
Temporal Misalignment in ANN-SNN Conversion and
its Mitigation via Probabilistic Spiking Neurons

Velibor Bojković * 1 Xiaofeng Wu * 2 Bin Gu 3

Abstract
Spiking Neural Networks (SNNs) offer a more
energy-efficient alternative to Artificial Neural
Networks (ANNs) by mimicking biological neu-
ral principles, establishing them as a promising ap-
proach to mitigate the increasing energy demands
of large-scale neural models. However, fully har-
nessing the capabilities of SNNs remains chal-
lenging due to their discrete signal processing and
temporal dynamics. ANN-SNN conversion has
emerged as a practical approach, enabling SNNs
to achieve competitive performance on complex
machine learning tasks. In this work, we identify a
phenomenon in the ANN-SNN conversion frame-
work, termed temporal misalignment, in which
random spike rearrangement across SNN layers
leads to performance improvements. Based on
this observation, we introduce biologically plau-
sible two-phase probabilistic (TPP) spiking neu-
rons, further enhancing the conversion process.
We demonstrate the advantages of our proposed
method both theoretically and empirically through
comprehensive experiments on CIFAR-10/100,
CIFAR10-DVS, and ImageNet across a variety
of architectures, achieving state-of-the-art results.
Codes are available at https://github.
com/shizukanaskytree/TPP-SNN.

1. Introduction
Spiking neural networks (SNNs), often referred to as the
third generation of neural networks (Maass, 1997), closely
mimic biological neuronal communication through dis-
crete spikes (McCulloch & Pitts, 1943; Hodgkin & Hux-

*Equal contribution 1Department of Machine Learning, Mo-
hamed bin Zayed University of Artificial Intelligence, Abu Dhabi,
United Arab Emirates 2Faculty of Data Science, City University
of Macau, Macau, China 3School of Artificial Intelligence, Jilin
University, China. Correspondence to: Velibor Bojkovic <veli-
bor.bojkovic@mbzuai.ac.ae>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

T=4 T=8 T=16 T=32 T=64
Latency

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (
%

)

4.67

55.54

68.39

19.03

71.12
72.99

50.97

73.6573.98

68.47

74.2874.23 72.8574.2874.29ANN acc.

ANN acc
Baseline (QCFS)
Permute + QCFS
TPP (ours) + QCFS

Figure 1. The initial experiment: After ANN-SNN conversion, we
compared the accuracy of the baseline model QCFS (Bu et al.,
2022c) with its “permuted” version and our proposed TPP neurons
(setting is VGG-16 - ImageNet, ANN acc. 74.29%).

ley, 1952; Izhikevich, 2003). While biological energy ef-
ficiency has historically influenced neural network design,
SNNs uniquely achieve this through event-driven process-
ing: weighted inputs integrate into membrane potentials,
emitting binary spikes only upon crossing activation thresh-
olds. This differs significantly from artificial neural net-
works (ANNs) (Braspenning et al., 1995), which are based
on continuous floating-point operations that require energy-
intensive and computationally costly multiplication opera-
tions (Roy et al., 2019). The spike-driven paradigm inher-
ently circumvents these costly computations, suggesting that
SNNs may offer a promising approach for energy-efficient
AI. Recent developments in neuromorphic hardware (Pei
et al., 2019; DeBole et al., 2019; loi; Ma et al., 2023) have
enabled efficient SNN deployment. These specialized chips
are inherently designed for spike-based computation, driv-
ing breakthroughs across domains: object detection (Kim
et al., 2020b; Cheng et al., 2020), tracking (Yang et al.,
2019), event-based vision (Zhu et al., 2022; Ren et al., 2024),
speech recognition (Wang et al., 2023a), and generative AI
through models like SpikingBERT (Bal & Sengupta, 2024)
and SpikeGPT (Zhu et al., 2023; Wang et al., 2023b). These
advancements underscore the potential of SNNs as a viable
alternative to conventional ANNs.

Training SNNs is inherently challenging due to the same

1

https://github.com/shizukanaskytree/TPP-SNN
https://github.com/shizukanaskytree/TPP-SNN

Temporal Misalignment and Probabilistic Neurons

Figure 2. Spike train permutation: spikes at different time steps
are shuffled to alter their temporal order.

characteristics that confer their advantages: their discrete
processing of information. Unsupervised direct training,
inspired by biological learning mechanisms, leverages local
learning rules and spike timing to update weights (Diehl &
Cook, 2015). While these methods are computationally effi-
cient and can be executed on specialized hardware, SNNs
trained in this manner often underperform compared to mod-
els trained with alternative approaches. Further research is
needed to better understand and improve this method. In
contrast, supervised training can be categorized into direct
training via spatio-temporal backpropagation (e.g., surro-
gate gradient methods (Neftci et al., 2019)) and ANN-SNN
conversion methods (Diehl et al., 2015; Cao et al., 2015).
The present work focuses on the latter approach.

The core idea of ANN-SNN conversion is to leverage pre-
trained ANN models to train SNNs. This process begins by
transferring the weights from the ANN to the SNN, which
shares the same architecture, and initializing the spiking
neuron parameters (e.g., thresholds, time constants) so that
the spike rates approximate the activation values of the
corresponding ANN layers. This method is advantageous
because it typically requires no additional computation for
training the SNN, thereby eliminating the need for gradient
computation or limiting it to fine-tuning the SNN.

The initial experiment: Temporal information in SNNs
after ANN-SNN conversion. We begin by identifying a
counter-intuitive phenomenon that, to the best of our knowl-
edge, has not been previously documented. Specifically,
we investigate the extent to which individual spike timing
affects the overall performance of the SNN model during
ANN-SNN conversion. We explore this question in the con-
text of various types of conversion-related issues described
in the literature, such as phase lag (Li et al., 2022) and un-
evenness of the spike input (Bu et al., 2022c), where prior
work has indicated that the timing of spike trains in SNNs
obtained through ANN-SNN conversion may not be optimal
and can lead to performance degradation under low-latency
conditions.

In our initial experiment, we began by examining several
widely-used ANN-SNN conversion methods and analyzing

Figure 3. Two-Phase Probabilistic (TPP) spiking neuron mecha-
nism operates in two phases: accumulation of inputs and proba-
bilistic spiking based on membrane potential. The model uses a
Bernoulli process for spike generation, with membrane potential
updates over time steps.

the spike outputs of spiking layers in the corresponding
SNN models. To evaluate the importance of spike timing
relative to firing rates, we randomly permuted the spike
trains after each spiking layer. Specifically, when process-
ing samples through the baseline model, we rearranged the
temporal order of spikes within each spike train after each
spiking layer (see Figure 2). The permuted spike trains were
then passed to the subsequent layer, and this process was
repeated for each layer until the output layer. The results of
one of these initial experiments, comparing the performance
of the “permuted” model with the baseline, are presented
in Figure 1. For each latency, we conducted multiple trials
with different permutations, and the “permuted” model con-
sistently outperformed the baseline, achieving the original
ANN accuracy at lower latencies. The impact of permuta-
tions on performance was particularly pronounced at lower
latencies.

We refer to this phenomenon as “temporal misalignment”
in ANN-SNN conversion and further investigate it by pro-
viding a conceptual interpretation in the form of bursting
probabilistic spiking neurons, which are designed to mimic
the effects of permutations in SNNs. The proposed neurons
operate in two phases, as illustrated in Figure 3. In the first
phase, they accumulate input, often surpassing the threshold,
while in the second phase, they emit spikes probabilistically
with varying temporal probabilities. Our proposed spiking
neurons are characterized by two key properties: (1) the
accumulation of membrane potential beyond the threshold,
resulting in a firing phase, commonly referred to as bursting,
and (2) probabilistic firing. Both properties exhibit biolog-
ical plausibility and have been extensively studied in the
neuroscience literature (see Section 3.3).

The main contributions of this paper are summarized as:

•We recognize and study the “temporal misalignment” phe-
nomenon in ANN-SNN conversion, and we propose a frame-
work for its exploitation in ANN-SNN conversion utilizing
two-phase probabilistic spiking neurons. We provide the-
oretical insights into their functioning and superior perfor-
mance, as well as support for their biological grounding.

2

Temporal Misalignment and Probabilistic Neurons

• We present a comprehensive experimental validation
demonstrating that our proposed method outperforms state-
of-the-art conversion as well as the other training methods
in terms of accuracy on CIFAR-10/100, CIFAR10-DVS, and
ImageNet datasets.

2. Background and Related Work
The base model employed in this work is Integrate-and-
Fire (IF) spiking neuron, whose internal dynamics, after
discretization, are given by the equations

v(l)[t] = v(l)[t− 1] +W(l)θ(l−1) · s(l−1)[t]− θ(l) · s[t− 1],

s(l)[t] = H(v(l)[t]− θ(l)).
(1)

Here, θ(l) is the threshold, H(·) is the Heaviside function,
while the superscript l denotes the layer in the SNN. Later,
we will modify these equations and use more advanced neu-
ron models. By expanding the equations over t = 1, . . . , T ,
and rearranging the terms, we obtain

θ(l)
∑T

t=1 s
(l)[t]

T
= W(l)V

(l−1)
th

∑T
t=1 s

(l−1)[t]

T
(2)

+
v(l)[T]− v(l)[0]

T
. (3)

On the ANN side, the transformation between layers is given
by

a(l) = A(l)(W(l)a(l−1)), (4)

where A(l) is the activation function. The ANN-SNN con-
version process begins by transferring the weights (and bi-
ases) of a pre-trained ANN to an SNN with the same archi-
tecture. By comparing the equations for the ANN outputs
(4) and the average output of the SNN (2) (Rueckauer et al.,
2017a), the goal is to achieve a relation of the form

a
(l)
i ≈ V

(l)
th

∑T
t=1 s

(l)
i [t]

T
. (5)

The most commonly used activation function A is ReLU ,
due to its simplicity and non-negative output, which aligns
well with the properties of IF neurons. It is important to note
the importance of the three components in the conversion:
1) the threshold value θ, 2) the initialization v[0], 3) the
ANN activation function A.

2.1. Related work

ANN-SNN Conversion. This methodology aligns ANNs
and SNNs through activation-firing rate correspondence, as
initially demonstrated in (Rueckauer et al., 2017a; Cao et al.,
2015). Subsequent research has systematically improved
conversion fidelity through four principal approaches: (i)
weight normalization (Diehl et al., 2015), (ii) soft-reset
mechanisms (Rueckauer et al., 2017b; Han et al., 2020), (iii)

adaptive threshold configurations (Stöckl & Maass, 2021;
Ho & Chang, 2021; Wu et al., 2023), and (iv) spike cod-
ing optimization (Kim et al., 2020a; Sengupta et al., 2018).
Recent innovations focus on ANN activation function adap-
tations, including thresholded ReLU (Ding et al., 2021) and
quantization strategies (Bu et al., 2022c; Liu et al., 2022; Hu
et al., 2023; Shen et al., 2024). However, these approaches
introduce inherent accuracy-compression tradeoffs. Parallel
efforts modify integrate-and-fire neuron dynamics (Li &
Zeng, 2022; Wang et al., 2022a; Liu et al., 2022), with (Liu
et al., 2022) proposing a dual-phase mechanism resembling
our approach.

Crucial for achieving high conversion efficacy, threshold
initialization methodologies employ layer-wise activation
maxima or percentile statistics (Rueckauer et al., 2017a;
Deng & Gu, 2021; Li et al., 2021a; Wu et al., 2024), aug-
mented with post-conversion weight calibration (Li et al.,
2021a; Bojković et al., 2024). Contemporary strategies can
be categorized into two paradigms: (1) ANN activation
quantization for temporal efficiency at the cost of accu-
racy, and (2) SNN neuron modification preserving ANN
expressiveness with extended temporal requirements. Our
methodology adheres to the second paradigm.

Direct Training. This approach leverages spatio-temporal
spike patterns through backpropagation-through-time with
differentiable gradient approximations (O’Connor et al.,
2018; Zenke & Ganguli, 2018; Wu et al., 2018; Bellec et al.,
2018; Fang et al., 2021a;b; Zenke & Vogels, 2021; Mukhoty
et al., 2024). Advancements encompass joint optimization
of synaptic weights and neuronal parameters (threshold dy-
namics (Wei et al., 2023), leakage factors (Rathi & Roy,
2023)), novel loss formulations for spike distribution regu-
larization (Zhu et al., 2024; Guo et al., 2022), and hybrid
conversion-training pipelines (Wang et al., 2022b). State-of-
the-art developments introduce ternary spike representations
for enhanced information density (Guo et al., 2024) and re-
versible architectures for memory-efficient training (Zhang
& Zhang, 2024).

3. Methodology
3.1. Motivation

In ANN-SNN conversion methodologies, constant and rate
coding are commonly utilized in the resulting spiking neural
network models, based on the principle that the expected
input at each time step matches the original input to the ANN
model. Notably, the encoding lacks temporal information,
as spike timing does not convey additional information. In
constant encoding, this is evident, while in rate encoding, for
a fixed input channel, the spike probability remains constant
across all time steps, with the channel value assumed to lie
between 0 and 1.

3

Temporal Misalignment and Probabilistic Neurons

The resulting SNN model is initialized to approximate the
outputs of the original ANN model based on the principle
that, for each spiking neuron, the expected number of spikes
it generates should closely match the output of the corre-
sponding ANN neuron. In particular, it is assumed that no
temporal information is present throughout the SNN model;
that is, the spike train outputs of each SNN layer should
convey no additional temporal information beyond spike
firing rates.

Previous studies examining conversion errors and their clas-
sifications (Li et al., 2022; Bu et al., 2022c; Ding et al.,
2021; Bojković et al., 2024) suggest that SNNs obtained
through ANN-SNN conversion may generate spikes that
are suboptimally positioned in the temporal domain, lead-
ing to a degradation in model performance, particularly at
low latencies. Our initial experiments (see Introduction
and Figure 1) further validate this observation while also
revealing a novel insight: random temporal displacements
of spike trains after spiking layers significantly enhance
model performance. This phenomenon, which we refer
to as temporal misalignment – wherein the original spike
trains exhibit temporal misalignment, thereby impairing
model performance – serves as the foundation and motiva-
tion for our proposed method, which is elaborated upon in
the next section. Additional experiments on permutations in
the ANN-SNN context, along with an explanation of their
impact on model performance, are provided in Appendix G.

3.2. From permutations to Bursting Probabilistic
Spiking Neurons

This work aims to address the following question: How to
incorporate the action of permutation of the output spike
trains into the dynamics of the spiking neurons? We ap-
proach this problem in two steps.

Consider the scenario where spike trains from layer ℓ are
to be permuted. A general approach involves introducing a
“permutator” – a subsequent layer tasked with collecting all
incoming spikes and re-emitting them in a permuted manner,
as illustrated in Figure 2. This inherently implies the two-
phase nature of the “permutator”: specifically, during the
first phase, incoming spikes are accumulated, and firing is
deferred until the onset of the second phase, where spikes
are emitted.

The second step focuses on the output mechanism of the
“permutator”. Specifically, it is desirable to design a spiking
neuron mechanism that retains the stochastic component of
the permutations. This consideration motivates the adoption
of probabilistic firing in spiking neurons.

The final question we explore is whether a more compact ap-
proach can be achieved by employing probabilistic spiking
neurons that aggregate weighted inputs from the previous

layer, rather than directly processing spikes from a spiking
layer.

TPP neurons: To address the aforementioned questions, we
propose two-phase probabilistic spiking neurons (TPP)
(see Figure 3). Specifically, in the first phase, the neurons
will only accumulate the (weighted) input coming from
the previous layer, while in the second phase, the neurons
will spike. More precisely, suppose that at a particular
layer ℓ the spiking neurons accumulate the whole output
of the previous layer, without emitting spikes. Denote the
accumulated membrane potential by v(l)[0]. The subsequent
spiking phase is governed by the following equations:

s(l)[t] = B

(
1

θ(l) · (T − t+ 1)
· v(l)[t− 1]

)
,

v(l)[t] = v(l)[t− 1]− θ(l) · s(l)[t],
(6)

where t = 1, . . . , T . Here, B(x) is a Bernoulli random
variable with bias x, extended for x ∈ R in a natural way
(B(x) = B(max(min(x, 1), 0))). If the weights of the
SNN network are not normalized, the produced spikes will
be scaled with the thresholds θ(l) · s(l)[t], before being sent
to the next layer.

We observe that the presence of T − t + 1 in the denom-
inator of the bias in B demonstrates that the probability
of spiking depends not only on the current membrane po-
tential, but also on the temporal step: in the absence of
spiking, for the same membrane potential, the probability of
spiking increases through time. Figure 3 provides a visual
representation of the functioning of TPP neurons.

The following theorem provides a comprehensive character-
ization of the functioning of TPP neurons and their applica-
tions in ANN-SNN conversion when approximating ANN
outputs (here ReLUθ(x) = min(ReLU(x), θ)).

Theorem 1. Let X(l) be the input of the ANN layer with
ReLU activation and suppose that, during the accumulation
phase, the corresponding SNN layer of TPP neurons accu-
mulated T ·X(l) quantity of voltage.
(a) Suppose that for some t = 1, . . . , T , the TPP layer pro-
duced s(l)[1], . . . , s(l)[t− 1] vector spike trains for the first
t− 1 steps, and the residue voltage for neuron i is higher
than zero. Then,

(T − t+ 1) · θ(l)

T
· E
[
s
(l)
i [t]

]
+

θ(l)

T
·
t−1∑
i=1

s
(l)
i [i]

= ReLUθ(l)(X
(l)
i).

(7)

(b) If s(l)[1], . . . , s(l)[T] are the output vectors of spike
trains of the TPP neurons during T time steps, then

θ(l)

T
·

T∑
i=1

s
(l)
j [i] = ReLUθ(l)(X

(l)
j), (8)

4

Temporal Misalignment and Probabilistic Neurons

if ReLUθ(l)(X
(l)
j) is a multiple of θ(l)

T , or

θ(l)

T
·

T∑
i=1

s
(l)
j [i] =

θ(l)

T
· ⌊ T

θ(l)
ReLUθ(l)(X

(l)
j)⌋ (9)

or
θ(l)

T
· ⌊ T

θ(l)
ReLUθ(l)(X

(l)
j)⌋+ θ(l)

T
,

(10)

if ReLUθ(l)(X
(l)
j) is not a multiple of θ(l)

T .

(c) Suppose that maxX(l) ≤ θ and that the same weights
W (l+1) act on the outputs of layer (l) of ANN and SNN as
above, and let X(l+1) (resp. T · X̃(l+1)) be the inputs to the
(l + 1)th ANN layer (resp. the accumulated voltage for the
(l + 1)th SNN layer of TPP neurons), Then

||X(l+1) − X̃(l+1)||∞ ≤ ||W (l+1)||∞ ·
θ(l)

T
. (11)

• We contrast the statement (a) with Theorem 2 of (Bu
et al., 2022c). Specifically, the authors demonstrate that if
the membrane potential is initialized at half of the thresh-
old, the expectation of the conversion error (layerwise) is 0.
However, this result in (Bu et al., 2022c) relies on the un-
derlying assumption that the layerwise distribution of ANN
activation values is uniform, which does not generally hold
in practice (see, for example, (Bojković et al., 2024)). Our
result (a) above shows that after every t ≤ T time steps,
our expected spiking rate aligns well with the clipping of
the ReLU activation by the threshold, as it should, without
imposing any prior assumptions on the distribution of the
ANN activation values.

Moreoveor, our result demonstrates that the activity of a
TPP neuron adapts to the output it already produced. In
particular, as long as the neuron is still active and contains
residual membrane potential, the expectation of its output at
the next time step takes into account the previously produced
spikes and will yield the ANN counterpart.

• The results (b) and (c) show that during the accumulation
phase, the TPP neuron closely approximate ANN neurons
with ReLU activation. In particular, the only remaining
source of errors in layerwise approximation is the clipping
error due to the threshold θ, and the quantization error due
to the discrete outputs of the spiking neurons. We also note
in equations (9) and (10) two possibilities for the output,
which come from the probabilistic nature of spiking.

When it comes to the initial permutation effect on perfor-
mance of the model, we connect with the uniformization of
the output, as the next result suggests.

Theorem 2. Suppose we have N spiking neurons that
produced spike trains si[1], si[2], . . . , si[T], i = 1, . . . , N .

Furthermore, suppose that these spike trains are modulated
with weights w1, . . . , wN , respectively. For a given permu-
tation π = (π1, . . . , πN), let πsi denote the permutation of
the spike train si. Then, for every t1, t2 ∈ {1, 2, . . . , T},

Eπ[
∑

wiπsi[t1]] = Eπ[
∑

wiπsi[t2]].

Remarks: Theorem 1 is proved in the Appendix B while
Theorem 2 is proved in the Appendix G.

3.3. Bio-plausibility and hardware implementation of
TPP neurons

Our proposed neurons have two distinct properties: The
two-phase regime and probabilistic spike firing. Both prop-
erties are biologically plausible and extensively studied in
the neuroscience literature. For example, the two phase
regime is related to firing after a delay of biological spik-
ing neurons, where a neuron collects the input beyond the
threshold value and fires after delay or after some condition
is met. It could also be related to the bursting, when a bio-
logical neuron starts emitting bursts of spikes, after a certain
condition is met, effectively dumping their accumulated po-
tential (Izhikevich, 2007; Connors & Gutnick, 1990; Llinás
& Jahnsen, 1982; Krahe & Gabbiani, 2004).

On the other side, stochastic firing of biological neurons
has been well studied as well, and different aspects of noise
introduction into firing have been proposed. We refer to
(Shadlen & Newsome, 1994; Faisal et al., 2008; Softky &
Koch, 1993; Maass & Natschläger, 1997; Pagliarini et al.,
2019; Stein et al., 2005) for some examples.

Regarding the implementation of TPP neurons on neuro-
morphic hardware, two phase regime can be easily achieved
on various modern neuromorphic chips that support pro-
grammable spiking neurons. Stochastic firing can be
achieved through random sampling which, for example,
is supported by IBM TrueNorth (Merolla et al., 2014), In-
tel Loihi (Davies et al., 2018), BrainScaleS-2 (Pehle et al.,
2022), SpiNNaker (Furber et al., 2014) neuromorphic chips.
For example, TrueNorth incorporates stochastic neuron mod-
els using on-chip pseudo-random number generators, en-
abling probabilistic firing patterns that mirror our approach.
Similarly, Loihi (Gonzalez et al., 2024) supports stochastic
operations by adding uniformly distributed pseudorandom
noise to neuronal variables, facilitating the implementation
of probabilistic spiking neurons.

To reduce the overall latency for processing inputs with our
models, which yields linear dependence on the number of
layers (implied by the two phase regime), we note that as
soon as a particular layer has finished the firing phase, it
can start receiving the input from the previous one: The
process of classifying a dataset can be serialized. This has
already been observed, for example in (Liu et al., 2022).

5

Temporal Misalignment and Probabilistic Neurons

Neuromophic hardware implementation of this serialization
has been proposed as well, see for example (Das, 2023;
Song et al., 2021; Varshika et al., 2022).

4. Experiments
In this section, we verify the effectiveness and efficiency of
our proposed methods. We compare it with state-of-the-art
methods for image classification via converting ResNet-20,
ResNet-34 (He et al., 2016), VGG-16 (Simonyan & Zisser-
man, 2015), RegNet (Radosavovic et al., 2020) on CIFAR-
10 (LeCun et al., 1998; Krizhevsky et al., 2010), CIFAR-
100 (Krizhevsky & Hinton, 2009), CIFAR10-DVS (Li et al.,
2017) and ImageNet (Deng et al., 2009). Our experiments
use PyTorch (Paszke et al., 2019), PyTorch vision mod-
els (maintainers & contributors, 2016), and the PyTorch
Image Models (Timm) library (Wightman, 2019).

To demonstrate the wide applicability of the TPP neurons
and the framework we propose, we combine them with three
representative methods of ANN-SNN conversion from re-
cent literature, each of which has their own particularities.
These methods are: QCFS (Bu et al., 2022b), RTS (Deng &
Gu, 2021), and SNNC (Li et al., 2021a). The particularity of
QCFS method is that it uses step function instead of ReLU in
ANN models during their training, in order to obtain higher
accuracy in lower latency after the conversion. RTS method
uses thresholded ReLU activation in ANN models during
their training, so that the outliers are eliminated among the
activation values, which helps to reduce the conversion error.
Finally, SNNC uses standard ANN models with ReLU acti-
vation, and performs grid search on the activation values to
find optimal initialization of the thresholds in the converted
SNNs.

We initialize our SNNs following the standard ANN-SNN
conversion process described in Section 3 (and detailed in
A), starting with a pre-trained model given by the baseline,
or with training an ANN model using default settings in
QCFS (Bu et al., 2022b), RTS (Deng & Gu, 2021), and
SNNC (Li et al., 2021a). ANN ReLU activations were
replaced with layers of TPP neurons initialized properly.
All experiments were conducted using NVIDIA RTX 4090
and Tesla A100 GPUs. For comprehensive details on all
setups and configurations, see Appendix C.2.

4.1. Comparison with the State-of-the-art ANN-SNN
Conversion methods

We evaluate our approach against previous state-of-the-
art ANN-SNN conversion methods, including ReLU-
Threshold-Shift (RTS) (Deng & Gu, 2021), SNN Calibration
(SNNC-AP) (Li et al., 2021a), Quantization Clip-Floor-Shift
activation function (QCFS) (Bu et al., 2022b), SNM (Wang
et al., 2022a), Burst (Li & Zeng, 2022), OPI (Bu et al.,

2022a), SRP (Hao et al., 2023a), DDI (Bojković et al., 2024)
and FTBC (Wu et al., 2024).

ImageNet dataset: Table 1 compares the performance of
our proposed methods with state-of-the-art ANN-SNN con-
version methods on ImageNet. Our method outperforms the
baselines across all simulation time steps for VGG-16, and
RegNetX-4GF. For instance, on VGG-16 at T = 32, our
method achieves 74.72% accuracy, surpassing other base-
lines even at T = 128. Moreover, at T = 128, our method
nearly matches the original ANN performance with only a
0.12% drop in VGG-16 and a 0.14% drop in ResNet-34.

We see similar patterns in combining our methods with RTS
and QCFS baselines, which use modified ReLU activations
to reduce conversion errors. Table 1 shows these results. For
instance, applying TPP with QCFS on ResNet-34 at T = 16
improves performance from 59.35% to 72.03%, a 12.68%
increase. Similarly, for VGG-16 at T = 16, combining TPP
with QCFS boosts performance from 50.97% to 73.98%, a
23.01% increase. Using TPP with RTS also shows signifi-
cant improvements, such as a 12.82% increase for VGG-16
at T = 16. These results demonstrate the benefits of inte-
grating TPP with other optimization approaches, solidifying
its role as a comprehensive solution for ANN-SNN conver-
sion challenges.

CIFAR dataset: We further evaluate the performance of our
methods on CIFAR-100 dataset and present the results in
Table 1. We observe similar patterns as with the ImageNet.
When comparing our method with ANN-SNN conversion
methods which use non-ReLU activations, e.g. QCFS and
RTS, our method constantly outperforms RTS on ResNet-20
and VGG16. QCFS baseline suffers from necessity to train
ANN models from scratch with custom activations, while
our method is applicable to any ANN model with ReLU
-like activation. Furthermore, custom activation functions
sometimes sacrifice the ANN performance as can be seen
from the corresponding ANN accuracies.

CIFAR10-DVS dataset: We evaluate our method on the
event-based CIFAR10-DVS (Li et al., 2017) dataset, com-
paring it with state-of-the-art direct training and ANN-SNN
conversion methods (Table 2). Our approach demonstrates
superior performance, achieving 82.40% accuracy at just 8
timesteps and further improving to 83.20% at 64 timesteps.
Notably, our method outperforms the direct training method
Spikformer (Zhou et al., 2022) (80.90%) and the ANN-SNN
conversion method AdaFire (Wang et al., 2025) (81.25%).

4.2. Comparison with other types of SNN training
methods and models

We compare our approach with several state-of-the-art di-
rect training and hybrid training methods as presented in
Table 2. The comparison is founded on performance metrics

6

Temporal Misalignment and Probabilistic Neurons

Table 1. Comparison between our method and the other ANN-SNN conversion methods on ImageNet and CIFAR-100. We provide the
average accuracy and the associated standard deviation across 5 experiments.

Dataset Arch. Method ANN T=4 T=8 T=16 T=32 T=64 T=128

ImageNet

ResNet-34

RTS (Deng & Gu, 2021)ICLR 75.66 – – – 33.01 59.52 67.54
SNNC-AP*(Li et al., 2021a)ICML 75.66 – – – 64.54 71.12 73.45

QCFS (Bu et al., 2022b)ICLR 74.32 – – 59.35 69.37 72.35 73.15
SRP (Hao et al., 2023a)AAAI 74.32 66.71 67.62 68.02 68.40 68.61 –

FTBC(+QCFS) (Wu et al., 2024)ECCV 74.32 49.94 65.28 71.66 73.57 74.07 74.23

Ours (TPP) + QCFS 74.32 37.23 (0.07) 67.32 (0.06) 72.03 (0.02) 72.97 (0.03) 73.24 (0.02) 73.30 (0.02)

Ours (TPP)*+ SNNC w/o Cali. 75.65 2.69 (0.03) 49.24 (0.23) 69.97 (0.10) 74.07 (0.06) 75.23 (0.03) 75.51 (0.05)

VGG-16

SNNC-AP*(Li et al., 2021a)ICML 75.36 – – – 63.64 70.69 73.32
SNM*(Wang et al., 2022a)IJCAI 73.18 – – – 64.78 71.50 72.86
RTS (Deng & Gu, 2021)ICLR 72.16 – – 55.80 67.73 70.97 71.89
QCFS (Bu et al., 2022b)ICLR 74.29 – – 50.97 68.47 72.85 73.97
Burst (Li & Zeng, 2022)IJCAI 74.27 – – – 70.61 73.32 73.00
OPI*(Bu et al., 2022a)AAAI 74.85 – 6.25 36.02 64.70 72.47 74.24

SRP (Hao et al., 2023a)AAAI 74.29 66.47 68.37 69.13 69.35 69.43 –
FTBC(+QCFS) (Wu et al., 2024)ECCV 73.91 58.83 69.31 72.98 74.05 74.16 74.21

Ours (TPP) + RTS 72.16 30.50 (1.19) 56.69(0.67) 67.34 (0.25) 70.63 (0.11) 71.75 (0.05) 72.05 (0.03)

Ours (TPP) + QCFS 74.22 68.39 (0.08) 72.99 (0.05) 73.98 (0.07) 74.23 (0.03) 74.29 (0.00) 74.33 (0.01)

Ours (TPP)*+ SNNC w/o Cali. 75.37 54.14 (0.59) 69.75 (0.27) 73.44 (0.02) 74.72 (0.06) 75.14 (0.02) 75.25 (0.03)

RegNetX-4GF
RTS (Deng & Gu, 2021)ICLR 80.02 – – – 0.218 3.542 48.60

SNNC-AP*(Li et al., 2021a)ICML 80.02 – – – 55.70 70.96 75.78

Ours (TPP)*+ SNNC w/o Cali. 78.45 – – 22.71 (2.98) 66.51 (0.44) 75.54 (0.07) 77.83 (0.04)

CIFAR-100

ResNet-20

TSC*(Han & Roy, 2020)ECCV 68.72 – – – – – 58.42
RMP*(Han et al., 2020)CVPR 68.72 – – – 27.64 46.91 57.69

SNNC-AP*(Li et al., 2021a)ICML 77.16 – – 76.32 77.29 77.73 77.63
RTS (Deng & Gu, 2021)ICLR 67.08 – – 63.73 68.40 69.27 69.49
OPI*(Bu et al., 2022a)AAAI 70.43 – 23.09 52.34 67.18 69.96 70.51

QCFS+(Bu et al., 2022b)ICLR 67.09 27.87 49.53 63.61 67.04 67.87 67.86
Burst*(Li & Zeng, 2022)IJCAI 80.69 – – – 76.39 79.83 80.52

Ours (TPP) + QCFS 67.10 46.88 (0.40) 64.77 (0.20) 67.25 (0.12) 67.74 (0.06) 67.77 (0.05) 67.79 (0.04)

Ours (TPP)*+ SNNC w/o Cali. 81.89 39.67 (0.99) 71.05 (0.68) 78.97 (0.24) 81.06 (0.05) 81.61 (0.08) 81.62 (0.05)

VGG-16

TSC*(Han & Roy, 2020)ECCV 71.22 – – – – – 69.86
SNM*(Wang et al., 2022a)ICLR 74.13 – – – 71.80 73.69 73.95

SNNC-AP*(Li et al., 2021a)ICML 77.89 – – – 73.55 77.10 77.86
RTS◦(Deng & Gu, 2021)ICLR 76.13 23.76 43.81 56.23 67.61 73.45 75.23
OPI*(Bu et al., 2022a)AAAI 76.31 – 60.49 70.72 74.82 75.97 76.25

QCFS+(Bu et al., 2022b)ICLR 76.21 69.29 73.89 75.98 76.53 76.54 76.60
DDI (Bojković et al., 2024)AISTATS 70.44 51.21 53.65 57.12 61.61 70.44 73.82

FTBC(+QCFS) (Wu et al., 2024)ECCV 76.21 71.47 75.12 76.22 76.48 76.48 76.48

Ours (TPP) + RTS 76.13 37.88 (0.35) 65.81 (0.27) 73.05 (0.12) 75.17 (0.17) 75.64 (0.12) 75.9 (0.08)

Ours (TPP) + QCFS 76.21 73.93 (0.22) 76.03 (0.23) 76.43 (0.07) 76.55 (0.03) 76.55 (0.07) 76.52 (0.04)

Ours (TPP)*+ SNNC w/o Cali. 77.87 59.23 (0.65) 73.16 (0.17) 76.05 (0.26) 77.16 (0.09) 77.56 (0.13) 77.64 (0.04)

*: Without modification to ReLU of ANNs. +: Using authors’ provided models and code. ◦: Self implemented.

like accuracy and the number of timesteps utilized during
inference on the CIFAR-100 and ImageNet datasets. We
benchmark our method against prominent approaches such
as LM-H (Hao et al., 2023b), SEENN (Li et al., 2023),
Dual-Phase (Wang et al., 2022b), TTS (Guo et al., 2024),
RMP-Loss (Guo et al., 2023), RecDis-SNN (Guo et al.,
2022), SpikeConv (Liu et al., 2022), and GAC-SNN (Qiu
et al., 2024). We showcase the best accuracy comparable
to state-of-the-art methods achieved by our approach with
minimal timesteps. We prioritize accuracy, but direct train-
ing and hybrid training opt for a lower number of timesteps
and sacrifice accuracy. We outperform LM-H (Hao et al.,
2023b) and Dual-Phase (Wang et al., 2022b) for VGG-16 on
CIFAR-100. For ResNet-20 on CIFAR-100, we have higher
accuracy but longer timesteps. Additionally, for ResNet-
34 on the ImageNet dataset, the accuracy of our method

with QCFS with 16 timesteps is higher than that of Spike-
Conv (Liu et al., 2022) with the same number of timesteps.
We also achieve higher accuracy with longer timesteps as
expected. Overall, our approach demonstrates promising
performance and competitiveness in comparison with the
existing SNN training methods.

4.3. Spiking activity

The event driven nature of various neuromorphic chips im-
plies that the energy consumption is directly proportional
to the spiking activity, i.e., the number of spikes produced
throughout the network: the energy is consumed in the pres-
ence of spikes. To this end, we tested our proposed method
(TPP) for the spike activity and compared with the base-
lines. For a given model, we counted the average number
of spikes produced after each layer, per sample, for both

7

Temporal Misalignment and Probabilistic Neurons

1

2

1

2

1

-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
2

Timestep

(a) Layer 4

1

2

1

2

1

-6.0 -4.0 -2.0 0.0 2.0 4.0
2

Timestep

(b) Layer 8

1

2

1

2

1

-2.0 -1.0 0.0 1.0 2.0
2

Timestep

(c) Layer 12

Figure 4. The membrane potential distributions of the first channel (randomly selected) across three modes (baseline, shuffle, and
probabilistic) in VGG-16 on CIFAR-100. For comparative analysis, the first two timesteps (t = 1, t = 2) from a total of eight timesteps
(T = 8) are selected for each mode. The baseline mode (blue) attains an accuracy of 24.22%, while the shuffle mode (light green)
enhances accuracy to 70.54%, and the probabilistic mode (dark orange) further improves accuracy to 73.42%. The distributions are
presented prior to neuronal firing, with the red dashed line indicating the threshold voltage (Vth) for the respective layer (see Appendix F).

Table 2. Comparison of direct and hybrid training methods for
SNNs on CIFAR-100, ImageNet and CIFAR10-DVS. Baseline
results include the highest reported accuracy and corresponding
latency.

Method Category Timesteps Accuracy

VGG-16 [CIFAR-100]

LM-H (Hao et al., 2023b)ICLR Hybrid Training 4 73.11
SEENN-II *(Li et al., 2023)NeurIPS Direct Training 1.15* 72.76
Dual-Phase (Wang et al., 2022b) Hybrid Training 4 / 8 70.08 / 75.06

Ours (TPP) + QCFS ANN-SNN 4 / 8 73.93 / 76.03

ResNet-20 [CIFAR-100]

LM-H (Hao et al., 2023b)ICLR Hybrid Training 4 57.12
TTS (Guo et al., 2024)AAAI Direct Training 4 74.02

Ours (TPP) + SNNC w/o Cali. ANN-SNN 16 78.97

ResNet-34 [ImageNet]

SEENN-I (Li et al., 2023)NeurIPS Direct Training 3.38 * 64.66
RMP-Loss (Guo et al., 2023)ICCV Direct Training 4 65.17

RecDis-SNN (Guo et al., 2022)CVPR Direct Training 6 67.33
SpikeConv (Liu et al., 2022)AAAI Hybrid Training 16 70.57
GAC-SNN (Qiu et al., 2024)AAAI Direct Training 6 70.42

TTS (Guo et al., 2024)AAAI Direct Training 4 70.74
SEENN-I (Li et al., 2023)NeurIPS ANN-SNN 29.53 * 71.84

Ours (TPP) + QCFS ANN-SNN 16 72.03
Ours (TPP)+ SNNC w/o Cali. ANN-SNN 32 74.07

ResNet-18 [CIFAR10-DVS]

TA-SNN (Yao et al., 2021)ICCV Direct Training 10 72.00
PLIF (Fang et al., 2021c)ICCV Direct Training 20 74.80
Dspkie (Li et al., 2021b)NeurIPS Direct Training 10 75.40
DSR (Meng et al., 2022)CVPR Direct Training 10 77.30

Spikformer (Zhou et al., 2022)ICLR Direct Training 10 80.90
AdaFire (Wang et al., 2025)AAAI ANN-SNN 8 81.25

Ours (TPP) + SNNC w/o Cali. ANN-SNN

4
8

16
32
64

77.90
82.40
82.80
83.00
83.20

* The average number of timesteps during inference on the test dataset.

the baseline and our method. Figure 5 shows the example
of RTS and RTS + TPP. Both the baseline and our method
exhibit similar spike counts. In particular, our method con-
stantly outperforms the baselines, and possibly in doing so
it needs longer average latency per sample (T). However,

the energy consumed is approximately the same as that for
the baseline in time T . The complete tables are present in
Appendix E.4, where we provide more detailed picture of
spike activities.

1 3 5 7 9 11 13 15
Layer

6
7

9

11

13

15
Sp

ike
 c

ou
nt

 a
fte

r t
im

e
T

(lo
ga

rit
hm

ic
sc

al
e) T=8

T=16
T=32

T=64
T=128

Baseline
TPP

Figure 5. Spike counts of VGG-16 on CIFAR-100 of RTS baseline
compared with RTS+TPP. Note: The bar height from bottom
indicates the spike counts after each timestep T, and the color of
longer Ts is overlaid by shorter Ts (see Appendix E.4)

4.4. Membrane potential distribution in early time steps

In Figure 4 we compare the membrane potential distribu-
tions for baseline models and two methods that we studied
in the paper, the permutations applied on spike trains and
TPP method. Once again, it can be seen another reason for
performance degradation of baseline models in low latency,
as the membrane potential is not variable enough to produce
spike informative spike trains, which is particularly visible
in deeper layers. On the other side “permuted” and TPP
models show sufficient variability throughout the layers.

By increasing the latency, the baseline models can recover
some of the variability and spike production, as can be seen
in Figure 5. But, due to the misplacement of spike trains
through temporal dimension, they are still not able to pick
up on the ANN performance.

8

Temporal Misalignment and Probabilistic Neurons

(0,
 1,

 2,
 3)

(0,
 1,

 3,
 2)

(0,
 2,

 1,
 3)

(0,
 3,

 1,
 2)

(0,
 2,

 3,
 1)

(0,
 3,

 2,
 1)

(1,
 0,

 2,
 3)

(1,
 0,

 3,
 2)

(1,
 2,

 0,
 3)

(2,
 1,

 3,
 0)

(2,
 3,

 0,
 1)

(3,
 1,

 0,
 2)

(2,
 1,

 0,
 3)

(2,
 0,

 1,
 3)

(2,
 0,

 3,
 1)

(3,
 1,

 2,
 0)

(1,
 3,

 2,
 0)

(2,
 3,

 1,
 0)

(3,
 2,

 1,
 0)

(1,
 3,

 0,
 2)

(1,
 2,

 3,
 0)

(3,
 0,

 2,
 1)

(3,
 2,

 0,
 1)

(3,
 0,

 1,
 2)

Permutation Order

70

72

74

A
cc

ur
ac

y
(%

) Accuracy
Baseline (0,1,2,3)

Figure 6. Accuracy comparison for all T ! permutations of input order over T = 4 time steps using QCFS with VGG-16 on CIFAR-100.
Results of permuted orders outperform the original, non-permuted order (0, 1, 2, 3). Baseline accuracy is 69.31%, The ANN accuracy is
76.21%.

4.5. Energy Efficiency

Following prior work such as (Rathi & Roy, 2023; Yao
et al., 2023), we computed the energy cost for both ANNs
and SNNs using 45nm CMOS technology. The energy
consumption of a 32-bit MAC operation in ANNs (4.6 pJ) is
approximately 5.1× higher than that of an addition operation
in SNNs (0.9 pJ) (Horowitz, 2014). The results are reported
in Table 3. We refer to Appendix E.5 for details.

Table 3. Energy consumption and Top-1 accuracy evaluated on
ImageNet with a default input resolution of 3x224x224. The
baseline model is used for comparison, and the results for the
proposed method (TPP) are highlighted in bold.

Arch Method T Acc.(%) Energy(mJ)

VGG-16

QCFS 32 68.47 61.67
TPP(ours) 4 68.39 7.98

QCFS 64 72.85 123.02
TPP(ours) 8 72.99 15.66

ResNet-34

SNNC 32 63.64 13.27
TPP(ours) 8 69.75 5.69

SNNC 64 70.69 23.51
TPP(ours) 16 73.44 12.16

4.6. Effect of Temporal Reordering

To validate the effectiveness of temporal permutations on
SNN performance, we exhaustively evaluate all T ! = 24
possible orderings of the spike trains over T = 4 time steps
using the QCFS with VGG-16 on CIFAR-100. As shown
in Figure 6, all 23 permuted spike orders outperform the de-
fault chronological order (0, 1, 2, 3) without any reordering.
The accuracy of the default-order SNN is 70.36%, while
the ANN reference achieves 76.21%.

The best-performing permutation (3, 0, 1, 2) achieves
75.35%—only 0.86% below the ANN accuracy, demonstrat-
ing that reordering consistently and significantly improves

accuracy.

We also refer to the Appendix G for further experiments
concerning the effect of permutations in ANN-SNN conver-
sion.

5. Conclusions and future work
This work identified the phenomenon of “temporal mis-
alignment” in ANN-SNN conversion, where random spike
rearrangement enhances performance. We introduced two-
phase probabilistic (TPP) spiking neurons, designed to in-
trinsically perform the effect of spike permutations. We
show biological plausibility of such neurons as well as the
hardware friendlines of the underlying mechanisms. We
demonstrate their effectiveness through exhaustive exper-
iments on large scale datasets, showing their competing
performance compared to SOTA ANN-SNN conversion and
direct training methods.

In the future work, we aim to study the effect of permuta-
tions and probabilistic spiking in combination with directly
trained SNN models.

Acknowledgements
We extend our sincere gratitude to the anonymous review-
ers for their valuable comments on this paper. The author
X. Wu was supported by the Science and Technology De-
velopment Fund (FDCT) of Macau Special Administrative
Region (0055/2023/ITP2, 0071/2024/ITP2).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Temporal Misalignment and Probabilistic Neurons

References
Taking Neuromorphic Computing to the Next Level

with Loihi 2. https://download.intel.
com/newsroom/2021/new-technologies/
neuromorphic-computing-loihi-2-brief.
pdf. Accessed: 16-05-2023.

Bal, M. and Sengupta, A. Spikingbert: Distilling bert to
train spiking language models using implicit differentia-
tion. In Proceedings of the AAAI conference on artificial
intelligence, 2024.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and
Maass, W. Long short-term memory and learning-to-learn
in networks of spiking neurons. In Advances in neural
information processing systems, 2018.

Bojković, V., Anumasa, S., De Masi, G., Gu, B., and Xiong,
H. Data driven threshold and potential initialization for
spiking neural networks. In International Conference on
Artificial Intelligence and Statistics, 2024.

Braspenning, P. J., Thuijsman, F., and Weijters, A. J. M. M.
Artificial neural networks: an introduction to ANN theory
and practice, volume 931. Springer Science & Business
Media, 1995.

Bu, T., Ding, J., Yu, Z., and Huang, T. Optimized potential
initialization for low-latency spiking neural networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2022a.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T.
Optimal ANN-SNN conversion for high-accuracy and
ultra-low-latency spiking neural networks. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022, 2022b.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T.
Optimal ANN-SNN conversion for high-accuracy and
ultra-low-latency spiking neural networks. In Interna-
tional Conference on Learning Representations, 2022c.

Cao, Y., Chen, Y., and Khosla, D. Spiking deep convolu-
tional neural networks for energy-efficient object recog-
nition. International Journal of Computer Vision, 113(1):
54–66, 2015.

Cheng, X., Hao, Y., Xu, J., and Xu, B. Lisnn: Improving
spiking neural networks with lateral interactions for ro-
bust object recognition. In IJCAI, pp. 1519–1525, 2020.

Connors, B. W. and Gutnick, M. J. Intrinsic firing patterns
of diverse neocortical neurons. Trends in neurosciences,
13(3):99–104, 1990.

Das, A. A design flow for scheduling spiking deep convolu-
tional neural networks on heterogeneous neuromorphic
system-on-chip. ACM Transactions on Embedded Com-
puting Systems, 2023.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y.,
Choday, S. H., Dimou, G., Joshi, P., Imam, N., Jain, S.,
et al. Loihi: A neuromorphic manycore processor with
on-chip learning. Ieee Micro, 38(1):82–99, 2018.

DeBole, M. V., Taba, B., Amir, A., Akopyan, F., Andreopou-
los, A., Risk, W. P., Kusnitz, J., Otero, C. O., Nayak, T. K.,
Appuswamy, R., et al. Truenorth: Accelerating from zero
to 64 million neurons in 10 years. Computer, 52(5):20–29,
2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Deng, S. and Gu, S. Optimal conversion of conventional ar-
tificial neural networks to spiking neural networks. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Diehl, P. U. and Cook, M. Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Fron-
tiers in computational neuroscience, 9:99, 2015.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and
Pfeiffer, M. Fast-classifying, high-accuracy spiking deep
networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. ieee, 2015.

Ding, J., Yu, Z., Tian, Y., and Huang, T. Optimal ann-snn
conversion for fast and accurate inference in deep spiking
neural networks. In International Joint Conference on
Artificial Intelligence, pp. 2328–2336, 2021.

Faisal, A. A., Selen, L. P., and Wolpert, D. M. Noise in
the nervous system. Nature reviews neuroscience, 9(4):
292–303, 2008.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and
Tian, Y. Deep residual learning in spiking neural net-
works. Advances in Neural Information Processing Sys-
tems, 34:21056–21069, 2021a.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, 2021b.

10

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

Temporal Misalignment and Probabilistic Neurons

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. Incorporating learnable membrane time constant
to enhance learning of spiking neural networks. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 2661–2671, 2021c.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A.
The spinnaker project. Proceedings of the IEEE, 102(5):
652–665, 2014.

Gonzalez, H. A., Huang, J., Kelber, F., Nazeer, K. K.,
Langer, T., Liu, C., Lohrmann, M., Rostami, A., Schöne,
M., Vogginger, B., et al. Spinnaker2: A large-scale neu-
romorphic system for event-based and asynchronous ma-
chine learning. arXiv preprint arXiv:2401.04491, 2024.

Guo, Y., Tong, X., Chen, Y., Zhang, L., Liu, X., Ma, Z.,
and Huang, X. Recdis-snn: Rectifying membrane po-
tential distribution for directly training spiking neural
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

Guo, Y., Liu, X., Chen, Y., Zhang, L., Peng, W., Zhang, Y.,
Huang, X., and Ma, Z. Rmp-loss: Regularizing mem-
brane potential distribution for spiking neural networks.
In IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2023, Paris, France, October 1-6, 2023, 2023.

Guo, Y., Chen, Y., Liu, X., Peng, W., Zhang, Y., Huang, X.,
and Ma, Z. Ternary spike: Learning ternary spikes for
spiking neural networks. In Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, Thirty-Sixth
Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, 2024.

Han, B. and Roy, K. Deep spiking neural network: En-
ergy efficiency through time based coding. In European
Conference on Computer Vision. Springer, 2020.

Han, B., Srinivasan, G., and Roy, K. RMP-SNN: Residual
membrane potential neuron for enabling deeper high-
accuracy and low-latency spiking neural network. In Pro-
ceedings of the IEEE/CVF conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 13558–13567,
2020.

Hao, Z., Bu, T., Ding, J., Huang, T., and Yu, Z. Reducing
ANN-SNN conversion error through residual membrane
potential. In Thirty-Seventh AAAI Conference on Arti-
ficial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI
2023, Thirteenth Symposium on Educational Advances in
Artificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, 2023a.

Hao, Z., Shi, X., Huang, Z., Bu, T., Yu, Z., and Huang,
T. A progressive training framework for spiking neural
networks with learnable multi-hierarchical model. In The
Twelfth International Conference on Learning Represen-
tations, 2023b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Ho, N.-D. and Chang, I.-J. Tcl: an ann-to-snn conversion
with trainable clipping layers. In 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021.

Hodgkin, A. L. and Huxley, A. F. A quantitative description
of membrane current and its application to conduction
and excitation in nerve. The Journal of physiology, 117
(4):500, 1952.

Horowitz, M. 1.1 computing’s energy problem (and what we
can do about it). In 2014 IEEE international solid-state
circuits conference digest of technical papers (ISSCC),
pp. 10–14. IEEE, 2014.

Hu, Y., Zheng, Q., Jiang, X., and Pan, G. Fast-snn: fast spik-
ing neural network by converting quantized ann. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 2023.

Izhikevich, E. M. Simple model of spiking neurons.
IEEE Transactions on neural networks, 14(6):1569–1572,
2003.

Izhikevich, E. M. Dynamical systems in neuroscience. MIT
press, 2007.

Kim, J., Kim, K., and Kim, J. Unifying activation- and
timing-based learning rules for spiking neural networks.
In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020a.

Kim, S., Park, S., Na, B., and Yoon, S. Spiking-yolo: spik-
ing neural network for energy-efficient object detection.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 34, pp. 11270–11277, 2020b.

Krahe, R. and Gabbiani, F. Burst firing in sensory systems.
Nature Reviews Neuroscience, 5(1):13–23, 2004.

Krizhevsky, A. and Hinton, G. Learning mul-
tiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research). URL http://www. cs.
toronto. edu/kriz/cifar. html, 2010.

11

Temporal Misalignment and Probabilistic Neurons

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, H., Liu, H., Ji, X., Li, G., and Shi, L. Cifar10-dvs: an
event-stream dataset for object classification. Frontiers
in neuroscience, 11:309, 2017.

Li, Y. and Zeng, Y. Efficient and accurate conversion of
spiking neural network with burst spikes. In Proceedings
of the Thirty-First International Joint Conference on Ar-
tificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29
July 2022, 2022.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. A free
lunch from ann: Towards efficient, accurate spiking neu-
ral networks calibration. In International Conference on
Machine Learning, pp. 6316–6325. PMLR, 2021a.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. Dif-
ferentiable spike: Rethinking gradient-descent for train-
ing spiking neural networks. Advances in Neural Infor-
mation Processing Systems, 34:23426–23439, 2021b.

Li, Y., Zhao, D., and Zeng, Y. Bsnn: To-
wards faster and better conversion of artificial
neural networks to spiking neural networks with
bistable neurons. Frontiers in Neuroscience, 16,
2022. ISSN 1662-453X. doi: 10.3389/fnins.2022.
991851. URL https://www.frontiersin.org/
articles/10.3389/fnins.2022.991851.

Li, Y., Geller, T., Kim, Y., and Panda, P. SEENN: towards
temporal spiking early exit neural networks. In Advances
in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023.

Liu, F., Zhao, W., Chen, Y., Wang, Z., and Jiang, L. Spike-
converter: An efficient conversion framework zipping the
gap between artificial neural networks and spiking neural
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 1692–1701, 2022.

Llinás, R. and Jahnsen, H. Electrophysiology of mammalian
thalamic neurones in vitro. Nature, 297(5865):406–408,
1982.

Ma, D., Jin, X., Sun, S., Li, Y., Wu, X., Hu, Y., Yang, F.,
Tang, H., Zhu, X., Lin, P., and Pan, G. Darwin3: A large-
scale neuromorphic chip with a novel ISA and on-chip
learning. CoRR, 2023.

Maass, W. Networks of spiking neurons: The third
generation of neural network models. Neural Net-
works, 10(9):1659–1671, 1997. ISSN 0893-6080.
doi: https://doi.org/10.1016/S0893-6080(97)00011-7.

URL https://www.sciencedirect.com/
science/article/pii/S0893608097000117.

Maass, W. and Natschläger, T. Networks of spiking neurons
can emulate arbitrary hopfield nets in temporal coding.
Network: Computation in Neural Systems, 8(4):355–371,
1997.

maintainers, T. and contributors. Torchvision: Pytorch’s
computer vision library. https://github.com/
pytorch/vision, 2016.

McCulloch, W. S. and Pitts, W. A logical calculus of the
ideas immanent in nervous activity. The bulletin of math-
ematical biophysics, 5(4):115–133, 1943.

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo,
Z.-Q. Training High-Performance Low-Latency Spiking
Neural Networks by Differentiation on Spike Represen-
tation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12444–
12453, 2022.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy,
A. S., Sawada, J., Akopyan, F., Jackson, B. L., Imam, N.,
Guo, C., Nakamura, Y., et al. A million spiking-neuron
integrated circuit with a scalable communication network
and interface. Science, 345(6197):668–673, 2014.

Mukhoty, B., Bojković, V., de Vazelhes, W., Zhao, X.,
De Masi, G., Xiong, H., and Gu, B. Direct training of
snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36, 2024.

Neftci, E. O., Mostafa, H., and Zenke, F. Surrogate gradient
learning in spiking neural networks: Bringing the power
of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

O’Connor, P., Gavves, E., Reisser, M., and Welling, M.
Temporally efficient deep learning with spikes. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018.

Pagliarini, S. N., Bhuin, S., Isgenc, M. M., Biswas, A. K.,
and Pileggi, L. A probabilistic synapse with strained
mtjs for spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 31(4):1113–
1123, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

12

https://www.frontiersin.org/articles/10.3389/fnins.2022.991851
https://www.frontiersin.org/articles/10.3389/fnins.2022.991851
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://github.com/pytorch/vision
https://github.com/pytorch/vision

Temporal Misalignment and Probabilistic Neurons

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber,
K., Stradmann, Y., Weis, J., Leibfried, A., Müller, E.,
and Schemmel, J. The brainscales-2 accelerated neu-
romorphic system with hybrid plasticity. Frontiers in
Neuroscience, 16:795876, 2022.

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S.,
Wang, G., Zou, Z., Wu, Z., He, W., et al. Towards artificial
general intelligence with hybrid tianjic chip architecture.
Nature, 572(7767):106–111, 2019.

Qiu, X., Zhu, R., Chou, Y., Wang, Z., Deng, L., and Li,
G. Gated attention coding for training high-performance
and efficient spiking neural networks. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024,
Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada, 2024.

Radosavovic, I., Kosaraju, R. P., Girshick, R. B., He, K.,
and Dollár, P. Designing network design spaces. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, 2020.

Rathi, N. and Roy, K. DIET-SNN: A low-latency spiking
neural network with direct input encoding and leakage
and threshold optimization. IEEE Trans. Neural Networks
Learn. Syst., 2023.

Ren, H., Zhou, Y., Huang, Y., Fu, H., Lin, X., Song, J., and
Cheng, B. Spikepoint: An efficient point-based spiking
neural network for event cameras action recognition. In
The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Austria, May 6-11, 2024, 2024.

Roy, K., Jaiswal, A., and Panda, P. Towards spike-based ma-
chine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and
Liu, S.-C. Conversion of continuous-valued deep
networks to efficient event-driven networks for im-
age classification. Frontiers in Neuroscience, 11,
2017a. ISSN 1662-453X. doi: 10.3389/fnins.2017.
00682. URL https://www.frontiersin.org/
articles/10.3389/fnins.2017.00682.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu,
S.-C. Conversion of continuous-valued deep networks to
efficient event-driven networks for image classification.
Frontiers in neuroscience, 11:682, 2017b.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. Going
deeper in spiking neural networks: Vgg and residual
architectures. Frontiers in Neuroence, 2018.

Shadlen, M. N. and Newsome, W. T. Noise, neural codes and
cortical organization. Current opinion in neurobiology, 4
(4):569–579, 1994.

Shen, G., Zhao, D., Li, T., Li, J., and Zeng, Y. Are conven-
tional snns really efficient? a perspective from network
quantization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
27538–27547, 2024.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition, 2015.

Softky, W. R. and Koch, C. The highly irregular firing of
cortical cells is inconsistent with temporal integration of
random epsps. Journal of neuroscience, 13(1):334–350,
1993.

Song, S., Varshika, M. L., Das, A., and Kandasamy, N.
A design flow for mapping spiking neural networks to
many-core neuromorphic hardware. In 2021 IEEE/ACM
International Conference On Computer Aided Design
(ICCAD), pp. 1–9. IEEE, 2021.

Stein, R. B., Gossen, E. R., and Jones, K. E. Neuronal
variability: noise or part of the signal? Nature Reviews
Neuroscience, 6(5):389–397, 2005.

Stöckl, C. and Maass, W. Optimized spiking neurons can
classify images with high accuracy through temporal cod-
ing with two spikes. Nature Machine Intelligence, 3(3):
230–238, 2021.

Varshika, M. L., Balaji, A., Corradi, F., Das, A., Stuijt, J.,
and Catthoor, F. Design of many-core big little µbrains
for energy-efficient embedded neuromorphic computing.
In 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1011–1016. IEEE, 2022.

Wang, Q., Zhang, T., Han, M., Wang, Y., Zhang, D., and
Xu, B. Complex dynamic neurons improved spiking
transformer network for efficient automatic speech recog-
nition. In Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023, Thirty-Fifth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2023,
Thirteenth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, 2023a.

Wang, Y., Zhang, M., Chen, Y., and Qu, H. Signed neu-
ron with memory: Towards simple, accurate and high-
efficient ann-snn conversion. In Raedt, L. D. (ed.),
Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI-22, pp. 2501–
2508. International Joint Conferences on Artificial Intelli-
gence Organization, 7 2022a. doi: 10.24963/ijcai.2022/
347. URL https://doi.org/10.24963/ijcai.
2022/347. Main Track.

13

https://www.frontiersin.org/articles/10.3389/fnins.2017.00682
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682
https://doi.org/10.24963/ijcai.2022/347
https://doi.org/10.24963/ijcai.2022/347

Temporal Misalignment and Probabilistic Neurons

Wang, Z., Lian, S., Zhang, Y., Cui, X., Yan, R., and Tang, H.
Towards lossless ANN-SNN conversion under ultra-low
latency with dual-phase optimization. CoRR, 2022b.

Wang, Z., Fang, Y., Cao, J., Zhang, Q., Wang, Z., and Xu,
R. Masked spiking transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2023b.

Wang, Z., Fang, Y., Cao, J., Ren, H., and Xu, R. Adaptive
calibration: A unified conversion framework of spiking
neural network. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2025.

Wei, W., Zhang, M., Qu, H., Belatreche, A., Zhang, J., and
Chen, H. Temporal-coded spiking neural networks with
dynamic firing threshold: Learning with event-driven
backpropagation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2023.

Wightman, R. Pytorch image models. https://github.
com/rwightman/pytorch-image-models,
2019.

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C.
A tandem learning rule for effective training and rapid
inference of deep spiking neural networks. IEEE Trans.
Neural Networks Learn. Syst., 2023.

Wu, X., Bojković, V., Gu, B., Suo, K., and Zou, K. FTBC:
Forward temporal bias correction for optimizing ann-snn
conversion. ECCV, 2024.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. Spatio-
temporal backpropagation for training high-performance
spiking neural networks. Frontiers in neuroscience, 12:
331, 2018.

Yang, Z., Wu, Y., Wang, G., Yang, Y., Li, G., Deng, L., Zhu,
J., and Shi, L. Dashnet: a hybrid artificial and spiking
neural network for high-speed object tracking. arXiv
preprint arXiv:1909.12942, 2019.

Yao, M., Gao, H., Zhao, G., Wang, D., Lin, Y., Yang, Z., and
Li, G. Temporal-wise attention spiking neural networks
for event streams classification. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 10221–10230, 2021.

Yao, M., Hu, J., Zhou, Z., Yuan, L., Tian, Y., Xu, B., and Li,
G. Spike-driven transformer. In Advances in Neural In-
formation Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS
2023, New Orleans, LA, USA, December 10 - 16, 2023,
2023.

Zenke, F. and Ganguli, S. Superspike: Supervised learning
in multilayer spiking neural networks. Neural computa-
tion, 2018.

Zenke, F. and Vogels, T. P. The remarkable robustness of
surrogate gradient learning for instilling complex function
in spiking neural networks. Neural computation, 33(4):
899–925, 2021.

Zhang, H. and Zhang, Y. Memory-efficient reversible spik-
ing neural networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, 2024.

Zhou, Z., Zhu, Y., He, C., Wang, Y., Yan, S., Tian, Y., and
Yuan, L. Spikformer: When Spiking Neural Network
Meets Transformer. arXiv preprint arXiv:2209.15425,
2022.

Zhu, L., Wang, X., Chang, Y., Li, J., Huang, T., and Tian, Y.
Event-based video reconstruction via potential-assisted
spiking neural network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 3594–3604, 2022.

Zhu, R., Zhao, Q., and Eshraghian, J. K. Spikegpt: Gen-
erative pre-trained language model with spiking neural
networks. CoRR, 2023.

Zhu, Y., Fang, W., Xie, X., Huang, T., and Yu, Z. Exploring
loss functions for time-based training strategy in spiking
neural networks. In Advances in Neural Information
Processing Systems, 2024.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Temporal Misalignment and Probabilistic Neurons

A. Conversion steps
Copying ANN architecture and weights. ANN-SNN conversion process starts with a pre-trained ANN model, whose
weights (and biases) will be copied to an SNN model following the same architecture. In this process, one considers
ANN models whose non-activation layers become linear during the inference. In particular, these include fully connected,
convolutional, batch normalization and average pooling layers.

Approximating ANN activation functions. The second step of the process considers the activation layers and their
activation functions in ANN. Here, the idea is to initialize the spiking neurons in the corresponding SNN layer in such a
way that their average spiking rate approximates the values of the corresponding activation functions. For the ReLU (or
ReLU -like such as quantized or thresholded ReLU) activations, this process is rather well understood. The spiking neuron
threshold is usually set to correspond to the maximum activation ANN channel or layerwise, or to be some percentile of it.
If we denote by f the ANN actiavtion, then ideally, after setting the thresholds, one would like to have

f(v[T]) ≈ θ

T
·

T∑
t=1

s[t]. (12)

If we recall the equations for the IF neuron (equations (1) in the article)

v(l)[t] = v(l)[t− 1] +W(l)θ(l−1) · s(l−1)[t]− θ(l) · s[t− 1], (13)

s(l)[t] = H(v(l)[t]− θ(l)), (14)

we see that the value with which we are comparing the membrane potential (threshold) is the same as the value with which
we are scaling the output spikes. In particular, as soon as our membrane potential has reached θ, it will produce the value θ.
This can be loosely described as, whatever the input is, the output will be approximately that value (or zero, if the input is
negative), which is exactly what ReLU does.

Absorbing thresholds. Finally, we notice that, once we produce a spike s(l)[t], the value θ(l) · s(l)[t] will be sent to the
next layer, and will further be weighted with weights W (l+1) and the bias b(l+1) will be applied. As we want SNNs to
operate only using ones and zeros (to avoid multiplication due to energy efficiency), the values θ(l) will be absorbed into
W (l+1), i.e. W (l+1) ← θ(l)W (l+1).

B. Proof of Theorem 1
We prove the main theorem from the article, which we restate here.
Theorem 1. Let X(l) be the input of the ANN layer with ReLU activation and suppose that, during the accumulation phase,
the corresponding SNN layer of TPP neurons accumulated T ·X(l) quantity of voltage.
(a) Suppose that for some t = 1, . . . , T , the TPP layer produced s(l)[1], . . . , s(l)[t− 1] vector spike trains for the first t− 1
steps, and the residue voltage for neuron i is higher than zero. Then,

(T − t+ 1) · θ(l)

T
· E
[
s
(l)
i [t]

]
+

θ(l)

T
·
t−1∑
i=1

s
(l)
i [i]

= ReLUθ(l)(X
(l)
i).

(7)

(b) If s(l)[1], . . . , s(l)[T] are the output vectors of spike trains of the TPP neurons during T time steps, then

θ(l)

T
·

T∑
i=1

s
(l)
j [i] = ReLUθ(l)(X

(l)
j), (8)

if ReLUθ(l)(X
(l)
j) is a multiple of θ(l)

T , or

θ(l)

T
·

T∑
i=1

s
(l)
j [i] =

θ(l)

T
· ⌊ T

θ(l)
ReLUθ(l)(X

(l)
j)⌋ (9)

or
θ(l)

T
· ⌊ T

θ(l)
ReLUθ(l)(X

(l)
j)⌋+ θ(l)

T
, (10)

15

Temporal Misalignment and Probabilistic Neurons

if ReLUθ(l)(X
(l)
j) is not a multiple of θ(l)

T .

(c) Suppose that maxX(l) ≤ θ and that the same weights W (l+1) act on the outputs of layer (l) of ANN and SNN as above,
and let X(l+1) (resp. T · X̃(l+1)) be the inputs to the (l + 1)th ANN layer (resp. the accumulated voltage for the (l + 1)th
SNN layer of TPP neurons), Then

||X(l+1) − X̃(l+1)||∞ ≤ ||W (l+1)||∞ ·
θ(l)

T
. (11)

Proof. We start by rewriting equation (6) as

s(l)[t] = B

(
1

θ(l) · (T − t+ 1)
· v(l)[t− 1]

)
(15)

= B

(
1

θ(l) · (T − t+ 1)
·

(
T ·X(l) − θ(l) ·

t−1∑
i=1

s(l)[i]

))
(16)

= B

(
1

T − t+ 1
·

(
T · X

(l)

θ(l)
−

t−1∑
i=1

s(l)[i]

))
, (17)

obtained by unrolling through time the expression for the membrane potential.

We next consider various settings of the theorem. For the first three statements, we can assume that the vector X(l) is
one dimensional, i.e. X(l) ∈ R. We start by first considering the situation where X(l) > θ(l), so that the output of the
ANN is ReLUθ(l)(X(l)) = θ(l). In that case, we notice that the spiking neuron will fire at every time step t = 1, . . . , T ,
because the bias for the Bernoulli random variable will always be bigger than or equal to 1, as follows from the previous
equations. Similarly, if X(l) ≤ 0, the bias will always be non-positive, and both the output of ANN and of SNN will be 0.
Consequently, the first three statements follow directly for both of these cases.

Suppose now that 0 ≤ X(l) < θ(l) (or, equivalently, 0 ≤ X(l)

θ(l) < 1) and let a be minimal non-negative integer such that

a · θ(l) ≤ T ·X(l) < (a+ 1) · θ, i.e. a := ⌊T ·X(l)

θ(l) ⌋. In particular, 0 ≤ a < T . We proceed to prove statement (b) above.
We note that in general,

∑t−1
i=1 s

(l)[i] ≤ a+ 1, because after at most a+ 1 spikes, the residue membrane potential would
become negative. Also, due to the condition of the statement that the residue membrane potential is still non-negative, we
may assume that

∑t−1
i=1 s

(l)[i] ≤ a. Then, it becomes clear that the bias in the last equation (17) is a non-negative number
smaller than 1, and it follows that

E
[
s
(l)
i [t]

]
=

1

T − t+ 1
·

(
T · X

(l)

θ(l)
−

t−1∑
i=1

s(l)[i]

)
, (18)

so that we finally have

θ(l) · (T − t+ 1)

T
· E
[
s
(l)
i [t]

]
+

θ(l)

T
·
t−1∑
i=1

s
(l)
i [i] (19)

=
θ(l) · (T − t+ 1)

T
· 1

T − t+ 1
·

(
T · X

(l)

θ(l)
−

t−1∑
i=1

s(l)[i]

)
+

θ(l)

T
·
t−1∑
i=1

s
(l)
i [i] (20)

= X(l) = ReLUθ(l)(X(l)). (21)

Statement (a) follows from (b), while for the statement (c) for the first case, we notice that after every spike, the residue
membrane potential is a multiple of θ(l), hence we will have exactly a spikes (notation above), while the second case follows
from statement (b). Finally, statement (d) is a direct consequence of the above discussion.

C. Experiments Details
C.1. Datasets

CIFAR-10: The CIFAR-10 dataset (Krizhevsky et al., 2010) contains 60,000 color images of 32x32 pixels each, divided
into 10 distinct classes (e.g., airplanes, cars, birds), with each class containing 6,000 images. The dataset is split into 50,000

16

Temporal Misalignment and Probabilistic Neurons

training images and 10,000 test images.

CIFAR-100: The CIFAR-100 dataset (Krizhevsky et al., 2010) consists of 60,000 color images of 32x32 pixels, distributed
across 100 classes, with each class having 600 images. Similar to CIFAR-10, it is divided into 50,000 training images and
10,000 test images.

CIFAR10-DVS: The CIFAR10-DVS (Li et al., 2017) dataset is a neuromorphic vision benchmark derived from the CIFAR-
10 dataset, converting 10,000 static images (1,000 per class across 10 categories like airplanes and cars) into event streams
using a Dynamic Vision Sensor (DVS). Generated via Repeated Closed-Loop Smooth (RCLS) movement to simulate realistic
motion, the dataset captures spatio-temporal intensity changes as asynchronous ON/OFF events (128×128 resolution) with
inherent noise (e.g., 60Hz LCD artifacts, later corrected). Designed for moderate complexity between MNIST-DVS and
N-Caltech101, it challenges event-driven algorithms, achieving initial low accuracies (22–29%) with methods like spiking
neural networks and SVM, highlighting its utility for advancing neuromorphic research. Publicly available on Figshare1,
CIFAR10-DVS bridges traditional and event-based vision, fostering innovation in brain-inspired computing and real-world
dynamic scene analysis.

ImageNet: The ImageNet dataset (Deng et al., 2009) comprises 1,281,167 images spanning 1,000 classes in the training
set, with a validation set and a test set containing 50,000 and 100,000 images, respectively. Unlike the CIFAR datasets,
ImageNet images vary in size and resolution. The validation set is frequently used as the test set in various applications.

C.2. Configuration and Setups

C.2.1. OURS + QCFS

CIFAR: We followed the original paper’s training configurations to train ResNet-20 and VGG-16 on CIFAR-100. The
Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 was used. The initial learning rate was set to 0.02,
with a weight decay of 5 × 10−4. A cosine decay scheduler adjusted the learning rate over 300 training epochs. The
quantization steps L were set to 8 for ResNet-20 and 4 for VGG-16. All models were trained for 300 epochs.

ImageNet: We utilized checkpoints for ResNet-34 and VGG-16 from the original paper’s GitHub repository. For ImageNet,
L was set to 8 and 16 for ResNet-34 and VGG-16, respectively.

C.2.2. OURS + RTS

CIFAR: We trained models using the recommended settings from the original paper.

ImageNet: We used pre-trained checkpoints for ResNet-34 and VGG-16 from the original paper’s GitHub repository.
Subsequently, all ReLU layers were replaced with spiking neuron layers.

For all datasets, we initialize TPP membrane potential to zero, while in the baselines we do as they propose.

C.2.3. OURS + SNNC W/O CALIBRATION

CIFAR: We adhered to the original paper’s configurations to train ResNet-20 and VGG-16 on CIFAR-100. The SGD
optimizer with a momentum of 0.9 was used. The initial learning rate was set to 0.01, with a weight decay of 5× 10−4 for
models with batch normalization. A cosine decay scheduler adjusted the learning rate over 300 training epochs. All models
were trained for 300 epochs with a batch size of 128.

ImageNet: We used pre-trained checkpoints for ResNet-34 and VGG-16 from the original paper’s GitHub repository.
Subsequently, all ReLU layers were replaced with our proposed spiking neuron layers.

1https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671

17

https://figshare.com/articles/dataset/CIFAR10-DVS_New/4724671

Temporal Misalignment and Probabilistic Neurons

D. Algorithms
The baseline SNN neuron forward function (Algorithm 1) initializes the membrane potential to zero and iteratively updates it
by adding the layer output at each timestep. Spikes are generated when the membrane potential exceeds a defined threshold,
θ, and the potential is reset accordingly. This function captures the core dynamics of spiking neurons. The Shuffle Mode
(Algorithm 2) is an extension of the baseline forward function. After generating the spikes across the simulation length, this
mode shuffles the spike train.

The TPP Mode (Algorithm 3) introduces a probabilistic component to the spike generation process. Instead of a deterministic
threshold-based spike generation, it uses a Bernoulli process where the probability of spiking is determined by the current
membrane potential relative to the threshold adjusted for the remaining timesteps.

Algorithm 1 SNN Neuron Forward Function and Additional Modes

Require: SNN Layer ℓ; Input tensor x; Threshold θ; Simulation length T .
1: function BASELINESNN(ℓ,x, θ, T)
2: v← 0 {Initialize membrane potential}
3: for t = 1 to T do
4: v← v + ℓ(x(t))
5: s← (v ≥ θ)× θ
6: v← v − s
7: Store s(t)
8: end for
9: return s

10: end function

Algorithm 2 SNN Neuron Forward Function of Shuffle Mode

Require: SNN Layer ℓ; Input tensor x; Threshold θ; Simulation length T .
1: function SHUFFLEMODE(ℓ,x, θ, T)
2: v← 0 {Initialize membrane potential}
3: for t = 1 to T do
4: v← v + ℓ(x(t))
5: s← (v ≥ θ)× θ
6: v← v − s
7: Store s(t)
8: end for
9: Shuffle the stored spikes s(1), s(2), . . . , s(T)

10: return shuffled s
11: end function

Algorithm 3 SNN Neuron Forward Function of TPP Mode

Require: SNN Layer ℓ; Input tensor x; Threshold θ; Simulation length T .
1: function TPPMODE(ℓ,x, θ, T)
2: v←

∑T
t=1 x(t) {Initialize membrane potential with the sum of inputs}

3: for t = 1 to T do
4: p← Clamp(v/(θ × (T − t+ 1)), 0, 1)
5: s← Bernoulli(p)× θ
6: v← v − s
7: Store s(t)
8: end for
9: return s

10: end function

18

Temporal Misalignment and Probabilistic Neurons

E. Additional Experiments
E.1. SNNC

We show extra experiment results about the comparison among permutation method and two-phase probabilistic method. We
validated ResNet-20 and VGG-16 on the CIFAR-10/100 dataset , and ResNet-34, VGG-16 and RegNetX-4GF on ImageNet
with batch and channel-wise normalization enabled. Using a batch size of 128, the experiment was run five times with
different random seeds to ensure reliable and reproducible results.

Table 4. Comparison between our proposed methods and ANN-SNN conversion SNNC method on CIFAR-10. The average accuracy and
standard deviation of the TPP method are reported over 5 experiments.
Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64

ResNet-20
SNNC-AP (Li et al., 2021a) 96.95 51.20 66.07 83.60 92.79 95.62 96.58 96.85

Ours (Permute) 96.95 34.05 61.46 90.54 95.05 96.12 96.62 96.77
Ours (TPP) 96.95 10.05 (0.02) 17.30 (0.52) 79.19 (0.67) 93.72 (0.05) 95.87 (0.09) 96.67 (0.04) 96.80 (0.01)

VGG-16

SNNC-AP (Li et al., 2021a) 95.69 60.72 75.82 82.18 91.93 93.27 94.97 95.40
Ours (Permute) 95.69 38.01 64.40 84.65 92.24 92.80 93.33 94.10

Ours (TPP) 95.69 11.46 (0.35) 32.24 (1.40) 86.85 (0.42) 94.34 (0.12) 94.86 (0.06) 95.48 (0.03) 95.60 (0.04)

Table 5. Comparison between our proposed methods and ANN-SNN conversion SNNC method on CIFAR-100. The average accuracy
and standard deviation of the TPP method are reported over 5 experiments.
Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64

ResNet-20
SNNC-AP (Li et al., 2021a) 81.89 17.91 34.08 54.78 72.28 78.57 81.20 81.95

Ours (Permute) 81.89 5.64 19.54 52.46 75.21 79.76 81.12 81.52
Ours (TPP) 81.89 1.94 (0.11) 5.15 (0.44) 39.67 (0.99) 71.05 (0.68) 78.97 (0.24) 81.06 (0.05) 81.61 (0.08)

VGG-16

SNNC-AP (Li et al., 2021a) 77.87 28.64 34.87 50.95 64.30 71.93 75.39 77.05
Ours (Permute) 77.87 12.50 34.98 60.81 69.42 72.78 73.50 75.14

Ours (TPP) 77.87 2.05 (0.27) 15.90 (0.71) 59.23 (0.65) 73.16 (0.17) 76.05 (0.26) 77.16 (0.09) 77.56 (0.13)

Table 6. Comparison between our proposed methods and ANN-SNN conversion SNNC method on ImageNet. The average accuracy and
standard deviation of the TPP method are reported over 5 experiments.

Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

ResNet-34
SNNC-AP (Li et al., 2021a) 75.65 – – – 64.54 71.12 73.45

Ours (Permute) 75.65 10.51 57.57 70.94 74.00 75.06 75.47
Ours (TPP) 75.65 2.69 (0.03) 49.24 (0.23) 69.97 (0.10) 74.07 (0.06) 75.23 (0.03) 75.51 (0.05)

VGG-16

SNNC-AP (Li et al., 2021a) 75.37 – – – 63.64 70.69 73.32
Ours (Permute) 75.37 38.61 67.29 73.35 74.34 74.82 75.11

Ours (TPP) 75.37 54.14 (0.59) 69.75 (0.27) 73.44 (0.02) 74.72 (0.06) 75.14 (0.02) 75.25 (0.03)

RegNetX-4GF

SNNC-AP (Li et al., 2021a) 80.02 – – – 55.70 70.96 75.78
Ours (Permute) 78.45 – – 43.45 68.12 75.63 77.63

Ours (TPP) 78.45 – – 22.71 (2.98) 66.51 (0.44) 75.54 (0.07) 77.83 (0.04)

19

Temporal Misalignment and Probabilistic Neurons

E.2. RTS

Table 7. Comparison between our proposed methods and ANN-SNN conversion RTS method on CIFAR-10/100 and ImageNet. The
average accuracy and standard deviation of the TPP method are reported over 5 experiments.

Dataset Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

CIFAR-10

VGG-16
RTS*(Deng & Gu, 2021) 94.99 88.64 91.67 93.64 94.50 94.76 94.91

Ours (Permute) 94.99 91.22 93.70 94.50 94.86 94.88 94.97
Ours (TPP) 94.99 91.49 (0.21) 94.11 (0.09) 94.72 (0.08) 94.84 (0.06) 94.91 (0.02) 94.98 (0.02)

ResNet-20
RTS*(Deng & Gu, 2021) 91.07 27.08 40.88 65.13 84.75 90.12 90.76

Ours (Permute) 91.07 68.18 86.57 90.20 90.81 91.04 90.99
Ours (TPP) 91.07 72.87 (0.22) 88.27 (0.14) 90.44 (0.08) 90.86 (0.14) 90.94 (0.04) 91.01 (0.03)

CIFAR-100 VGG-16
RTS◦(Deng & Gu, 2021) 76.13 23.76 43.81 56.23 67.61 73.45 75.23

Ours (Permute) 76.13 35.31 62.84 71.20 74.34 75.53 75.92
Ours (TPP) + RTS 76.13 37.88 (0.35) 65.81 (0.27) 73.05 (0.12) 75.17 (0.17) 75.64 (0.12) 75.90 (0.08)

ImageNet VGG-16
RTS (Deng & Gu, 2021) 72.16 – – 55.80 67.73 70.97 71.89

Ours (Permute) 72.16 33.77 58.31 67.80 70.89 71.65 71.95
Ours (TPP) 72.16 30.50 (1.19) 56.69(0.67) 67.34 (0.25) 70.63 (0.11) 71.75 (0.05) 72.05 (0.03)

E.3. QCFS

Table 8. Comparison between our proposed methods and ANN-SNN conversion QCFS method on CIFAR-10/100 and ImageNet. The
average accuracy and standard deviation of the TPP method are reported over 5 experiments.

Dataset Architecture Method ANN T=4 T=8 T=16 T=32 T=64

CIFAR-10

VGG-16
QCFS*(Bu et al., 2022c) 95.76 94.33 95.21 95.65 95.87 95.99

Ours (Permute) 95.76 95.15 95.58 95.83 95.95 95.97
Ours (TPP) 95.76 95.28(0.09) 95.84(0.1) 95.95(0.05) 95.98(0.06) 95.97 (0.03)

ResNet-20
QCFS (Bu et al., 2022c) 92.43 79.45 88.56 91.94 92.79 92.82

Ours (Permute) 92.43 84.85 91.24 92.67 92.82 92.85
Ours (TPP) 92.43 86.24(0.18) 92.08(0.11) 92.70(0.1) 92.78(0.04 92.68(0.06)

CIFAR-100

VGG-16
QCFS◦(Bu et al., 2022c) 76.3 69.29 73.89 75.98 76.52 76.54

Ours (Permute) 76.3 74.28 75.97 76.54 76.60 76.64
Ours (TPP) 76.3 74.0(0.15) 76.06(0.08) 76.37(0.1) 76.55(0.09) 76.51(0.07)

ResNet-20
QCFS (Bu et al., 2022c) 67.0 27.44 49.35 63.12 66.84 67.77

Ours (Permute) 67.0 45.33 62.81 66.93 67.85 67.96
Ours (TPP) 67.0 47.0(0.2) 64.66(0.25) 67.28(0.12) 67.61(0.1) 67.77(0.06)

ImageNet VGG-16
QCFS (Bu et al., 2022c) 74.29 – – 50.97 68.47 72.85

Ours (Permute) 73.89 55.54 71.12 73.65 74.28 74.28
Ours (TPP) 74.22 68.39 (0.08) 72.99 (0.05) 73.98 (0.07) 74.23 (0.03) 74.29 (0.00)

20

Temporal Misalignment and Probabilistic Neurons

E.4. Spiking activity

The percentage difference between the baseline and our method in TPP mode is calculated as follows:
Percentage Difference = Ours−Baseline

Baseline × 100.

1 3 5 7 9 11 13 15
Layer

6
7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e) T=8
T=16
T=32

T=64
T=128

Baseline
TPP

(a) RTS

1 3 5 7 9 11 13 15
Layer

7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e)

(b) QCFS

1 3 5 7 9 11 13
Layer

7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e)

(c) SNNC

Figure 7. Spike counts of VGG-16 on CIFAR-100 after different timesteps (T). Note: The bar height from bottom indicates the spike
counts after each timestep T, and the color of longer Ts is overlaid by shorter Ts.

Table 9. Comparison of firing counts percentage difference between the baseline and our proposed TPP method for VGG-16 on CIFAR-100
using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128

1 1.073 0.528 0.261 0.136 0.065 0.033

2 2.629 1.022 0.438 0.206 0.102 0.050

3 0.049 0.230 0.185 0.109 0.056 0.028

4 -0.867 -0.664 -0.419 -0.228 -0.118 -0.060

5 0.073 0.515 0.350 0.182 0.090 0.044

6 0.701 0.010 -0.098 -0.074 -0.041 -0.021

7 -1.071 -0.865 -0.470 -0.246 -0.122 -0.063

8 1.009 1.193 0.731 0.385 0.196 0.096

9 0.504 0.417 0.205 0.108 0.051 0.024

10 -0.112 0.842 0.647 0.375 0.198 0.100

11 2.071 2.438 1.614 0.898 0.465 0.235

12 0.797 0.943 0.756 0.461 0.247 0.127

13 4.503 2.156 1.209 0.655 0.343 0.171

14 25.898 13.883 7.770 3.852 1.887 0.936

15 33.585 16.864 8.945 4.474 2.227 1.108

21

Temporal Misalignment and Probabilistic Neurons

Table 10. Comparison of firing counts percentage difference between the baseline and our proposed TPP method for ResNet-34 on
ImageNet using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128

1 0.587 0.306 0.149 0.079 0.036 0.018

2 -0.921 -0.435 -0.212 -0.108 -0.053 -0.025

3 0.353 0.189 0.082 0.036 0.019 0.010

4 -2.786 -1.583 -0.920 -0.506 -0.270 -0.141

5 0.469 0.277 -0.107 -0.020 -0.019 -0.011

6 -3.955 -1.865 -0.705 -0.344 -0.166 -0.086

7 -0.381 0.321 -0.090 -0.031 -0.020 -0.013

8 6.615 3.261 1.494 0.628 0.290 0.131

9 -5.116 -3.006 -1.555 -0.794 -0.391 -0.195

10 -2.938 3.431 3.096 1.794 0.975 0.498

11 1.184 0.466 0.359 0.102 0.053 0.022

12 -17.739 -7.302 -1.788 -0.609 -0.270 -0.132

13 0.105 -0.138 -0.287 -0.292 -0.166 -0.087

14 -8.597 -2.626 0.006 0.327 0.289 0.140

15 -0.522 -0.214 -0.273 -0.299 -0.173 -0.094

16 -11.196 -5.194 -1.990 -0.813 -0.405 -0.217

17 -3.828 -1.192 -0.320 -0.192 -0.105 -0.058

18 -6.869 -2.392 -0.644 0.007 -0.002 0.001

19 0.092 -0.299 -0.181 -0.138 -0.074 -0.035

20 -5.639 -0.308 0.923 0.796 0.448 0.234

21 0.399 -0.968 -0.796 -0.509 -0.275 -0.145

22 -4.474 3.712 4.440 3.033 1.700 0.880

23 0.456 -0.901 -0.703 -0.533 -0.281 -0.145

24 -5.863 4.241 5.617 3.797 2.090 1.074

25 1.433 -0.464 -0.774 -0.632 -0.347 -0.182

26 -5.034 4.908 6.328 4.362 2.459 1.271

27 0.661 -0.914 -1.156 -0.931 -0.530 -0.284

28 -15.667 4.763 9.616 6.975 4.062 2.096

29 -9.747 1.663 3.836 2.455 1.384 0.673

30 -0.151 16.639 15.387 9.638 5.334 2.769

31 -5.403 0.917 1.957 1.555 1.009 0.574

32 17.796 6.777 3.728 3.231 2.507 1.583

33 -4.935 -2.141 2.055 2.931 2.395 1.561

22

Temporal Misalignment and Probabilistic Neurons

Table 11. Comparison of firing counts percentage difference between the baseline and our proposed TPP method for VGG-16 on ImageNet
using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128

1 5.487 2.776 1.444 0.712 0.363 0.179

2 0.418 0.173 -0.005 0.007 0.007 0.006

3 -2.375 -0.883 -0.351 -0.128 -0.062 -0.031

4 6.170 2.181 0.627 0.121 0.024 -0.002

5 -3.338 -0.318 0.327 0.306 0.173 0.097

6 7.036 2.769 0.993 0.385 0.173 0.078

7 -5.722 -3.482 -1.661 -0.800 -0.400 -0.200

8 -6.155 0.310 1.411 0.955 0.507 0.269

9 -0.718 1.172 0.725 0.337 0.162 0.081

10 -12.833 -9.060 -4.882 -2.359 -1.145 -0.564

11 12.966 11.241 7.718 4.443 2.344 1.188

12 -11.194 -14.874 -12.032 -7.889 -4.437 -2.395

13 -37.388 -30.782 -20.701 -12.296 -6.527 -3.377

14 -23.619 -12.312 -3.929 -0.233 0.585 0.382

15 -10.988 -18.476 -13.953 -7.904 -4.091 -2.015

23

Temporal Misalignment and Probabilistic Neurons

E.5. Energy consumption estimation

We follow what most did such as (Rathi & Roy, 2023; Yao et al., 2023) We computed the energy cost for ANNs and
SNNs in 45nm CMOS technology. The energy cost for 32-bit ANN MAC operation (4.6pJ) is 5.1×more than SNN addition
operation (0.9pJ) (Horowitz, 2014).

Following prior work such as (Rathi & Roy, 2023; Yao et al., 2023), we computed the energy cost for both ANNs and SNNs
using 45nm CMOS technology. The energy consumption of a 32-bit MAC operation in ANNs (4.6 pJ) is approximately
5.1× higher than that of an addition operation in SNNs (0.9 pJ) (Horowitz, 2014).

In ANNs, the computational cost per layer, denoted as C(l)ANN, is defined as:

C(l)ANN =

{
wk · hk · cin · hout · wout · cout, Convolution layer
fin · fout, Fully-connected layer

(22)

where wk and hk denote the kernel width and height; cin and cout are the numbers of input and output channels; hout and
wout denote the height and width of the output feature map; and fin, fout represent the input and output feature dimensions
in fully-connected layers.

For an SNN, the number of operations per layer is given by:

C(l)SNN = ν(l) · C(l)ANN (23)

where the spike rate ν(l) for layer l is defined as the average spike rate per neuron over all inference timesteps:

ν(l) =
1

T

T∑
t=1

N
(l,t)
spikes

N
(l)
neurons

(24)

Here, T denotes the total number of inference timesteps, N (l,t)
spikes is the number of spikes at timestep t in layer l, and N

(l)
neurons

is the number of neurons in layer l.

24

Temporal Misalignment and Probabilistic Neurons

F. Membrane potential Distribution

Figure 8. The membrane potential distributions of the first channel (randomly selected) across three modes (baseline, shuffle, and
probabilistic) in VGG-16 on CIFAR-100. For comparison, the first two timesteps (t=1, t=2) from a total of eight timesteps (T=8) are
selected for each mode. The baseline mode (blue) achieves an accuracy of 24.22%, while the shuffle mode (light green) improves accuracy
to 70.54%, and the probabilistic mode (dark orange) further increases accuracy to 73.42%. The distributions are shown before firing, and
the red dashed line indicates the threshold voltage (Vth) for the layer.

25

Temporal Misalignment and Probabilistic Neurons

Figure 9. The membrane potential of the first channel (randomly selected) from layer 1 in SNNC baseline mode using VGG-16 on
CIFAR-100 achieves an accuracy of 24.22% before firing.

The first two timesteps exhibit an abnormal distribution compared to those at t=4 to t=8. This discrepancy arises from the
initially incorrect membrane potential before firing, which affects the firing rate and propagates errors layer by layer. A
detailed quantifiable error analysis is provided in Appendix B. Furthermore, as shown in Figure 10, shuffling the membrane
potential effectively alleviates this effect.

26

Temporal Misalignment and Probabilistic Neurons

Figure 10. Membrane potential of the first channel (randomly selected) before firing in SNNC shuffle mode using VGG-16 on CIFAR-100.
The achieved accuracy is 70.54%, indicating the impact of random spike rearrangement.

27

Temporal Misalignment and Probabilistic Neurons

Figure 11. Membrane potential of the first channel (randomly selected) before firing in SNNC probabilistic mode using VGG-16 on
CIFAR-100. The accuracy increases to 73.42%.

28

Temporal Misalignment and Probabilistic Neurons

G. Permutations and ANN-SNN conversion
Heuristics behind permutations We come back to the original motivation, and the mysterious effect of temporal misalign-
ment. To this end, we notice that permutations may act as a “uniformizer” of the inputs to the spiking neuron, which is
highly related to notions of phase lag or unevenness of the inputs (see (Li et al., 2022) and (Bu et al., 2022c), respectively).

Theorem 2. Suppose we have N spiking neurons that produced spike trains si[1], si[2], . . . , si[T], i = 1, . . . , N . Fur-
thermore, suppose that these spike trains are modulated with weights w1, . . . , wN , respectively. For a given permutation
π = (π1, . . . , πN), let πsi denote the permutation of the spike train si. Then, for every t1, t2 ∈ {1, 2, . . . , T},

Eπ[
∑

wiπsi[t1]] = Eπ[
∑

wiπsi[t2]].

Proof. It is enough to prove that for each i = 1, . . . , N ,

Eπ[πsi[t1]] = Eπ[πsi[t2]]. (25)

Let A(ti) be the cardinality of the set of all the permutations that end up with a spike in step ti, and note that the probability
of having a spike at ti is then A(ti)

T ! . But, for each permutation that ends up with a spike at ti, one can find a permutation
that ends up with a spike at t2 (by simply applying a cyclic permutation) and moreover this correspondence is bijective. In
particular A(ti) is independent of i. The equation (25) and the statement follow.

The previous result deals with the expected outputs with respect to the permutations. When it comes to the action of a single
permutation, we make the following observation. The effect of a single permutation is mostly visible on spike trains that
have a low number of spikes. This, in turn, is related to the situation where the input to the neuron is low throughout
time, and it takes longer for a neuron to accumulate enough potential in order to spike, hence the neuron spikes at a later
time during latency. In this case, a single permutation of the output spike(s) actually move the spikes forward in time (in
general) and as such contributes to the elimination of the unevenness error, which appears when the input to a neuron in the
beginning is higher than the average input through time (hence, the neuron produces superfluous spikes in the beginning,
which shouldn’t be the case).

Table 12. Recorded accuracy after t ≤ T time steps, when the baseline model is "permuted" in latency T . Setting is VGG-16, CIFAR-100.

Method ANN t=1 t=2 t=4 t=8 t=16 t=32

QCFS (Bu et al., 2022c) 49.09 63.22 69.29 73.89 75.98 76.52
Ours (Permute) T=4 68.11 71.91 74.2
Ours (Permute) T=8 71.76 74.11 75.53 75.86
Ours (Permute) T=16 72.75 74.27 75.63 76.0 76.39
Ours ((Permute) T=32 73.15 75.23 75.74 76.27 76.59 76.52

RTS (Deng & Gu, 2021) 1.0 1.03 23.76 43.81 56.23 67.61
Ours (Permute) T=4 22.9 30.78 34.54
Ours ((Permute) T=8 45.11 52.7 59.2 62.58
Ours ((Permute) T=16 54.58 64.37 68.6 70.8 71.79
Ours (Permute) T=32 62.76 69.12 71.76 73.31 74.09 74.6

Remarks:

1. In Table 12 we combine permutations with baseline models in fixed latency T . Afterwards, we record the accuracies
of such "permuted" model for lower latencies t. We can notice a sharp increase in the accuracies compared to the
baselines, and in particular, the variance in accuracies across t is reduced.

2. Baseline analysis:

(a) SNN models converted from a pretrained ANN aim to approximate the ANN activation values with firing rates. In
particular, in lower time steps, the approximation is too coarse as the firing rate has only few possibilities to use to
approximate the ANN (continuous) values. For example, in T = 1, the baselines are attempting to approximate
ANN activations with binary values 0 and θ.

29

Temporal Misalignment and Probabilistic Neurons

(b) Moreover, at each spiking layer, the spiking neurons at early time steps, use only the outputs of the previous
spiking layer from the same, early, time steps. As this information is already too coarse, the approximation error
accumulates throughout the network, finally yielding in models that are underperfoming in low latencies.

(c) With longer latencies, the model is using more spikes and is able to approximate the ANN values more accurately,
and to correct the results from the first time steps.

3. Effect of permutations:

(a) When performing permutations on spike trains after spiking layers in the baseline models, the input to the next
spiking layer in lower time steps, no longer depends only on the outputs of the previous layer in the same
lower time steps, but it depends on the outputs in all time steps T .

(b) In particular, when spiking layer is producing spikes at time step t = 1, it does so "taking into account" (via
permutation) outputs at all the time steps from the previous spiking layer.

(c) As a way of example, consider two spiking neurons N1 and N2, where N2 receives the weighted input from N1.
If a spiking neuron N1 in one layer has produced spike train s = [1, 0, 0, 0], in approximating ANN value of .25,
then a spiking neuron N2 at the first time step will use 1 as the approximation and will receive the input W · 1
from neuron N1. However, after a generic permutation of s, the probability of having zero at the first time step of
output of neuron N1 is 3

4 (as oppose to having 1 with probability 1
4), and at the first time step neuron N2 will

most likely receive the input W · 0 = 0 from neuron N1, which is a rather better approximation for W · .25 than
W itself.

(d) This property of receiving input at lower t but taking into account the previous layer spike outputs at all the time
steps is not only exclusive to lower t. Indeed, at every time step t ≤ T , the input at a spiking layer is formed by
taking into account spiking train outputs from the previous layer at all the time steps, but having already accounted
for for the observed input at the first t < 1 steps.

(e) In general, the permutations overall increase the performance of the baselines because the spike trains are
"uniformized" in accordance to their rate, and the accumulation error is reduced. If a layer l has produced spike
outputs that well approximate the l layer in ANN, then, after a generic permutation, at each time step starting with
the first, the next layer is receiving the most likely binary approximation of those rates.

(f) This is nothing but Theorem 2 in visible action.
(g) Besides Table 12, we provide further evidence on how permutation affect the baselines through the observed

membrane potential in the following sections.

30

Temporal Misalignment and Probabilistic Neurons

G.1. The effect of permutations on performance: Further experiments

(0,
 1)

(0,
 2)

(0,
 3)

(0,
 4)

(0,
 5)

(0,
 6)

(0,
 7)

(1,
 2)

(1,
 3)

(1,
 4)

(1,
 5)

(1,
 6)

(1,
 7)

(2,
 3)

(2,
 4)

(2,
 5)

(2,
 6)

(2,
 7)

(3,
 4)

(3,
 5)

(3,
 6)

(3,
 7)

(4,
 5)

(4,
 6)

(4,
 7)

(5,
 6)

(5,
 7)

(6,
 7)

Fixed positions

74.50

74.75

75.00

75.25

75.50

75.75

76.00

76.25

Ac
cu

ra
cy

Figure 12. Accuracy comparison for permutations over 8 time steps, fixing given pairs of time steps. Setting is VGG-16, CIFAR-100. The
baseline (QCFS) accuracy is 73.89%, ANN accuracy is 76.21%.

0 2 4 6 8 10 12 14
Layer position

68

69

70

71

72

Ac
cu

ra
cy

Figure 13. Accuracy of the model when a permutation is applied on a single layer using QCFS baseline. Setting is VGG-16, T = 4,
CIFAR-100. Baseline accuracy is 69.31%, ANN accuracy is 76.31%

31

Temporal Misalignment and Probabilistic Neurons

0 2 4 6 8 10 12
Layer position

20

30

40

50

60

Ac
cu

ra
cy

Figure 14. Accuracy of the model when a permutation is applied on a single layer using SNNC baseline. Setting is VGG-16, T = 8,
CIFAR-100. Baseline accuracy without calibration is 24.22%, ANN accuracy is 77.87%

32

