l . Let A(W)

be as given by

b = A(W) =
[
tr[A⊤

1 W] tr[A⊤
2 W] · · · tr[A⊤

mW]
]⊤

.

Let ϵ = 0.001/(k1.5κ) Let T = 100 log(κk/ϵ0) Let {(bi, Ai)}i∈[m] be an ϵ-good operator (Defini-
tion 3.4). Let B be an ϵ-operator (Definition 3.5). Let G be an ϵ-operator (Definition 3.6). Then,
after T -iterations of the alternating minimization method (Algorithm 1), we obtain WT = UTV

⊤
T

s.t.,

∥WT −W∗∥ ≤ ϵ0.

Proof. Note that using the initialization property (first property mentioned in Theorem 3.7), we get,
∥W0−W∗∥ ≤ ϵσ∗

1 ≤
σ∗
k

100 . Now, using the standard sin theta theorem for singular vector perturbation
Li (1994), we get dist(U0, U∗) ≤ 1

100 and dist(V0, V∗) ≤ 1
100 .

After T iteration (via Lemma C.1), we obtain

dist(UT , U∗) ≤ (1/4)T and dist(VT , V∗) ≤ (1/4)T

which implies that ∥WT −W∗∥ ≤ ϵ0.

4 TECHNIQUE OVERVIEW

This section introduces the techniques and methodologies underlying the key contributions of this
work. Section 4.1 outlines the tighter analysis and its reduction to sample complexity, leveraging
random matrix theory and concentration inequalities. Section 4.2 demonstrates the correctness of
the iterative algorithm through induction, detailing the convergence properties of the alternating
minimization method. Section 4.3 presents the sketching-based acceleration strategy, which signif-
icantly reduces the computational cost of each iteration by reformulating the optimization problem
and applying a fast low-rank matrix completion approach. These components collectively establish
the foundation for our theoretical and practical advancements.

4.1 TIGHTER ANALYSIS IMPLIES REDUCTION TO SAMPLE COMPLEXITY

Our approach achieves this improvement by using a new sketching technique that compresses the
original matrix into a smaller one while preserving its low-rank structure. This compressed version

6

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

can then be used to efficiently extract relevant information from linear measurements of the original
matrix.

To analyze the performance of our approach, we use tools from random matrix theory and concen-
tration inequalities. Specifically, we use the Bernstein’s inequality for matrices to establish bounds
on the error of our recovery algorithm. We first define our measurements and operators, for each
i ∈ [m], let xi, yi denotes samples from N (0, Id). We define

• Ai := xiy
⊤
i ;

• bi := x⊤
i W∗yi;

• W0 := 1
m

∑m
i=1 biAi;

• Bx := 1
m

∑m
i=1(y

⊤
i v)

2xix
⊤
i ;

• By := 1
m

∑m
i=1(x

⊤
i v)

2yiy
⊤
i ;

• Gx := 1
m

∑m
i=1(y

⊤
i v)(y

⊤
i v⊥)xix

⊤
i ;

• Gy := 1
m

∑m
i=1(x

⊤
i v)(x

⊤
i v⊥)yiy

⊤
i .

We need to argue that our measurements are good under our choices of m, here the word “good”
means that

• ∥W0 −W∗∥ ≤ ϵ · ∥W∗∥;
• ∥Bx − I∥ ≤ ϵ and ∥By − I∥ ≤ ϵ;
• ∥Gx∥ ≤ ϵ and ∥Gy∥ ≤ ϵ.

In our analysis we need to first bound ∥Zi∥ and ∥E[ZiZ
⊤
i]∥, where Zi := xix

⊤
i U∗Σ∗V

⊤
∗ yiy

⊤
i .

With an analysis, we are able to show that (Lemma D.5 and Lemma D.6)

Pr[∥Zi∥ ≤ C2k2 log2(d/δ)σ4 · σ∗
1] ≥ 1− δ/poly(d)

∥E[ZiZ
⊤
i]∥ ≤ C2k2σ4(σ∗

1)
2.

Now, applying these two results and by Bernstein’s inequality, we are able to show that our operators
are all “good” (Theorem D.7).

4.2 INDUCTION IMPLIES CORRECTNESS

To get the final error bounded, we show that the iterates are getting closer and closer to the ground
truth. Here we let U∗ and V∗ be the decomposition of ground truth W∗, i.e., W∗ = U∗ΣV

⊤
∗ . We

show that, when iteratively applying our alternating minimization method, if Ut and Vt are closed
to U∗ and V∗ respectively, then the output of next iteration t+ 1 is close to U∗ and V∗. Specifically,
we show that, if dist(Ut, U∗) ≤ 1

4 · dist(Vt, V∗), then it yields

dist(Vt+1, V∗) ≤
1

4
· dist(Ut, U∗). (1)

Similarly, from the other side, if dist(Vt+1, V∗) ≤ 1
4 · dist(Ut, U∗), we have

dist(Ut+1, U∗) ≤
1

4
· dist(Vt+1, V∗). (2)

This two recurrence relations together give the guarantee that, if the starting error U0 − U∗ and
V0 − V∗ is bounded, the distance from Vt and Ut to V∗ and U∗ will be bounded to, respectively.

To prove the result, we first define the value of ϵd as 1/10. Then, by the algorithm, we have the
following relationship between Vt+1 and V̂t+1R

−1,

Vt+1 = V̂t+1R
−1 = (W⊤

∗ Ut − F)R−1,

where the second step follows from the definition of V̂ and defining F as Definition E.1. Now we
show that, ∥F∥ and ∥R−1∥ can be bounded respectively,

∥F∥ ≤ 2ϵk1.5 · σ∗
1 · dist(Ut, U∗) Lemma E.4

7

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

∥R−1∥ ≤ 10/σk∗ Lemma E.5

Note that the bound of R−1 need dist(Ut, U∗) ≤ 1
4 · dist(Vt, V∗).

With these bounds, we are able to show the bound for dist(Vt+1, V∗). We first notice that,
dist(Vt+1, V∗) can be represented as (V∗,⊥)

⊤Vt+1, where V∗,⊥ ∈ Rd×(d−k) is a fixed orthonor-
mal basis of the subspace orthogonal to span(V∗). Then we show that (Claim E.3)

(V∗,⊥)
⊤Vt+1 = −(V∗,⊥)

⊤FR−1.

Now, by turning dist(Vt+1, V∗) to the term of F and R, and using the bound for ∥F∥ and ∥R−1∥,
we are finally able to reach the bound

dist(Vt+1, V∗) = ∥FR−1∥
≤ ∥F∥ · ∥R−1∥
≤ 2ϵk1.5 · σ∗

1 · dist(Ut, U∗) · ∥R−1∥
≤ 2ϵk1.5 · σ∗

1 · dist(Ut, U∗) · 10/σ∗
k

≤ 0.01 · dist(Ut, U∗).

By a similar analysis, we can show Eq. (2).

Now applying the above results and with a detailed analysis, we have the claim proved. Finally,
when we prove that the initialization of the parameters are good, we can show that, the final output
WT satisfies

∥WT −W∗∥ ≤ ϵ0.

4.3 SPEEDING UP WITH SKETCHING TECHNIQUE

Now we consider the running time at each iteration. At each iteration of our algorithm, we need to
solve the following optimization problem:

arg min
V ∈Rd×k

m∑
i=1

(tr[A⊤
i UV ⊤]− b)2. (3)

When this problem is straightforwardly solved, it costs O(md2k2) time, which is very expensive.
So from another new direction, we give an analysis such that, this problem can be converted to a
minimization problem where the target variable is a vector. To be specific, we show that, above
optimization question (3) is equivalent to the following (Lemma F.3),

arg min
v∈Rdk

∥Mv − b∥22,

where the matrix M ∈ Rm×dk is defined to be the reformed matrix of U⊤Ai’s, i.e.,
Mi,∗ := vec(U⊤Ai), ∀i ∈ [m].

When working on this form of optimization problem, inspired by a recent work Gu et al. (2023), we
apply the fast sketch-to-solve low-rank matrix completion method. With this technique, we are able
to reduce the running time to Õ(md2k) (Theorem F.8), which is much more acceptable.

5 CONCLUSION

In conclusion, matrix sensing is a fundamental problem in signal processing and machine learning
that aims to recover a low-rank matrix from a set of linear measurements. It has various applications
in fields such as image and video processing, sensor networks, and recommendation systems. While
the matrix sensing problem is ill-posed, under certain assumptions on the underlying matrix, such
as incoherence and restricted isometry property, it can be solved using convex optimization tech-
niques that minimize a certain loss function subject to the linear constraints. In this paper, we have
proposed a novel improvement over the original algorithm for the rank-1 matrix sensing problem,
with improvements in both running time and sample complexity to the original method in Zhong
et al. (2015). Our work is based on a novel analysis and sketching technique that enables faster
convergence rates and better accuracy in recovering low-rank matrices. Our proposed algorithm
is computationally efficient and scalable, and our analysis provides insights into the underlying
structure of the low-rank matrices and the nature of the linear measurements used in the recovery
process.

8

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. A universal sampling method for reconstructing signals with simple fourier transforms.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 1051–
1063, 2019.

Mayank Bakshi, Sidharth Jaggi, Sheng Cai, and Minghua Chen. Sho-fa: Robust compressive sens-
ing with order-optimal complexity, measurements, and bits. IEEE Transactions on Information
Theory, 62(12):7419–7444, 2015.

Thomas Blumensath and Mike E Davies. Iterative thresholding for sparse approximations. Journal
of Fourier analysis and Applications, 14:629–654, 2008.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pp. 353–362, 2014.

Thierry Bouwmans, Sajid Javed, Hongyang Zhang, Zhouchen Lin, and Ricardo Otazo. On the
applications of robust pca in image and video processing. Proceedings of the IEEE, 106(8):1427–
1457, 2018.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS, 2021.

Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization. Com-
munications of the ACM, 55(6):111–119, 2012.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on
information theory, 51(12):4203–4215, 2005.

Emmanuel J Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation without a
frequency gap. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 741–750. IEEE, 2016.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input spar-
sity time. Journal of the ACM (JACM), 63(6):1–45, 2017.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In STOC, 2019.

Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-sparsity time.
arXiv preprint arXiv:2210.12468, 2022.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product re-
gression and p-splines. In International Conference on Artificial Intelligence and Statistics, pp.
1299–1308. PMLR, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

James E Fowler, Sungkwang Mun, Eric W Tramel, et al. Block-based compressed sensing of images
and video. Foundations and Trends® in Signal Processing, 4(4):297–416, 2012.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

9

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. In arXiv preprint. https://arxiv.org/abs/2302.11068,
2023.

Shamgar Gurevich and Ronny Hadani. Incoherent dictionaries and the statistical restricted isometry
property. arXiv preprint arXiv:0809.1687, 2008.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse fourier trans-
form. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp.
563–578, 2012a.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algorithm for
sparse fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pp. 1183–1194. SIAM, 2012b.

Piotr Indyk and Michael Kapralov. Sample-optimal fourier sampling in any constant dimension. In
2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 514–523. IEEE,
2014.

Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using alter-
nating minimization. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 665–674, 2013.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. In STOC. arXiv preprint arXiv:2004.07470, 2021.

Shunhua Jiang, Yunze Man, Zhao Song, Zheng Yu, and Danyang Zhuo. Fast graph neural tangent
kernel via kronecker sketching. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 7033–7041, 2022.

Yaonan Jin, Daogao Liu, and Zhao Song. Super-resolution and robust sparse continuous fourier
transform in any constant dimension: Nearly linear time and sample complexity. In SODA, pp.
4667–4767. SIAM, 2023.

Michael Kapralov. Sparse fourier transform in any constant dimension with nearly-optimal sample
complexity in sublinear time. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 264–277, 2016.

Michael Kapralov. Sample efficient estimation and recovery in sparse fft via isolation on average. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 651–662.
Ieee, 2017.

Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 81
(2009):1–10, 2009.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, pp. 1302–1338, 2000.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory, pp. 2140–2157. PMLR, 2019.

Ren Cang Li. On perturbations of matrix pencils with real spectra. Mathematics of Computation,
62(205):231–265, 1994.

Xiao Li, Dong Yin, Sameer Pawar, Ramtin Pedarsani, and Kannan Ramchandran. Sub-linear time
support recovery for compressed sensing using sparse-graph codes. IEEE Transactions on Infor-
mation Theory, 65(10):6580–6619, 2019.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171–184, 2012.

Xiaoqi Liu and Ramji Venkataramanan. Sketching sparse low-rank matrices with near-optimal
sample-and time-complexity using message passing. IEEE Transactions on Information Theory,
69(9):6071–6097, 2023.

10

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Rajarshi Middya, Nabajit Chakravarty, and Mrinal Kanti Naskar. Compressive sensing in wireless
sensor networks–a survey. IETE technical review, 34(6):642–654, 2017.

Vasileios Nakos and Zhao Song. Stronger l2/l2 compressed sensing; without iterating. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 289–297,
2019.

Vasileios Nakos, Zhao Song, and Zhengyu Wang. (nearly) sample-optimal sparse fourier transform
in any dimension; ripless and filterless. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1568–1577. IEEE, 2019.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pp. 117–126. IEEE, 2013.

Luong Trung Nguyen, Junhan Kim, and Byonghyo Shim. Low-rank matrix completion: A contem-
porary survey. IEEE Access, 7:94215–94237, 2019.

Dohyung Park, Anastasios Kyrillidis, Constantine Carmanis, and Sujay Sanghavi. Non-square ma-
trix sensing without spurious local minima via the burer-monteiro approach. In Artificial Intelli-
gence and Statistics, pp. 65–74. PMLR, 2017.

Sameer Pawar and Kannan Ramchandran. Computing a k-sparse n-length discrete fourier transform
using at most 4k samples and o (k log k) complexity. In 2013 IEEE International Symposium on
Information Theory, pp. 464–468. IEEE, 2013.

Eric Price and Zhao Song. A robust sparse fourier transform in the continuous setting. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, pp. 583–600. IEEE, 2015.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for pro-
jection matrix vector multiplication with application to empirical risk minimization. In AISTATS,
2023.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. arXiv preprint
arXiv:2210.03961, 2022.

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sublinear least-squares value iteration via
locality sensitive hashing. In AISTATS, 2023.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm
error. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp.
688–701, 2017.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of
polynomial degree. In International Conference on Machine Learning, pp. 9812–9823. PMLR,
2021a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural net-
work in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Quartic samples suffice for fourier
interpolation. arXiv preprint arXiv:2210.12495, 2022a.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Sparse fourier transform over
lattices: A unified approach to signal reconstruction. CoRR, abs/2205.00658, 2022b.

11

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Zhao Song, Zhaozhuo Xu, Yuanyuan Yang, and Lichen Zhang. Accelerating frank-wolfe algorithm
using low-dimensional and adaptive data structures. arXiv preprint arXiv:2207.09002, 2022c.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search
data structures. arXiv preprint arXiv:2204.03209, 2022d.

Andreas M Tillmann and Marc E Pfetsch. The computational complexity of the restricted isometry
property, the nullspace property, and related concepts in compressed sensing. IEEE Transactions
on Information Theory, 60(2):1248–1259, 2013.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational
mathematics, 12:389–434, 2012.

Thakshila Wimalajeewa and Pramod K Varshney. Application of compressive sensing techniques in
distributed sensor networks: A survey. arXiv preprint arXiv:1709.10401, 2017.

Fan Wu and Patrick Rebeschini. Implicit regularization in matrix sensing via mirror descent. Ad-
vances in Neural Information Processing Systems, 34:20558–20570, 2021.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava. Breaking the linear iteration cost barrier for
some well-known conditional gradient methods using maxip data-structures. Advances in Neural
Information Processing Systems, 34:5576–5589, 2021.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and mainte-
nance. Master’s thesis, Carnegie Mellon University, 2022.

Lichen Zhang. Personal communication. In MIT, 2023.

Kai Zhong, Prateek Jain, and Inderjit S Dhillon. Efficient matrix sensing using rank-1 gaussian
measurements. In Algorithmic Learning Theory: 26th International Conference, ALT 2015, Banff,
AB, Canada, October 4-6, 2015, Proceedings 26, pp. 3–18. Springer, 2015.

12

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Appendix

CONTENTS

1 Introduction 1

2 Preliminary 2

2.1 Notations . 2

2.2 Randomness Facts . 3

2.3 Matrix Concentration . 3

2.4 Restricted Isometry Property . 4

2.5 Rank-one Estimation . 4

2.6 Rank-one Independent Gaussian Operator . 4

2.7 Matrix Angle and Distance . 4

3 Main Result 5

3.1 Key concepts . 5

3.2 Properties of Operators . 5

3.3 Main Result . 6

4 Technique Overview 6

4.1 Tighter Analysis Implies Reduction to Sample Complexity 6

4.2 Induction Implies Correctness . 7

4.3 Speeding up with Sketching Technique . 8

5 Conclusion 8

A Related Work 14

B Preliminary 15

B.1 Notations . 15

B.2 Algebra Facts . 16

C ANALYSIS 16

C.1 Main Induction Hypothesis . 17

D MEASUREMENTS ARE GOOD OPERATOR 18

D.1 Tools for Gaussian . 19

D.2 Bounding ∥Zi∥ . 20

D.3 Bounding ∥E[ZiZ
⊤
i]∥ . 21

D.4 Main Results . 22

D.5 Initialization Is a Good Operator . 22

13

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D.6 Operator B and G is good . 25

E ONE SHRINKING STEP 26

E.1 Definitions of B,C,D, S . 26

E.2 Upper Bound on ∥BD − C∥ . 27

E.3 Rewrite Vt+1 . 29

E.4 Upper bound on ∥F∥ . 30

E.5 Upper bound on ∥R−1∥ . 32

F MATRIX SENSING REGRESSION 33

F.1 Definition and Equivalence . 33

F.2 From Sensing Matrix to Regression Matrix . 34

F.3 Our Fast Regression Solver . 34

F.4 Straightforward Solver . 35

F.5 Condition Number . 35

G Limitations 36

Roadmap. We organize the appendix as follows. In Section C we provide the detailed analysis for
our algorithm. In Section D we argue that our measurements are good. In Section E we provide
analysis for a shrinking step. In Section F we provide the analysis for our techniques used to solve
the optimization problem at each iteration.

A RELATED WORK

Matrix Sensing The matrix sensing problem has attracted significant attention in recent years,
and several algorithms have been proposed to solve it efficiently. One of the earliest approaches is
the convex optimization-based algorithm proposed by Candès and Recht in 2009 Candes & Recht
(2012), which minimizes the nuclear norm of the matrix subject to the linear constraints. This ap-
proach has been shown to achieve optimal recovery guarantees under certain conditions on the linear
operators, such as incoherence and RIP. Since then, various algorithms have been proposed that im-
prove upon the original approach in terms of computational efficiency and theoretical guarantees.
For instance, the iterative hard thresholding algorithm (IHT) proposed by Blumensath and Davies in
2009 Blumensath & Davies (2008), and its variants, such as the iterative soft thresholding algorithm
(IST), provide computationally efficient solutions with improved recovery guarantees. In the work
by Recht, Fazel, and Parrilo Recht et al. (2010), they gave some measurement operators satisfying
the RIP and proved that, with O(kd log d) measurements, a rank-k matrix W∗ ∈ Rd×d can be recov-
ered. Moreover, later works have proposed new approaches that exploit additional structure in the
low-rank matrix, such as sparsity or group sparsity, to further improve recovery guarantees and effi-
ciency. For instance, the sparse plus low-rank (S + L) approach proposed by Liu et al. (2012), and its
variants, such as the robust principal component analysis (RPCA) and the sparse subspace cluster-
ing (SSC), provide efficient solutions with improved robustness to outliers and noise. More recently,
Park et al. (2017) considers the non-square matrix sensing under RIP assumptions, and show that
matrix factorization does not introduce any spurious local minima under RIP. Wu & Rebeschini
(2021) studies the technique of discrete-time mirror descent utilized to address the unregularized
empirical risk in matrix sensing.

Compressive Sensing Compressive sensing has been a widely studied topic in signal processing
and theoretical computer science field Hassanieh et al. (2012a;b); Pawar & Ramchandran (2013);
Indyk & Kapralov (2014); Price & Song (2015); Bakshi et al. (2015); Kapralov (2016); Chen et al.
(2016); Kapralov (2017); Nakos & Song (2019); Nakos et al. (2019); Avron et al. (2019); Li et al.
(2019); Liu & Venkataramanan (2023). Hassanieh et al. (2012a) gave a fast algorithm (runs in

14

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

time O(k log n log(n/k)) for general inputs and O(k log n log(n/k)) for at most k non-zero Fourier
coefficients input) for k-sparse approximation to the discrete Fourier transform of an n-dimensional
signal. Kapralov (2016) provided an algorithm that uses Od(k logN log logN) samples of signal
and runs in time Od(k log

d+3 N) for k-sparse approximation to the Fourier transform of a length
of N signal. Later work Kapralov (2017) proposed a new technique for analysing noisy hashing
schemes that arise in Sparse FFT, which is called isolation on average, and applying it, it achieves
sample-optimal results in k logO(1) n time for estimating the values of a list of frequencies using few
samples and computing Sparse FFT itself. Nakos & Song (2019) gave the first sublinear-time ℓ2/ℓ2
compressed sensing which achieves the optimal number of measurements without iterating. After
that, Nakos et al. (2019) provided an algorithm which uses O(k log k log n) samples to compute
a k-sparse approximation to the d-dimensional Fourier transform of a length n signal. Later by
Song et al. (2022a) provided an efficient Fourier Interpolation algorithm that improves the previous
best algorithm Chen et al. (2016) on sample complexity, time complexity and output sparsity. And
in Song et al. (2022b) they presented a unified framework for the problem of band-limited signal
reconstruction and achieves high-dimensional Fourier sparse recovery and high-accuracy Fourier
interpolation. Recent work Jin et al. (2023) designed robust algorithms for super-resolution imaging
that are efficient in terms of both running time and sample complexity for any constant dimension
under the same noise model as Price & Song (2015), based on new techniques in Sparse Fourier
transform.

Faster Iterative Algorithm via Sketching Low rank matrix completion is a well-known prob-
lem in machine learning with various applications in practical fields such as recommender systems,
computer vision, and signal processing. Some notable surveys of this problem are provided in Ko-
ren (2009); Nguyen et al. (2019). While Candes and Recht Candes & Recht (2012) first proved
the sample complexity for low rank matrix completion, other works such as Candès & Tao (2010)
and Jain et al. (2013) have provided improvements and guarantees on convergence for heuristics.
In recent years, sketching has been applied to various machine learning problems such as linear
regression Clarkson & Woodruff (2017); Nelson & Nguyên (2013), low-rank approximation Clark-
son & Woodruff (2017); Nelson & Nguyên (2013), weighted low rank approximation, matrix CUR
decomposition Boutsidis & Woodruff (2014); Song et al. (2017; 2019), and tensor regression Diao
et al. (2018; 2019); Song et al. (2021a); Reddy et al. (2022), leading to improved efficiency of opti-
mization algorithms in many problems. For example, linear programming Cohen et al. (2019); Song
& Yu (2021); Jiang et al. (2021); Gu & Song (2022), matrix completion Gu et al. (2023), empirical
risk minimization Lee et al. (2019); Qin et al. (2023), training over-parameterized neural network
Brand et al. (2021); Song et al. (2021b); Jiang et al. (2022); Zhang (2022), discrepancy algorithm
Zhang (2022); Song et al. (2022d); Deng et al. (2022), frank-wolfe method Xu et al. (2021); Song
et al. (2022c), and reinforcement learning Shrivastava et al. (2023).

B PRELIMINARY

In Section B.1 we state our notations. In Section B.2 we provide some algebra facts.

B.1 NOTATIONS

Let x ∈ Rn and w ∈ Rn
≥0, we define the norm ∥x∥w := (

∑n
i=1 wix

2
i)

1/2. For n > k, for any matrix
A ∈ Rn×k, we denote the spectral norm of A by ∥A∥. Let A ∈ Rn×k, we denote the Frobenius norm
of A by ∥A∥F . For any square matrix A ∈ Rn×n, we denote its trace by tr[A]. For any A ∈ Rn×d

and B ∈ Rn×d, we denote ⟨A,B⟩ = tr[A⊤B]. Let A ∈ Rn×d and x ∈ Rd be any matrix and
vector, we have that ∥Ax∥22 = ⟨Ax,Ax⟩ = ⟨x,A⊤Ax⟩ = x⊤A⊤Ax. Let the SVD decomposition
of A ∈ Rn×k to be A = UΣV ⊤, where U ∈ Rn×k and V ∈ Rk×k have orthonormal columns and
Σ ∈ Rk×k be diagonal matrix. We say the columns of U are the singular vectors of A. We denote the
Moore-Penrose pseudoinverse matrix of A as A† ∈ Rk×n, i.e., A† := V Σ−1U⊤. We call the diag-
onal entries σ1, σ2, . . . , σk of Σ to be the eigenvalues of A. We assume they are sorted from largest
to lowest, so σi denotes its i-th largest eigenvalue, and we can write it as σi(A). For A ∈ Rn1×d1 ,
B ∈ Rn2×d2 . We define kronecker product ⊗ as (A ⊗ B)i1+(i2−1)n1,j1+(j2−1)n2

= Ai1,j1Bi2,j2

for all i1 ∈ [n1], j1 ∈ [d1], i2 ∈ [n2] and j2 ∈ [d2]. For any non-singular matrix A ∈ Rn×n, we
define A = QR its QR-decomposition, where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rn×n is

15

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

an non-singular lower triangular matrix. For any full-rank matrix A ∈ Rn×m, we define A = QR
its QR-decomposition, where Q ∈ Rm×n is an orthogonal matrix and R ∈ Rn×n is an non-singular
lower triangular matrix. We use R =QR(A) ∈ Rn×n to denote the lower triangular matrix obtained
by the QR-decomposition of A ∈ Rm×n. Let A ∈ Rk×k be a symmetric matrix. The eigenvalue
decomposition of A is A = UΛU⊤, where Λ is a diagonal matrix. If a matrix A is positive semidef-
inite (PSD), we denote it as A ⪰ 0, which means x⊤Ax ≥ 0 for all x. Similarly, we say A ⪰ B if
x⊤Ax ≥ x⊤Bx for all vectors x. For any matrix U ∈ Rn×k, we say U is an orthonormal basis if
∥Ui∥ = 1 for all i ∈ [k] and for any i ̸= j, we have ⟨Ui, Uj⟩ = 0. Here for each i ∈ [k], we use Ui

to denote the i-th column of matrix U . For any U ∈ Rn×k (suppose n > k) which is an orthonormal
basis, we define U⊥ ∈ Rn×(n−k) to be another orthonormial basis that, UU⊤ + U⊥U

⊤
⊥ = In and

U⊤U⊥ = 0k×(n−k), where we use 0k×(n−k) to denote a k × (n − k) all-zero matrix. We say a
vector x lies in the span of U , if there exists a vector y such that x = Uy. We say a vector z lies
in the complement of span of U , if there exists a vector w such that z = U⊥w. Then it is obvious
that ⟨x, z⟩ = x⊤z = z⊤x = 0. For a matrix A, we define σmin(A) := minx ∥Ax∥2/∥x∥2. Equiv-
alently, σmin(A) := minx:∥x∥2=1 ∥Ax∥2. Similarly, we define σmax(A) := maxx ∥Ax∥2/∥x∥2.
Equivalently, σmax(A) := maxx:∥x∥2=1 ∥Ax∥2 Let A1, · · · , An denote a list of square matrices.
Let S denote a block diagonal matrix S = diag(A1, A2, · · · , An). Then ∥S∥ = maxi∈[n] ∥Ai∥.
We use Pr[] to denote probability. We use E[] to denote expectation. Let a and b denote two
random variables. Let f(a) denote some event that depends on a (for example f(a) can be
a = 0 or a ≥ 10.). Let g(b) denote some event that depends on b. We say a and b are in-
dependent if Pr[f(a) and g(b)] = Pr[f(a)] · Pr[g(b)]. We say a and b are not independent if
Pr[f(a) and g(b)] ̸= Pr[f(a)] · Pr[g(b)]. Usually if a and b are independent, then we also have
E[ab] = E[a] · E[b]. We say a random variable x is symmetric if Pr[x = u] = Pr[x = −u]. For
any random variable x ∼ N (µ, σ2). This means E[x] = µ and E[x2] = σ2. We use Õ(f) to denote
f · poly(log f). We use Tmat(a, b, c) to denote the time of multiplying an a× b matrix with another
b× c matrix. We use ω to denote the exponent of matrix multiplication, i.e., nω = Tmat(n, n, n).

B.2 ALGEBRA FACTS

We state some standard facts and omit their proofs, since they’re very standard.
Fact B.1. We have

• For any orthonormal basis U ∈ Rn×k and a vector x ∈ Rk, we have ∥Ux∥2 = ∥x∥2.

• For any orthonornal basis U ∈ Rn×k, we have ∥U∥F ≤
√
k.

• For any diagonal matrix Σ ∈ Rk×k and any vector x ∈ Rk, we have ∥Σx∥2 ≥
σmin(Σ)∥x∥2.

• For symmetric matrix A, we have σmin(A) = minz:∥z∥2=1 z
⊤Az and ∥A∥ ≥ z⊤Az for all

∥z∥2 = 1.

• For symmetric matrix A, we have σmin(A)∥z∥22 ≤ z⊤Az for all vectors z.

• For symmetric matrix A, we have σmax(A)∥z∥22 ≥ z⊤Az for all vectors z.

• For any matrix A, we have ∥A∥ ≤ ∥A∥F .

• For any square matrix A ∈ Rk×k and vector x ∈ Rk, we have x⊤Ax =∑k
i=1

∑k
j=1 xiAi,jxj =

∑k
i=1 xiAi,ixi +

∑
i̸=j xiAi,jxj .

• For any square and invertible matrix R ∈ Rn×n, we have ∥R−1∥ = σmin(R)−1

• For any matrix A ∈ Rn×k and for any unit vector x ∈ Rk, we have ∥A∥ ≥ ∥Ax∥2.

• For any matrix A ∈ Rn×k, ∥AA⊤∥ = ∥A⊤A∥.

C ANALYSIS

Here in this section, we provide analysis for our proposed algorithm.

16

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 1 Our Faster Matrix Sensing Algorithm
1: procedure FASTMATRIXSENSING(Aall ⊂ Rd×d, ball ⊂ R, ϵ0 ∈ (0, 0.1), ϵ ∈ (0, 0.1), δ ∈

(0, 0.1)) ▷ Theorem 1.1
2: ▷ Let ball scalar measurements
3: ▷ Let Aall sensing matrices
4: ▷ Let W∗ ∈ Rd×d denote a rank-k matrix
5: ▷ Let σ∗

1 denote the largest singular value of W∗
6: ▷ Let κ denote the condition number of W∗
7: T ← Θ(log(kκσ∗

1/ϵ0))
8: m← Θ(ϵ−2(d+ k2) log(d/δ))
9: Split (Aall, ball) into 2T +1 sets (each of size m) with t-th set beingAt ⊂ Rd×d and bt ∈ R

10: U0 ← top-k left singular vectors of 1
m

∑m
l=1 b

0
lA

0
l

11: for t← 0 to T − 1 do
12: b← b2t+1,A ← A2t+1

13: V̂t+1 ← argminV ∈Rd×k

∑m
l=1(bl − x⊤

l UtV
⊤yl)

2 ▷ Using Lemma F.7
14: Vt+1 ← QR(V̂t+1) ▷ orthonormalization of V̂t+1

15: b← b2t+2,A ← A2t+2

16: Ût+1 ← argminU∈Rd×k

∑m
l=1(bl − x⊤

l UV ⊤
t+1yl)

2 ▷ Using Lemma F.7
17: Ut+1 ← QR(Ût+1) ▷ orthonormalization of Ût+1

18: end for
19: WT ← UT (V̂T)

⊤

20: return WT

21: end procedure

C.1 MAIN INDUCTION HYPOTHESIS

Lemma C.1 (Induction hypothesis). We define ϵd := 1/10. We assume that ϵ = 0.001/(k1.5κ). For
all t ∈ [T], we have the following results.

• Part 1. If dist(Ut, U∗) ≤ 1
4 dist(Vt, V∗) ≤ ϵd, then we have

– dist(Vt+1, V∗) ≤ 1
4 dist(Ut, U∗) ≤ ϵd

• Part 2. If dist(Vt+1, V∗) ≤ 1
4 dist(Ut, U∗) ≤ ϵd, then we have

– dist(Ut+1, U∗) ≤ 1
4 dist(Vt+1, V∗) ≤ ϵd

Proof. Proof of Part 1.

Recall that for each i ∈ [n], we have

bi = x⊤
i W∗yi = ⟨xiy

⊤
i ,W∗⟩ = ⟨Ai,W∗⟩ = tr[A⊤

i W∗].

Recall that

V̂t+1 = arg min
V ∈Rd×k

m∑
i=1

(bi − x⊤
i UtV

⊤yi)
2

= arg min
V ∈Rd×k

m∑
i=1

(x⊤
i W∗yi − x⊤

i UtV
⊤yi)

2

Hence, by setting gradient of this objective function to zero and let F ∈ Rd×k be defined as Defini-
tion E.1. We have V̂t+1 ∈ Rd×k can be written as follows:

V̂t+1 = W⊤
∗ Ut − F (4)

where F ∈ Rd×k is the error matrix

F = [F1 F2 · · · Fk]

17

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

where Fi ∈ Rd for each i ∈ [k].

Then, using the definitions of F ∈ Rd×k and Definition E.1, we get:

 F1

...
Fk

 = B−1(BD − C)S · vec(V∗) (5)

where vec(V∗) ∈ Rdk is the vectorization of matrix V∗ ∈ Rd×k.

Now, recall that in the t+ 1-th iteration of Algorithm 1, Vt+1 ∈ Rd×k is obtained by QR decompo-
sition of V̂t+1 ∈ Rd×k. Using notation mentioned above,

V̂t+1 = Vt+1R (6)

where R ∈ Rk×k denotes the lower triangular matrix Rt+1 ∈ Rk×k obtained by the QR decompo-
sition of Vt+1 ∈ Rd×k.

We can rewrite Vt+1 ∈ Rd×k as follows

Vt+1 = V̂t+1R
−1

= (W⊤
∗ Ut − F)R−1 (7)

where the first step follows from Eq. (6) , and the last step follows from Eq. (4).

Multiplying both the sides by V∗,⊥ ∈ Rd×(d−k), where V∗,⊥ ∈ Rd×(d−k) is a fixed orthonormal
basis of the subspace orthogonal to span(V∗), using Claim E.3

(V∗,⊥)
⊤Vt+1 = −(V∗,⊥)

⊤FR−1 (8)

Thus, we get:

dist(Vt+1, V∗) = ∥(V∗,⊥)
⊤Vt+1∥

= ∥(V∗,⊥)
⊤FR−1∥

= ∥FR−1∥
≤ ∥F∥ · ∥R−1∥
≤ 0.001σ∗

k dist(Ut, U∗) · ∥R−1∥
≤ 0.001σ∗

k dist(Ut, U∗) · 2(σ∗
k)

−1

≤ 0.01 · dist(Ut, U∗)

where the first step follows from definition of dist (see Definition 2.6), the second step follows from
Eq. (8), the third step follows from V∗,⊥ is an orthonormal basis, and the forth step follows from
Fact B.1, the fifth step follows from Lemma. E.4, the sixth step follows from Lemma E.5 (In order
to run this lemma, we need to the condition of Part 1 statement to be holding), the last step follows
from simple algebra.

Proof of Part 2.

Similarly, we can prove this as Part 1.

D MEASUREMENTS ARE GOOD OPERATOR

In this section, we provide detailed analysis for our operators. First Section D.1 we introduce some
standard results for truncated Gaussian. In Section D.2 and Section D.3 we bound the term ∥Zi∥
and ∥E[ZiZ

⊤
i]∥ respectively. In Section D.4 we state our main lemma. In Section D.5 we show that

out initialization is good. In Section D.6 we show our two operators are good.

18

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D.1 TOOLS FOR GAUSSIAN

We state a standard tool from literature,

Lemma D.1 (Lemma 1 in Laurent & Massart (2000)). Let X ∼ X 2
k be a chi-squared distributed

random variable with k degrees of freedom. Each one has zero means and σ2 variance.

Then it holds that

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp (−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp (−t)

Further if k ≥ Ω(ϵ−2t) and t ≥ Ω(log(1/δ)), then we have

Pr[|X − kσ2| ≤ ϵkσ2] ≤ δ.

We state a standard fact for the 4-th moment of Gaussian distribution.

Fact D.2. Let x ∼ N (0, σ2), then it holds that Ex∼N (0,σ2)[x
4] = 3σ4.

Lemma D.3. Let x ∼ N (0, σ2Id) denote a random Gaussian vector. Then we have

• Part 1

E[xx⊤xx⊤] = (d+ 2)σ4

• Part 2

∥E[xx⊤xx⊤]∥ = (d+ 2)σ4

Proof. We define A := xx⊤xx⊤. Then we have

Ai,j = xi

d∑
l=1

xlxlxj

For i = j, we have

E[Ai,i] = E[xi

d∑
l=1

xlxlxi]

= E[xi(

i−1∑
l=1

xlxl + xixi +

d∑
l=i+1

xlxl)xi]

= E[x4
i] +

∑
l∈[d]\i

E[x2
l x

2
i]

= E[x4
i] +

∑
l∈[d]\i

E[x2
l]E[x2

i]

= E[x4
i] + (d− 1)σ4

= 3σ4 + (d− 1)σ4

= (d+ 2)σ4

where the third step follows from linearity of expectation (Fact 2.1), the forth step follows from
xl and xi are independent, the fifth step follows from E[x2

l] = σ2, the sixth step follows
Ez∼N (0,σ2)[z

4] = 3σ4.

For i ̸= j, we have

E[Ai,j] = E[xi

d∑
l=1

xlxlxj]

19

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

= E[xix
3
j] + E[x3

ixj] +
∑

l∈[d]\i,j

E[xix
2
l xj]

= 0

where the second step follows from linearity of expectation (Fact 2.1), and the last step follows from
E[xi] = 0.

Fact D.4 (Rotation invariance property of Gaussian). Let A⊤ ∈ Rd×k with k < d denote an
orthonormal basis (i.e., AA⊤ = Ik). Then for a Gaussian x ∼ N (0, σ2Id), we have

Ax ∼ N (0, σ2Ik).

Proof. Let y := Ax ∈ Rk, then

yi =

d∑
j=1

Aijxj , ∀i ∈ [k].

By definition of Gaussian distribution

yi ∼ N (0, σ2
d∑

j=1

A2
ij).

Recall that A⊤ is an orthonormal basis.

We have
d∑

j=1

A2
ij = 1.

Thus we have

y ∼ N (0, σ2Ik),

D.2 BOUNDING ∥Zi∥

Lemma D.5. Let xi denote a random Gaussian vector samples from N (0, σ2Id). Let yi denote a
random Gaussian vector samples from N (0, σ2Id).

Let U∗, V∗ ∈ Rd×k.

We define

Zi := xix
⊤
i U∗Σ∗V

⊤
∗ yiy

⊤
i , ∀i ∈ [m]

• Part 1. We have

Pr[∥Zi∥ ≤ C2k2 log2(d/δ)σ4 · σ∗
1] ≥ 1− δ/poly(d).

• Part 2. If k ≥ Ω(log(d/δ)) We have

Pr[∥Zi∥ ≤ C2k2σ4 · σ∗
1] ≥ 1− δ/poly(d).

Proof. Proof of Part 1.

We define

ai := U⊤
∗ xi ∈ Rk

20

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

bi := V ⊤
∗ yi ∈ Rk

Since U∗ and V∗ are orthornormal basis, due to rotation invariance property of Gaussian (Fact D.4)
, we know that ai ∼ N (0, σ2Ik) and bi ∼ N (0, σ2Ik).

We also know that

xi = (U⊤
∗)†ai = U∗ai

yi = (V ⊤
∗)†bi = V∗bi

Thus, by replacing xi, yi with ai, bi, we have

∥Zi∥ = ∥xix
⊤
i U∗Σ∗V

⊤
∗ yiy

⊤
i ∥

= ∥U∗aia
⊤
i U

⊤
∗ U∗Σ∗V

⊤
∗ V∗bib

⊤
i V

⊤
∗ ∥

= ∥U∗aia
⊤
i Σ∗bib

⊤
i V

⊤
∗ ∥

≤ ∥U∗∥ · ∥aia⊤i ∥ · ∥Σ∗∥ · ∥bib⊤i ∥ · ∥V ⊤
∗ ∥

≤ σ∗
1 · ∥ai∥22 · ∥bi∥22

where the second step follows from replacing x, y by a, b, the third step follows from U⊤
∗ U∗ = I

and V ⊤
∗ V∗ = I , the forth step follows from Fact B.1, the last step follows from ∥Σ∗∥ = σ∗

1 and
∥U∗∥, ∥V ∗∥ ≤ 1 (since they are orthonormal basis).

Due to property of Gaussian, we know that

Pr[|ai,j | >
√
C log(d/δ)σ] ≤ δ/poly(d)

Taking a union bound over k coordinates, we know that

Pr[∥ai∥22 ≤ Ck log(d/δ)σ2] ≥ 1− δ/poly(d)

Similarly, we can prove it for ∥bi∥22.

Proof of Part 2. Since k ≥ Ω(log(d/δ)), then we can use Lemma D.1 to obtain a better bound.

D.3 BOUNDING ∥E[ZiZ
⊤
i]∥

Lemma D.6. We can show that

∥E[ZiZ
⊤
i]∥ ≤ C2k2σ4(σ∗

1)
2.

Proof. Using Lemma D.3

∥ E
a∼N (0,σ2Ik)

[aia
⊤
i aia

⊤
i]∥ ≤ Ckσ2.

Thus, we have

E[aia⊤i aia⊤i] ⪯ Ckσ2 · Ik

Then, we have

∥E[ZiZ
⊤
i]∥ = ∥ E

x,y
[xix

⊤
i U∗Σ∗V

⊤
∗ yiy

⊤
i yiy

⊤
i V∗Σ∗U

⊤
∗ xix

⊤
i]∥

= ∥ E
a,b

[U∗aia
⊤
i U

⊤
∗ U∗Σ∗V

⊤
∗ V∗bib

⊤
i V

⊤
∗ V∗bib

⊤
i V

⊤
∗ V∗Σ∗U

⊤
∗ U∗aia

⊤
i U

⊤
∗]∥

= ∥ E
a,b

[U∗aia
⊤
i Σ∗bib

⊤
i V

⊤
∗ V∗bib

⊤
i Σ∗aia

⊤
i U

⊤
∗]∥

21

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

= ∥ E
a,b

[U∗aia
⊤
i Σ∗bib

⊤
i bib

⊤
i Σ∗aia

⊤
i U

⊤
∗]∥

≤ ∥ E
a,b

[aia
⊤
i Σ∗bib

⊤
i bib

⊤
i Σ∗aia

⊤
i]∥

≤ ∥E
a
[aia

⊤
i Σ∗ E

b
[bib

⊤
i bib

⊤
i]Σ∗aia

⊤
i]∥

≤ C2k2σ4(σ∗
1)

2 (9)

where the first step follows from the definition of Zi, the second step follows from replacing xi, yi
with ai, bi, the third step follows from U∗, V∗ are orthonormal columns, the fourth step follows from
V∗ are orthonormal columns, the fifth step follows from ∥U∗∥ ≤ 1 , the sixth step follows from
simple algebra, the seventh step follows from using Lemma D.3 twice.

D.4 MAIN RESULTS

We prove our main result for measurements.

Theorem D.7 (Formal of Theorem 1.1, Measurements are good operator). Let {Ai, bi}i∈[m] denote
measurements be defined as Definition 3.3.

Assuming the following conditions are holding

• k = Ω(log(d/δ))

• m = Ω(ϵ−2(d+ k2) log(d/δ))

Then,

• The property in Definition 3.4, initialization is a ϵ-operator

• The property in Definition 3.5, B are ϵ-operator.

• The property in Definition 3.6, G are ϵ-operator.

holds with probability at least 1− δ/poly(d).

Proof. Using Lemma D.8 and Lemma D.9, we complete the proof.

D.5 INITIALIZATION IS A GOOD OPERATOR

Lemma D.8. We define matrix S ∈ Rd×d as follows

S :=
1

m

m∑
i=1

biAi.

If the following two condition holds

• Condition 1. k = Ω(log(d/δ)),

• Condition 2. m = Ω(ϵ−2k2 log(d/δ)).

Then we have

Pr[∥S −W∗∥ ≤ ϵ · ∥W∗∥] ≥ 1− δ.

Proof. (Initialization in Definition 3.4) Now, we have:

S =
1

m

m∑
i=1

biAi

22

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

=
1

m

m∑
i=1

bixiy
⊤
i

=
1

m

m∑
i=1

xibiy
⊤
i

=
1

m

m∑
i=1

xix
⊤
i W∗yiy

⊤
i

=
1

m

m∑
i=1

xix
⊤
i U∗Σ∗V

⊤
∗ yiy

⊤
i ,

where the first step follows from Definition 3.4, the second step follows from Ai = xiy
⊤
i , the third

step follows from bi is a scalar, the forth step follows from bi = x⊤
i W∗yi, the fifth step follows from

W∗ = U∗Σ∗V
⊤
∗ .

For each i ∈ [m], we define matrix Zi ∈ Rd×d as follows:

Zi := xix
⊤
i U∗Σ∗V

⊤
∗ yiy

⊤
i ,

then we can rewrite S ∈ Rd×d in the following sense,

S =
1

m

m∑
i=1

Zi

Note that, we can compute E[Zi] ∈ Rd×d

E
xi,yi

[Zi] = E
xi,yi

[xix
⊤
i︸ ︷︷ ︸

d×d

U∗Σ∗V
⊤
∗︸ ︷︷ ︸

d×d

yiy
⊤
i︸︷︷︸

d×d

]

= E
xi

[xix
⊤
i︸ ︷︷ ︸

d×d

U∗Σ∗V
⊤
∗︸ ︷︷ ︸

d×d

] · E
yi

[yiy
⊤
i︸︷︷︸

d×d

]

= E
xi

[xix
⊤
i] · U∗Σ∗V

⊤
∗ · E

yi

[yiy
⊤
i]

= U∗Σ∗V
⊤
∗

where the first step follows definition of Zi, the second step follows from xi and yi are independent
and Fact 2.1, the third step follows from Fact 2.1 the forth step follows from E[xix

⊤
i] = Id and

E[yiy⊤i] = Id.

As S ∈ Rd×d is a sum of m random matrices, the goal is to apply Theorem 2.2 to show that S is
close to

E[S] = E[Zi]

= U∗Σ∗V
⊤
∗

for large enough m.

Using Lemma D.5 (Part 2) with choosing Gaussian variance σ2 = 1, we have

Pr[∥Zi∥ ≤ C2k2σ∗
1 ,∀i ∈ [m]] ≥ 1− δ/poly(d) (10)

Using Lemma D.6 with choosing Gaussian variance σ2 = 1, we can bound ∥E[ZiZ
⊤
i]∥ as follows

∥E[ZiZ
⊤
i]∥ ≤ C2k2(σ∗

1)
2 (11)

Similarly, we can prove ∥E[Z⊤
i Zi]∥ with the same bound.

23

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Let Z =
∑m

i=1(Zi −W∗).

Applying Theorem 2.2 we get

Pr[∥Z∥ ≥ t] ≤ 2d · exp(− t2/2

Var[Z] +Mt/3
) (12)

where

Z = mS −mW∗

Var[Z] =m · C2k2(σ∗
1)

2, by Eq. (11)

M = C2k2σ∗
1 by Eq. (10)

Replacing t = ϵσ∗
1m and Z = mS −mW∗ inside Pr[] in Eq. (12), we have

Pr[∥S −W ∗∥ ≥ ϵσ∗
1] ≤ 2d · exp

(
− t2/2

Var[Z] +Mt/3

)
Our goal is to choose m sufficiently large such that the above quantity is upper bounded by 2d ·
exp(−Ω(log(d/δ))).
First, we need

t2

Var[Z]
=

ϵ2m2(σ∗
1)

2

m · C2k2(σ∗
1)

2

=
ϵ2m

C2k2

≥ log(d/δ)

where the first step follows from choice of t and bound for Var[Z].

This requires

m ≥ C2ϵ−2k2 log(d/δ)

Second, we need

t2

Mt
=

ϵmσ∗
1

M

=
ϵmσ∗

1

C2k2σ∗
1

=
ϵm

C2k2

≥ log(d/δ)

where the first step follows from choice of t and the second step follows from bound on M .

This requires

m ≥ C2ϵ−2k2 log(d/δ)

Finally, we should choose

m ≥ 10C2ϵ−2k2 log(d/δ),

Which implies that

Pr[∥S −W∗∥ ≤ ϵ · σ∗
1] ≥ 1− δ/poly(d). (13)

Taking the union bound with all ∥Zi∥ are upper bounded, then we complete the proof.

24

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

D.6 OPERATOR B AND G IS GOOD

Lemma D.9. If the following two conditions hold

• Condition 1. d = Ω(log(d/δ))

• Condition 2. m = Ω(ϵ−2d log(d/δ))

Then operator B (see Definition 3.5) is ϵ good, i.e.,

Pr[∥Bx − Id∥ ≤ ϵ] ≥ 1− δ/poly(d)

Pr[∥By − Id∥ ≤ ϵ] ≥ 1− δ/poly(d)

Similar results hold for operator G (see Definition 3.6).

Proof. Recall that Bx := 1
m

∑m
l=1(y

⊤
l v)

2xlx
⊤
l .

Recall that By := 1
m

∑m
l=1(x

⊤
l u)

2yly
⊤
l .

Now, as xi, yi are rotationally invariant random variables , wlog, we can assume u = e1.

We use xi,1 ∈ R to denote the first entry of xi ∈ Rd.

Thus,

(x⊤
i uu

⊤xi) = x2
i,1

Then

E[(x⊤
i uu

⊤xi)
2] = E[x4

i,1] = 3

We define

Zi = (x⊤
i u)

2yiy
⊤
i

then

E[Zi] = Id

Using similar idea in Lemma D.5, we have

Pr[∥Zi∥ ≤ Cd, ∀i ∈ [m]] ≥ 1− δ/poly(d)

We can bound

∥E[ZiZ
⊤
i]∥ = ∥ E

x,y
[(x⊤

i u)
2yiy

⊤
i yiy

⊤
i (x

⊤
i u)

2]∥

= ∥E
x
[(x⊤

i u)
2 E

y
[yiy

⊤
i yiy

⊤
i](x

⊤
i u)

2]∥

= (d+ 2) · |E
x
[(x⊤

i u)
2(x⊤

i u)
2]|

= (d+ 2) · 3
≤ Cd

where the fourth step follows from C ≥ 1 is a sufficiently large constant.

Let Z =
∑m

i=1(Zi − Id).

Applying Theorem 2.2 we get

Pr[∥Z∥ ≥ t] ≤ 2d · exp(− t2/2

Var[Z] +Mt/3
),

where

Z =m ·B −m · I
Var[Z] = Cmd

25

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

M = Cd

Using t = mϵ and Z =
∑m

i=1(Zi − Id), and B = 1
m

∑m
i=1 Zi, we have

Pr[∥Z∥ ≥ t] = Pr[∥
m∑
i=1

(Zi − Id)∥ ≥ mϵ]

= Pr[∥ 1
m

m∑
i=1

Zi − Id∥ ≥ ϵ]

= Pr[∥B − Id∥ ≥ ϵ]

By choosing t = mϵ and m = Ω(ϵ−2d log(d/δ)) we have

Pr[∥B − Id∥ ≥ ϵ] ≤ δ/poly(d).

where B can be either Bx or By .

Similarly, we can prove

Pr[∥Gx∥ ≤ ϵ] ≥ 1− δ,

Pr[∥Gy∥ ≤ ϵ] ≥ 1− δ.

E ONE SHRINKING STEP

In this section, we provide a shirking step for our result. In Section E.1 we define the matrices
B,C,D, S to be used in analysis. In Section E.2 we upper bound the norm of BD − C. In
Section E.3 we show the update term Vt+1 can be written in a different way. In Section E.4 and
Section E.5 we upper bounded ∥F∥ and ∥R−1∥ respectively.

E.1 DEFINITIONS OF B,C,D, S

Definition E.1. For each p ∈ [k], let u∗,p ∈ Rn denotes the p-th column of matrix U∗ ∈ Rn×k.

For each p ∈ [k], let ut,p denote the p-th column of matrix Ut ∈ Rn×k.

We define block matrices B,C,D, S ∈ Rkd×kd as follows: For each (p, q) ∈ [k]× [k]

• Let Bp,q ∈ Rd×d denote the (p, q)-th block of B

Bp,q =

m∑
i=1

yiy
⊤
i︸︷︷︸

d×d matrix

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

· (x⊤
i ut,q)︸ ︷︷ ︸
scalar

• Let Cp,q ∈ Rd×d denote the (p, q)-th block of C,

Cp,q =

m∑
i=1

yiy
⊤
i︸︷︷︸

d×d matrix

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

· (x⊤
i u∗q)︸ ︷︷ ︸
scalar

• Let Dp,q ∈ Rd×d denote the (p, q)-th block of D,

Dp,q = u⊤
t,pu∗qI

26

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Let Sp,q ∈ Rd×d denote the (p, q)-th block of S,

Sp,q =

{
σ∗
pI, if p = q;

0, if p ̸= q.

Here σ∗
1 , · · ·σ∗

k are singular values of W∗ ∈ Rd×d.

• We define F ∈ Rd×k as follows

vec(F)︸ ︷︷ ︸
d×1

:= B−1︸︷︷︸
d×d

(BD − C)︸ ︷︷ ︸
d×d

S︸︷︷︸
d×d

· vec(V∗)︸ ︷︷ ︸
d×1

.

E.2 UPPER BOUND ON ∥BD − C∥

Claim E.2. Let B,C and D be defined as Definition E.1. Then we have

∥BD − C∥ ≤ ϵ · dist(U,U∗) · k

Proof. Let z1, · · · , zk ∈ Rd denote k vectors. Let z =

z1...
zk

.

We define f(z) := z⊤(BD − C)z

We define f(z, p, q) = z⊤p (BD − C)p,qzq .

Then we can rewrite

z⊤(BD − C)z =

k∑
p=1

k∑
q=1

z⊤p (BD − C)p,qzq

=

k∑
p=1

k∑
q=1

z⊤p (Bp,:D:,q − Cp,q)zq

=

k∑
p=1

k∑
q=1

z⊤p (

k∑
l=1

Bp,lDl,q − Cp,q)zq

By definition, we know

Bp,l =

m∑
i=1

yiy
⊤
i (x

⊤
i ut,p) · (u⊤

t,lxi)

Dl,q = (u⊤
∗,qut,l)Id

Cp,q =

m∑
i=1

yiy
⊤
i (x

⊤
i ut,p) · (u⊤

∗,qxi)

We can rewrite Cp,q as follows

Cp,q =

m∑
i=1

yiy
⊤
i · (x⊤

i ut,p) · (u⊤
∗,qIdxi) (14)

Let us compute

Bp,lDl,q =

m∑
i=1

yiy
⊤
i (x

⊤
i ut,p) · (u⊤

t,lxi) · (u⊤
∗,qut,l)

=

m∑
i=1

yiy
⊤
i (x

⊤
i ut,p) · (u⊤

∗,qut,l) · (u⊤
t,lxi)

27

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

where the second step follows from a · b = b · a for any two scalars.

Taking the summation over all l ∈ [k], we have

k∑
l=1

Bp,lDl,q =

k∑
l=1

m∑
i=1

yiy
⊤
i (x

⊤
i ut,p) · (u⊤

∗,qut,l) · (u⊤
t,lxi)

=

m∑
i=1

yiy
⊤
i (x

⊤
i ut,p) · u⊤

∗,q

k∑
l=1

(ut,l · u⊤
t,l)xi

=

m∑
i=1

yiy
⊤
i︸︷︷︸

matrix

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

·u⊤
∗,qUtU

⊤
t xi︸ ︷︷ ︸

scalar

(15)

where first step follows from definition of B and D.

Then, we have

k∑
l=1

Bp,lDl,q − Cp,q = (

m∑
i=1

yiy
⊤
i︸︷︷︸

matrix

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

·u⊤
∗,qUtU

⊤
t xi︸ ︷︷ ︸

scalar

)− Cp,q

= (

m∑
i=1

yiy
⊤
i︸︷︷︸

matrix

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

·u⊤
∗,qUtU

⊤
t xi︸ ︷︷ ︸

scalar

)− (

m∑
i=1

yiy
⊤
i · (x⊤

i ut,p) · (u⊤
∗,qIdxi))

=

m∑
i=1

yiy
⊤
i︸︷︷︸

matrix

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

·u⊤
∗,q(UtU

⊤
t − Id)xi︸ ︷︷ ︸

scalar

where the first step follows from Eq. (15), the second step follows from Eq. (14), the last step follows
from merging the terms to obtain (UtU

⊤
t − Id).

Thus,

f(z, p, q) = z⊤p (

k∑
l=1

Bp,lDl,q − Cp,q)zq

=

m∑
i=1

(z⊤p yi)︸ ︷︷ ︸
scalar

(y⊤i zq)︸ ︷︷ ︸
scalar

· (x⊤
i ut,p)︸ ︷︷ ︸
scalar

·u⊤
∗,q(UtU

⊤
t − Id)xi︸ ︷︷ ︸

scalar

For easy of analysis, we define vt := u⊤
∗,q(UtU

⊤
t − Id). This means vt lies in the complement of

span of Ut.

Then

∥vt∥2 = ∥u⊤
∗,q(UtU

⊤
t − Id)∥2

= ∥e⊤q U⊤
∗ (UtU

⊤
t − Id)∥

≤ ∥U⊤
∗ (UtU

⊤
t − Id)∥

= dist(U∗, Ut). (16)

where the second step follows from u⊤
∗,q = e⊤q U

⊤
∗ (eq ∈ Rk is the vector q-th location is 1 and all

other locations are 0s), third step follows from Fact B.1.

We want to apply Definition 3.6, but the issue is zp, zq and vt are not unit vectors. So normalize
them. Let zp = zp/∥zp∥2 , zq = zq/∥zq∥2 and vt = vt/∥vt∥2.

In order to apply for Definition 3.6, we also need v⊤t ut,p = 0.

Since ut,p is one of the column of Ut, thus ut,p lies in the span of Ut.

This is obvious true, since vt lies in the complement of span of Ut and ut,p in the span of Ut.

28

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

We define

G :=

m∑
i=1

(x⊤
i ut,p)︸ ︷︷ ︸
scalar

· (x⊤
i vt)︸ ︷︷ ︸

scalar

· yiy⊤i︸︷︷︸
matrix

By Definition 3.6, we know that

∥G∥ ≤ ϵ.

By definition of spectral norm, we have for any unit vector zp and zq , we know that

|z⊤p Gzq| ≤ ∥G∥ ≤ ϵ.

where the first step follows from definition of spectral norm (Fact B.1), and the last step follows
from Definition 3.6.

Note that

f(p, q, z) =

m∑
i=1

(x⊤
i ut,p) · (x⊤

i vt)︸ ︷︷ ︸
scalar

· (z⊤p yi) · (y⊤i zq)︸ ︷︷ ︸
scalar

· ∥zp∥2 · ∥zq∥2 · ∥vt∥2︸ ︷︷ ︸
scalar

= z⊤p︸︷︷︸
1×d

·
(m∑

i=1

(x⊤
i ut,p) · (x⊤

i vt)︸ ︷︷ ︸
scalar

· yiy⊤i︸︷︷︸
d×d

)
· zq︸︷︷︸
d×1

· ∥zp∥2 · ∥zq∥2 · ∥vt∥2︸ ︷︷ ︸
scalar

= z⊤p︸︷︷︸
1×d

· G︸︷︷︸
d×d

· zq︸︷︷︸
d×1

· ∥zp∥2 · ∥zq∥2 · ∥vt∥2︸ ︷︷ ︸
scalar

where the second step follows from rewrite the second scalar (z⊤p yi)(y
⊤
i zq) = z⊤p (yiy

⊤
i)zq , the last

step follows from definition of G.

Then,

|f(z, p, q)| = |
m∑
i=1

z⊤p Gzq| · ∥zp∥2∥zq∥2∥vt∥2

≤ ϵ∥zp∥2∥zq∥2 · ∥vt∥2
≤ ϵ∥zp∥2∥zq∥2 · dist(Ut, U∗)

where the last step follows from Eq. (16).

Finally, we have

∥BD − C∥ = max
z,∥z∥2=1

|z⊤(BD − C)z|

= max
z,∥z∥2=1

∣∣ ∑
p∈[k],q∈[k]

f(z, p, q)
∣∣

≤ max
z,∥z∥2=1

∑
p∈[k],q∈[k]

|f(z, p, q)|

≤ ϵ · dist(Ut, U∗) max
z,∥z∥2=1

∑
p∈[k],q∈[k]

∥zp∥2∥zq∥2

≤ ϵ · dist(U,U∗) · k (17)

where the first step follows from Fact B.1, the last step step follows from
∑k

p=1 ∥zp∥2 ≤√
k(
∑k

p=1 ∥zp∥22)1/2 =
√
k.

E.3 REWRITE Vt+1

Claim E.3. If

Vt+1 = (W⊤
∗ Ut − F)R−1

29

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

then,

(V∗,⊥)
⊤Vt+1 = −(V∗,⊥)

⊤FR−1

Proof. Multiplying both sides by V∗,⊥ ∈ Rd×(d−k):

Vt+1 = (W⊤
∗ Ut − F)R−1

(V∗,⊥)
⊤Vt+1 = (V∗,⊥)

⊤(W⊤
∗ Ut − F)R−1

(V∗,⊥)
⊤Vt+1 = (V∗,⊥)

⊤W⊤
∗ R−1 − (V∗,⊥)

⊤FR−1

We just need to show (V∗,⊥)
⊤W⊤

∗ R−1 = 0.

By definition of V∗,⊥, we know:

V ⊤
∗,⊥V∗ = 0k×(n−k)

Thus, we have:

(V∗,⊥)
⊤W⊤

∗ = V ⊤
∗,⊥V∗Σ∗U

⊤
∗

= 0

E.4 UPPER BOUND ON ∥F∥

Lemma E.4 (A variation of Lemma 2 in Zhong et al. (2015)). Let A be a rank-one measurement
operator where Ai = xiu

⊤
i . Let κ be defined as Definition 3.2.

Then, we have

∥F∥ ≤ 2ϵk1.5 · σ∗
1 · dist(Ut, U∗)

Further, if ϵ ≤ 0.001/(k1.5κ)

∥F∥ ≤ 0.01 · σ∗
k · dist(Ut, U∗).

Proof. Recall that

vec(F) = B−1(BD − C)S · vec(V∗).

Here, we can upper bound ∥F∥ as follows

∥F∥ ≤ ∥F∥F
= ∥ vec(F)∥2
≤ ∥B−1∥ · ∥BD − C∥ · ∥S∥ · ∥ vec(V∗)∥2
= ∥B−1∥ · ∥(BD − C)∥ · ∥S∥ ·

√
k

≤ ∥B−1∥ · ∥(BD − C)∥ · σ∗
1 ·
√
k (18)

where the first step follows from ∥·∥ ≤ ∥·∥F (Fact B.1), the second step follows vectorization of F is
a vector, the third step follows from ∥Ax∥2 ≤ ∥A∥·∥x∥2, the forth step follows from ∥ vec(V∗)∥2 =

∥V∗∥F ≤
√
k (Fact B.1) and the last step follows from ∥S∥ ≤ σ∗

1 (see Definition E.1).

Now, we first bound ∥B−1∥ = 1/(σmin(B)) (Fact B.1). Let Z = [z1 z2 · · · zk] and let
z = vec(Z). Note that Bp,q denotes the (p, q)-th block of B.

Also, we define

B := {x ∈ Rkd | ∥x∥2 = 1}.

Then

30

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

σmin(B) = min
z∈B

z⊤Bz

= min
z∈B

∑
p∈[k],q∈[k]

z⊤p Bpqzq

= min
z∈B

k∑
p=1

z⊤p Bp,pzp +
∑
p ̸=q

z⊤p Bp,qzq. (19)

where the first step follows from Fact B.1, the second step follows from simple algebra, the last step
follows from (Fact B.1).

We can lower bound z⊤p Bp,pzp as follows

z⊤p Bp,pzp ≥ σmin(Bp,p) · ∥zp∥22
≥ (1− ϵ) · ∥zp∥22 (20)

where the first step follows from Fact B.1 , the last step follows from Definition 3.5 .

We can upper bound |z⊤Bp,qzq| as follows,

|z⊤p Bp,qzq| ≤ ∥zp∥2 · ∥Bp,q∥ · ∥zq∥2
≤ ϵ · ∥zp∥2 · ∥zq∥2 (21)

where the first step follows from Fact B.1, the last step follows from Definition 3.5 .

We have

σmin(B) = min
z,∥z∥2=1

k∑
p=1

z⊤p Bp,pzp +
∑
p ̸=q

z⊤p Bp,qzq

≥ min
z,∥z∥2=1

(1− ϵ)

k∑
p=1

∥zp∥22 +
∑
p ̸=q

z⊤p Bp,qzq

≥ min
z,∥z∥2=1

(1− ϵ)

k∑
p=1

∥zp∥22 − ϵ
∑
p ̸=q

∥zp∥2∥zq∥2

= min
z,∥z∥2=1

(1− ϵ)− ϵ
∑
p ̸=q

∥zp∥2∥zq∥2

= min
z,∥z∥2=1

(1− ϵ)− kϵ

≥ 1− 2kϵ

≥ 1/2 (22)

where the first step follows from Eq. (19), the second step follows from Eq. (20), the third step
follows from Eq. (21), the forth step follows from

∑k
p=1 ∥zp∥22 = 1(which derived from the

∥z∥2 = 1 constraint and the definition of ∥z∥2), the fifth step follows from
∑

p ̸=q ∥zp∥2∥zq∥2 ≤
(
∑

p ∥zp∥2)2 ≤ (
∑

p ∥zp∥1)2 = (∥z∥1)2 ≤ (
√
k∥z∥2)2 ≤ k, and the last step follows from

ϵ ≤ 0.1/k.

We can show that

∥B−1∥ = σmin(B) ≤ 2. (23)

where the first step follows from Fact B.1, the second step follows from Eq. (22).

Now, consider BD − C, using Claim E.2, we have

∥BD − C∥ ≤ k · ϵ · dist(Ut, U∗)

31

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Now, we have

∥F∥ ≤ ∥B−1∥ · ∥(BD − C)∥ · σ∗
1 ·
√
k

≤ 2 · ∥(BD − C)∥ · σ∗
1 ·
√
k

≤ 2 · k · ϵ · dist(Ut, U∗) · σ∗
1 ·
√
k

where the first step follows from Eq .(18), the second step follows from Eq. (23), and the third step
follows from Eq. (17).

E.5 UPPER BOUND ON ∥R−1∥

Lemma E.5 (A variation of Lemma 3 in Zhong et al. (2015)). Let A be a rank-one measurement
operator matrix where Ai = xiy

⊤
i . Also, let A satisfy three properties mentioned in Theorem 3.7.

If the following condition holds

• dist(Ut, U∗) ≤ 1
4 ≤ ϵd = 1/10 (The condition of Part 1 of Lemma C.1)

Then,

∥R−1∥ ≤ 10/σk∗

Proof. For simplicity, in the following proof, we use V to denote Vt+1. We use U to denote Ut.

Using Fact B.1

∥R−1∥ = σmin(R)−1

We can lower bound σmin(R) as follows:

σmin(R) = min
z,∥z∥2=1

∥Rz∥2

= min
z,∥z∥2=1

∥V Rz∥2

= min
z,∥z∥2=1

∥V∗Σ∗U
⊤
∗ Uz − Fz∥2

≥ min
z,∥z∥2=1

∥V∗Σ∗U
⊤
∗ Uz∥2 − ∥Fz∥2

≥ min
z,∥z∥2=1

∥V∗Σ∗U
⊤
∗ Uz∥2 − ∥F∥ (24)

where the first step follows from definition of σmin, the second step follows from Fact B.1, the third
step follows from V = (W⊤

∗ U−F)R−1 = (V∗Σ∗U
⊤
∗ U−F)R−1 (due to Eq. (7) and Definition 3.1)

, the forth step follows from triangle inequality, the fifth step follows from ∥Ax∥2 ≤ ∥A∥ for all
∥x∥2 = 1.

Next, we can show that

min
z,∥z∥2=1

∥V∗Σ∗U
⊤
∗ Uz∥2 = min

z,∥z∥2=1
∥Σ∗U

⊤
∗ Uz∥2

≥ min
z,∥z∥2=1

σ∗
k · ∥U⊤

∗ Uz∥2

= σ∗
k · σmin(U

⊤U∗)

where the first step follows from Fact B.1, the second step follows from Fact B.1, the third step
follows from definition of σmin,

Next, we have

σmin(U
⊤U∗) = cos θ(U∗, U)

=

√
1− sin2 θ(U∗, U)

≥
√
1− dist(U∗, U)2

32

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

where the first step follows definition of cos, the second step follows from sin2 θ + cos2 θ = 1
(Lemma 2.8), the third step follows from sin ≤ dist (see Definition 2.6).

Putting it all together, we have

σmin(R) ≥ σ∗
k

√
1− dist(U∗, U)2 − ∥F∥

≥ σ∗
k

√
1− dist(U∗, U)2 − 0.001σ∗

k dist(U∗, U)

= σ∗
k(
√

1− dist(U∗, U)2 − 0.001 dist(U∗, U))

≥ 0.2σ∗
k

where the second step follows from Lemma E.4, the last step follows from dist(U∗, U) < 1/10.

F MATRIX SENSING REGRESSION

Our algorithm has O(log(1/ϵ0)) iterations, in previous section we have proved why is that number
of iterations sufficient. In order to show the final running time, we still need to provide a bound
for the time we spend in each iteration. In this section, we prove a bound for cost per iteration.
In Section F.1 we provide a basic claim that, our sensing problem is equivalent to some regression
problem. In Section F.2 we show the different running time of the two implementation of each
iteration. In Section F.3 we provide the time analysis for each of the iteration of our solver. In
Section F.4 shows the complexity for the straightforward solver. Finally in Section F.5 we show the
bound for the condition number.

F.1 DEFINITION AND EQUIVALENCE

In matrix sensing, we need to solve the following problem per iteration:

Definition F.1. Let A1, . . . , Am ∈ Rd×d, U ∈ Rd×k and b ∈ Rm be given. The goal is to solve the
following minimization problem

min
V ∈Rd×k

m∑
i=1

(tr[A⊤
i UV ⊤]− bi)

2,

We define another regression problem

Definition F.2. Let A1, . . . , Am ∈ Rd×d, U ∈ Rd×k and b ∈ Rm be given.

We define matrix M ∈ Rm×dk as follows

Mi,∗ := vec(U⊤Ai), ∀i ∈ [m].

The goal is to solve the following minimization problem.

min
v∈Rdk

∥Mv − b∥22,

We can prove the following equivalence result

Lemma F.3 (Zhang (2023)). Let A1, . . . , Am ∈ Rd×d, U ∈ Rd×k and b ∈ Rm be given.

If the following conditions hold

• Mi,∗ := vec(U⊤Ai), ∀i ∈ [m].

• The solution matrix V ∈ Rd×k can be reshaped through vector v ∈ Rdk, i.e., v =
vec(V ⊤).

Then, the problem (defined in Definition F.1) is equivalent to problem (defined in Definition F.2) .

33

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Proof. Let X,Y ∈ Rd×d, we want to show that

tr[X⊤Y] = vec(X)⊤ vec(Y). (25)

Note that the RHS is essentially
∑

i∈[d]

∑
j∈[d] Xi,jYi,j , for the LHS, note that

(X⊤Y)j,j =
∑
i∈[d]

Xi,jYi,j ,

the trace is then sum over j.

Thus, we have Eq. (25). This means that for each i ∈ [d],

tr[A⊤
i UV ⊤] = vec(U⊤Ai)

⊤ vec(V ⊤).

Set M ∈ Rm×dk be the matrix where each row is vec(U⊤Ai), we see Definition F.1 is equivalent
to solve the regression problem as in the statement. This completes the proof.

F.2 FROM SENSING MATRIX TO REGRESSION MATRIX

Definition F.4. Let A1, . . . , Am ∈ Rd×d, U ∈ Rd×k . We define matrix M ∈ Rm×dk as follows

Mi,∗ := vec(U⊤Ai), ∀i ∈ [m].

Claim F.5. The naive implementation of computing M ∈ Rm×dk takes m · Tmat(k, d, d) time.
Without using fast matrix multiplication, it is O(md2k) time.

Proof. For each i ∈ [m], computing matrix U⊤ ∈ Rk×d times Ai ∈ Rd×d takes Tmat(k, d, d) time.
Thus, we complete the proof.

Claim F.6. The batch implementation takes Tmat(k, dm, d) time. Without using fast matrix multi-
plication, it takes O(md2k) time.

Proof. We can stack all the Ai together, then we matrix multiplication. For example, we construct
matrix A ∈ Rd×dm. Then computing U⊤A takes Tmat(k, d, dm) time.

The above two approach only has difference when we use fast matrix multiplication.

F.3 OUR FAST REGRESSION SOLVER

In this section, we provide the results of our fast regression solver. Our approach is basically as in
Gu et al. (2023). For detailed analysis, we refer the readers to the Section 5 in Gu et al. (2023).

Lemma F.7 (Main Cost Per Iteration). Assume m = Ω(dk). There is an algorithm that runs in time

Õ(md2k + d3k3)

and outputs a v′ such that

∥Mv′ − b∥2 ≤ (1 + ϵ) min
v∈Rdk

∥Mv − b∥2

Proof. From Claim F.6, writing down M ∈ Rm×dk takes O(md2k) time.

Using Fast regression resolver as Gu et al. (2023), the fast regression solver takes

O((m · dk + (dk)3) · log(κ(M)/ϵ) · log2(n/δ))

Lemma F.8 (Formal version of Theorem 1.1). In each iteration, our requires takes Õ(md2k) time.

34

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Proof. Finally, in order to run Lemma F.7, we need to argue that κ(M) ≤ poly(k, d, κ(W∗)).

This is true because κ(U) ≤ O(κ(W∗)) and condition number of random Gaussian matrices is
bounded by poly(k, d).

Then applying Lemma F.10, we can bound κ(M) in each iteration.

Eventually, we just run standard error analysis in Gu et al. (2023). Thus, we should get the desired
speedup.

The reason we can drop the (dk)3 is m ≥ dk2.

F.4 STRAIGHTFORWARD SOLVER

Note that from sample complexity analysis, we know that m = Ω(dk).
Lemma F.9. Assume m = Ω(dk). The straightforward implementation of the regression problem
(Defintion F.2) takes

O(md2k2)

time.

Proof. The algorithm has two steps. From Claim F.6, writing down M ∈ Rm×dk takes O(md2k)
time.

The first step is writing down the matrix M ∈ Rm×dk.

The second step is solving regression, it needs to compute M†b (where M† ∈ Rdk×m)

M†b = (M⊤M)−1Mb

this will take time

Tmat(dk,m, dk) + Tmat(dk, dk, dk) =md2k2 + (dk)3

= md2k2

the second step follows from m = Ω(dk) .

Thus, the total time is

md2k +md2k2 = O(md2k2)

F.5 CONDITION NUMBER

Lemma F.10. We define B ∈ Rm×k as follows B := XU and X ∈ Rm×d and U ∈ Rd×k.

Then, we can rewrite M ∈ Rm×dk

M︸︷︷︸
m×dk

= B︸︷︷︸
m×k

⊗ Y︸︷︷︸
m×d

Then, we know that κ(M) = κ(B) · κ(Y) ≤ κ(U)κ(X)κ(Y).

Proof. Recall U ∈ Rd×k. Then we define bi = U⊤xi for each i ∈ [m].

Then we have

Mi,∗ = vec(U⊤xiy
⊤
i) = vec(biy

⊤
i).

Thus, it implies

M = B ⊗ Y

35

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

G LIMITATIONS

In the grand scheme, our contribution significantly propels the theoretical understanding of matrix
sensing forward and inaugurates a novel approach for addressing this pivotal problem, intertwin-
ing theoretical depth with practical applicability. Notwithstanding, we have astutely identified cer-
tain limitations within our work. Specifically, our analysis operates under the assumption that the
underlying low-rank matrix adheres to certain incoherence and restricted isometry property (RIP)
conditions. While these conditions are both reasonable and prevalently utilized within the existing
literature, it is conceivable that there exist matrices that do not conform to these conditions and yet
remain of tangible practical interest. Consequently, it becomes a compelling avenue of exploration
to ascertain whether our proposed algorithm can be adeptly adapted to accommodate matrices that
diverge from these conditions, or alternatively, to forge new algorithms specifically tailored for such
matrices.

36

	Introduction
	Preliminary
	Notations
	Randomness Facts
	Matrix Concentration
	Restricted Isometry Property
	Rank-one Estimation
	Rank-one Independent Gaussian Operator
	Matrix Angle and Distance

	Main Result
	Key concepts
	Properties of Operators
	Main Result

	Technique Overview
	Tighter Analysis Implies Reduction to Sample Complexity
	Induction Implies Correctness
	Speeding up with Sketching Technique

	Conclusion
	Related Work
	Preliminary
	Notations
	Algebra Facts

	ANALYSIS
	Main Induction Hypothesis

	MEASUREMENTS ARE GOOD OPERATOR
	Tools for Gaussian
	Bounding
	Bounding
	Main Results
	Initialization Is a Good Operator
	Operator and is good

	ONE SHRINKING STEP
	Definitions of
	Upper Bound on
	Rewrite
	Upper bound on
	Upper bound on

	MATRIX SENSING REGRESSION
	Definition and Equivalence
	From Sensing Matrix to Regression Matrix
	Our Fast Regression Solver
	Straightforward Solver
	Condition Number

	Limitations

