bioRxiv preprint doi: https://doi.org/10.1101/2025.01.08.632039; this version posted January 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Learning a CoNCISE language for small-molecule binding

Mert Erden'*  Kapil Devkota?*  Lia Varghese®
Lenore Cowen'T  Rohit Singh?t

L Tufts University, Medford, MA, USA
2 Duke University, Durham, NC, USA
3 University of Guelph, ON, CANADA
*These authors contributed equally
fCorresponding authors: cowen@cs.tufts.edu, rohit.singh@duke.edu

Abstract. Rapid advances in deep learning have improved in silico methods for drug-target interac-
tion (DTI) prediction. However, current methods do not scale to the massive catalogs that list millions
or billions of commercially-available small molecules. Here, we introduce CoNCISE, a method that
accelerates drug-target interaction (DTT) prediction by 2-3 orders of magnitude while maintaining high
accuracy. CoNCISE uses a novel vector-quantized codebook approach and a residual-learning based
training of hierarchical codes. Strikingly, we find that much of binding-specificity information in the
small molecule space can be compressed into just 15 bits of information per compound, character-
izing all small molecules into 32,768 hierarchically-organized binding categories. Our DTI architec-
ture, which combines these compact ligand representations with fixed-length protein embeddings in a
cross-attention framework, achieves state-of-the-art prediction accuracy at unprecedented speed. We
demonstrate CoNCISE’s practical utility by indexing 6.4 billion ligands in the Enamine dataset, en-
abling researchers to query vast chemical libraries against a protein target in seconds. A “CoNCISE
+ docking” pipeline screened Enamine to propose strong binders (predicted Kp ~ 10-20 uM) of three
difficult-to-drug targets, each within two hours. CONCISE’s advance could democratize access to large-
scale computational drug discovery, potentially enabling rapid identification of promising molecules for
therapeutic targets and cellular perturbations.
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1 Introduction

Small molecules are powerful therapeutic and basic-science reagents, offering shelf stability, oral bioavailabil-
ity, and precise temporal control in cell perturbation experiments. While a successful drug eventually needs
to satisfy diverse criteria for safety and efficacy [23], an essential first requirement for a small molecule drug
is binding: given a protein target, we need to find molecules that bind strongly to it. This is termed the
drug-target interaction prediction (DTT) problem. The space of possible small molecules is so vast, however,
that even for proteins that have strong-binding ligands somewhere in chemical space, finding them is a mas-
sive challenge. Some researchers take a generative approach to construct novel candidate binders [19], but
here we focus on the complementary discriminative approach of screening existing molecule libraries.

Unlike peptides, small molecule synthesis requires a customized protocol for each compound, making de
novo synthesis inaccessible to many researchers. The alternative is to screen libraries of existing or readily-
synthesizable molecules to identify candidates for experimental evaluation [I7/40]. Massive catalogs like
ZINC [18] and Enamine [I3] now list millions and billions, respectively, of commercially-available small
molecules. However, accurately and efficiently screening these massive libraries even for a single protein
target is an open problem.

Existing computational approaches to DTI prediction are too slow for screening massive molecular
databases. Traditional approaches rely on structural docking to estimate binding affinities and identify op-
timal conformations [4JI0], but this is computationally very expensive. Recent deep learning-based docking
techniques [5] leveraging predicted structures [2004221] are faster but still require about one minute per
DTI. An alternative, much faster approach has been enabled by the use of sequence-based representations,
namely, protein language models (PLMs) and molecular fingerprints. These represent targets and drugs in a
high-dimensional space where neural networks learn implicit biophysical patterns of interaction. PLMs like
Bepler-Berger [213], ESM [30122] and ProtBert [9] encode proteins in embeddings that implicitly capture
structural information. Our recent PLM-based method ConPLex [32], which encoded drugs using Morgan
fingerprints [29] of SMILES strings [28], accurately screens DTIs by mapping proteins and drugs into a shared
embedding space. While ConPLex is much faster than previous approaches (0.01-0.001 secs/DTI), screening
all of ZINC or Enamine would still take days or weeks for a single protein target.

Understanding the underlying structure of chemical space could dramatically accelerate drug screening.
For instance, ConPLex learned to co-embed proteins and drugs into a 1024-dimensional space, where cosine
distances predict binding affinity. However, this space is still vast and, with only ~ 36,000 DTIs used to
train ConPLex, sparsely occupied. We wondered if it might be possible to learn a much more compact
co-embedding that is as accurate and interpretable as ConPLex’s, but additionally provides an efficient,
informative way to organize the small molecule space.

We hypothesized that recent advances in interpretability of neural networks [36] could offer both unprece-
dented insights into small-molecule space and dramatic acceleration of DTI prediction. Our key conceptual
advance is to create a binding-informed hierarchical clustering of the entire small-molecule
space, by introducing the use of vector-quantized (VQ) “codebooks” for small molecule representation
(Figure -C). Quantization has proven powerful in domains ranging from language models to protein
structure analysis [3833], including tokenization in Foldseek [39] and the PLMs ESM-3 [16] and SaProt [35].

We introduce CoNCISE (Compact Novel Codebook Interaction Sequence Embeddings), which implements
this codebook approach through a novel residual-learning framework. CoNCISE quantizes the vast small
molecule space to 32,768 (=2'°) representations, expressed through a hierarchical 3-tier “ligand code”:
a.b.c, where a, b, and ¢ are limited to 32 (=2°) values each (Figure ) This allows us to represent
any ligand with 15 bits of information, offering many-fold speed and space advantage over the traditional
Morgan fingerprint’s 22948 representation space. In particular, with compressed representations we can store
SMILES strings of all of Enamine in 168GB, and we can index them by CoNCISE codes that require 16GB of
space (whereas indexing via Morgan fingerprints would need 361GB). Crucially, codes are optimized for DTI
predictability rather than being derived from unsupervised clustering of drug features, and can be computed
in constant time, as our neural network directly outputs the code given an input SMILES string.

An additional innovation in CoNCISE is integrating the ligand representation with Raygun, a recently-
described fixed-length protein embedding capturing overall protein structure [7]. Our DTT architecture uses
the protein’s sequence and the drug’s SMILES descriptor as input, converts them to the Raygun embedding
and Morgan fingerprints, respectively, then applies the codebook architecture on the drug, and finally relates
the drug code and Raygun representation in a cross-attention framework.
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Fig.1: Overview A) Conventional DTI search requires evaluating all possible protein-drug pairs. B) CoNCISE
instead compresses drug space into a finite codebook of 323 representations, enabling efficient binding prediction
through codes. C) Each target’s binding profile becomes a concise list of codes, enabling constant-time database
queries regardless of size. D) CoNCISE’s novel drug encoder takes binary fingerprints, down-projects them, and
extracts K many discrete points that represent the ligand. Discretization to the compressed codebook space happens
by snapping the low-dimensional representation onto grid lines. Each block produces a quantized representation, and
a residual that is propagated (K = 3 levels, grid length = 32). E) The complete CoNCISE architecture.

CoNCISE achieves state-of-the-art prediction accuracy in sequence-based DTI prediction at unprece-
dented speed. Notably, an understanding of the drug space and protein binding profiles emerges from the
model: i) Tanimoto similarity increases along the hierarchy, and ii) when evaluated on the human proteome,
a wide range of binding promiscuity is observed— the median protein binds 144 codes strongly, but a small
set of proteins has no strong binders while another small set has >1,000 binding codes. To demonstrate CoN-
CISE’s efficiency and utility, we indexed 6.4B ligands in Enamine. This opens the possibility for researchers to
rapidly query vast chemical libraries against protein targets, potentially democratizing access to large-scale
computational drug discovery. As a proof of concept, we demonstrate a CoNCISE —DiffDock—SwissDock
virtual screening pipeline that retrieves strong predicted binders of KRAS, CXCR4, and P53 from Enamine.

CoNCISE represents a significant advance in our ability to efficiently explore and understand chemical
space in the context of drug discovery. It could enable a world where a researcher with a mouse model of a
rare disease can query their protein target against massive compound libraries, identify promising molecules
within seconds, and order them for testing— a capability that has been infeasible until now.

2 Methods

CoNCISE predicts drug-target interactions using two inputs: a protein sequence S and a drug’s SMILES
representation L. While only the protein’s sequence is needed as input, we operate on its PLM-derived (here,
ESM-2 [22]) embedding that implicitly captures structural information. The key innovation of CoNCISE,
distinguishing it from previous approaches like ConPLex [32], Komet [14] or EnzPred [12], is its requirement
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that all interaction predictions use an intermediate discrete drug representation. This discretization is critical
to scalability: once a database has been pre-processed, querying any protein against it requires constant time.
It also is important for interpretability and generalizability, i.e., extending from ~ 500, 000 training examples
to billions of ligands. The key design considerations in the CoNCISE formulation then are the discretization
scheme, the choice of drug and protein representations, and the overall architecture computing the interaction
probability. We start by providing some general background on discretization techniques for neural networks
and then detail our specific approach.

Background on quantized representation learning Neural networks typically operate on continuous-
valued spaces, where features can take on arbitrary values in R™. While this allows flexibility, it poses
challenges for learning compact, interpretable representations. To address this, autoencoders and variational
autoencoders learn compact—albeit continuous—latent spaces, but these can still be difficult to index or
interpret efficiently. Vector quantization, implemented in architectures like VQ-VAE [3§], offers a solution
by constraining the latent space to a discrete set of possible values (“codes”). It maps continuous vectors to
a finite set of discrete codes through a nearest-neighbor lookup in a learned codebook. This enhances inter-
pretability and sparsity and has proven especially powerful in representing protein structure as a sequence,
as demonstrated in methods like Foldseek and SaProt [39135]. However, traditional VQ-VAEs can be difficult
to train and often suffer from “code collapse,” where significant parts of the codebook remain unused.

We instead follow Mentzer et al. [27], who recently proposed a conceptually simple alternative, Finite
Scalar Quantization (FSQ): each dimension of the latent space is mapped to a bounded range and then
uniformly segmented, leading to n-dimensional hypercube whose vertices are the discrete locations. Any
point in this space is mapped to its nearest quantization through rounding. While rounding produces no
gradient, straight-through estimation enables training. Formally, for each axis ¢, the interval [—1, 1] is divided
into C; uniform regions, yielding C = []""_, C; total discrete points (Appendix . Mentzer et al. document
how FSQs are easier to train and do not suffer from code collapse. However, the right codebook size and latent
dimensionality is problem-dependent and we next considered the most appropriate settings for CoNCISE.

Considerations of codebook size The design of our codebook involves balancing three key factors:
the number of distinct protein-drug binding mechanisms that potentially exist, the amount of available
training data, and the computational feasibility of model training. While traditional molecular fingerprints
like Morgan fingerprints [29] are also codes, their vast space (=2294® codes) is impractical for efficient lookup
or learning. To estimate an appropriate size, we performed Fermi calculations focused on the human proteome.
Swiss-Prot reports 20,428 human proteins (53,476 including isoforms). While a drug could potentially bind
a protein in myriad ways, many drugs likely share similar binding mechanisms against a particular protein,
as evidenced by the existence of active sites. Assuming 1-10 such mechanisms per protein, and noting that
some mechanisms might be similar across proteins, we estimate between 20,000 and 500,000 distinct binding
patterns. This suggests codebook sizes between 2'4 and 2'? would be appropriate. However, with our DTI
dataset containing only 111,210 distinct ligands, the sparsity of ligand coverage in the larger codebooks is
a concern. We therefore chose 215 (32,768) codes as the largest feasible size. Ablations show this choice
performed better than others (Table [3).

Hierarchical codes in CoNCISE We address the challenge of learning this large codebook through
an innovative hierarchical architecture. Inspired by principal component analysis, where each component
explains an orthogonal subspace of the data, we layer three FSQ blocks to learn successive one-dimensional
latent spaces. In each block, an in- and out-projection layer sandwich a parameter-free FSQ layer mapping to a
one-dimensional latent space (Appendix . Each block trains only on the residual error of previous blocks,
ensuring it captures complementary information. This residual learning approach naturally induces a tree
topology: the first layer makes one of 32 choices for coarse-grained categorization, with the two subsequent
layers providing increasingly fine-grained distinctions. Together, these specify a 3-level hierarchical code
representation for any ligand. To our knowledge, our innovation of organizing multiple FSQ blocks in a
residual, hierarchical format is a novel deep learning contribution that could be broadly useful in learning
informative, data-efficient codes. It not only enables efficient, generalizable indexing but also provides an
interpretable clustering of the chemical space. Empirical validation confirms this hierarchical organization:
molecules sharing partial codes demonstrate greater Tanimoto similarity [1] (Figure [2)).

Drug representation While SMILES strings are human readable, their variable length and linear na-
ture complicate learning tasks. The field instead typically uses fixed-length fingerprints, like Morgan finger-
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prints [31], which capture molecular substructures by hashing identical substructures to the same positions in
a binary vector. Morgan fingerprints require two parameters: radius (controlling global molecular similarity)
and vector length (limiting hash collisions). Following ConPLex [32], we set CoNCISE’s Morgan featurizer
to radius 2 and length 2048.

Protein representation Protein language models (PLMs), pre-trained on millions of sequences, have
emerged as powerful tools for capturing protein structure and function in learned representations [3I22].
Recent methods like ConPLex have shown that these representations can effectively predict drug-target
interactions when combined with molecular fingerprints [32]. However, most PLM-based approaches rely on
average pooling to obtain fixed-length embeddings, which has two key limitations. First, by aggregating across
entire protein, average pooling obscures locations where drug interactions might occur. Second, it attenuates
the signal from individual amino acid positions, making it difficult to perform in silico mutagenesis— a
mutation’s effect in a 1,000-residue protein might be lost in the averaged representation. To address these
limitations, CoNCISE uses Raygun embeddings [7], which encode any protein as 50 contiguous chunks
in R59%1280  This fixed-length representation preserves local structural information while enabling efficient
computation. Crucially, the representation remains sensitive to local changes while capturing global structure.

2.1 DTI prediction architecture

The overall CoNCISE architecture consists of a drug encoder module that quantizes the input drug finger-
prints into K discrete codebooks of size C' (K = 3,C = 32 in our final implementation), a protein encoder
module that further transforms the Raygun embeddings to enrich for DTI specific information, and the final
prediction block, that combines the obtained drug and protein representations to produce a final interaction
score. Each of these blocks are described below:

Drug Encoder (Figure ) The drug encoder performs quantization through K FSQ blocks. Each FSQ
block is composed of a parameter-free FSQ layer, which is placed in between two linear projection layers.
Let F, € R?948 be the drug fingerprint and Fy € R? be the its initial projection to a much smaller dimension
d << 2048. Additionally, let FSQ;,i € {1,..., K} be the K FSQ blocks. Then, the residuals F; and the
quantizations @); are computed as follows:

Qi = GELU(FSQi(F;-1)) (1)
Fi=F,_1—Q; (2)

where GELU is the non-linear activation employed. Finally, each block’s quantization is concatenated to
produce the output embeddings Q = [Q1, ... Qx]T € RExd,

In addition to the quantized embeddings, the parameter-free FSQ layers internally keep track of the
internal quantization state, stored as an integer value, during the forward pass. Together, these K integers
contain all the information needed to reconstruct the K x d embeddings (Appendix. Consequently, we
use the K codebook integer representation of a ligand interchangeably with the drug encoder outputs.
Notation: The model we selected for inference has 3 FSQ blocks, each with codebook quantizations of size 32;
(323 quantizations in total.) We use the term ”level” (L) to specify the granularity of codes, corresponding to
the level of hierarchy they belong in, e.g. for a ligand, a.b.c is its L3 representation, a.b is its L2 representation.
Quantized Ligand-Protein Attention We learn relationships between proteins and quantized ligands
via cross-attention. Coming out of the drug and Raygun encoders, ligands and proteins have a Q € R¥>4
and R € R%0x1280 representation respectively. We project both to a common space R? and apply both
multiheaded self attention and cross attention to these tensors. Our choice of implementation for these
attention modules (MHA) is from ESM-2, utilizing their rotary positional encodings (RoPE). Intuitively
this allows codes to be informed by their targets and vice versa. The output of this block are Ejjgqna €
RExP, E, otein € R5Y%P given by the following transformations:

Eligand = FFNl(Q); Eprotein = FFNP(R)

Ejigana = ESMTransformerLayer(Ey;gand; Eligand, Eligand) (Self-Attention)
E, otein = ESMTransformerLayer(Ey oteins Eproteins Eprotein) (Self-Attention) (3)
Ejigana = ESMTransformerLayer(Eprotein, Eiigand: Erigand) (Cross-Attention)
E, otein = ESMTransformerLayer(Ej;gand, Eprotein, Eprotein) (Cross-Attention)
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Quantized Ligand-Protein Vectorization After applying self- and cross-attention using ESM-2 Trans-
former layers, we vectorize the code and protein representations. Codes at this point are R *P, which we
flatten to get El’igand € REP. For proteins, across the fixed-length axis (length=>50), we compute a softmax-
weighted sum to inductively bias towards a (hypothetical) binding site. Finally we project each representation
to a shared RP space with ReLU activation, and compute the probability of interaction as their cosine simi-
larity (Figure [1E).

Datasets and Training The rapid progress in DTI research has produced multiple valuable datasets, but
with distinct data imbalances and coverage. These datasets also remain largely disconnected, complicat-
ing systematic evaluation of DTI methods. We addressed this by creating MooDengDB, a comprehensive
database (named after a pleasantly plump pygmy hippo) that combines and curates data from PLINDER [g],
BindingDB [24], BIOSNAP [26], Davis [6], and LCIdb [14]. We are releasing MooDengDB, its training, valida-
tion, and test splits, and also a second test set containing out-of-distribution ligands to facilitate reproducible
benchmarking across the field (Table [I).

Our curation prioritized three key objectives. First, to ensure rigorous evaluation of protein generaliz-
ability, we used MMSeqs2 [34] to create training, validation, and test splits (80:10:10) with less than 50%
sequence identity between proteins across splits. Second, we addressed the varying data imbalances across
datasets. For instance, PLINDER lacked negative examples while LCIdb has a very low protein-to-ligand
ratio (1:135). Third, we sought a stringent evaluation of the generalizability of our codebook approach.
A good codebook-based prediction should perform well on the challenging out-of-distribution (OOD) case
where not only is the test ligand unseen in the training data but it also belongs to a code that itself had no
training examples. However, creating an OOD test set presents a circularity: identifying which codes have no
training data is impossible until the model is trained and the codes are learned. To address this, we held out
a very large number (186,454) of ligands from LCIdb, more than are actually present in MooDengDB. This
offers two advantages: it addresses LCIdb’s relative protein-to-ligand imbalance against other datasets when
constructing MooDengDB, and makes it highly probable that at least some held-out ligands will be OOD,
enabling a robust evaluation of our approach. Finally, we augmented our negative examples with random
DTI pairs to obtain a 1:5 positive-to-negative ratio, in keeping with some of the previous work.

CoNCISE was trained using PyTorch’s AdamW optimizer, learning rate of 3 x 10~4, and batch size of 32.
CoNCISE was trained for 20 epochs across all datasets. We selected the epoch with the highest validation
AUPR, waiting at least 10 epochs to ensure broad code coverage.

3 Results

CoNCISE performs state-of-the-art DTI prediction We evaluated CoNCISE against ConPLex [32],
based on PLM-based contrastive learning, and Komet [14], which uses Kronecker factorization of paired
protein-ligand features. To our knowledge, these are currently the best-performing sequence-based ap-
proaches. In fact, Luo et al reported that ConPLex outperformed many structure-based methods on kinase-
drug interaction prediction [25].

Our principal evaluation is on our curated MooDengDB, which combines multiple datasets. To contextu-
alize our results against previous work which used smaller databases, we separately also trained and tested on
BioSNAP and BindingDB, using similar train-val-test splitting procedures as for MooDengDB. We did not

Table 1: Statistics of Drug-Target Interaction (DTI) datasets

Dataset # Unique # Unique Pos:Neg

Ligands Proteins Ratio
BindingDB 7,165 1,253 1:1
BIOSNAP 4,510 2,181 1:1
Davis 68 379 1:6
PLINDER 14,741 9,053 1:—
LCIdb (included in MooDengDB) 84,726 517 1:1
MooDengDB 111,210 12,549 1:5

LCIdb (out-of-distribution test set) 186,057 2,060 1:4
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Table 2: Summary of AUPR and AUROC across different methods and datasets

Method BindingDB BIOSNAP MooDengDB

AUPR AUROC AUPR AUROC AUPR AUROC
k-Means 0.515 £ 0.003 0.838 & 0.001  0.800 &+ 0.002 0.774 £ 0.002 0.435 £ 0.009 0.709 £ 0.002
Komet 0.658 + 0.001  0.906 &+ 0.007 0.939 £+ 0.003 0.914 £+ 0.001 0.591 &+ 0.001 0.761 £ 0.002
ConPLex 0.657 £ 0.008 0.904 £ 0.002 0.921 &£ 0.004 0.906 £ 0.002 0.601 £ 0.010 0.785 £ 0.009
ConPLex+Raygun 0.670 + 0.004 0.918 + 0.004 0.929 £ 0.004 0.920 £+ 0.003 0.654 + 0.002 0.808 £ 0.002
CoNCISE 0.617 &£ 0.003 0.909 £+ 0.003 0.917 &£ 0.005 0.908 £+ 0.005 0.691 £ 0.012 0.886 + 0.004

perform separate evaluations on Davis (too small), PLINDER (lacks negative examples in the original data),
and LCIdb (much of it held out for for out-of-distribution testing); all of these were part of MooDengDB.
Additionally, to test whether unsupervised clustering of ligands could match the binding-informed codebook,
we included a baseline that applies k-means (k=4096) clustering to Morgan fingerprints.

As shown in Table [2] the results reveal an interesting pattern. On the smaller datasets BioSNAP (32K
DTIs) and BindingDB (27K DTIs), CoNCISE performs comparably to existing methods, likely because
limited data constrains the learning of its attention-based cross-modal interactions. However, on the sub-
stantially larger MooDengDB (766K DTIs), CoNCISE achieves a significant improvement of approximately
15% (AUPR 0.691 vs 0.601 for ConPLex, the second-best method). The k-means baseline performed sub-
stantially worse (AUPR 0.435), confirming that binding-informed codebook learning is crucial.

To disentangle the contributions of our innovations, we created a “ConPLex-Raygun” variant by modi-
fying ConPLex to use Raygun’s fixed-length protein representations. While this improved upon vanilla Con-
PLex, it still significantly underperformed CoNCISE on MooDengDB, suggesting that both our hierarchical
ligand quantization and the Raygun integration contribute to ConCISE’s gains.

Ablations for CoNCISE Given our target space of 32,768 codes, a key architectural question is how to
distribute these codes across layers. Wide architectures (using fewer, wider layers) offer parameter efficiency
but sacrifice hierarchical organization, while deep architectures (many narrow layers) enable fine-grained
clustering but risk arbitrary subdivisions. We investigated this tradeoff on MooDengDB by comparing three
approaches (Table : a single-layer model producing all 2'® codes directly, a 15-layer binary tree model,
and CoNCISE’s balanced 3-tier approach. While the deep model (AUPR 0.675) outperformed the flat model
(AUPR 0.641), CoNCISE’s balanced architecture proved most effective. This aligns with Mentzer et al. [27]’s
observation that FSQ architectures degrade with increased codebook width. We further validated our archi-
tecture through a narrow model (1,000 codes) compared against k-means clustering. While not as performant
as the larger codebooks (AUPR 0.622), it still significantly outperformed k-means (AUPR 0.435 using 4,096
clusters; Table , demonstrating the crucial value of binding-informed clustering.

Table 3: Ablation study of various codebook sizes and topologies

Flat Hierarchical
Scheme Wide Narrow Deep CoNCISE
Topology [1 layer] [1 layer] [15-layer tree, fan-out=2]] [3-layer tree, fan-out=32]
Codebook size 32,768 1,000 32,768 32,768
AUPR 0.641 £ 0.018 0.622 £ 0.008 0.675 £ 0.008 0.691 £+ 0.012
AUROC 0.845 £+ 0.006 0.833 &+ 0.004 0.857 £ 0.003 0.886 + 0.004

Exploring the CoNCISE representation of small-molecule drug space CoNCISE organizes ligands
into a hierarchical tree structure, where each node represents a unique code combination. Child nodes (e.g.,
a.b.c) form proper subsets of their parent nodes (e.g., a.b) (Figure ) Our first validation confirms that
this representation avoids “code collapse”— each FSQ block fully utilizes its 32 segments (Figure )
Even though CoNCISE is supervised solely on drug-target binding, we expect it to implicitly capture
structural similarities between ligands. This relationship between binding and structural similarity motivated
our design— while structurally similar molecules often share binding properties, this correlation is imperfect.
Thus, while structural similarity should be an emergent property of the model, the underperformance of
k-means clustering in DTI prediction highlights that structural similarity alone is insufficient (Table . We
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A Different tiers of ligand representations B Example steroid derivatives across CONCISE
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13=18.12.25
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12=ab L3=18b.c
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Fig. 2: Hierarchical organization of chemical space in CoNCISE A) The three-tier FSQ hierarchy enables
increasingly fine-grained representations. B) Related steroid derivatives cluster together, sharing codes at top levels.
C) All FSQ layers show balanced code utilization, avoiding collapse. D) Tanimoto similarity increases between sibling
nodes at deeper levels, shown here using representative subtrees (18.*% for L2, 18.31.* for L3). Gray indicates insuf-
ficient data. E) Child nodes show consistent enrichment over parent nodes in structural similarity. F) Quantitative
demonstration of increasing Tanimoto scores along example paths in the hierarchy.

hypothesized that ligands sharing more specific codes (lower in the hierarchy) would show greater structural
similarity. We tested this systematically using two experiments. We used Tanimoto scores as our structural
similarity metric and restricted our analysis to MooDengDB ligands (Appendix E[) The first experiment
examined structural similarity between sibling nodes at each tier. We computed pairwise Tanimoto-based
similarity scores between siblings, generating 32 x 32 heatmaps at each level. For L1, siblings were the
32 top-level codes; for L2 and L3, we demonstrate on siblings under the “18.*.*” and “18.31.*” subtrees
respectively (Figure ) The average Tanimoto scores between siblings increased with depth, confirming
that our representations capture meaningful structural hierarchies.
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Fig.3: CoNCISE enables proteome-scale analysis of drug binding A) Most proteins bind multiple codes
strongly (median: 144), with some showing no strong binders while others bind >1,500 codes. B) The median code
binds 33 human proteins strongly, enabling estimation of potential off-target effects. C) CoNCISE maintains high
accuracy on out-of-distribution ligands, whether they map to observed codes (AUPR 0.74) or entirely new codes
(AUPR 0.67). D) CoNCISE embeddings provide better separation of key protein classes than ESM-2. E,F) Quan-
titative validation shows that CoNCISE’s protein representations better capture functional similarities, measured
through protein class clustering (E) and enzyme classification hierarchy (F). ARI (adjusted Rand index) and NMI
(normalized mutual information) measure clustering overlap with ground-truth class or EC labels.

The second experiment compared how much within-group structural similarity increased from parent to
child nodes. We quantified this using the log-ratio of within-group Tanimoto scores— positive values indicate
children have greater structural similarity than their parents. The resulting heatmaps showed significant
enrichment in lower tiers: 71% of L1-to-L2 comparisons and 63% of L2-to-L3 comparisons had positive
log-ratios. As an example, we demonstrate this increasing structural similarity through the “18.*.*” subtree.

CoNCISE unlocks proteome-scale DTI inference By compressing the vast ligand space into dis-
crete codes, CoNCISE enables comprehensive protein-ligand binding analysis at an unprecedented scale.
We demonstrate this by analyzing the entire human proteome (19,880 proteins from SwissProt after some
filtering), computing binding confidence scores for all protein-code combinations. To our knowledge, this is
the first comprehensive chemical space-scale analysis of the small-molecule binding preferences of human
proteins. This massive computation—approximately 650 million predictions—completed in just 5 hours.

Using a confidence threshold of > 0.95 for predicting binding, we found that most proteins can bind many
ligand codes: the 25th to 75th percentiles span 30 to 392 codes (median: 144) (Figure ) Intriguingly,
some proteins (1552) showed no strong binding affinity to any code. The list of these proteins, which may
correspond to “undruggable” proteins discussed in the field, is provided in Appendix [C} Notably, this num-
ber increases when considering only codes that contain some data in MooDengDB’s training set ( 111,150
ligands), suggesting that some proteins currently considered undruggable may have binding partners in un-
explored regions of chemical space. This lends support to our motivation that access to larger compound
databases could make it easier to identify drugs for hitherto difficult-to-drug targets.

At the other extreme, we identified 401 highly promiscuous proteins that bind more than 1,500 different
codes. Enrichment analysis of these proteins (Appendix Figure revealed significant overlap with
metabolic pathways and enzymatic activities. Notably, one enriched group was cytochrome p450, a family of
enzymes well-known for their promiscuous binding [I54T], further illustrating CoNCISE’s ability to capture
meaningful binding patterns.
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We also analyzed the distribution from the perspective of codes, finding that each code typically shows
high binding affinity (> 0.95 confidence) to approximately 33 human proteins (Figure [3B). This finding also
has direct implications for drug-discovery: the consideration of off-target effects of a drug should first focus
on other proteins that also bind tightly to its code. Conversely, the frequent occurrence of codes binding
multiple proteins suggests an intriguing application: developing multi-target therapeutics by identifying and
sampling ligands from codes with high predicted affinity to several desired targets simultaneously.

A Database sizes B % missing codes per C Storage Requirements for D Per protein scanning time
database databases against databases
1010 ” N Code DB
109 e 150{ WM Smiles DB
2 5 CONCISE | ConPLeX | SwissDock
108 3 g
%20 g 100 MooDengDB | 4.2 secs | 4 mins | 10.3yrs
107 @ °
c 8 2 ZINC | 7.4 secs | 2.8 days | 9e3yrs
g g g 4 secs | 2
S 6 010 g 50
#10 N &
Enamine | 13.8 secs| 72 days | 2e6yrs
10°
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F Docking difficult-to-drug proteins like CXCR4 and KRAS with CoNCISE predicted ligands using SwissDock

c=ccl(Nc(=0)c2=cc3=c(Nc=N3)c(Br)=C2)ccccCl

Nciccc2(ccr)cc(cNice3cecc(c3)ci)c2

Fig. 4: Scaling drug discovery to billion-compound libraries A-D) CoNCISE enables efficient processing of
massive databases: while Enamine contains 6.4B compounds and requires 150GB storage, screening it takes only 13.8
seconds per protein (versus 72 days for ConPLeX). E) Progressive filling of chemical space from MooDengDB to ZINC
to Enamine, shown through L2 code coverage. For each L2 code (a.b), the pixel indicates the fraction of non-empty
L3 (a.b.*) codes. F) Proof-of-concept screening of Enamine for difficult-to-drug targets: CoNCISE rapidly identified
strong predicted binders for KRAS and CXCR4, which were then filtered through DiffDock and SwissDock.
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The CoNCISE representation performs well on diverse, unseen drug categories The vast chemical
space of potential drugs suggests that current experiments sample only a subset of possible DTIs. Thus,
training CoNCISE on even a database of substantial size, like MooDengDB, will likely populate only a subset
of CoNCISE’s possible 2'® codes. This is by design— it allows the model to extend effectively to larger
databases like ZINC and Enamine, which likely contain some ligands with remarkably different chemical
and binding properties. To systematically evaluate if CoONCISE’s DTI prediction accuracy extends to these
unseen drug categories, we had created a challenging out-of-distribution (OOD) test set from LCIdb that
only contains ligands excluded from MooDengDB (Table . Here we analyze CoNCISE performance on
this OOD data by further dividing it into two categories: Code-Seen, containing new ligands that map to
codes observed during training, and Code-Unseen, containing ligands in previously unobserved codes.

The results, shown in Figure BIC, validate CoNCISE’s extensibility in both scenarios. First, the AUPR
for the Code-Seen dataset was 0.74, in fact higher than seen on the MooDengDB test set (AUPR 0.69, Table
2), and confirming that the observed codes can be reliably expanded to incorporate new ligands. Second,
even the performance on the Code-Unseen dataset (AUPR 0.67), while less strong, was still comparable to
the performance on the MooDengDB test set and far higher than random (AUPR 0.22). This robust out-of-
distribution performance suggests we successfully achieved our key design goal that CoNCISE’s hierarchical
representation should effectively scale to diverse new drug categories while maintaining high DTT accuracy.

CoNCISE learns functionally-informative protein representations CoNCISE learns a shared rep-
resentation space for both drugs and proteins, enabling its protein embeddings to capture binding-relevant
features. This motivation is compelling as Raygun, which forms the basis of CoNCISE’s protein representa-
tion module, was already shown to better capture protein function than ESM-2 [7]. We therefore investigated
whether CoNCISE’s training with drug information could enhance this capability further.

We evaluated this hypothesis through two complementary analyses. First, we examined four protein
classes of particular relevance to drug discovery—kinases, phosphatases, GPCRs, and proteases. Isomap [37]
visualizations (Figure 3]D) show that CONCISE embeddings provide clearer separation between these classes
than ESM-2. Quantitatively, we tested this by using each embedding, ESM-2, Raygun, and CoNCISE, to
cluster the proteins and assess the agreement of the clustering with ground-truth class labels. As measured
by normalized mutual information (NMI) and adjusted Rand index (ARI), CoNCISE demonstrated more
than twofold improvement over the other representations (Figure [BE).

For our second analysis, we leveraged the Enzyme Commission (EC) classification system, which organizes
enzymes in a four-level hierarchy. Since the EC classifications reflect protein binding patterns, they offer an
independent validation of CoNCISE’s ability to capture functionally-relevant protein features. Since the top
level contains just seven broad categories and the fourth level can be too fine-grained, with very few human
proteins per category, we focused on the intermediate levels (2 and 3) which provide useful granularity
of enzyme groupings. Again, CoNCISE embeddings showed substantially better clustering by EC number
at both levels 2 and 3 (Figure ) These results demonstrate that CoNCISE’s cross-attention and co-
embedding strategy enhances the functional information captured in its already-powerful Raygun protein
representations, a crucial capability for accurate DTI prediction.

CoNCISE enables efficient processing of billion-scale compound databases The true test of CoN-
CISE’s scalability lies in its ability to process massive chemical databases like ZINC (600M compounds) and
Enamine (6.8B compounds). Despite their size—orders of magnitude larger than MooDengDB—CoNCISE
efficiently processed these databases on a single A100 GPU, taking just 3 hours for ZINC and 16 hours
for Enamine. We could not compute codes for 5.9% of Enamine (i.e., 0.4B codes) because RDKit failed to
compute Morgan fingerprints for them. The resulting 15-bit hierarchical codes occupy less than 10% of the
storage space required for the original SMILES representations (Figure ) and are 0.7% the size of their
originating Morgan fingerprints, enabling rapid, memory-efficient virtual screening at unprecedented scale.

The coverage analysis reveals how these larger databases progressively fill CONCISE’s code space. When
considering the overall fraction of 32,768 L3 codes that contain at least one ligand, MooDengDB reaches
only 65.2% only a fraction of the possible codes, while ZINC is able to cover 86% and Enamine reaches 97%
of the total code space. To understand where this improved coverage occurs, we generated 32 x 32 heatmaps
showing the occupancy of L3 codes for each L2 representation (Figure ) These visualizations reveal
that MooDengDB’s coverage is sparsest at the boundaries of the chemical space, precisely where ZINC and
Enamine contribute many novel compounds.
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This comprehensive coverage of chemical space, combined with CoNCISE’s strong performance on out-of-
distribution compounds (as shown in the previous section), suggests that our approach can effectively scale
to virtual screening of billion-compound libraries while maintaining DTI prediction accuracy. The efficient
encoding means that, once processed, these massive databases can be searched in constant time regardless
of their size. In fact, the only reason Enamine takes slightly longer to query than MooDengDB is because
the size of the output, i.e. the number of ligands matched, is much larger in the former (Figure )

CoNCISE enables efficient virtual screening of billion-scale databases A key advantage of CoN-
CISE’s code-based representation is that DTT inference time is effectively decoupled from database size. Once
a database is indexed with codes, scanning for high-affinity binders requires only the code representations,
enabling near-constant-time virtual screening even across billions of compounds (Algorithm .

To demonstrate this capability, we conducted virtual screening for three proteins traditionally considered
difficult to drug: KRAS, CXCR4, and P53. For each protein, we first identified all codes predicted to bind with
high confidence (probability > 0.95), typically yielding around 300 codes per protein. We then randomly
selected one Enamine compound per code and screened these candidates using DiffDock [5], followed by
SwissDock [4] validation of the highest-scoring ligand and pose (Figure , . Notably, the entire
process for each protein took less than 2 hours, most of it spent on the multiple Diff Dock runs.

The results support CoNCISE’s ability to identify promising candidates efficiently. SwissDock predicted
strong binding energies (AG) for all three proteins (P53: -6.9 kcal/mol, KRAS: -7.2 kcal/mol, CXCR4: -7.2
kcal/mol), corresponding to Kp of approximately 20 uM or better. While these results are promising, we
do note some limitations: DiffDock does not account for protein conformational changes between bound
and unbound states, and our docking pipeline could be further optimized. However, this proof-of-concept
demonstrates CoNCISE’s potential—we examined just one compound per code, and better-directed sampling
within promising codes could yield even stronger candidates.

4 Discussion

CoNCISE demonstrates that most binding-relevant information in chemical space can be captured in just 15
bits when learned specifically for DTIs. This extreme compression— from the 22%4® space of Morgan finger-
prints to just 2'® codes—— not only massively speeds up inference but also reveals fundamental structure in
how small molecules bind with proteins. Our work suggests that while structural similarity between molecules
correlates with binding similarity, directly optimizing for structural patterns (e.g., k-means clustering) is less
effective than letting these patterns emerge through supervision on binding data.

Our technical innovation of the hierarchical FSQ architecture with residual learning between tiers, could
offer broader value beyond DTI prediction in domains where task-relevant hierarchical structure exists in
some latent space. Here, the compression enabled the first comprehensive analysis of potential small-molecule
binding partners across the human proteome, offering new perspectives on protein druggability. Our analysis
suggests that some proteins considered “undruggable” may simply have binding partners in unexplored
regions of chemical space, highlighting the value of efficient search through massive compound libraries.

CoNCISE’s compact and interpretable organization of the small-molecule space enables several practical
advances in drug discovery and cellular biology. Most directly, it democratizes access to large-scale virtual
screening—researchers can now query massive compound libraries like Enamine (6.4B molecules) in seconds
rather than weeks. Beyond that, our approach enables new experimental design strategies. For instance,
CoNCISE could enable the parsimonious design of drug panels: rather than testing compounds randomly,
one could systematically sample from different code groups to maximize coverage of binding patterns.

The power of our approach could be further enhanced in several directions. While we focused on sequence-
based prediction for its speed and applicability, incorporating additional structural and mechanistic infor-
mation could improve performance. Additionally, while we demonstrated utility in drug discovery, similar
approaches could guide the design of targeted perturbations for studying cellular processes. For example,
when seeking to perturb a pathway of interest but being unsure where perturbation would be most effective,
CoNCISE could help researchers identify a small set of compounds predicted to collectively modulate all
proteins in a pathway of interest. Moreover, CoONCISE’s codebook-based approach provides a framework for
incorporating functional considerations such as inhibition and pharmacokinetics— just as our codes learned
to capture binding patterns, they could be fine-tuned to reflect these additional pharmacological properties.
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Looking forward, CoNCISE opens exciting possibilities for systematic design of chemical tools in biol-
ogy, from multi-target therapeutics to pathway-specific perturbation panels. By making large-scale virtual
screening both accessible and accurate, it represents a significant step toward democratizing drug discovery.

Code and Data availability

The CoNCISE code and the MooDengDB is publicly available at
https://github.com/rohitsinghlab /ConCISEL.
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A Model Architecture

The CoNCISE architecture comprises two major components: a) the drug encoder composed of FSQ blocks,
and b) DTI layer, that uses the transformed drug and protein embeddings to predict binding affinities. We
describe these two layers in detail below:

A.1 Drug Encoder

Excluding parameter-free FSQ layers, the drug encoder module has two main hyper-parameters: the em-
bedding dimension d and the number of FSQ blocks K. As the first step in the forward process, the drug
encoder linearly projects the 2,048-dimensional fingerprint vector into a much smaller d—dimensional space.
The projected result then passes through the K FSQ blocks, which sandwiches a parameter-free FSQ layer
between linear down-sampling and up-sampling layers. The downsampling dimension is dependent on the
choice of the parameter-free FSQ layers’ hyper-parameters. The forward operations of an individual F'SQ
block is shown in Algorithm

Algorithm 1: Forward Pass of FSQBlock

Data: = € R%; d is the embedding dimension
Result: quantized, residual € R?

1 out < FSQ(Downsample(x))

/* Output transformation x/
2 out + Upsample(out)
3 out + LayerNorms(out)

/* Compute quantized output and residual x/
4 quantized <+ GELU(out)
5 residual < x — quantized

6 return quantized, residual

In our final design, we set K = 3 and d = 256. The forward operation of complete drug encoder module
comprising 3 FSQ blocks is shown in Algorithm

Algorithm 2: Forward Pass of Residual Quantization Model (Drug Encoder)

Data: £ € R?%®

Result: quantizations: quantized € R¥*?; K is the number of FSQ blocks
1 residual < GELU(FeedForward(£))
2 quantized + List() // Initialize tracking lists

/* Process remaining residual layers x/
3 foreach i =1 to K do
Qi, residual + FSQBlock;(residual)
L Append Q; to quantized

'S

6 return quantized

A.2 DTI module

A significant portion of the learnable parameters in the CoNCISE DTI module is concentrated in its self-
and cross-attention layers, which are designed to capture binding-specific relationships between protein and
drug embeddings. Initially, the DTI module passes the outputs of the drug and protein encoders through two
self-attention layers to capture intra-embedding associations within each type. Then, the two cross-attention
layers facilitate information exchange between the drug and protein embeddings. Finally, the cross-attention
outputs are condensed into a 1-dimensional representation, and their normalized inner product is returned
as the predicted affinity probability. The forward operation of the DTI module is described in Algorithm
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Algorithm 3: Forward Pass of Binding Prediction Model

Data: fingerprint: £ € R?°4® Raygun Embedding: R, Temperature: 7, embedding dimension: d
1 Q <+ DrugEncoder(£)

/* Project drug and protein embeddings to a common dimension */
2 Ejigand « Linear(Q, p)
Eprotein < Linear(R, p)

w

/* Perform self attention using ESM-2 Transformer for both drug and protein embeddings x/
Ezligand + ESMTransformerLayer(Ej;gand, Eligand; Eligand)
Eiigand < Eiigana + Eligana
;,mtem < ESMTransformerLayer(Eprotein, Eprotein, Eprotein)
Eprotein — Eprotein + E;/;rotcz‘n

/* Perform cross-attention between drug and proteins for information sharing */
Ejiyana < ESMTransformerLayer(Eiigand, Eprotein, Eprotein)
9 Eligand < Eligand + Eligana
10 E, icin + ESMTransformerLayer(Eprotein, Fiigand; Eligand)
11 Eprotein — Ep'r'otein + Egl)rotein
/* Condense the proteins embeddings through softmax-weighted averaging */
12 W « Softmax(7 * Eprotein, dim = 1)
13 Eprotein < Sum(Eprotein ¥ W, dim = 1)

N o ooa

o0

/* Stack the K FSQ quantizations into a single vector */
14 Ejigana <+ Rearrange(Eigand, “Kd — (Kd)”)
/* Apply appropriate projections to bring the ligand and protein embeddings to the same
dimension, and return cosine similarity as output */
15 Ejigana <+ ReLU(Linear(Ejigand))
16 Eprotein < ReLU(Linear(Eprotein))

Eligand Eprotein
IEtigand | Eprotein |

17 return



https://doi.org/10.1101/2025.01.08.632039
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.01.08.632039; this version posted January 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

16 M. Erden et al.

A.3 Converting L3 code representations back to the quantized code embeddings

The original implementation of the parameter-free FSQ layer gave users the functionality to input integer
codes representing possible quantizations and obtain the resulting quantized embeddings as output. This
feature is a simple mapping that goes between an integer index and a point on the grid line. We used this
feature to obtain the code embeddings.

Given a L3 code representation “aj.as.az”, we used the code a; to obtain the FSQ;’s quantized em-
beddings, passing it through the upsampling projectors immediately after the FSQ layers. These individual
embeddings were then concatenated to obtain the corresponding drug projector embedding in a completely
loss-less manner.

B Measuring structural homology between ligand representations

We used Tanimoto score to compute chemical similarities between small molecules. Given extended connec-
tivity morgan fingerprint (ECFP4) representations for two smiles: Fy, F» € {0,1}2%48 the Tanimoto score is
simply the Jaccard similarity computed between binary vectors. In other words,

> (Fiy A Fa)

Tanimoto(Fq,Fo) = m
j 2J »J

(B.1)

Tanimoto score, however, is only limited to finding similarities between small molecules. We extended
this metric further to obtain a statistical measure of similarities between two ligand groups. Let L; and Lo
be the set of ligands represented by groups associated with our discretized code representations. Then, the
algorithm for computing the group similarity is described below:

Algorithm 4: Algorithm to measure code similarities

Data: Ligand sets: L1, L2, Number of samples: K
LﬁK’ <+ Sample(L,,K) // Sample K ligands
L<2K> <+ Sample(Lz, K)
Scores < List()
foreach i =1 to K do
foreach j =1 to K do
L L Append Tanimoto(L{" (i), LY (j)) to Scores

o A W N -

~

return mean(Scores)

B.1 Log-ratio of Tanimoto similarities

We compared the structural enrichment between the parent and child nodes by computing their Tanimoto
similarities, using the process described in Algorithm [4] and computing the log ratio:

(B.2)

Tanimoto(Child
LogRatio(Child, Parent) = log < animoto(Child) >

Tanimoto(Parent)

A value greater than 0 implies that the ligands in the child nodes are more structurally enriched than their
parents.

C Undruggable and Promiscuous proteins

We provide the link to the 1552 SwissProt human proteins that CoNCISE found to lack high affinity binding
codes (when threshold is set to 0.95) in our github url: https://github.com/rohitsinghlab/CoNCISE/
blob/main/data/predicted-undruggables.txt

The 401 promiscuous codes are also provided in the github url: https://github.com/rohitsinghlab/
CoNCISE/blob/main/data/predicted-promiscuous.tsv. We additionally performed enrichment analysis
on these 401 proteins, the results of which are shown in Figure As expected, these protein candidates
showed enrichment for enzymatic and drug activities which are known contain proteins with high promiscuity.
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Fig. C.1: Enrichment results for the 401 promiscuous proteins identified by CoNCISE. Figure obtained from
ShinyGO 0.80 [T1]

D Database-wide ligand screening to find high affinity binding
targets

After the construction of ligand-code database for Enamine, the process of finding binding candidates can
be decoupled into two separate steps: a) finding codes that have a high binding affinity to the protein, and
b) searching through the ligand-code database to find ligands mapped to the high affinity codes. The overall
process is described in Algorithm [5| Since the process of finding high affinity codes, given a protein, can
essentially be done in a constant time, and the database-lookup step is roughly constant-time, the overall
screening process for a protein can be done very fast.

Algorithm 5: Algorithm to scan for high-affinity binders from a ligand database

Data: Code-indexed database Dy, Protein sequence p, Number of samples NV
1 Perform ConCISE DTI inference between p and 322 level 3 codes
2 C < level 3 codes that have binding affinity > 0.95
3 Initialize L < List()
foreach c in C do
5 L Query for ligands with code ¢ in Dy; take upto N codes and add to L

'

6 return N ligands randomly sampled from L
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Fig. D.2: Docking monomeric P53 with a CoNCISE-predicted ligand binder using SwissDock
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