

000 HIGH PROBABILITY BOUNDS FOR NON-CONVEX 001 002 STOCHASTIC OPTIMIZATION WITH MOMENTUM 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Stochastic gradient descent with momentum (SGDM) is widely used in machine
012 learning, yet high-probability learning bounds for SGDM in non-convex settings
013 remain scarce. In this paper, we provide high-probability convergence bounds and
014 generalization bounds for SGDM. First, we establish such bounds for the gradient
015 norm in the general non-convex case. The resulting convergence bounds are
016 tighter than existing theoretical results, and to the best of our knowledge, the ob-
017 tained generalization bounds are the first ones for SGDM. Next, under the Polyak-
018 Łojasiewicz condition, we derive bounds for the function-value error instead of the
019 gradient norm, and the corresponding learning rates are faster than in the general
020 non-convex case. Finally, by additionally assuming a mild Bernstein condition on
021 the gradient, we obtain even sharper generalization bounds whose learning rates
022 can reach $\tilde{\mathcal{O}}(1/n^2)$ in the low-noise regime, where n is the sample size. Overall,
023 we provide a systematic study of high-probability learning bounds for non-convex
024 SGDM.

025 1 INTRODUCTION

026 Stochastic optimization plays an essential role in modern statistics and machine learning, as many
027 learning problems can be cast as stochastic optimization tasks. Over the past decades, there has
028 been substantial progress in the development of stochastic optimization algorithms, among which
029 stochastic gradient descent with momentum (SGDM) has attracted particular attention due to its
030 simplicity and low per-iteration computational cost (Goodfellow et al., 2016; Li & Orabona, 2020).
031 As a fundamental algorithm for stochastic optimization, SGDM has been remarkably successful in
032 natural language understanding, computer vision, and speech recognition (Krizhevsky et al., 2012;
033 Hinton et al., 2012; Sutskever et al., 2013).

034 Typically, SGDM augments stochastic gradient descent (SGD) with a momentum term in the update
035 rule, i.e., it uses the difference between the current and previous iterates. The intuition is that, if
036 the direction from the previous iterate to the current iterate is “correct”, then SGDM should exploit
037 this inertial direction—weighted by the momentum parameter—rather than relying solely on the
038 instantaneous gradient at the current iterate, as in plain SGD. Much of the state-of-the-art empirical
039 performance in deep learning has been achieved using SGDM (Huang et al., 2017; Howard et al.,
040 2017; He et al., 2016; Kim et al., 2021a). Yet, from a theoretical standpoint, the analysis of learning
041 bounds for SGDM remains relatively underdeveloped (Li et al., 2022; Li & Orabona, 2020).

042 The learning performance of SGDM can be studied from two complementary perspectives: *conver-
043 gence bounds* and *generalization bounds*. Convergence bounds focus on how well the algorithm op-
044 timizes the empirical risk, whereas generalization bounds quantify how the learned model performs
045 on unseen test data. From the convergence perspective, existing analyses of SGDM or deter-
046 ministic gradient descent with momentum (DGDM) in non-convex settings are mostly in *expectation*
047 (Ochs et al., 2014; 2015; Ghadimi et al., 2015; Lessard et al., 2016; Yang et al., 2016; Wilson et al.,
048 2021; Gadat et al., 2018; Orvieto et al., 2020; Can et al., 2019; Li et al., 2022; Yan et al., 2018; Liu
049 et al., 2020), to mention only a few. However, expected bounds do not rule out the possibility of
050 extremely bad outcomes (Li & Orabona, 2020; Liu et al., 2023). Moreover, in practical large-scale
051 applications, the training procedure is typically run only once, since it can be very time-consuming.
052 For such single-run performance, high-probability bounds are more informative than expectation
053 bounds (Harvey et al., 2019). To the best of our knowledge, there are only two works that provide

high-probability convergence bounds for SGDM (Li & Orabona, 2020; Cutkosky & Mehta, 2021). Specifically, Cutkosky & Mehta (2021) assume that the gradient noise satisfies a θ -order moment condition with $\theta \in (1, 2]$ and obtain a convergence rate of order $\tilde{\mathcal{O}}(T^{-\frac{\theta-1}{3\theta-2}})$ for the gradient norm, where T denotes the number of iterations. Li & Orabona (2020) establish a convergence bound of order $\tilde{\mathcal{O}}(1/\sqrt{T})$ for the squared gradient norm under sub-Gaussian gradient noise. As discussed in Li et al. (2022), it is unclear whether this rate can be improved or extended to more general noise models beyond the sub-Gaussian case. Overall, the convergence rates in Li & Orabona (2020); Cutkosky & Mehta (2021) are relatively slow, and, importantly, *no* generalization bounds are provided in either work.

From the generalization perspective, existing results for SGDM and DGDM are even scarcer. Ong (2017); Chen et al. (2018) derive expected generalization error bounds for DGDM with a specific quadratic loss by using algorithmic stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016). Their analysis, however, does not extend easily to general loss functions. It is conjectured in Chen et al. (2018) that their uniform stability bound might also hold for general convex losses. Motivated by this conjecture, Ramezani-Kebrya et al. (2024) study generalization error bounds for SGDM with general loss functions. Somewhat surprisingly, they construct a counterexample showing that, even for convex loss functions, the uniform stability gap (in expectation, over the internal randomness of the algorithm) of SGDM run for multiple epochs can diverge. In a related direction, Attia & Koren (2021) show that, in the general convex case, the uniform stability gap of deterministic Nesterov’s accelerated gradient (NAG) can decay exponentially fast with the number of iterations. We emphasize that uniform stability is only a *sufficient* condition for generalization; it remains unclear how weaker stability notions (such as on-average stability (Shalev-Shwartz et al., 2010)) behave for SGDM. Overall, there are significant obstacles to establishing general generalization guarantees for SGDM, especially for broad classes of loss functions. Furthermore, as in the convergence analysis of SGDM, high-probability generalization bounds are substantially more challenging to derive than expectation-based bounds (Bousquet et al., 2020; Bassily et al., 2020; Feldman & Vondrak, 2019).

Therefore, both high-probability convergence bounds and high-probability generalization bounds for SGDM remain far from fully understood. Motivated by the above limitations, this paper aims to establish such bounds for SGDM, with a particular focus on non-convex settings. For brevity, we will refer to all bounds on the performance of the learned model on test data (including generalization error bounds and excess-risk bounds) simply as *generalization bounds*. Our main contributions can be summarized as follows.

- At a high level, we study the case where the stochastic gradient noise follows a sub-Weibull distribution (Vladimirova et al., 2019; 2020; Kuchibhotla & Chakraborty, 2018), which generalizes the sub-Gaussian noise considered in Li & Orabona (2020) to potentially heavier-tailed distributions. Our learning bounds under this assumption reveal how the rates of convergence and generalization change as one moves from sub-Gaussian / sub-exponential (light-tailed) noise to heavy-tailed noise with exponential-type tails.
- We first provide a high-probability analysis of SGDM in the general non-convex case. In this setting, we derive convergence bounds of order $\tilde{\mathcal{O}}(1/T^{1/2})$ and generalization bounds of order $\tilde{\mathcal{O}}(d^{1/2}/n^{1/2})$ for the squared gradient norm, where d is the dimension and n is the sample size. The convergence bounds are tighter than those in related work. Moreover, to the best of our knowledge, our high-probability generalization bounds are the *first* such results for SGDM.
- We next analyze SGDM under the Polyak–Łojasiewicz condition for non-convex objectives. In this case, we obtain sharper convergence bounds of order $\tilde{\mathcal{O}}(1/T)$. Furthermore, these bounds are established for the *last iterate* of SGDM and for the *function-value error*, rather than for the average iterate and gradient norm considered in the general non-convex case. In addition, we derive generalization bounds of faster order $\tilde{\mathcal{O}}(\frac{d+\log(1/\delta)}{n})$ for SGDM, which, to our knowledge, have not been previously available.
- Finally, we impose a mild Bernstein condition on the gradient. Under this additional assumption, we improve the generalization bound of order $\tilde{\mathcal{O}}(\frac{d+\log(1/\delta)}{n})$ to a bound of order $\tilde{\mathcal{O}}(1/n^2 + F^*/n)$, where F^* denotes the optimal population risk. In the low-noise regime where F^* is small, this bound yields a faster learning rate of order $\tilde{\mathcal{O}}(1/n^2)$, showing a

108 tighter dependence on the sample size n . Another attractive feature of this bound is that the
 109 dimension d no longer appears, allowing it to easily incorporate massive neural networks
 110 that are often high-dimensional.
 111

112 In summary, by considering increasingly strong structural conditions on the objective function (from
 113 general non-convexity, to PL, to PL plus a Bernstein condition), we establish a hierarchy of improved
 114 learning bounds with different rates. This provides a systematic picture of the high-probability
 115 learning guarantees for SGDM from both convergence and generalization perspectives.

116 The rest of the paper is organized as follows. Preliminaries are presented in Section 2. Our main
 117 results are stated in Section 3. We conclude in Section 4. Numerical experiments are reported in
 118 Section A. Appendix B, together with Table 1, summarizes our main results and the most relevant
 119 related bounds of SGDM. All proofs are deferred to the Appendix.
 120

121 2 PRELIMINARIES

123 2.1 NOTATIONS

125 Let $\mathcal{X} \subseteq \mathbb{R}^d$ be the parameter space and let \mathbb{P} be a probability measure on a sample space \mathcal{Z} . Let
 126 $f : \mathcal{X} \times \mathcal{Z} \rightarrow \mathbb{R}_+$ be a (possibly non-convex) loss function. We consider the stochastic optimization
 127 problem

$$128 \min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x}) := \mathbb{E}_{z \sim \mathbb{P}}[f(\mathbf{x}; z)],$$

130 where F is referred to as the *population risk* and $\mathbb{E}_{z \sim \mathbb{P}}$ denotes expectation with respect to (w.r.t.)
 131 the random variable z drawn from \mathbb{P} .

132 In practice, the distribution \mathbb{P} is unknown and we only observe a dataset $S = \{z_1, \dots, z_n\}$ drawn
 133 independently and identically (i.i.d.) from \mathbb{P} . One typically optimizes the *empirical risk*
 134

$$135 \min_{\mathbf{x} \in \mathcal{X}} F_S(\mathbf{x}) := \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}; z_i).$$

138 To optimize F_S , SGDM has been widely adopted (Polyak, 1964; Qian, 1999; Sutskever et al., 2013;
 139 Li & Orabona, 2020). In this work we focus on Polyak’s momentum, also known as the heavy-ball
 140 algorithm or *classical* momentum, which is arguably the most popular form of momentum in current
 141 machine learning practice (Liu et al., 2020). The pseudocode of SGDM (Polyak’s momentum) is
 142 given in Algorithm 1. The vanilla SGD update is

$$143 \mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t; z_{j_t}).$$

145 In Step 3 of Algorithm 1, SGDM introduces a momentum vector \mathbf{m}_{t-1} and forms a momentum term
 146 weighted by a parameter γ to adjust the gradient estimate $\nabla f(\mathbf{x}_t; z_{j_t})$ of SGD. In Step 4, SGDM
 147 then updates the iterate via

$$148 \mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t.$$

149 Equivalently, the SGDM update can be written as

$$151 \mathbf{x}_{t+1} = \mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t; z_{j_t}) + \gamma(\mathbf{x}_t - \mathbf{x}_{t-1}).$$

153 We now introduce some notation. Let $B = \sup_{z \in \mathcal{Z}} \|\nabla f(\mathbf{0}; z)\|$, where $\nabla f(\cdot; z)$ denotes the gradient
 154 of f w.r.t. the first argument and $\|\cdot\|$ denotes the Euclidean norm. For any $R > 0$, we define
 155 $B(\mathbf{x}_0, R) := \{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{x}_0\| \leq R\}$ which denotes a ball with center $\mathbf{x}_0 \in \mathbb{R}^d$ and radius R .
 156 Let $\mathbf{x}(S) \in \arg \min_{\mathbf{x} \in \mathcal{X}} F_S(\mathbf{x})$ and $\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathcal{X}} F(\mathbf{x})$. We write $a \asymp b$ if there exist universal
 157 constants $c, c' > 0$ such that $ca \leq b \leq c'a$. Throughout the paper we use standard order-notation
 158 such as $\mathcal{O}(\cdot)$ and $\tilde{\mathcal{O}}(\cdot)$.
 159

160 2.2 ASSUMPTIONS

161 In this subsection we collect the assumptions that will be invoked in our main theorems.

162 **Assumption 2.1.** The differentiable function f is (possibly) non-convex and, for any $z \in \mathcal{Z}$, the
 163 mapping $\mathbf{x} \mapsto f(\mathbf{x}; z)$ is L -smooth, i.e., for every $\mathbf{x}_1, \mathbf{x}_2$:

$$165 \quad \|\nabla f(\mathbf{x}_1; z) - \nabla f(\mathbf{x}_2; z)\| \leq L\|\mathbf{x}_1 - \mathbf{x}_2\|,$$

166 where ∇ is the gradient operator and $\|\cdot\|$ is the Euclidean norm.

167 **Remark 2.2.** Further properties of smooth functions are collected in Lemma C.7.

169 **Assumption 2.3.** The gradient at \mathbf{x}^* satisfies a Bernstein-type moment condition: there exists $B_* >$
 170 0 such that for all integers k with $2 \leq k \leq n$,

$$171 \quad \mathbb{E}_z [\|\nabla f(\mathbf{x}^*; z)\|^k] \leq \frac{1}{2} k! \mathbb{E}_z [\|\nabla f(\mathbf{x}^*; z)\|^2] B_*^{k-2}.$$

174 **Remark 2.4.** The Bernstein condition is standard in learning theory. As shown in Wainwright (2019),
 175 for a random variable X with mean $\mu = \mathbb{E}[X]$ and variance $\sigma^2 = \mathbb{E}[X^2] - \mu^2$, we say that X satisfies
 176 the Bernstein condition with parameter b if for all integers $k \geq 2$,

$$177 \quad \mathbb{E}[(X - \mu)^k] \leq \frac{1}{2} k! \sigma^2 b^{k-2}.$$

179 The Bernstein condition is essentially equivalent to X being sub-exponential; see the discussion in
 180 Remark 4 of Lei (2020). Classical sub-Gaussian and sub-exponential distributions satisfy this con-
 181 dition, since their k -th moments are controlled by the second moment. In this sense, the Bernstein
 182 condition is quite mild and, for instance, weaker than assuming that X is almost surely bounded.
 183 Assumption 2.3 simply applies this Bernstein condition to the random variable $\|\nabla f(\mathbf{x}^*; z)\|$: it is
 184 weaker than assuming that $\|\nabla f(\mathbf{x}; z)\|, \forall \mathbf{x} \in \mathcal{X}$, is uniformly bounded, while the latter bounded-
 185 gradient assumption is widely used in stochastic optimization (Zhang et al., 2017).

186 **Assumption 2.5.** For all $S \in \mathcal{Z}^n$, and for some positive $G > 0$, the empirical risk satisfies

$$187 \quad \eta_t \|\nabla F_S(\mathbf{x}_t)\| \leq G, \quad \forall t \in \mathbb{N}.$$

189 **Remark 2.6.** In the theoretical analysis of stochastic optimization, it is common to assume a uni-
 190 formly bounded stochastic gradient,

$$191 \quad \|\nabla f(\mathbf{x}; z)\| \leq G, \quad \forall \mathbf{x} \in \mathcal{X}, \forall z \in \mathcal{Z},$$

193 which is sometimes referred to as the Lipschitz continuity of f (Li et al., 2022; Li & Orabona, 2020).
 194 Assumption 2.5 is a relaxation of this bounded-gradient assumption: it multiplies the gradient norm
 195 of F_S by the stepsize η_t instead of bounding each stochastic gradient $\nabla f(\mathbf{x}_t; z)$. Since the stepsizes
 196 η_t decrease to zero, the gradients of F_S are allowed to grow. For typical decay rates $\eta_t = \mathcal{O}(t^{-1/2})$
 197 or $\eta_t = \mathcal{O}(t^{-1})$ (Lei & Tang, 2021), Assumption 2.5 permits $\|\nabla F_S(\mathbf{x}_t)\|$ to grow at rates $\mathcal{O}(t^{1/2})$
 198 and $\mathcal{O}(t)$, respectively, without violating the condition.

199 In the next, we introduce the Polyak-Łojasiewicz (PL) condition.

200 **Assumption 2.7.** Fix a set \mathcal{X} and let $f^* := \min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$. We say that a differentiable function
 201 $f : \mathcal{X} \rightarrow \mathbb{R}$ satisfies the Polyak-Łojasiewicz condition with parameter $\mu > 0$ on \mathcal{X} if for all $\mathbf{x} \in \mathcal{X}$,

$$203 \quad 204 \quad f(\mathbf{x}) - f^* \leq \frac{1}{2\mu} \|\nabla f(\mathbf{x})\|^2.$$

206 **Remark 2.8.** Fast rates cannot be achieved for free. The Polyak-Łojasiewicz condition is widely
 207 used in the optimization community to obtain fast convergence rates (Necoara et al., 2019; Karimi
 208 et al., 2016) and is one of the weakest curvature conditions to replace the strong convexity (Karimi
 209 et al., 2016). Many important models are known to satisfy a PL inequality, at least locally. Notable
 210 examples satisfying the PL condition include two-layer neural networks (Li & Yuan, 2017), matrix
 211 completion (Sun & Luo, 2016), dictionary learning (Arora et al., 2015), and phase retrieval (Chen
 212 & Candes, 2015). Kleinberg et al. (2018) provide empirical evidence that the (smoothed) loss of
 213 practical deep networks locally exhibits a one-point convexity property of PL type. More rigorously,
 214 Soltanolkotabi et al. (2018) analyze over-parameterized shallow networks with quadratic activations
 215 and prove that, in the interpolation regime where the training loss is zero, the empirical risk satisfies
 a PL inequality. These examples motivate our focus on studying SGDM under the PL curvature
 assumption.

216 Algorithm 1 SGD with Momentum (SGDM)

217 Require: stepsizes $\{\eta_t\}_t$, dataset $S = \{z_1, \dots, z_n\}$, and momentum parameter $0 < \gamma < 1$.

218 Initializtiz: $\mathbf{x}_1 = \mathbf{0}$, $\mathbf{m}_0 = \mathbf{0}$,

219 1: **for** $t = 1, \dots, T$ **do**
220 2: sample j_t from the uniform distribution over the set $\{j : j \in [n]\}$,
221 3: update $\mathbf{m}_t = \gamma \mathbf{m}_{t-1} + \eta_t \nabla f(\mathbf{x}_t; z_{j_t})$,
222 4: update $\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t$.
223 5: **end for**

225
226 In our analysis we will apply Assumption 2.7 both to the empirical risk F_S and to the population risk
227 F . When studying optimization (training) performance, we assume that F_S satisfies a PL inequality
228 with parameter $\mu(S)$; when studying generalization and excess risk, we assume that F satisfies a
229 (possibly different) PL inequality with parameter μ . We keep the notation $\mu(S)$ and μ separate to
230 emphasize that the curvature at the sample level need not coincide exactly with that of the underlying
231 population.

232 Finally, we specify an assumption on the noise of the stochastic gradient.

233 **Assumption 2.9.** The gradient noise $\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)$ satisfies

$$234 \quad \mathbb{E}_{j_t} \left[\exp(\|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|/K)^{\frac{1}{\theta}} \right] \leq 2, \quad (1)$$

235 for some positive K and $\theta \geq 1/2$.

236 *Remark 2.10.* Li & Orabona (2020) assume the sub-Gaussian-type condition

$$237 \quad \mathbb{E}_{j_t} \left[\exp(\|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2/K^2) \right] \leq 2,$$

238 which ensures that the noise tails are dominated by those of a Gaussian distribution. In contrast,
239 Assumption 2.9 generalizes this to a richer class of distributions, including sub-exponential noise
240 (corresponding to $\theta = 1$) and even heavier-tailed noise ($\theta > 1$). Condition (1) is precisely the
241 defining property of a *sub-Weibull* random variable (Vladimirova et al., 2020): a random variable
242 X satisfying $\mathbb{E}[\exp((|X|/K)^{1/\theta})] \leq 2$ for some $K > 0$ and $\theta \geq 1/2$ is called sub-Weibull with
243 tail parameter θ , and larger θ means heavier tails (Kuchibhotla & Chakrabortty, 2018). Hence, the
244 learning bounds in this paper apply to a broad class of heavy-tailed gradient noise distributions. Our
245 motivation for studying sub-Weibull gradient noise is twofold. First, it allows us to explicitly quanti-
246 fy how the convergence and generalization rates degrade when moving from sub-Gaussian/sub-
247 exponential (light-tailed) noise to heavy-tailed noise with exponential-type tails. Second, a growing
248 body of work provides empirical and theoretical evidence that the noise in stochastic optimization
249 algorithms is often heavier-tailed than sub-Gaussian (Panigrahi et al., 2019; Madden et al., 2024;
250 Gurbuzbalaban et al., 2021; Simsekli et al., 2019; Şimşekli et al., 2019; Zhang et al., 2020; 2019;
251 Wang et al., 2021; Gurbuzbalaban & Hu, 2021).

254 3 MAIN RESULTS

255 This section presents our main theoretical results.

256 3.1 LEARNING BOUNDS IN THE GENERAL NON-CONVEX CASE

257 In the general non-convex case, we cannot guarantee that the algorithm finds a global mini-
258 mizer, so we focus on approximate first-order stationary points. For the convergence analysis,
259 we are interested in iterates \mathbf{x}_t satisfying $\|\nabla F_S(\mathbf{x}_t)\|^2 \leq \epsilon$, while for generalization we con-
260 sider $\|\nabla F(\mathbf{x}_t)\|^2 \leq \epsilon$. As is standard in the non-convex literature, we measure optimization
261 and generalization performance via the average squared gradient norms $\frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2$ and
262 $\frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2$, respectively.

263 3.1.1 CONVERGENCE BOUNDS

264 We first provide high-probability convergence bounds for SGDM. These bounds characterize how
265 the algorithm minimizes the empirical risk F_S .

270 **Theorem 3.1.** Let \mathbf{x}_t be the sequence of iterates generated by Algorithm 1. Set the stepsize as
 271 $\eta_t = ct^{-\frac{1}{2}}$, where $c \leq \frac{1}{4} \frac{(1-\gamma)^3}{3L-L\gamma}$.
 272

273 (1). If $\theta = \frac{1}{2}$, suppose Assumptions 2.1 and 2.9 hold. Then for any $\delta \in (0, 1)$, with probability $1 - \delta$,
 274

$$275 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2 = \mathcal{O}\left(\frac{\log(1/\delta) \log T}{\sqrt{T}}\right).$$

278 (2). If $\frac{1}{2} < \theta \leq 1$, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any $\delta \in (0, 1)$, with
 279 probability $1 - \delta$,

$$280 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2 = \mathcal{O}\left(\frac{\log^{2\theta}(1/\delta) \log T}{\sqrt{T}}\right).$$

283 (3). If $\theta > 1$, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any $\delta \in (0, 1)$, with probability
 284 $1 - \delta$,

$$285 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2 = \mathcal{O}\left(\frac{\log^{\theta-1}(T/\delta) \log(1/\delta) + \log^{2\theta}(1/\delta) \log T}{\sqrt{T}}\right).$$

288 *Remark 3.2.* The bounds in Theorem 3.1 are all of order $\tilde{\mathcal{O}}(1/\sqrt{T})$. The dependence on the tail
 289 parameter θ shows that larger θ leads to worse (slower) convergence, which matches the intuition
 290 that heavier-tailed gradient noise degrades optimization performance. We now compare these results
 291 with related work (Li & Orabona, 2020; Cutkosky & Mehta, 2021). Cutkosky & Mehta (2021)
 292 analyze a different algorithmic setting that combines gradient clipping, a variant of momentum
 293 (distinct from Polyak's momentum), and normalized gradient descent. Their Theorem 2 establishes
 a convergence bound of order

$$294 \quad \mathcal{O}\left(\frac{\log(T/\delta)}{T^{\frac{\theta-1}{3\theta-2}}}\right)$$

297 for $\frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2$ under smoothness and a θ -moment condition on the gradient, where $\theta \in$
 298 $(1, 2]$. In the case $\theta = 2$, this rate becomes $\tilde{\mathcal{O}}(T^{-1/4})$. By Jensen's inequality,

$$300 \quad \left(\frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|\right)^2 \leq \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2,$$

303 so Theorem 3.1 implies the same $\tilde{\mathcal{O}}(T^{-1/4})$ rate for $\frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|$. Li & Orabona (2020)
 304 study Polyak's momentum and, in their Theorem 1, obtain a convergence bound of order

$$306 \quad \mathcal{O}\left(\frac{\log(T/\delta) \log T}{\sqrt{T}}\right)$$

308 for $\frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2$ under smoothness and sub-Gaussian gradient noise (i.e., $\theta = 1/2$). Since
 309 we also analyze Polyak's momentum, the comparison with Li & Orabona (2020) is more natural.
 310 Under the same assumptions, part (1) of Theorem 3.1 refines this to

$$312 \quad \mathcal{O}\left(\frac{\log(1/\delta) \log T}{\sqrt{T}}\right).$$

314 Although this improvement is only logarithmic, it may be the strongest possible refinement in the
 315 general nonconvex setting we consider. For smooth nonconvex stochastic optimization with a first-
 316 order oracle and controlled noise, the rate $\mathcal{O}(1/\sqrt{T})$ in terms of the expected squared gradient norm
 317 is known to be optimal (up to logarithmic factors) (Arjevani et al., 2019). Consequently, under the
 318 same structural assumptions, any further progress can only affect constants and logarithms but not
 319 the leading $1/\sqrt{T}$ scaling. Theorem 2 in Li & Orabona (2020) further analyzes a variant of AdaGrad
 320 with Polyak's momentum, called delayed AdaGrad, whose stepsize does not depend on the current
 321 gradient (Li & Orabona, 2019). The corresponding convergence bound is of order

$$322 \quad \max \left\{ \mathcal{O}\left(\frac{d \log^{3/2}(T/\delta)}{\sqrt{T}}\right), \mathcal{O}\left(\frac{d^2 \log^2(T/\delta)}{T}\right) \right\}.$$

324 When the dimension d is small, this gives a rate of order $\mathcal{O}(d \log^{3/2}(T/\delta)/\sqrt{T})$, which is clearly
 325 weaker than the dimension-free bounds in Theorem 3.1.

326 In the non-convex, stochastic setting, a clear separation between SGD and SGDM remains elusive
 327 (Li & Orabona, 2020; Zou et al., 2018), even at the empirical level. For example, Kidambi et al.
 328 (2018) provide theoretical and empirical evidence that standard momentum schemes—Polyak’s
 329 momentum and Nesterov Accelerated Gradient—do not enjoy a universal acceleration guarantee in the
 330 stochastic regime. Even with optimally tuned hyperparameters, there exist instances where Polyak’s
 331 momentum and Nesterov’s method do not outperform vanilla SGD. In particular, when the batch
 332 size is small (e.g., 1), their performance is often nearly indistinguishable from, or even worse than,
 333 that of SGD. This batch-size-one regime is exactly the setting we study here, and our theory is con-
 334 sistent with these observations. A work (Li & Liu, 2022) derives high-probability convergence and
 335 generalization results for SGD *without momentum* under the same assumptions, yielding rates of
 336 the same order as those obtained here (up to constants and mild logarithmic factors). This paper
 337 *closes the theoretical gap for SGDM*: we show that the widely used momentum method, under the
 338 general nonconvex / PL / Bernstein assumptions, also enjoys high-probability convergence and gen-
 339 eralization guarantees of comparable order to those known for SGD, so that SGDM has essentially
 340 the same theoretical performance as SGD under these conditions. A promising direction for future
 341 work is to extend our analysis to the large-batch regime and to investigate how the potential benefits
 342 of momentum depend on batch-induced noise reduction.

343 3.1.2 GENERALIZATION BOUNDS

344 We now present high-probability generalization bounds for SGDM, which quantify how well the
 345 learned models perform on the underlying data distribution.

346 **Theorem 3.3.** *Let \mathbf{x}_t be the sequence of iterates generated by Algorithm 1. Set the stepsize as
 347 $\eta_t = ct^{-\frac{1}{2}}$, where $c \leq \frac{1}{4} \frac{(1-\gamma)^3}{3L-L\gamma}$, and choose the number of iterations as $T \asymp n/d$.*

348 (1). If $\theta = \frac{1}{2}$, suppose Assumptions 2.1 and 2.9 hold. Then for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$349 \frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2 = \mathcal{O}\left(\left(\frac{d}{n}\right)^{1/2} \log\left(\frac{n}{d}\right) \log^3\left(\frac{1}{\delta}\right)\right).$$

350 (2). If $\frac{1}{2} < \theta \leq 1$, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any $\delta \in (0, 1)$, with
 351 probability $1 - \delta$,

$$352 \frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2 = \mathcal{O}\left(\left(\frac{d}{n}\right)^{1/2} \log\left(\frac{n}{d}\right) \log^{2\theta+2}\left(\frac{1}{\delta}\right)\right).$$

353 (3). If $\theta > 1$, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any $\delta \in (0, 1)$, with probability
 354 $1 - \delta$,

$$355 \frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2 = \mathcal{O}\left(\left(\frac{d}{n}\right)^{1/2} \left(\log\left(\frac{n}{d}\right) \log^{2\theta+2}\left(\frac{1}{\delta}\right) + \log^{\theta-1}\left(\frac{n}{d\delta}\right) \log^2\left(\frac{1}{\delta}\right)\right)\right).$$

356 **Remark 3.4.** The bounds in Theorem 3.3 are of order $\tilde{\mathcal{O}}((d/n)^{1/2})$, and again heavier tails (larger
 357 θ) lead to slower rates. As in Theorem 3.1, when $\theta = 1/2$ Assumption 2.5 is no longer needed.
 358 To the best of our knowledge, these are the first generalization bounds for SGDM. As discussed
 359 in the introduction, algorithmic stability—in particular uniform stability—seems to fail for SGDM
 360 with general loss functions, since the uniform stability gap may diverge even in convex settings
 361 (Ramezani-Kebrya et al., 2024). This is consistent with the general principle that there is a trade-off
 362 between convergence speed and stability: faster-converging algorithms tend to be less stable, and
 363 vice versa (Chen et al., 2018). Our proof technique instead belongs to the *uniform convergence* ap-
 364 proach (Bartlett & Mendelson, 2002; Bartlett et al., 2005; Xu & Zeevi, 2020; Mei et al., 2018; Foster
 365 et al., 2018; Davis & Drusvyatskiy, 2021), which shows that the empirical risks of all hypotheses
 366 in a class converge uniformly to their population risks (Shalev-Shwartz et al., 2010). In the general
 367 non-convex case, a dependence on the ambient dimension d is typically unavoidable for such uni-
 368 form convergence bounds (Feldman, 2016), which is reflected in the d -dependence in Theorem 3.3.
 369 We emphasize, however, that in Section 3.3 we will obtain dimension-free generalization bounds by
 370 imposing additional structure (a Bernstein condition) and working in the PL regime.

3.2 LEARNING BOUNDS WITH POLYAK-ŁOJASIEWICZ CONDITION

In non-convex optimization under the Polyak-Łojasiewicz (PL) condition, we are interested in upper bounds on the function-value error. Accordingly, we measure optimization performance and generalization performance via $F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))$ and $F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$, respectively.

3.2.1 CONVERGENCE BOUNDS

We first present high-probability convergence bounds for SGDM under the PL condition.

Theorem 3.5. Let \mathbf{x}_t be the sequence of iterates generated by Algorithm 1. Set the stepsize as $\eta_t = \frac{1}{\mu(S)(t+t_0)}$ such that $t_0 \geq \max\{\frac{12L-4L\gamma}{\mu(S)(1-\gamma)^3}, \frac{(8C_\gamma)L}{(1-\gamma)^2\mu(S)} + 1, \frac{8C_\gamma(L\gamma+L\gamma(C_\gamma))}{(1-\gamma)\mu(S)} - 1, 1\}$, where $C_\gamma = 1 + \frac{2}{\ln^2 \gamma} - \frac{3}{\ln \gamma}$ is a constant that depends only on γ .

(1). If $\theta = \frac{1}{2}$, suppose Assumptions 2.1 and 2.9 hold, and assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$. Then, for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \mathcal{O}\left(\frac{\log(1/\delta)}{T}\right).$$

(2). If $\frac{1}{2} < \theta \leq 1$, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$. Then, for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \mathcal{O}\left(\frac{\log^{\theta+\frac{3}{2}}(1/\delta) \log^{1/2} T}{T}\right).$$

(3). If $\theta > 1$, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$. Then, for any $\delta \in (0, 1)$, with probability $1 - \delta$, we have the following inequality

$$F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \mathcal{O}\left(\frac{\log^{\theta+\frac{3}{2}}(1/\delta) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{1/2} T}{T}\right).$$

Remark 3.6. Theorem 3.5 shows that, under the PL condition, SGDM enjoys fast convergence rates: the $\tilde{\mathcal{O}}(1/\sqrt{T})$ rate in Theorem 3.1 is improved to a faster $\tilde{\mathcal{O}}(1/T)$ rate. By the smoothness property in Lemma C.7,

$$\|\nabla F_S(\mathbf{x}_{T+1})\|^2 \leq 2L(F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))).$$

so the bounds in Theorem 3.5 also apply (up to constants) to the squared gradient norm $\|\nabla F_S(\mathbf{x}_{T+1})\|^2$. Moreover, when $\theta = 1/2$, Assumption 2.5 is not needed. As in the non-PL case, larger θ (heavier tails) deteriorates the convergence rate. One can also verify that these PL-based convergence bounds are strictly sharper than the corresponding results in Li & Orabona (2020); Cutkosky & Mehta (2021). To the best of our knowledge, fast $\tilde{\mathcal{O}}(1/T)$ high-probability rates for SGDM in non-convex settings under PL-type assumptions have not previously been established in the literature.

3.2.2 GENERALIZATION BOUNDS

We next present high probability generalization bounds for SGDM under the PI condition.

Theorem 3.7. Let \mathbf{x}_t be the sequence of iterates generated by Algorithm 1. Set the stepsize as $\eta_t = \frac{1}{\mu(S)(t+t_0)}$ such that $t_0 \geq \max\{\frac{12L-4L\gamma}{\mu(S)(1-\gamma)^3}, \frac{(8C_\gamma)L}{(1-\gamma)^2\mu(S)} + 1, \frac{8C_\gamma(L\gamma+L\gamma(C_\gamma))}{(1-\gamma)\mu(S)} - 1, 1\}$, where $C_\gamma = 1 + \frac{2}{1-\gamma} - \frac{3}{1-\gamma^2}$ is a constant that depends only on γ , and choose $T \asymp n$.

(1). If $\theta = \frac{1}{2}$, suppose Assumptions 2.1 and 2.9 hold, assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$, and that F satisfies Assumption 2.7 with parameter 2μ . Then, for any $\delta \in (0, 1)$, with probability $1 - \delta$

$$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{d + \log(1/\delta)}{n} \log^2\left(\frac{1}{\delta}\right) \log n\right).$$

(2). If $\frac{1}{2} < \theta \leq 1$, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$, and that F satisfies Assumption 2.7 with parameter 2μ . Then, for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{d + \log(1/\delta)}{n} \log^{2\theta+1}\left(\frac{1}{\delta}\right) \log n\right).$$

(3). If $\theta > 1$, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$, and that F satisfies Assumption 2.7 with parameter 2μ . Then, for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{d + \log(1/\delta)}{n} \log^{2\theta+1}\left(\frac{1}{\delta}\right) \log^{\frac{3(\theta-1)}{2}}\left(\frac{n}{\delta}\right) \log n\right).$$

Remark 3.8. The quantity $F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$ measures the gap between the population risk of the last iterate and the optimal population risk, and is often referred to as the *excess risk* in learning theory (London, 2017; Feldman & Vondrak, 2019; Bassily et al., 2020). Theorem 3.7 shows that, when both the empirical risk F_S and population risk F satisfy the PL condition, SGDM enjoys generalization bounds of order $\tilde{\mathcal{O}}((d + \log(1/\delta))/n)$, improving the dependence on n compared to the general non-convex case in Theorem 3.3. By the smoothness property in Lemma C.7, $\|\nabla F(\mathbf{x}_{T+1})\|^2 \leq 2L(F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*))$, so the bounds in Theorem 3.7 also directly control $\|\nabla F(\mathbf{x}_{T+1})\|^2$. We also emphasize that, in contrast with Section 3.1, the bounds in Section 3.2 are stated for the *last iterate* of SGDM rather than the time-averaged iterate. Overall, the pair of results Theorems 3.5 and 3.7 illustrates the qualitative picture that in the general non-convex regime one can expect $\tilde{\mathcal{O}}(1/\sqrt{T})$ and $\tilde{\mathcal{O}}(1/\sqrt{n})$ rates, while under PL-type curvature the rates improve to $\tilde{\mathcal{O}}(1/T)$ and $\tilde{\mathcal{O}}(1/n)$, respectively.

3.3 LEARNING BOUNDS WITH BERNSTEIN CONDITION

In this section, we derive sharper generalization bounds by imposing the Bernstein condition. We assume that the set \mathcal{X} satisfies $\mathcal{X} \subseteq B(\mathbf{x}^*, R)$.

Theorem 3.9. Let \mathbf{x}_t be the sequence of iterates generated by Algorithm 1. Set the stepsize as $\eta_t = \frac{1}{\mu(S)(t+t_0)}$ such that $t_0 \geq \max\{\frac{12L-4L\gamma}{\mu(S)(1-\gamma)^3}, \frac{(8C_\gamma)L}{(1-\gamma)^2\mu(S)} + 1, \frac{8C_\gamma(L\gamma+L\gamma(C_\gamma))}{(1-\gamma)\mu(S)} - 1, 1\}$, where $C_\gamma = 1 + \frac{2}{\ln^2\gamma} - \frac{3}{\ln\gamma}$ is a constant that depends only on γ , and choose $T \asymp n^2$.

(1). If $\theta = \frac{1}{2}$, suppose Assumptions 2.1, 2.3 and 2.9 hold, assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$, and that F satisfies Assumption 2.7 with parameter 2μ . If $n \geq \frac{cL^2(d+\log(\frac{8\log(2nR+2)}{\delta}))}{\mu^2}$, where c is an absolute constant, then for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right).$$

(2). If $\frac{1}{2} < \theta \leq 1$, suppose Assumptions 2.1, 2.3, 2.5 and 2.9 hold, assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$, and that F satisfies Assumption 2.7 with parameter 2μ . If $n \geq \frac{cL^2(d+\log(\frac{8\log(2nR+2)}{\delta}))}{\mu^2}$, where c is an absolute constant, then for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log^{\theta+\frac{3}{2}}(1/\delta) \log^{1/2} n}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right).$$

(3). If $\theta > 1$, suppose Assumptions 2.1, 2.3, 2.5 and 2.9 hold, assume that F_S satisfies Assumption 2.7 with parameter $2\mu(S)$, and that F satisfies Assumption 2.7 with parameter 2μ . If $n \geq \frac{cL^2(d+\log(\frac{8\log(2nR+2)}{\delta}))}{\mu^2}$, where c is an absolute constant, then for any $\delta \in (0, 1)$, with probability $1 - \delta$,

$$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log^{\frac{3(\theta-1)}{2}}(n/\delta) \log^{\theta+\frac{3}{2}}(1/\delta) \log^{1/2} n}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right).$$

486 (4). Furthermore, if we additionally assume $F(\mathbf{x}^*) = \mathcal{O}(1/n)$, then the bounds in (1)–(3) simplify,
 487 respectively, to
 488

$$489 \mathcal{O}\left(\frac{\log^2(1/\delta)}{n^2}\right), \quad \mathcal{O}\left(\frac{\log^{\theta+\frac{3}{2}}(1/\delta) \log^{1/2} n}{n^2}\right), \quad \mathcal{O}\left(\frac{\log^{\frac{3(\theta-1)}{2}}(n/\delta) \log^{\theta+\frac{3}{2}}(1/\delta) \log^{1/2} n}{n^2}\right).$$

492 Remark 3.10. Theorem 3.9 shows that, under the assumptions of Theorem 3.7 together with the
 493 Bernstein condition, the excess risk can be improved to

$$494 \tilde{\mathcal{O}}\left(\frac{F(\mathbf{x}^*)}{n} + \frac{1}{n^2}\right).$$

497 Here $F(\mathbf{x}^*)$ is the minimal population risk and is typically very small. Compared with Theorems 3.3
 498 and 3.7, Theorem 3.9 therefore yields strictly sharper bounds. A well-known drawback of the
 499 uniform-convergence approach is that, for general non-convex problems, it usually leads to learning
 500 bounds with a square-root dependence on the dimension d (Feldman, 2016), as seen in Theorem 3.3.
 501 A distinctive advantage of Theorem 3.9 is that, by exploiting Assumption 2.3, we remove the de-
 502 pendence on d in the upper bound, making the bounds more suitable for high-dimensional models.
 503 The auxiliary assumption $F(\mathbf{x}^*) = \mathcal{O}(1/n)$ in part (4) is only used to illustrate the attainable rates
 504 under a low-noise condition. Strictly speaking, $F(\mathbf{x}^*)$ is independent of n , but assumptions such as
 505 $F(\mathbf{x}^*) = \mathcal{O}(1/n)$ or even $F(\mathbf{x}^*) = 0$ are standard in the literature; see, for example, Zhang et al.
 506 (2017); Zhang & Zhou (2019); Srebro et al. (2010); Liu et al. (2018); Lei & Ying (2020). In general,
 507 $\mathcal{O}(1/n^2)$ -type generalization bounds are rare in learning theory. Theorem 3.9 provides, to the best
 508 of our knowledge, the first high-probability $\tilde{\mathcal{O}}(1/n^2)$ generalization guarantees for SGDM.
 509

510 4 CONCLUSIONS

511 This paper investigates high-probability convergence and generalization bounds for stochastic gra-
 512 dient descent with momentum (SGDM) in non-convex settings, thus providing a unified view of its
 513 optimization and generalization behavior. Our bounds, derived under a sub-Weibull noise model, ex-
 514 hibit different rates that explicitly capture the effect of moving from sub-Gaussian/sub-exponential
 515 (i.e., light-tailed) noise to genuinely heavy-tailed regimes on both convergence and generalization.
 516 We hope that these results offer a clearer theoretical picture of when and how SGDM is guaranteed
 517 to perform well, and that they serve as a foundation for further studies of momentum-based methods
 518 in modern non-convex learning problems.
 519

520 REFERENCES

522 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
 523 Lower bounds for non-convex stochastic optimization. *arXiv preprint arXiv:1912.02365*, 2019.

525 Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms
 526 for sparse coding. In *Conference on learning theory*, pp. 113–149. PMLR, 2015.

527 Amit Attia and Tomer Koren. Algorithmic instabilities of accelerated gradient descent. In *Advances
 528 in Neural Information Processing Systems*, 2021.

530 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
 531 structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

533 Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local rademacher complexities. *Annals
 534 of Statistics*, 33(4):1497–1537, 2005.

535 Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
 536 descent on nonsmooth convex losses. In *Advances in Neural Information Processing Systems*, pp.
 537 4381–4391, 2020.

539 Nicola Bastianello, Liam Madden, Ruggero Carli, and Emiliano Dall’Anese. A stochastic operator
 framework for inexact static and online optimization. *arXiv preprint arXiv:2105.09884*, 2021.

540 Olivier Bousquet and André Elisseeff. Stability and generalization. *Journal of Machine Learning*
 541 *Research*, 2:499–526, 2002.

542

543 Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable
 544 algorithms. In *Conference on Learning Theory*, pp. 610–626, 2020.

545

546 Bugra Can, Mert Gurbuzbalaban, and Lingjiong Zhu. Accelerated linear convergence of stochastic
 547 momentum methods in wasserstein distances. In *International Conference on Machine Learning*,
 548 pp. 891–901, 2019.

549

550 Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. *ACM trans-*
 551 *actions on intelligent systems and technology (TIST)*, 2(3):1–27, 2011.

552

553 Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative optimization
 554 algorithms. *arXiv preprint arXiv:1804.01619*, 2018.

555

556 Yuxin Chen and Emmanuel Candes. Solving random quadratic systems of equations is nearly as
 557 easy as solving linear systems. *Advances in Neural Information Processing Systems*, 28, 2015.

558

559 Ashok Cutkosky and Harsh Mehta. High-probability bounds for non-convex stochastic optimization
 560 with heavy tails. In *Advances in Neural Information Processing Systems*, 2021.

561

562 Damek Davis and Dmitriy Drusvyatskiy. Graphical convergence of subgradients in nonconvex op-
 563 timization and learning. *Mathematics of Operations Research*, 2021.

564

565 Xiequan Fan and Davide Giraudo. Large deviation inequalities for martingales in banach spaces.
 566 *arXiv preprint arXiv:1909.05584*, 2019.

567

568 Vitaly Feldman. Generalization of erm in stochastic convex optimization: The dimension strikes
 569 back. In *Advances in Neural Information Processing Systems*, pp. 3576–3584, 2016.

570

571 Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algo-
 572 rithms with nearly optimal rate. In *Conference on Learning Theory*, pp. 1270–1279, 2019.

573

574 Dylan J. Foster, Ayush Sekhari, and Karthik Sridharan. Uniform convergence of gradients for non-
 575 convex learning and optimization. In *Advances in Neural Information Processing Systems*, pp.
 576 8745–8756, 2018.

577

578 Sébastien Gadat, Fabien Panloup, and Sofiane Saadane. Stochastic heavy ball. *Electronic Journal*
 579 *of Statistics*, 12(1):461–529, 2018.

580

581 Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global convergence of the
 582 heavy-ball method for convex optimization. In *European control conference (ECC)*, pp. 310–315,
 583 2015.

584

585 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.

586

587 Mert Gurbuzbalaban and Yuanhan Hu. Fractional moment-preserving initialization schemes for
 588 training deep neural networks. In *International Conference on Artificial Intelligence and Statis-*
 589 *tics*, pp. 2233–2241, 2021.

590

591 Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phenomenon in sgd. In
 592 *International Conference on Machine Learning*, pp. 3964–3975, 2021.

593

594 Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: stability of
 595 stochastic gradient descent. In *International Conference on Machine Learning*, pp. 1225–1234,
 596 2016.

597

598 Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for
 599 non-smooth stochastic gradient descent. In *Conference on Learning Theory*, pp. 1579–1613,
 600 2019.

601

602 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 603 nition. In *conference on computer vision and pattern recognition*, pp. 770–778, 2016.

594 Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
 595 Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks
 596 for acoustic modeling in speech recognition: The shared views of four research groups. *IEEE*
 597 *Signal processing magazine*, 29(6):82–97, 2012.

598 Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
 599 Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
 600 mobile vision applications. *arXiv preprint arXiv:1704.04861*, 2017.

602 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 603 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern*
 604 *recognition*, pp. 4700–4708, 2017.

605 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 606 gradient methods under the polyak-Łojasiewicz condition. In *European Conference on Machine*
 607 *Learning and Knowledge Discovery in Databases*, pp. 795–811, 2016.

609 Rahul Kidambi, Praneeth Netrapalli, Prateek Jain, and Sham M Kakade. On the insufficiency of ex-
 610 isting momentum schemes for stochastic optimization. In *International Conference on Learning*
 611 *Representations*, 2018.

612 Junhyung Lyle Kim, Panos Toulis, and Anastasios Kyrillidis. Convergence and stability of the
 613 stochastic proximal point algorithm with momentum. *arXiv preprint arXiv:2111.06171*, 2021a.

615 Seunghyun Kim, Liam Madden, and Emiliano Dall’Anese. Convergence of the inexact on-
 616 line gradient and proximal-gradient under the polyak-Łojasiewicz condition. *arXiv preprint*
 617 *arXiv:2108.03285*, 2021b.

618 Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
 619 minima? In *International conference on machine learning*, pp. 2698–2707. PMLR, 2018.

621 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 622 lutional neural networks. In *Advances in neural information processing systems*, 2012.

623 Arun Kumar Kuchibhotla and Abhishek Chakrabortty. Moving beyond sub-gaussianity in high-
 624 dimensional statistics: Applications in covariance estimation and linear regression. *arXiv preprint*
 625 *arXiv:1804.02605*, 2018.

627 Jing Lei. Convergence and concentration of empirical measures under wasserstein distance in un-
 628 bounded functional spaces. *Bernoulli*, 2020.

629 Yunwen Lei and Ke Tang. Learning rates for stochastic gradient descent with nonconvex objectives.
 630 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.

632 Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
 633 gradient descent. In *International Conference on Machine Learning*, pp. 5809–5819, 2020.

634 Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algo-
 635 rithms via integral quadratic constraints. *SIAM Journal on Optimization*, 26(1):57–95, 2016.

637 Chris Junchi Li. A note on concentration inequality for vector-valued martingales with weak
 638 exponential-type tails. *arXiv preprint arXiv:1809.02495*, 2021.

639 Shaojie Li and Yong Liu. High probability guarantees for nonconvex stochastic gradient descent
 640 with heavy tails. In *International Conference on Machine Learning*, pp. 12931–12963, 2022.

642 Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
 643 stepsizes. In *International Conference on Artificial Intelligence and Statistics*, pp. 983–992, 2019.

644 Xiaoyu Li and Francesco Orabona. A high probability analysis of adaptive sgd with momentum. In
 645 *Workshop on Beyond First Order Methods in ML Systems at ICML’20*, 2020.

647 Xiaoyu Li, Mingrui Liu, and Francesco Orabona. On the last iterate convergence of momentum
 648 methods. In *International Conference on Algorithmic Learning Theory*, pp. 699–717, 2022.

648 Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
 649 In *Advances in Neural Information Processing Systems*, pp. 597–607, 2017.
 650

651 Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, and Tianbao Yang. Fast rates of erm and
 652 stochastic approximation: Adaptive to error bound conditions. In *Advances in Neural Information
 653 Processing Systems*, pp. 4678–4689, 2018.

654 Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with
 655 momentum. In *Advances in Neural Information Processing Systems*, pp. 18261–18271, 2020.
 656

657 Zijian Liu, Ta Duy Nguyen, Thien Hang Nguyen, Alina Ene, and Huy Nguyen. High probability
 658 convergence of stochastic gradient methods. In *International Conference on Machine Learning*,
 659 pp. 21884–21914, 2023.

660 Ben London. A pac-bayesian analysis of randomized learning with application to stochastic gradient
 661 descent. In *Advances in Neural Information Processing Systems*, pp. 2931–2940, 2017.
 662

663 Liam Madden, Emiliano Dall’Anese, and Stephen Becker. High probability convergence bounds
 664 for non-convex stochastic gradient descent with sub-weibull noise. *Journal of Machine Learning
 665 Research*, 25(241):1–36, 2024.

666 Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
 667 *Annals of Statistics*, 46:2747–2774, 2018.
 668

669 Ion Necoara, Yu Nesterov, and Francois Glineur. Linear convergence of first order methods for
 670 non-strongly convex optimization. *Mathematical Programming*, 175(1):69–107, 2019.
 671

672 Yurii Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*. 2014.

673 Peter Ochs, Yunjin Chen, Thomas Brox, and Thomas Pock. ipiano: Inertial proximal algorithm for
 674 nonconvex optimization. *SIAM Journal on Imaging Sciences*, 7(2):1388–1419, 2014.
 675

676 Peter Ochs, Thomas Brox, and Thomas Pock. ipiasco: inertial proximal algorithm for strongly
 677 convex optimization. *Journal of Mathematical Imaging and Vision*, 53(2):171–181, 2015.
 678

679 Ming Yang Ong. *Understanding generalization*. PhD thesis, Massachusetts Institute of Technology,
 2017.

680 Antonio Orvieto, Jonas Kohler, and Aurelien Lucchi. The role of memory in stochastic optimization.
 681 In *Uncertainty in Artificial Intelligence*, pp. 356–366, 2020.
 682

683 Abhishek Panigrahi, Raghav Somani, Navin Goyal, and Praneeth Netrapalli. Non-gaussianity of
 684 stochastic gradient noise. *arXiv preprint arXiv:1910.09626*, 2019.
 685

686 Boris T Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr computational
 687 mathematics and mathematical physics*, 4(5):1–17, 1964.
 688

689 Ning Qian. On the momentum term in gradient descent learning algorithms. *Neural networks*, 12
 (1):145–151, 1999.

690 Ali Ramezani-Kebrya, Kimon Antonakopoulos, Volkan Cevher, Ashish Khisti, and Ben Liang. On
 691 the generalization of stochastic gradient descent with momentum. *Journal of Machine Learning
 692 Research*, 25(22):1–56, 2024. URL <http://jmlr.org/papers/v25/22-0068.html>.
 693

694 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
 695 and uniform convergence. *Journal of Machine Learning Research*, 11(90):2635–2670, 2010.
 696

697 Umut Şimşekli, Mert Gürbüzbalaban, Thanh Huy Nguyen, Gaël Richard, and Levent Sagun. On
 698 the heavy-tailed theory of stochastic gradient descent for deep neural networks. *arXiv preprint
 699 arXiv:1912.00018*, 2019.

700 Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
 701 noise in deep neural networks. In *International Conference on Machine Learning*, pp. 5827–5837,
 2019.

702 Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
 703 landscape of over-parameterized shallow neural networks. *IEEE Transactions on Information*
 704 *Theory*, 65(2):742–769, 2018.

705 Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Optimistic rates for learning with a smooth
 706 loss. *arXiv preprint arXiv:1009.3896*, 2010.

708 Ruoyu Sun and Zhi-Quan Luo. Guaranteed matrix completion via non-convex factorization. *IEEE*
 709 *Transactions on Information Theory*, 62(11):6535–6579, 2016.

710 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
 711 ization and momentum in deep learning. In *International conference on machine learning*, pp.
 712 1139–1147, 2013.

714 Maria Vladimirova, Jakob Verbeek, Pablo Mesejo, and Julyan Arbel. Understanding priors in
 715 bayesian neural networks at the unit level. In *International Conference on Machine Learning*, pp.
 716 6458–6467, 2019.

717 Maria Vladimirova, Stéphane Girard, Hien Nguyen, and Julyan Arbel. Sub-weibull distributions:
 718 Generalizing sub-gaussian and sub-exponential properties to heavier tailed distributions. *Stat*, 9
 719 (1):e318, 2020.

720 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 721 bridge University Press, 2019.

723 Hongjian Wang, Mert Gürbüzbalaban, Lingjiong Zhu, Umut Şimşekli, and Murat A Erdogdu. Con-
 724 vergence rates of stochastic gradient descent under infinite noise variance. In *Advances in Neural*
 725 *Information Processing Systems*, 2021.

726 Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
 727 landscapes. In *International Conference on Machine Learning*, pp. 6677–6686, 2019.

729 Ashia C Wilson, Ben Recht, and Michael I Jordan. A lyapunov analysis of accelerated methods in
 730 optimization. *J. Mach. Learn. Res.*, 22:113–1, 2021.

731 Kam Chung Wong, Zifan Li, and Ambuj Tewari. Lasso guarantees for β -mixing heavy-tailed time
 732 series. *The Annals of Statistics*, 48(2):1124–1142, 2020.

734 Yunbei Xu and Assaf Zeevi. Towards optimal problem dependent generalization error bounds in
 735 statistical learning theory. *arXiv preprint arXiv:2011.06186*, 2020.

736 Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of stochastic mo-
 737 mentum methods for deep learning. In *Proceedings of the 27th International Joint Conference on*
 738 *Artificial Intelligence*, pp. 2955–2961, 2018.

739 Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momentum
 740 methods for convex and non-convex optimization. *arXiv preprint arXiv:1604.03257*, 2016.

742 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
 743 training: A theoretical justification for adaptivity. In *International Conference on Learning Rep-*
 744 *resentations*, 2019.

745 Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
 746 Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? In *Advances in*
 747 *Neural Information Processing Systems*, 2020.

749 Lijun Zhang and Zhi-Hua Zhou. Stochastic approximation of smooth and strongly convex functions:
 750 Beyond the $\mathcal{O}(1/t)$ convergence rate. In *Conference on Learning Theory*, pp. 3160–3179, 2019.

751 Lijun Zhang, Tianbao Yang, and Rong Jin. Empirical risk minimization for stochastic convex op-
 752 timization: $\mathcal{O}(1/n)$ - and $\mathcal{O}(1/n^2)$ -type of risk bounds. In *Conference on Learning Theory*, pp.
 753 1954–1979, 2017.

754 Fangyu Zou, Li Shen, Zequn Jie, Ju Sun, and Wei Liu. Weighted adagrad with unified momentum.
 755 *arXiv preprint arXiv:1808.03408*, 2018.

756

A NUMERICAL EXPERIMENTS

758 We now present numerical experiments illustrating how the generalization bounds behave as the tail
 759 parameter θ varies. Let $F_S(\mathbf{x})$ and $F_{S'}(\mathbf{x})$ denote the risks built on the training set S and the test set
 760 S' , respectively, where

$$762 \quad F_{S'}(\mathbf{x}) = \frac{1}{|S'|} \sum_{z \in S'} f(\mathbf{x}; z),$$

764 and $|S'|$ is the cardinality of S' . We use $F_{S'}(\mathbf{x})$ as an empirical proxy for the population risk $F(\mathbf{x})$.
 765

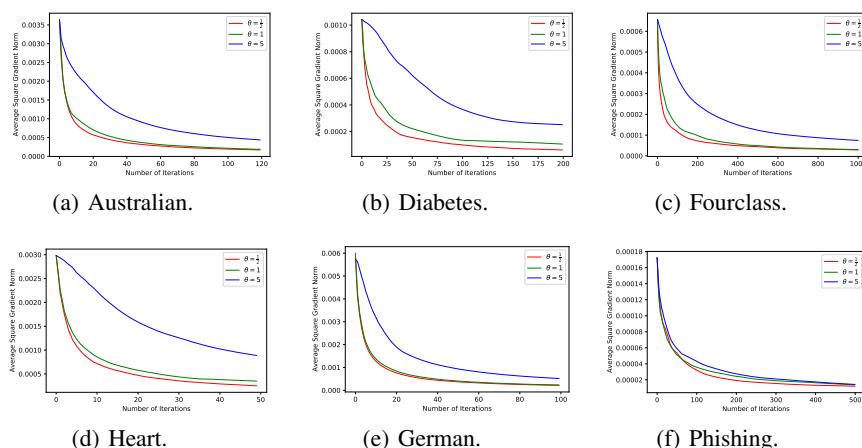
766 We consider six datasets available from the LIBSVM dataset: Heart, Fourclass, German, Australian,
 767 Diabetes, and Phishing (Chang & Lin, 2011). For each dataset, we take 80 percents as the training
 768 dataset and leave the remaining 20 percents as the testing dataset. According to Algorithm 1, the
 769 momentum update can be written as

$$770 \quad \mathbf{m}_t = \gamma \mathbf{m}_{t-1} + \eta_t (\nabla F_S(\mathbf{x}_t) + \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)) = \gamma \mathbf{m}_{t-1} + \eta_t (\nabla F_S(\mathbf{x}_t) + \mathbf{e}_t),$$

772 where $\mathbf{e}_t = \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)$ is the gradient noise. In each update of our experiments, for
 773 each coordinate we independently draw a sample from a sub-Weibull distribution to model \mathbf{e}_t in
 774 Assumption 2.9. If every coordinate of \mathbf{e}_t is sub-Weibull, then $|\mathbf{e}_t|$ is also sub-Weibull; this follows
 775 from Lemma 3.4 of Bastianello et al. (2021) and part (c) of Proposition 2.1 of Kim et al. (2021b).
 776 Since we assume that the stochastic gradient is an unbiased estimator of the exact gradient, we shift
 777 and scale the distribution in order to get a random vector with zero mean and the variance equal 1.
 778 To examine the effect of the tail parameter, we consider $\theta \in \{1/2, 1, 5\}$.

779 We work with a generalized linear model $\ell(\langle \mathbf{x}, \mathbf{x} \rangle)$ for binary classification, where ℓ is the logistic
 780 link function $\ell(s) = (1+e^{-s})^{-1}$. Our first experiment uses the Huber loss: $f(\mathbf{x}, z) = \frac{1}{2}(\ell(\langle \mathbf{x}, \mathbf{x} \rangle) -$
 781 $y)^2$ if $|\ell(\langle \mathbf{x}, \mathbf{x} \rangle) - y| \leq \tau$ and $\tau(|\ell(\langle \mathbf{x}, \mathbf{x} \rangle) - y| - \frac{1}{2}\tau)$ otherwise. We set $\tau = 0.1$, $\gamma = 0.9$ and $\eta_t =$
 782 $0.1t^{-\frac{1}{2}}$, run the algorithm for a given number of passes over the data, repeat experiments 100 times,
 783 and report the average of results. The behavior of the empirical quantity $\frac{1}{T} \sum_{t=1}^T \|\nabla F_{S'}(\mathbf{x}_t)\|^2$ as a
 784 function of the number of passes is shown in Fig. 1. The curves are consistent with the generalization
 785 bounds of Theorem 3.3: larger θ (heavier tails) yield worse generalization behavior, and the case
 786 $\theta = 5$ performs noticeably worse, in line with the theoretical regime $\theta > 1$.

787 Our second experiment uses the squared loss: $f(\mathbf{x}, z) = (\ell(\langle \mathbf{x}, \mathbf{x} \rangle) - y)^2$. The corresponding
 788 behavior of $\frac{1}{T} \sum_{t=1}^T \|\nabla F_{S'}(\mathbf{x}_t)\|^2$ versus the number of passes is reported in Fig. 2. Again, increasing
 789 θ systematically leads to worse generalization performance, which is in clear agreement with
 790 Theorem 3.3.



808 Figure 1: The generalization bound $\frac{1}{T} \sum_{t=1}^T \|\nabla F_{S'}(\mathbf{x}_t)\|^2$ versus the number of passes for different
 809 choices of $\theta \in \{1/2, 1, 5\}$ and different datasets in the setting of huber loss.

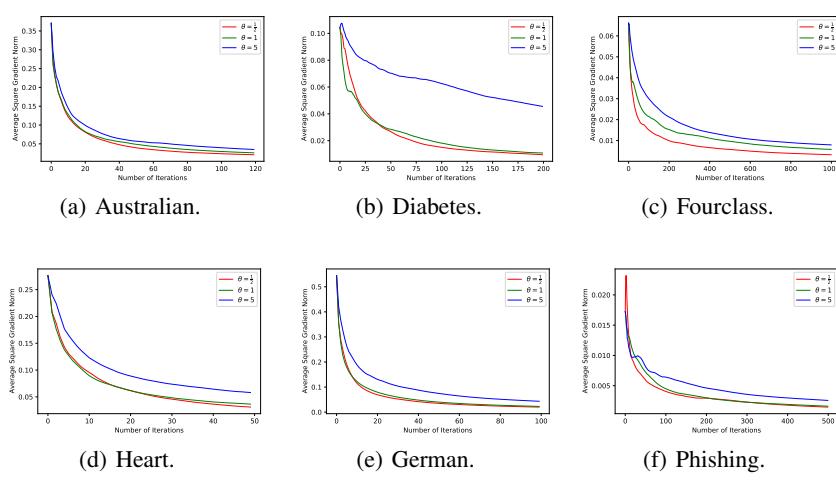


Figure 2: The generalization bound $\frac{1}{T} \sum_{t=1}^T \|\nabla F_{S'}(\mathbf{x}_t)\|^2$ versus the number of passes for different choices of $\theta \in \{1/2, 1, 5\}$ and different datasets in the setting of square loss.

B SUMMARY OF RESULTS

We compare the main results of this paper with the most relevant high-probability results of SGDM in the literature in Table 1.

We briefly explain the notation used in Table 1. Entry [1] corresponds to Li & Orabona (2020), and entry [2] to Cutkosky & Mehta (2021). The second result of [1] is derived for a variant of SGDM, namely *delayed AdaGrad with momentum*, whose stepsize does not depend on the current gradient. The assumption “ θ -order moment” means that the gradient satisfies $\mathbb{E}_z[\|\nabla f(\mathbf{x}_t; z)\|^\theta] \leq G^\theta$ for some constant G and $\theta \in (1, 2]$. “S-S” denotes a second-order smoothness assumption (Cutkosky & Mehta, 2021). Cutkosky & Mehta (2021) also derive two additional convergence bounds (Theorems 3 and 6 therein) for the last iterate of SGDM under a warm-up learning-rate schedule and several other tricks. These bounds have rates similar to those reported for [2] in Table 1, but their assumptions are rather involved and hard to summarize concisely, so we omit them for brevity. “LN” stands for the low-noise condition $F(\mathbf{x}^*) = \mathcal{O}(1/n)$, and the parameter θ in the table refers to Assumption 2.9.

The detailed comparisons between our bounds and those of Li & Orabona (2020) and Cutkosky & Mehta (2021) have already been discussed in the main text (see the corresponding remarks), so we do not repeat them here. At a glance, Table 1 shows that our work provides a collection of high-probability generalization bounds that are not available in the prior literature, together with convergence bounds that achieve strictly faster rates under comparable assumptions.

C PRELIMINARIES

This section collects preliminaries, including basic properties of the sub-Weibull distribution and several auxiliary lemmas used in the proofs.

C.1 SUB-WEIBULL DISTRIBUTION

Define the L_p norm of a random variable X by $\|X\|_p = (\mathbb{E}|X|^p)^{1/p}$ for any $p \geq 1$. A sub-Weibull random variable X (denoted $X \sim \text{subW}(\theta, K)$) can be characterized in several equivalent ways.

Proposition C.1 (Vladimirova et al., 2020; Bastianello et al., 2021)). *Given $\theta \geq 0$, the following properties are equivalent:*

- $\exists K_1 > 0$ such that $P(|X| \geq t) \leq 2 \exp(-(t/K_1)^{1/\theta})$, $\forall t > 0$;

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Table 1: Summary of Results.

REF.	ASSUMPTION	MEASURE	LEARNING BOUND
[1]	2.1, $\theta = \frac{1}{2}$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\frac{\log(T/\delta) \log T}{\sqrt{T}}\right)$
	2.1, $\theta = \frac{1}{2}$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ ^2$	$\max \left\{ \mathcal{O}\left(\frac{d \log^{\frac{3}{2}}(T/\delta)}{\sqrt{T}}\right), \mathcal{O}\left(\frac{d^2 \log^2(T/\delta)}{T}\right) \right\}$
[2]	θ -ORDER MOMENT ($\theta \in (1, 2]$), 2.1	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ $	$\mathcal{O}\left(\frac{\log(T/\delta)}{T^{\frac{p-1}{p-2}}}\right)$
	θ -ORDER MOMENT ($\theta \in (1, 2]$), 2.1, S-S	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ $	$\mathcal{O}\left(\frac{\log(T/\delta)}{T^{\frac{2p-2}{5p-3}}}\right)$
OURS	2.1, $\theta = \frac{1}{2}$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\frac{\log(1/\delta) \log T}{\sqrt{T}}\right)$
	2.1, 2.5, $\theta \in (\frac{1}{2}, 1]$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\frac{\log^{2\theta}(1/\delta) \log T}{\sqrt{T}}\right)$
	2.1, 2.5, $\theta > 1$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F_S(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\frac{\log^{\theta-1}(T/\delta) \log(1/\delta) + \log^{2\theta}(1/\delta) \log T}{\sqrt{T}}\right)$
	2.1, $\theta = \frac{1}{2}$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\left(\frac{d}{n}\right)^{\frac{1}{2}} \log\left(\frac{n}{d}\right) \log^3\left(\frac{1}{\delta}\right)\right)$
	2.1, 2.5, $\theta \in (\frac{1}{2}, 1]$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\left(\frac{d}{n}\right)^{\frac{1}{2}} \log\left(\frac{n}{d}\right) \log^{(2\theta+2)}\left(\frac{1}{\delta}\right)\right)$
	2.1, 2.5, $\theta > 1$	$\frac{1}{T} \sum_{t=1}^T \ \nabla F(\mathbf{x}_t)\ ^2$	$\mathcal{O}\left(\left(\frac{d}{n}\right)^{\frac{1}{2}} \left(\log\left(\frac{n}{d}\right) \log^{(2\theta+2)}\left(\frac{1}{\delta}\right) + \log^{\theta-1}\left(\frac{n}{d\delta}\right) \log^2\left(\frac{1}{\delta}\right)\right)\right)$
OURS	2.1, 2.7, $\theta = \frac{1}{2}$	$F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))$	$\mathcal{O}\left(\frac{\log(1/\delta)}{T}\right)$
	2.1, 2.5, 2.7, $\theta \in (\frac{1}{2}, 1]$	$F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))$	$\mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T}\right)$
	2.1, 2.5, 2.7, $\theta > 1$	$F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))$	$\mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T}\right)$
	2.1, 2.7, $\theta = \frac{1}{2}$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{d+\log(\frac{1}{\delta})}{n} \log^2\left(\frac{1}{\delta}\right) \log n\right)$
	2.1, 2.5, 2.7, $\theta \in (\frac{1}{2}, 1]$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{d+\log(\frac{1}{\delta})}{n} \log^{(2\theta+1)}\left(\frac{1}{\delta}\right) \log n\right)$
	2.1, 2.5, 2.7, $\theta > 1$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{d+\log(\frac{1}{\delta})}{n} \log^{(2\theta+1)}\left(\frac{1}{\delta}\right) \log^{\frac{3(\theta-1)}{2}}\left(\frac{n}{\delta}\right) \log n\right)$
OURS	2.1, 2.7, 2.3, $\theta = \frac{1}{2}$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{\log^2(\frac{1}{\delta})}{n^2} + \frac{F(\mathbf{x}^*) \log(\frac{1}{\delta})}{n}\right)$
	2.1, 2.5, 2.7, 2.3, $\theta \in (\frac{1}{2}, 1]$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} n + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}}{n^2}\right)$
	2.1, 2.5, 2.7, 2.3, $\theta > 1$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{\log^{\frac{3(\theta-1)}{2}}(n/\delta) \log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} n + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}}{n^2}\right)$
	2.1, 2.7, 2.3, LN, $\theta = \frac{1}{2}$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{\log^2(\frac{1}{\delta})}{n^2}\right)$
	2.1, 2.5, 2.7, 2.3, LN, $\theta \in (\frac{1}{2}, 1]$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} n}{n^2}\right)$
	2.1, 2.5, 2.7, 2.3, LN, $\theta > 1$	$F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*)$	$\mathcal{O}\left(\frac{\log^{\frac{3(\theta-1)}{2}}(n/\delta) \log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} n}{n^2}\right)$

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

- $\exists K_2 > 0$ such that $\|X\|_k \leq K_2 k^\theta, \forall k \geq 1$;
- $\exists K_3 > 0$ such that $\mathbb{E}[\exp((\lambda|X|)^{1/\theta})] \leq \exp((\lambda K_3)^{1/\theta}), \forall \lambda \in (0, 1/K_3)$;
- $\exists K_4 > 0$ such that $\mathbb{E}[\exp((|X|/K_4)^{1/\theta})] \leq 2$.

The parameters K_1, K_2, K_3, K_4 differ each by a constant that only depends on θ .

We list several concentration inequalities for sums and martingales with sub-Weibull increments.

Lemma C.2 (Vladimirova et al., 2020; Wong et al., 2020; Madden et al., 2024)). Suppose X_1, \dots, X_n are sub-Weibull(θ) random variables with respective parameters K_1, \dots, K_n . Then, for all $t \geq 0$,

$$P\left(\left|\sum_{i=1}^n X_i\right| \geq t\right) \leq 2 \exp\left(-\left(\frac{t}{g(\theta) \sum_{i=1}^n K_i}\right)^{1/\theta}\right),$$

where $g(\theta) = (4e)^\theta$ for $\theta \leq 1$ and $g(\theta) = 2(2e\theta)^\theta$ for $\theta \geq 1$.

The next two lemmas provide sub-Weibull analogues of martingale concentration bounds.

Lemma C.3 (Theorem 2 in (Li, 2021); see also (Fan & Giraudo, 2019)). Let $\theta \in (0, \infty)$ be given. Assume that $(\mathbf{X}_i, i = 1, \dots, N)$ is a sequence of \mathbb{R}^d -valued martingale differences with respect to filtration \mathcal{F}_i , i.e. $\mathbb{E}[\mathbf{X}_i | \mathcal{F}_{i-1}] = 0$, and it satisfies the following weak exponential-type tail condition:

for some $\theta > 0$ and all $i = 1, \dots, N$ we have for some scalar $0 < K_i$, $\mathbb{E}[\exp(\|\frac{\mathbf{X}_i}{K_i}\|^\frac{1}{\theta})] \leq 2$.

Assume that $K_i < \infty$ for each $i = 1, \dots, N$. Then for an arbitrary $N \geq 1$ and $t > 0$,

$$P\left(\max_{n \leq N} \left\|\sum_{i=1}^n \mathbf{X}_i\right\| \geq t\right) \leq 4 \left[3 + (3\theta)^{2\theta} \frac{128 \sum_{i=1}^N K_i^2}{t^2}\right] \exp\left\{-\left(\frac{t^2}{64 \sum_{i=1}^N K_i^2}\right)^{\frac{1}{2\theta+1}}\right\}.$$

Lemma C.4 (Sub-Weibull Freedman Inequality; Proposition 11 in (Madden et al., 2024)). Let $(\Omega, \mathcal{F}, (\mathcal{F}_i), P)$ be a filtered probability space. Let (ξ_i) and (K_i) be adapted to (\mathcal{F}_i) . Let $n \in \mathbb{N}$, then for all $i \in [n]$, assume $K_{i-1} \geq 0$, $\mathbb{E}[\xi_i | \mathcal{F}_{i-1}] = 0$, and

$$\mathbb{E}\left[\exp\left((|\xi_i|/K_{i-1})^{1/\theta}\right) | \mathcal{F}_{i-1}\right] \leq 2$$

where $\theta \geq 1/2$. If $\theta > 1/2$, assume there exists (m_i) such that $K_{i-1} \leq m_i$.

If $\theta = 1/2$, let $a = 2$. Then for all $x, \beta \geq 0$, and $\alpha > 0$, and $\lambda \in [0, \frac{1}{2\alpha}]$,

$$P\left(\bigcup_{k \in [n]} \left\{\sum_{i=1}^k \xi_i \geq x \text{ and } \sum_{i=1}^k a K_{i-1}^2 \leq \alpha \sum_{i=1}^k \xi_i + \beta\right\}\right) \leq \exp(-\lambda x + 2\lambda^2 \beta). \quad (2)$$

and for all $x, \beta, \lambda \geq 0$,

$$P\left(\bigcup_{k \in [n]} \left\{\sum_{i=1}^k \xi_i \geq x \text{ and } \sum_{i=1}^k a K_{i-1}^2 \leq \beta\right\}\right) \leq \exp\left(-\lambda x + \frac{\lambda^2}{2} \beta\right).$$

If $\theta \in (\frac{1}{2}, 1]$, let $a = (4\theta)^{2\theta} e^2$ and $b = (4\theta)^\theta e$. For all $x, \beta \geq 0$, and $\alpha \geq b \max_{i \in [n]} m_i$, and $\lambda \in [0, \frac{1}{2\alpha}]$,

$$P\left(\bigcup_{k \in [n]} \left\{\sum_{i=1}^k \xi_i \geq x \text{ and } \sum_{i=1}^k a K_{i-1}^2 \leq \alpha \sum_{i=1}^k \xi_i + \beta\right\}\right) \leq \exp(-\lambda x + 2\lambda^2 \beta). \quad (3)$$

and for all $x, \beta \geq 0$, and $\lambda \in [0, \frac{1}{b \max_{i \in [n]} m_i}]$,

$$P\left(\bigcup_{k \in [n]} \left\{\sum_{i=1}^k \xi_i \geq x \text{ and } \sum_{i=1}^k a K_{i-1}^2 \leq \beta\right\}\right) \leq \exp\left(-\lambda x + \frac{\lambda^2}{2} \beta\right).$$

972 If $\theta > 1$, let $\delta \in (0, 1)$, $a = (2^{2\theta+1} + 2)\Gamma(2\theta + 1) + \frac{2^{3\theta}\Gamma(3\theta+1)}{3}$ and $b = 2\log^{\theta-1}(n/\delta)$. For all
 973 $x, \beta \geq 0$, and $\alpha \geq b \max_{i \in [n]} m_i$, and $\lambda \in [0, \frac{1}{2\alpha}]$,
 974

$$975 \quad P \left(\bigcup_{k \in [n]} \left\{ \sum_{i=1}^k \xi_i \geq x \text{ and } \sum_{i=1}^k a K_{i-1}^2 \leq \alpha \sum_{i=1}^k \xi_i + \beta \right\} \right) \leq \exp(-\lambda x + 2\lambda^2 \beta) + 2\delta. \quad (4)$$

979 and for all $x, \beta \geq 0$, and $\lambda \in \left[0, \frac{1}{b \max_{i \in [n]} m_i}\right]$,

$$981 \quad P \left(\bigcup_{k \in [n]} \left\{ \sum_{i=1}^k \xi_i \geq x \text{ and } \sum_{i=1}^k a K_{i-1}^2 \leq \beta \right\} \right) \leq \exp \left(-\lambda x + \frac{\lambda^2}{2} \beta \right) + 2\delta.$$

985 C.2 AUXILIARY LEMMAS

987 **Lemma C.5** ((Lei & Tang, 2021)). Let e be the base of the natural logarithm. There holds the
 988 following elementary inequalities.

989 (a) If $\theta \in (0, 1)$, then $\sum_{k=1}^t k^{-\theta} \leq t^{1-\theta}/(1-\theta)$;
 990 (b) If $\theta = 1$, then $\sum_{k=1}^t k^{-\theta} \leq \log(et)$;
 991 (c) If $\theta > 1$, then $\sum_{k=1}^t k^{-\theta} \leq \frac{\theta}{\theta-1}$.
 992 (d) $\sum_{k=1}^t \frac{1}{k+k_0} \leq \log(t+1)$.

996 **Lemma C.6** ((Li & Orabona, 2020)). For any $T \geq 1$ and sequences (a_t) and (b_t) , it holds that

$$998 \quad \sum_{t=1}^T a_t \sum_{i=1}^t b_i = \sum_{t=1}^T b_t \sum_{i=t}^T a_i \quad \text{and} \quad \sum_{t=1}^T a_t \sum_{i=0}^{t-1} b_i = \sum_{t=1}^{T-1} b_t \sum_{i=t+1}^T a_i.$$

1001 **Lemma C.7.** Let $\langle \cdot, \cdot \rangle$ denote the inner product. If f is L -smooth, then the following standard
 1002 properties hold (Nesterov, 2014; Ward et al., 2019): for any $z \in \mathcal{Z}$ and every $\mathbf{x}_1, \mathbf{x}_2$:

$$1004 \quad f(\mathbf{x}_1; z) - f(\mathbf{x}_2; z) \leq \langle \mathbf{x}_1 - \mathbf{x}_2, \nabla f(\mathbf{x}_2; z) \rangle + \frac{1}{2} L \|\mathbf{x}_1 - \mathbf{x}_2\|^2,$$

$$1005 \quad (2L)^{-1} \|\nabla f(\mathbf{x}; z)\|^2 \leq f(\mathbf{x}; z) - \inf_{\mathbf{x}} f(\mathbf{x}; z).$$

1008 The next two lemmas are uniform-convergence results that control the gap between the population
 1009 gradient ∇F and the empirical gradient ∇F_S ; they are key tools in our generalization analysis.

1010 **Lemma C.8** (Corollary 2 in (Lei & Tang, 2021)). Denoted by $B_R = B(\mathbf{0}, R)$. Let $\delta \in (0, 1)$ and
 1011 $S = \{z_1, \dots, z_n\}$ be a set of i.i.d. samples. Suppose Assumption 2.1 holds. Then with probability at
 1012 least $1 - \delta$ we have

$$1014 \quad \sup_{\mathbf{x} \in B_R} \|\nabla F(\mathbf{x}) - \nabla F_S(\mathbf{x})\| \leq \frac{(LR + B)}{\sqrt{n}} \left(2 + 2\sqrt{48e\sqrt{2}(\log 2 + d \log(3e))} + \sqrt{2 \log(\frac{1}{\delta})} \right),$$

1017 where $B = \sup_{z \in \mathcal{Z}} \|\nabla f(\mathbf{0}; z)\|$ and L is the smoothness constant.

1018 **Lemma C.9** (Lemma B.4 in (Li & Liu, 2022); (Xu & Zeevi, 2020)). Suppose Assumptions 2.1 and
 1019 2.3 hold, and assume that the population risk F satisfies the PL-type inequality $F(\mathbf{x}) - F(\mathbf{x}^*) \leq$
 1020 $\frac{1}{2\mu} \|\nabla F(\mathbf{x})\|^2$ for some $\mu > 0$. If $n \geq \frac{cL^2(d + \log(\frac{8\log(2nR+2)}{\delta}))}{\mu^2}$, then, for all $\mathbf{x} \in \mathcal{X} \subseteq B(\mathbf{x}^*, R)$ and
 1021 any $\delta > 0$, with probability at least $1 - \delta$

$$1023 \quad \|\nabla F(\mathbf{x}) - \nabla F_S(\mathbf{x})\| \leq \|\nabla F_S(\mathbf{x})\| + \frac{\mu}{n} + \frac{2B_* \log(4/\delta)}{n} + \sqrt{\frac{8\mathbb{E}[\|\nabla f(\mathbf{x}^*; z)\|^2] \log(4/\delta)}{n}},$$

1025 where c is an absolute constant, and where B_* is the constant from Assumption 2.3.

1026 **D PROOF OF MAIN RESULTS**
 1027

1028 **D.1 PROOF OF THEOREM 3.1**
 1029

1030 *Proof.* By Assumption 2.1, we have

1031
$$F_S(\mathbf{x}_{t+1}) - F_S(\mathbf{x}_t)$$

 1032
$$\leq \langle \mathbf{x}_{t+1} - \mathbf{x}_t, \nabla F_S(\mathbf{x}_t) \rangle + \frac{1}{2}L\|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 = -\langle \mathbf{m}_t, \nabla F_S(\mathbf{x}_t) \rangle + \frac{1}{2}L\|\mathbf{m}_t\|^2. \quad (5)$$

 1033

1034 We first control the term $-\langle \mathbf{m}_t, \nabla F_S(\mathbf{x}_t) \rangle$. We have

1035
$$\begin{aligned} & -\langle \mathbf{m}_t, \nabla F_S(\mathbf{x}_t) \rangle \\ &= -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_t) \rangle - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle \\ &= -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + \gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) - \nabla F_S(\mathbf{x}_t) \rangle - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle \\ &\leq -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle + \gamma \|\mathbf{m}_{t-1}\| \|\nabla F_S(\mathbf{x}_{t-1}) - \nabla F_S(\mathbf{x}_t)\| \\ &\leq -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + L\gamma \|\mathbf{m}_{t-1}\|^2 - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle, \end{aligned} \quad (6)$$

 1036

1042 where the last inequality uses L -smoothness of F_S and the update $\mathbf{x}_t - \mathbf{x}_{t-1} = -\mathbf{m}_{t-1}$. By
 1043 recurrence and using $\mathbf{m}_0 = 0$, we derive

1044
$$-\langle \mathbf{m}_t, \nabla F_S(\mathbf{x}_t) \rangle \leq L \sum_{i=1}^{t-1} \gamma^{t-i} \|\mathbf{m}_i\|^2 - \sum_{i=1}^t \gamma^{t-i} \langle \eta_i \nabla f(\mathbf{x}_i; z_{j_i}), \nabla F_S(\mathbf{x}_i) \rangle. \quad (7)$$

 1045

1046 Taking a summation from $t = 1$ to $t = T$ yields

1047
$$\begin{aligned} & F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}_1) \\ &\leq L \sum_{t=1}^T \sum_{i=1}^{t-1} \gamma^{t-i} \|\mathbf{m}_i\|^2 - \sum_{t=1}^T \sum_{i=1}^t \gamma^{t-i} \langle \eta_i \nabla f(\mathbf{x}_i; z_{j_i}), \nabla F_S(\mathbf{x}_i) \rangle + \frac{1}{2}L \sum_{t=1}^T \|\mathbf{m}_t\|^2. \end{aligned} \quad (8)$$

 1048

1049 By Lemma C.6, we have

1050
$$L \sum_{t=1}^T \sum_{i=1}^{t-1} \gamma^{t-i} \|\mathbf{m}_i\|^2 \leq L \sum_{t=1}^T \gamma^{-t} \|\mathbf{m}_t\|^2 \sum_{i=t}^T \gamma^i \leq L \sum_{t=1}^T \gamma^{-t} \|\mathbf{m}_t\|^2 \frac{\gamma^t}{1-\gamma} = \frac{L}{1-\gamma} \sum_{t=1}^T \|\mathbf{m}_t\|^2. \quad (9)$$

 1051

1052 Furthermore, using Lemma C.6, we have

1053
$$\begin{aligned} & -\sum_{t=1}^T \sum_{i=1}^t \gamma^{t-i} \langle \eta_i \nabla f(\mathbf{x}_i; z_{j_i}), \nabla F_S(\mathbf{x}_i) \rangle \\ &= -\sum_{t=1}^T \sum_{i=1}^t \gamma^{t-i} \langle \eta_i (\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i)), \nabla F_S(\mathbf{x}_i) \rangle - \sum_{t=1}^T \sum_{i=1}^t \gamma^{t-i} \langle \eta_i (\nabla F_S(\mathbf{x}_i)), \nabla F_S(\mathbf{x}_i) \rangle \\ &= -\sum_{t=1}^T \gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^T \gamma^i - \sum_{t=1}^T \gamma^{-t} \langle \eta_t (\nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=1}^T \gamma^i \\ &\leq -\sum_{t=1}^T \gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^T \gamma^i - \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \\ &= -\sum_{t=1}^T \frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle - \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2. \end{aligned} \quad (10)$$

 1054

1055 Plugging (9) and (10) into (8), we obtain

1056
$$\begin{aligned} & \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \leq F_S(\mathbf{x}_1) - F_S(\mathbf{x}_S) + \frac{L}{1-\gamma} \sum_{t=1}^T \|\mathbf{m}_t\|^2 \\ & \quad - \sum_{t=1}^T \frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle + \frac{1}{2}L \sum_{t=1}^T \|\mathbf{m}_t\|^2. \end{aligned} \quad (11)$$

 1057

1080 It is clear that

$$1081 \mathbb{E}_{j_t} \left[-\frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t(\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \right] = 0,$$

1082 implying that it is a martingale difference sequence (MDS). We thus use Lemma C.4 to bound
1083 it. Specifically, we set $\xi_t = -\frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t(\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle$, $K_{t-1} =$
1084 $\frac{1-\gamma^{T-t+1}}{1-\gamma} \eta_t K \|\nabla F_S(\mathbf{x}_t)\|$, $\beta = 0$, $\lambda = \frac{1}{2\alpha}$, and $x = 2\alpha \log(1/\delta)$.
1085

1086 If $\theta = \frac{1}{2}$, for all $\alpha > 0$, we have the following inequality with probability $1 - \delta$

$$1087 \begin{aligned} & - \sum_{t=1}^T \frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t(\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \\ 1088 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\alpha} \sum_{t=1}^T \eta_t^2 \left(\frac{1-\gamma^{T-t+1}}{1-\gamma} \right)^2 \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1089 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\alpha} \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \sum_{t=1}^T \eta_t^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \end{aligned}$$

1090 If $\theta \in (\frac{1}{2}, 1]$, according to Assumption 2.5, we set $m_t = \frac{1-\gamma^T}{1-\gamma} KG$. Then for all $\alpha \geq b \frac{1-\gamma^T}{1-\gamma} KG$,
1091 we have the following inequality with probability $1 - \delta$

$$1092 \begin{aligned} & - \sum_{t=1}^T \frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t(\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \\ 1093 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\alpha} \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \sum_{t=1}^T \eta_t^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \end{aligned}$$

1094 If $\theta > 1$, according to Assumption 2.5, we set $m_t = \frac{1-\gamma^T}{1-\gamma} KG$ and $\delta = \delta$. Then, for all $\alpha \geq$
1095 $b \frac{1-\gamma^T}{1-\gamma} KG$, we have the following inequality with probability $1 - 3\delta$

$$1096 \begin{aligned} & - \sum_{t=1}^T \frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t(\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \\ 1097 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\alpha} \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \sum_{t=1}^T \eta_t^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \end{aligned}$$

1098 Then, we control the term $\sum_{t=1}^T \|\mathbf{m}_t\|^2$.

$$1099 \begin{aligned} & \sum_{t=1}^T \|\mathbf{m}_t\|^2 = \sum_{t=1}^T \left\| \gamma \mathbf{m}_{t-1} + (1-\gamma) \frac{\eta_t \nabla f(\mathbf{x}_t; z_{j_t})}{1-\gamma} \right\|^2 \\ 1100 & \leq \sum_{t=1}^T \left(\gamma \|\mathbf{m}_{t-1}\|^2 + (1-\gamma) \left\| \frac{\eta_t \nabla f(\mathbf{x}_t; z_{j_t})}{1-\gamma} \right\|^2 \right) \\ 1101 & = \sum_{t=1}^{T-1} \gamma \|\mathbf{m}_t\|^2 + \sum_{t=1}^T (1-\gamma) \left\| \frac{\eta_t \nabla f(\mathbf{x}_t; z_{j_t})}{1-\gamma} \right\|^2 \\ 1102 & \leq \sum_{t=1}^T \gamma \|\mathbf{m}_t\|^2 + \sum_{t=1}^T (1-\gamma) \left\| \frac{\eta_t \nabla f(\mathbf{x}_t; z_{j_t})}{1-\gamma} \right\|^2, \end{aligned}$$

1103 where the first inequality holds due to the Jensen's inequality and the second equality follows from
1104 $\|\mathbf{m}_0\| = 0$. Thus, we have

$$1105 \sum_{t=1}^T \|\mathbf{m}_t\|^2 \leq \sum_{t=1}^T \frac{1}{(1-\gamma)^2} \|\eta_t \nabla f(\mathbf{x}_t; z_{j_t})\|^2. \quad (12)$$

1134 This inequality implies that
 1135

$$1136 \sum_{t=1}^T \|\mathbf{m}_t\|^2 \leq \frac{2}{(1-\gamma)^2} \sum_{t=1}^T \eta_t^2 \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2 + \frac{2}{(1-\gamma)^2} \sum_{t=1}^T \eta_t^2 \|\nabla F_S(\mathbf{x}_t)\|^2.$$

1139 Since $\|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|$ is a sub-Weibull random variable, we have
 1140

$$1141 \mathbb{E} \left[\exp \left(\frac{\eta_t^2 \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2}{\eta_t^2 K^2} \right)^{\frac{1}{2\theta}} \right] \leq 2,$$

1144 which means that $\eta_t^2 \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2 \sim \text{subW}(2\theta, \eta_t^2 K^2)$. Applying Lemma C.2, we
 1145 get the following inequality with probability $1 - \delta$

$$1146 \sum_{t=1}^T \frac{2}{(1-\gamma)^2} \eta_t^2 \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2 \leq \frac{2}{(1-\gamma)^2} K^2 g(2\theta) \log^{2\theta}(2/\delta) \sum_{t=1}^T \eta_t^2.$$

1150 Then, we plug the bound of $-\sum_{t=1}^T \frac{1-\gamma^{T-t+1}}{1-\gamma} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle$ and the
 1151 bound of $\sum_{t=1}^T \|\mathbf{m}_t\|^2$ into (11), we obtain
 1152

$$1153 \begin{aligned} \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 &\leq F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S)) + \left(\frac{L}{1-\gamma} + \frac{1}{2}L \right) \frac{2}{(1-\gamma)^2} \sum_{t=1}^T \eta_t^2 \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1154 &+ 2\alpha \log(1/\delta) + \frac{aK^2}{\alpha} \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \sum_{t=1}^T \eta_t^2 \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1155 &+ \left(\frac{L}{1-\gamma} + \frac{1}{2}L \right) \frac{2}{(1-\gamma)^2} K^2 g(2\theta) \log^{2\theta}(2/\delta) \sum_{t=1}^T \eta_t^2, \end{aligned}$$

1163 implying that

$$1164 \begin{aligned} \sum_{t=1}^T \eta_t \left(1 - \left(\frac{L}{1-\gamma} + \frac{1}{2}L \right) \frac{2}{(1-\gamma)^2} \eta_t - \frac{aK^2}{\alpha} \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \eta_t \right) \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1165 \leq F_S(\mathbf{x}_1) - F_S(\mathbf{x}_S) + 2\alpha \log(1/\delta) + \left(\frac{L}{1-\gamma} + \frac{1}{2}L \right) \frac{2}{(1-\gamma)^2} K^2 g(2\theta) \log^{2\theta}(2/\delta) \sum_{t=1}^T \eta_t^2. \end{aligned}$$

1166 When $c = \eta_1 \leq \frac{1}{8} \frac{(1-\gamma)^2}{\frac{L}{1-\gamma} + \frac{1}{2}L} = \frac{1}{4} \frac{(1-\gamma)^3}{3L - L\gamma}$, then

$$1167 \left(\frac{L}{1-\gamma} + \frac{1}{2}L \right) \frac{2}{(1-\gamma)^2} \eta_t \leq \frac{1}{4}, \forall t. \quad (13)$$

1168 When $\frac{aK^2}{\alpha} \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \eta_t \leq \frac{1}{4}$, then

$$1169 \alpha \geq 4 \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \eta_1 aK^2.$$

1170 Thus, if $\alpha \geq 4 \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 \eta_1 aK^2 = 4 \left(\frac{1-\gamma^T}{1-\gamma} \right)^2 c aK^2$ and $\eta_1 \leq \frac{1}{8} \frac{(1-\gamma)^2}{\frac{L}{1-\gamma} + \frac{1}{2}L}$, we derive that

$$1171 \begin{aligned} \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1172 \leq 2(F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S))) + 4\alpha \log(1/\delta) + 2 \left(\frac{L}{1-\gamma} + \frac{1}{2}L \right) \frac{2}{(1-\gamma)^2} K^2 g(2\theta) \log^{2\theta}(2/\delta) \sum_{t=1}^T \eta_t^2. \end{aligned}$$

1188 Putting the previous bounds together. Hence, if $\theta = \frac{1}{2}$, taking $\alpha = 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 a K^2 =$
 1189 $8(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 K^2$, with probability $1 - 2\delta$, we have
 1190

$$1191 \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \leq 2(F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S))) + 32(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 K^2 \log(1/\delta) \\ 1192 + (\frac{L}{1-\gamma} + \frac{1}{2}L) \frac{4}{(1-\gamma)^2} K^2 g(1) \log(2/\delta) \sum_{t=1}^T \eta_t^2. \\ 1193$$

1194
 1195 If $\frac{1}{2} < \theta \leq 1$, taking $\alpha = \max \left\{ b\frac{1-\gamma^T}{1-\gamma} K G, 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 a K^2 \right\}$
 1196 $= \max \left\{ (4\theta)^\theta e^{\frac{1-\gamma^T}{1-\gamma}} K G, 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 (4\theta)^{2\theta} e^2 K^2 \right\}$, with probability $1 - 2\delta$, we have
 1197

$$1198 \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \leq 2(F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S))) \\ 1199 + 4 \max \left\{ (4\theta)^\theta e^{\frac{1-\gamma^T}{1-\gamma}} K G, 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 (4\theta)^{2\theta} e^2 K^2 \right\} \log(\frac{1}{\delta}) \\ 1200 + (\frac{L}{1-\gamma} + \frac{1}{2}L) \frac{4}{(1-\gamma)^2} K^2 g(2\theta) \log^{2\theta}(2/\delta) \sum_{t=1}^T \eta_t^2. \\ 1201$$

1202 If $\theta > 1$, taking $\alpha = \max \left\{ b\frac{1-\gamma^T}{1-\gamma} K G, 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 a K^2 \right\}$, that is
 1203

$$1204 \alpha = \max \left\{ 2 \log^{\theta-1}(T/\delta) \frac{1-\gamma^T}{1-\gamma} K G, 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 ((2^{2\theta+1} + 2)\Gamma(2\theta + 1) + \frac{2^{3\theta}\Gamma(3\theta + 1)}{3}) K^2 \right\}. \\ 1205$$

1206 Thus, with probability $1 - 4\delta$, we have
 1207

$$1208 \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \leq 2(F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S))) \\ 1209 + (\frac{L}{1-\gamma} + \frac{1}{2}L) \frac{4}{(1-\gamma)^2} K^2 g(2\theta) \log^{2\theta}(2/\delta) \sum_{t=1}^T \eta_t^2 \\ 1210 + 4 \log(1/\delta) \max \left\{ 2 \log^{\theta-1}(T/\delta) \frac{1-\gamma^T}{1-\gamma} K G, \right. \\ 1211 \left. 4(\frac{1-\gamma^T}{1-\gamma})^2\eta_1 ((2^{2\theta+1} + 2)\Gamma(2\theta + 1) + \frac{2^{3\theta}\Gamma(3\theta + 1)}{3}) K^2 \right\}. \\ 1212$$

1213 Note that the dependence on confidence parameter $1/\delta$ in above bounds is logarithmic. One can
 1214 replace δ to $\delta/2$ or $\delta/4$. Through this simple transformation, we have the following results: (1.) if
 1215 $\theta = 1$, under Assumptions 2.1 and 2.9, with probability $1 - \delta$, we have
 1216

$$1217 \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2 \leq \frac{1}{c\sqrt{T}} \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 = \mathcal{O} \left(\frac{1}{\sqrt{T}} \log(1/\delta) \sum_{t=1}^T \eta_t^2 \right) \\ 1218 = \mathcal{O} \left(\frac{1}{\sqrt{T}} \log(1/\delta) \log T \right); \\ 1219 \quad \quad \quad (14)$$

1220 (2.) if $\frac{1}{2} < \theta \leq 1$, under Assumptions 2.1, 2.5, and 2.9, with probability $1 - \delta$, we have
 1221

$$1222 \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2 \leq \frac{1}{c\sqrt{T}} \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 = \mathcal{O} \left(\frac{1}{\sqrt{T}} \log^{2\theta}(1/\delta) \sum_{t=1}^T \eta_t^2 \right) \\ 1223 = \mathcal{O} \left(\frac{1}{\sqrt{T}} \log^{2\theta}(1/\delta) \log T \right); \\ 1224 \quad \quad \quad (15)$$

1242 (3.) if $\theta > 1$, under Assumptions 2.1, 2.5, and 2.9, with probability $1 - \delta$, we have
 1243

$$\begin{aligned}
 1244 \quad & \frac{1}{T} \sum_{t=1}^T \|\nabla F_S(\mathbf{x}_t)\|^2 \leq \frac{1}{c\sqrt{T}} \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \\
 1245 \quad & = \mathcal{O} \left(\frac{\log^{\theta-1}(T/\delta) \log(1/\delta) + \log^{2\theta}(1/\delta) \sum_{t=1}^T \eta_t^2}{\sqrt{T}} \right) \\
 1246 \quad & = \mathcal{O} \left(\frac{\log^{\theta-1}(T/\delta) \log(1/\delta) + \log^{2\theta}(1/\delta) \log T}{\sqrt{T}} \right), \tag{16}
 \end{aligned}$$

1252 where the bound of $\sum_{t=1}^T \eta_t^2$ follows from Lemma C.5. The proof is complete. \square
 1253

1255 D.2 PROOF OF THEOREM 3.3

1257 *Proof.* The proof is divided into three parts.

1258 (1.) In the first part, we prove the bound of $\|\mathbf{x}_t\|$. $\|\mathbf{x}_t\|$ characterizes the bound of $B(\mathbf{0}, R)$, i.e., at
 1259 iterate t , $R = R_t = \|\mathbf{x}_t\|$, because \mathbf{x}_t traverses over a ball with an increasing radius as t increases.
 1260 Therefore one should apply Lemma C.8 with an increasing R .

1261 From the update $\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{m}_t$, by a summation and using $\mathbf{m}_1 = 0$, we get $\mathbf{x}_{t+1} = -\sum_{i=1}^t \mathbf{m}_i$.
 1262 Using $\mathbf{m}_i = \gamma \mathbf{m}_{i-1} + \eta_i \nabla f(\mathbf{x}_i; z_{j_i})$ and recurrence, we have

$$\begin{aligned}
 1264 \quad & \mathbf{m}_i = \sum_{k=1}^i \gamma^{i-k} \eta_k \nabla f(\mathbf{x}_k; z_{j_k}). \\
 1265 \quad &
 \end{aligned}$$

1267 According to Lemma C.6, this gives that
 1268

$$\mathbf{x}_{t+1} = -\sum_{i=1}^t \sum_{k=1}^i \gamma^{i-k} \eta_k \nabla f(\mathbf{x}_k; z_{j_k}) = -\sum_{i=1}^t \frac{1 - \gamma^{t-i+1}}{1 - \gamma} \eta_i \nabla f(\mathbf{x}_i; z_{j_i}). \tag{17}$$

1272 Thus, we have
 1273

$$\begin{aligned}
 1274 \quad & \|\mathbf{x}_{t+1}\| = \frac{1}{1 - \gamma} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \nabla f(\mathbf{x}_i; z_{j_i}) \right\| \\
 1275 \quad & \leq \frac{1}{1 - \gamma} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i)) \right\| + \frac{1}{1 - \gamma} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \nabla F_S(\mathbf{x}_i) \right\|. \tag{18}
 \end{aligned}$$

1281 Let's consider the first term $\left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i)) \right\|$. It is clear that
 1282 $\mathbb{E}_{j_i}[(1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i))] = 0$, which means that it is a MDS. Moreover, since
 1283 $\|\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i)\| \sim \text{subW}(\theta, K)$, we have

$$\mathbb{E} \left[\exp \left(\frac{\|\eta_i(1 - \gamma^{t-i+1})(\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i))\|}{\eta_i(1 - \gamma^t)K} \right)^{\frac{1}{\theta}} \right] \leq 2.$$

1289 Then, we can apply Lemma C.3 to derive the following inequality

$$\begin{aligned}
 1290 \quad & P \left(\max_{1 \leq t \leq T} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{x}_i; z_{j_i}) - \nabla F_S(\mathbf{x}_i)) \right\| \geq x \right) \\
 1291 \quad & \leq 4 \left[3 + (3\theta)^{2\theta} \frac{128K^2(1 - \gamma^T) \sum_{i=1}^T \eta_i^2}{x^2} \right] \exp \left\{ - \left(\frac{x^2}{64K^2(1 - \gamma^T) \sum_{i=1}^T \eta_i^2} \right)^{\frac{1}{2\theta+1}} \right\}.
 \end{aligned}$$

1296
 1297 Setting the term $4 \exp \left\{ - \left(\frac{x^2}{64K^2(1-\gamma^T) \sum_{i=1}^T \eta_i^2} \right)^{\frac{1}{2\theta+1}} \right\}$ equal to δ , we get $x = 8 \log^{(\theta+\frac{1}{2})}(\frac{4}{\delta}) K(1-\gamma^T)^{\frac{1}{2}} (\sum_{i=1}^T \eta_i^2)^{\frac{1}{2}}$. Thus, with probability $1 - 3\delta - \frac{8(3\theta)^{2\theta}}{\log^{2\theta+1} \frac{4}{\delta}} \delta$, we have

$$1300 \max_{1 \leq t \leq T} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{w}_i; z_{j_i}) - \nabla F_S(\mathbf{w}_i)) \right\| \leq 8 \log^{(\theta+\frac{1}{2})}(\frac{4}{\delta}) K(1 - \gamma^T)^{\frac{1}{2}} \left(\sum_{i=1}^T \eta_i^2 \right)^{\frac{1}{2}}. \quad (19)$$

1304 Since $\theta \geq 1/2$ and $\delta \in (0, 1)$, we have $\log^{2\theta+1} \frac{4}{\delta} > 1$. Thus, (19) means that with probability $1 - 3\delta - 8(3\theta)^{2\theta} \delta$, we have

$$1307 \max_{1 \leq t \leq T} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{w}_i; z_{j_i}) - \nabla F_S(\mathbf{w}_i)) \right\| \leq 8 \log^{(\theta+\frac{1}{2})}(\frac{4}{\delta}) K(1 - \gamma^T)^{\frac{1}{2}} \left(\sum_{i=1}^T \eta_i^2 \right)^{\frac{1}{2}}.$$

1310 Now, with probability $1 - \delta$, we can derive

$$1312 \max_{1 \leq t \leq T} \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i (\nabla f(\mathbf{w}_i; z_{j_i}) - \nabla F_S(\mathbf{w}_i)) \right\| \\ 1313 \leq 8 \log^{(\theta+\frac{1}{2})} \left(\frac{4(3 + 8(3\theta)^{2\theta})}{\delta} \right) K(1 - \gamma^T)^{\frac{1}{2}} \left(\sum_{i=1}^T \eta_i^2 \right)^{\frac{1}{2}} = \mathcal{O}(1). \quad (20)$$

1318 For the second term $\left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \nabla F_S(\mathbf{x}_i) \right\|$, we have

$$1321 \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \nabla F_S(\mathbf{x}_i) \right\|^2 \leq \left(\sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \right) \left(\sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \|\nabla F_S(\mathbf{x}_i)\|^2 \right) \\ 1322 \leq \left(\sum_{i=1}^t \eta_i \right) \left(\sum_{i=1}^t \eta_i \|\nabla F_S(\mathbf{x}_i)\|^2 \right), \quad (21)$$

1326 where the first inequality follows from the Schwarz's inequality, and where the second inequality
 1327 follows from the fact that $0 < \gamma < 1$, $\eta_i > 0$ and $\|\nabla F_S(\mathbf{x}_i)\| \geq 0$. For the sake of the presentation,
 1328 we introduce a notation $\Delta(\theta, T, \delta) = \log^{\theta-1}(T/\delta) \log(1/\delta) \mathbb{I}_{\theta>1}$, where $\mathbb{I}_{\theta>1}$ is an indication
 1329 function. Thus with probability $1 - \delta$ we have the following inequality uniformly for all $t = 1, \dots, T$

$$1331 \left\| \sum_{i=1}^t (1 - \gamma^{t-i+1}) \eta_i \nabla F_S(\mathbf{x}_i) \right\|^2 \leq \left(\sum_{i=1}^t \eta_i \right) \left(\sum_{i=1}^t \eta_i \|\nabla F_S(\mathbf{x}_i)\|^2 \right) \\ 1332 = \left(\sum_{i=1}^t \eta_i \right) \mathcal{O} \left(\Delta(\theta, T, \delta) + \log^{2\theta}(1/\delta) \sum_{i=1}^t \eta_i^2 \right), \quad (22)$$

1337 where the last equation follows from the results of (14), (15), and (16).

1338 Plugging (20), (21) and (22) into (18), we have the following inequality uniformly for all $t = 1, \dots, T$
 1339 with probability at least $1 - 2\delta$

$$1341 \|\mathbf{x}_{t+1}\| = \mathcal{O} \left(\log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) (1 - \gamma^T)^{\frac{1}{2}} \left(\sum_{i=1}^T \eta_i^2 \right)^{\frac{1}{2}} \right) + \left(\left(\sum_{i=1}^t \eta_i \right) \mathcal{O}(\Delta(\theta, T, \delta) + \log^{2\theta}(1/\delta) \sum_{i=1}^t \eta_i^2) \right)^{\frac{1}{2}} \\ 1342 \quad (23)$$

$$1345 = \mathcal{O} \left(\log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) (1 - \gamma^T)^{\frac{1}{2}} \log^{\frac{1}{2}} T \right) + \left(t^{\frac{1}{2}} \mathcal{O}(\Delta(\theta, T, \delta) + \log^{2\theta}(1/\delta) \log t) \right)^{\frac{1}{2}} \\ 1346 \leq \mathcal{O} \left(t^{\frac{1}{4}} (\Delta^{\frac{1}{2}}(\theta, T, \delta) + \log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T) \right), \quad (24)$$

1349 where the second equation follows from Lemma C.5.

1350 (2.) In the second part, we prove the bound of $\max_{1 \leq t \leq T} \|\nabla F(\mathbf{x}_t) - \nabla F_S(\mathbf{x}_t)\|$. According to
 1351 Lemma C.8, with probability $1 - \delta$ we have

$$\begin{aligned} 1352 \quad & \max_{1 \leq t \leq T} \|\nabla F(\mathbf{x}_t) - \nabla F_S(\mathbf{x}_t)\| \\ 1353 \quad & \leq \frac{(LR_T + B)}{\sqrt{n}} \left(2 + 2\sqrt{48e\sqrt{2}(\log 2 + d \log(3e))} + \sqrt{2 \log(\frac{1}{\delta})} \right) \\ 1354 \quad & \leq \frac{(L\|\mathbf{x}_T\| + B)}{\sqrt{n}} \left(2 + 2\sqrt{48e\sqrt{2}(\log 2 + d \log(3e))} + \sqrt{2 \log(\frac{1}{\delta})} \right). \end{aligned} \quad (25)$$

1360 Plugging (24) into (25), with probability $1 - 3\delta$ we have the following inequality uniformly for all
 1361 $t = 1, \dots, T$

$$\begin{aligned} 1362 \quad & \max_{1 \leq t \leq T} \|\nabla F(\mathbf{x}_t) - \nabla F_S(\mathbf{x}_t)\| \leq \\ 1363 \quad & \frac{L\mathcal{O}(T^{\frac{1}{4}}(\Delta^{\frac{1}{2}}(\theta, T, \delta) + \log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T)) + B}{\sqrt{n}} \left(2 + 2\sqrt{48e\sqrt{2}(\log 2 + d \log(3e))} + \sqrt{2 \log(\frac{1}{\delta})} \right), \end{aligned}$$

1366 which means that we have the following inequality uniformly for all $t = 1, \dots, T$ with probability
 1367 $1 - \delta$

$$\begin{aligned} 1368 \quad & \max_{1 \leq t \leq T} \|\nabla F(\mathbf{x}_t) - \nabla F_S(\mathbf{x}_t)\|^2 \\ 1369 \quad & = \mathcal{O} \left(\frac{T^{\frac{1}{2}}(\Delta(\theta, T, \delta) + \log^{(2\theta+1)}(\frac{1}{\delta}) \log T)}{n} \times \left(d + \log(\frac{1}{\delta}) \right) \right). \end{aligned} \quad (26)$$

1373 (3.) In the third part, we prove the bound of $\frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2$. Firstly, we can derive the follow-
 1374 ing inequality with probability $1 - 2\delta$

$$\begin{aligned} 1376 \quad & \sum_{t=1}^T \eta_t \|\nabla F(\mathbf{x}_t)\|^2 \\ 1377 \quad & \leq 2 \sum_{t=1}^T \eta_t \|\nabla F(\mathbf{x}_t) - \nabla F_S(\mathbf{x}_t)\|^2 + 2 \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1378 \quad & \leq 2 \sum_{t=1}^T \eta_t \max_{1 \leq t \leq T} \|\nabla F(\mathbf{x}_t) - \nabla F_S(\mathbf{x}_t)\|^2 + 2 \sum_{t=1}^T \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \\ 1379 \quad & \leq 2 \sum_{t=1}^T \eta_t \mathcal{O} \left(\frac{T^{\frac{1}{2}}(\Delta(\theta, T, \delta) + \log^{(2\theta+1)}(\frac{1}{\delta}) \log T)}{n} \left(d + \log(\frac{1}{\delta}) \right) \right) \\ 1380 \quad & \quad + \mathcal{O} \left(\Delta(\theta, T, \delta) + \log^{2\theta}(1/\delta) \log T \right), \end{aligned}$$

1389 where the last inequality follows from (26) and the results of (14), (15), and (16).

1390 Therefore, we have

$$\begin{aligned} 1392 \quad & \frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2 \leq \frac{1}{c\sqrt{T}} \sum_{t=1}^T \eta_t \|\nabla F(\mathbf{x}_t)\|^2 \\ 1393 \quad & = \mathcal{O} \left(\frac{\sqrt{T}(\Delta(\theta, T, \delta) + \log^{(2\theta+1)}(\frac{1}{\delta}) \log T)}{n} \times \left(d + \log(\frac{1}{\delta}) \right) \right) \\ 1394 \quad & \quad + \mathcal{O} \left(\frac{\Delta(\theta, T, \delta) + \log^{2\theta}(1/\delta) \log T}{\sqrt{T}} \right). \end{aligned}$$

1400 Taking $T \asymp \frac{n}{d}$, we have the following inequality with probability $1 - 2\delta$

$$1402 \quad \frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2 = \mathcal{O} \left(\left(\frac{d}{n} \right)^{\frac{1}{2}} \left(\log(\frac{n}{d}) \log^{(2\theta+2)}(\frac{1}{\delta}) + \Delta(\theta, \frac{n}{d}, \delta) \log(1/\delta) \right) \right),$$

1404 which means with probability at least $1 - \delta$ we have
 1405

$$\begin{aligned} 1406 \quad & \frac{1}{T} \sum_{t=1}^T \|\nabla F(\mathbf{x}_t)\|^2 = \mathcal{O} \left(\left(\frac{d}{n} \right)^{\frac{1}{2}} \left(\log \left(\frac{n}{d} \right) \log^{(2\theta+2)} \left(\frac{1}{\delta} \right) + \Delta(\theta, \frac{n}{d}, \delta) \log(1/\delta) \right) \right) \\ 1407 \quad & = \mathcal{O} \left(\left(\frac{d}{n} \right)^{\frac{1}{2}} \left(\log \left(\frac{n}{d} \right) \log^{(2\theta+2)} \left(\frac{1}{\delta} \right) + \log^{\theta-1} (n/d\delta) \log^2(1/\delta) \mathbb{I}_{\theta>1} \right) \right). \end{aligned}$$

1411 The proof is complete. \square
 1412

1413 **D.3 PROOF OF THEOREM 3.5**

1414 *Proof.* The proof of Theorem 3.5 is relatively complex and is divided into two parts.
 1415

1416 **(1.)** In the first part, we prove the bound of $\|\mathbf{x}_{t+1}\|$, characterizing the bound of $B(\mathbf{0}, R)$, i.e.,
 1417 at iterate $t + 1$, $R = R_{t+1} = \|\mathbf{x}_{t+1}\|$. Recall that in (13), we need $\eta_t \leq \frac{1}{8} \frac{(1-\gamma)^2}{\frac{L}{1-\gamma} + \frac{1}{2}L}$. Since
 1418 $\eta_t = \frac{1}{\mu(S)(t+t_0)}$, when $t_0 \geq \frac{8(\frac{L}{1-\gamma} + \frac{1}{2}L)}{\mu(S)(1-\gamma)^2} = \frac{12L-4L\gamma}{\mu(S)(1-\gamma)^3}$, we have $\eta_t \leq \frac{1}{8} \frac{(1-\gamma)^2}{\frac{L}{1-\gamma} + \frac{1}{2}L}$. Thus, we can use
 1419 (23) to bound $\|\mathbf{x}_{t+1}\|$. According to (23), we have the following inequality with probability $1 - \delta$
 1420 uniformly for all $t = 1, \dots, T$

$$\begin{aligned} 1424 \quad & \|\mathbf{x}_{t+1}\| = \mathcal{O} \left(\log^{(\theta+\frac{1}{2})} \left(\frac{1}{\delta} \right) \left(\sum_{t=1}^T \eta_t^2 \right)^{\frac{1}{2}} + \left(\sum_{i=1}^t \eta_i \right)^{\frac{1}{2}} \left(\Delta^{\frac{1}{2}}(\theta, T, \delta) + \log^{\theta} (1/\delta) \left(\sum_{i=1}^t \eta_i^2 \right)^{\frac{1}{2}} \right) \right) \\ 1425 \quad & \leq \mathcal{O} \left(\left(\log^{(\theta+\frac{1}{2})} \left(\frac{1}{\delta} \right) + \Delta^{\frac{1}{2}}(\theta, T, \delta) \right) \log^{\frac{1}{2}} T \right), \end{aligned} \quad (27)$$

1429 where $\Delta(\theta, T, \delta) = \log^{\theta-1}(T/\delta) \log(1/\delta) \mathbb{I}_{\theta>1}$, and where the last inequality follows from $\eta_t =$
 1430 $\frac{1}{\mu(S)(t+t_0)}$ with $t_0 \geq 1$ and Lemma C.5.
 1431

1432 **(2.)** In the second part, we prove the bound of $F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))$. It is clear that
 1433

$$\begin{aligned} 1434 \quad & F_S(\mathbf{x}_{t+1}) - F_S(\mathbf{x}_t) \\ 1435 \quad & \leq \langle \mathbf{x}_{t+1} - \mathbf{x}_t, \nabla F_S(\mathbf{x}_t) \rangle + \frac{1}{2} L \|\mathbf{x}_{t+1} - \mathbf{x}_t\|^2 \\ 1436 \quad & \leq -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + L\gamma \|\mathbf{m}_{t-1}\|^2 - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle + \frac{1}{2} L \|\mathbf{m}_t\|^2 \\ 1437 \quad & = -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + L\gamma \|\mathbf{m}_{t-1}\|^2 - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \\ 1438 \quad & \quad - \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 + \frac{1}{2} L \|\mathbf{m}_t\|^2, \end{aligned}$$

1443 where the second inequality follows from (6). We can derive that
 1444

$$\begin{aligned} 1445 \quad & \frac{1}{2} \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 + F_S(\mathbf{x}_{t+1}) - F_S(\mathbf{x}_t) \\ 1446 \quad & \leq -\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + L\gamma \|\mathbf{m}_{t-1}\|^2 - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \\ 1447 \quad & \quad - \frac{1}{2} \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 + \frac{1}{2} L \|\mathbf{m}_t\|^2. \end{aligned}$$

1450 Since $\eta_t = \frac{1}{\mu(S)(t+t_0)}$, it implies that
 1451

$$\begin{aligned} 1452 \quad & \frac{1}{2} \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 + F_S(\mathbf{x}_{t+1}) - F_S(\mathbf{x}_S) \\ 1453 \quad & \leq \left(1 - \frac{2}{t+t_0} \right) (F_S(\mathbf{x}_t) - F_S(\mathbf{x}_S)) - \gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + L\gamma \|\mathbf{m}_{t-1}\|^2 \\ 1454 \quad & \quad - \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle + \frac{1}{2} L \|\mathbf{m}_t\|^2. \end{aligned}$$

1458 Multiplying both sides by $(t + t_0)(t + t_0 - 1)$, we get
 1459

$$\begin{aligned}
 1460 \quad & \frac{(t + t_0 - 1)}{2\mu(S)} \|\nabla F_S(\mathbf{x}_t)\|^2 + (t + t_0)(t + t_0 - 1)(F_S(\mathbf{x}_{t+1}) - F_S(\mathbf{x}_S)) \\
 1461 \quad & \leq - (t + t_0)(t + t_0 - 1)\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + (t + t_0)(t + t_0 - 1)L\gamma \|\mathbf{m}_{t-1}\|^2 \\
 1462 \quad & + (t + t_0)(t + t_0 - 1)\frac{1}{2}L\|\mathbf{m}_t\|^2 \\
 1463 \quad & + (t + t_0 - 1)(t + t_0 - 2)(F_S(\mathbf{x}_t) - F_S(\mathbf{x}_S)) \\
 1464 \quad & - (t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle.
 \end{aligned}$$

1465
 1466 Taking a summation from $t = 1$ to $t = T$, we derive that
 1467

$$\begin{aligned}
 1468 \quad & \sum_{t=1}^T \frac{(t + t_0 - 1)}{2\mu(S)} \|\nabla F_S(\mathbf{x}_t)\|^2 + (T + t_0)(T + t_0 - 1)(F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}_S)) \\
 1469 \quad & \leq - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + \sum_{t=1}^T (t + t_0)(t + t_0 - 1)L\gamma \|\mathbf{m}_{t-1}\|^2 \\
 1470 \quad & + \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\frac{1}{2}L\|\mathbf{m}_t\|^2 \\
 1471 \quad & + (t_0 - 1)(t_0 - 2)(F_S(\mathbf{x}_1) - F_S(\mathbf{x}_S)) \\
 1472 \quad & - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle.
 \end{aligned}$$

1473
 1474 Since $\mathbf{m}_0 = 0$, we get
 1475

$$\begin{aligned}
 1476 \quad & \sum_{t=1}^T \frac{(t + t_0 - 1)}{2\mu(S)} \|\nabla F_S(\mathbf{x}_t)\|^2 + (T + t_0)(T + t_0 - 1)(F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}_S)) \\
 1477 \quad & \leq - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\gamma \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle + \sum_{t=1}^{T-1} (t + t_0 + 1)(t + t_0)L\gamma \|\mathbf{m}_t\|^2 \\
 1478 \quad & + \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\frac{1}{2}L\|\mathbf{m}_t\|^2 \\
 1479 \quad & + (t_0 - 1)(t_0 - 2)(F_S(\mathbf{x}_1) - F_S(\mathbf{x}_S)) \\
 1480 \quad & - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle. \tag{28}
 \end{aligned}$$

1481
 1482 We first bound the term $\sum_{t=1}^{T-1} (t + t_0 + 1)(t + t_0)\|\mathbf{m}_t\|^2$. Note that from the Jensen's inequality,
 1483 we have
 1484

$$\|\mathbf{m}_t\|^2 = \|\gamma \mathbf{m}_{t-1} + \frac{1-\gamma}{1-\gamma} \eta_t \nabla f(\mathbf{x}_t; z_{j_t})\|^2 \leq \gamma \|\mathbf{m}_{t-1}\|^2 + \frac{1}{1-\gamma} \|\eta_t \nabla f(\mathbf{x}_t; z_{j_t})\|^2.$$

1485 By recurrence, it gives that
 1486

$$\|\mathbf{m}_t\|^2 \leq \sum_{i=1}^t \frac{\gamma^{t-i}}{1-\gamma} \|\eta_i \nabla f(\mathbf{x}_i; z_{j_i})\|^2.$$

Thus, we have

$$\begin{aligned}
& \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \|\mathbf{m}_t\|^2 \\
& \leq \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \sum_{i=1}^t \frac{\gamma^{t-i}}{1-\gamma} \|\eta_i \nabla f(\mathbf{x}_i; z_{j_i})\|^2 \\
& = \sum_{t=1}^{T-1} \frac{\gamma^{-t}}{1-\gamma} \|\eta_t \nabla f(\mathbf{x}_t; z_{j_t})\|^2 \sum_{i=t}^{T-1} \gamma^i (i+t_0+1)(i+t_0)
\end{aligned} \tag{29}$$

Considering $\sum_{i=t}^{T-1} (i + t_0 + 1)(i + t_0)\gamma^i$, we have

$$\begin{aligned}
& \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0)\gamma^i \\
& \leq \int_t^{T-1} (i+t_0+1)(i+t_0)\gamma^i di \\
& \leq \int_t^{T-1} (i+t_0+1)^2 \gamma^i di \\
& = \frac{\gamma^i}{\ln \gamma} (i+t_0+1)^2 \Big|_{i=t}^{i=T-1} - 2 \int_t^{T-1} (i+t_0+1) \gamma^i di \\
& = \frac{\gamma^i}{\ln \gamma} (i+t_0+1)^2 \Big|_{i=t}^{i=T-1} - 2 \left[\frac{\gamma^i}{\ln^2 \gamma} (i+t_0+1) \Big|_{i=t}^{i=T-1} - \int_t^{T-1} \gamma^i di \right].
\end{aligned}$$

Solving the above integral, and since $\ln \gamma < 0$, we get

$$\begin{aligned} & \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0)\gamma^i \\ & \leq -\frac{\gamma^t}{\ln \gamma} (t+t_0+1)^2 + 2\frac{\gamma^t}{\ln^2 \gamma} (t+t_0+1) - 2\frac{\gamma^t}{\ln \gamma} \leq (C_\gamma)\gamma^t (t+t_0+1)^2, \end{aligned} \quad (30)$$

where $C_\gamma = 1 + 2\frac{1}{\ln^2 \gamma} - \frac{3}{\ln \gamma}$, which is a constant only depend on γ . Thus, according to (29), we have

$$\begin{aligned} & \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \|\mathbf{m}_t\|^2 \leq \sum_{t=1}^{T-1} (t+t_0+1)^2 \frac{(C_\gamma)}{(1-\gamma)} \|\eta_t \nabla f(\mathbf{x}_t; z_{j_t})\|^2 \\ & \leq \frac{(C_\gamma)}{(1-\gamma)\mu(S)^2} \sum_{t=1}^{T-1} \frac{(t+t_0+1)^2}{(t+t_0)^2} \|\nabla f(\mathbf{x}_t; z_{j_t})\|^2. \end{aligned}$$

And since $\frac{(t+t_0+1)^2}{(t+t_0)^2} = (1 + \frac{1}{t+t_0})^2 \leq 4$, then we have

$$\begin{aligned}
& \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \|\mathbf{m}_t\|^2 \\
& \leq \frac{(4C_\gamma)}{(1-\gamma)\mu(S)^2} \sum_{t=1}^{T-1} \|\nabla f(\mathbf{x}_t; z_{j_t})\|^2 \\
& \leq \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \left(\sum_{t=1}^{T-1} \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2 + \|\nabla F_S(\mathbf{x}_t)\|^2 \right).
\end{aligned}$$

Since $\|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\| \sim \text{subW}(\theta, K)$, we get $\mathbb{E} \left[\exp \left(\frac{\|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2}{K^2} \right)^{\frac{1}{2\theta}} \right] \leq 2$.

According to Lemma C.2, we get the following inequality with probability at least $1 - \delta$

$$\sum_{t=1}^{T-1} \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\|^2 \leq (T-1)K^2g(2\theta)\log^{2\theta}(2/\delta).$$

1566 Thus, with probability at least $1 - \delta$, we have
 1567

$$\begin{aligned}
 1568 \quad & \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \|\mathbf{m}_t\|^2 \leq \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2 g(2\theta) \log^{2\theta}(2/\delta) \\
 1569 \quad & + \sum_{t=1}^{T-1} \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2. \tag{31}
 \end{aligned}$$

1574 Similarly, with probability at least $1 - \delta$, we can derive
 1575

$$\begin{aligned}
 1576 \quad & \sum_{t=1}^T (t+t_0)(t+t_0-1) \|\mathbf{m}_t\|^2 \\
 1577 \quad & \leq \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} T K^2 g(2\theta) \log^{2\theta}(2/\delta) + \sum_{t=1}^T \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2.
 \end{aligned}$$

1582 We then bound $-\sum_{t=1}^T (t+t_0)(t+t_0-1) \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle$. Recall that from (7), we know
 1583

$$-\langle \mathbf{m}_t, \nabla F_S(\mathbf{x}_t) \rangle \leq L \sum_{i=1}^{t-1} \gamma^{t-i} \|\mathbf{m}_i\|^2 - \sum_{i=1}^t \gamma^{t-i} \langle \eta_i \nabla f(\mathbf{x}_i; z_{j_i}), \nabla F_S(\mathbf{x}_i) \rangle.$$

1587 Since $\mathbf{m}_0 = 0$, we have
 1588

$$\begin{aligned}
 1589 \quad & -\sum_{t=1}^T (t+t_0)(t+t_0-1) \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle \\
 1590 \quad & = -\sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \langle \mathbf{m}_t, \nabla F_S(\mathbf{x}_t) \rangle \\
 1591 \quad & \leq \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) L \sum_{i=1}^{t-1} \gamma^{t-i} \|\mathbf{m}_i\|^2 \\
 1592 \quad & - \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \sum_{i=1}^t \gamma^{t-i} \langle \eta_i \nabla f(\mathbf{x}_i; z_{j_i}), \nabla F_S(\mathbf{x}_i) \rangle \\
 1593 \quad & \leq \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) L \sum_{i=1}^t \gamma^{t-i} \|\mathbf{m}_i\|^2 \\
 1594 \quad & - \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \sum_{i=1}^t \gamma^{t-i} \langle \eta_i \nabla f(\mathbf{x}_i; z_{j_i}), \nabla F_S(\mathbf{x}_i) \rangle \\
 1595 \quad & = \sum_{t=1}^{T-1} \gamma^{-t} \|\mathbf{m}_t\|^2 L \sum_{i=t}^{T-1} \gamma^i (i+t_0+1)(i+t_0) \\
 1596 \quad & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i \\
 1597 \quad & = \sum_{t=1}^{T-1} \gamma^{-t} \|\mathbf{m}_t\|^2 L \sum_{i=t}^{T-1} \gamma^i (i+t_0+1)(i+t_0) \\
 1598 \quad & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i \\
 1599 \quad & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i,
 \end{aligned}$$

1620 where the second equation holds by using Lemma C.6.
 1621

1622 With a similar analysis to (31), it is clear that with probability $1 - \delta$

$$\begin{aligned} 1623 \quad & \sum_{t=1}^{T-1} \gamma^{-t} \|\mathbf{m}_t\|^2 L \sum_{i=t}^{T-1} \gamma^i (i+t_0+1)(i+t_0) \leq LC_\gamma \sum_{t=1}^{T-1} \|\mathbf{m}_t\|^2 (t+t_0+1)^2 \\ 1624 \quad & \leq L(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2 g(2\theta) \log^{2\theta}(2/\delta) + \sum_{t=1}^{T-1} L(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1625 \quad & \end{aligned}$$

1626 And we also have
 1627

$$\begin{aligned} 1628 \quad & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i \\ 1629 \quad & \leq - \sum_{t=1}^{T-1} \gamma^{-t} (t+t_0+1)(t+t_0) \langle \eta_t \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} \gamma^i \\ 1630 \quad & \leq - \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \langle \eta_t \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \\ 1631 \quad & = - \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1632 \quad & \end{aligned}$$

1633 Thus, we have
 1634

$$\begin{aligned} 1635 \quad & - \sum_{t=1}^T (t+t_0)(t+t_0-1) \langle \mathbf{m}_{t-1}, \nabla F_S(\mathbf{x}_{t-1}) \rangle \\ 1636 \quad & \leq - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i \\ 1637 \quad & - \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0) \eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 + L(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2 g(2\theta) \log^{2\theta}(2/\delta) \\ 1638 \quad & + \sum_{t=1}^{T-1} L(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1639 \quad & \end{aligned}$$

1640 We now consider the term $-\sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i$. Denoted by $\xi_t = -\gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i$. We know that $\mathbb{E}_{j_t} \xi_t = -\mathbb{E}_{j_t} \gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i = 0$, implying that it is a martingale difference sequence. We use Lemma C.4 to bound this term.
 1641

1642 From (30), it is clear that $|\gamma^{-t} \langle \eta_t (\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i| \leq (C_\gamma)(t+t_0+1)^2 \eta_t \|\nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t)\| \|\nabla F_S(\mathbf{x}_t)\|$. We set
 1643

$$K_{t-1} = C_\gamma (t+t_0+1)^2 \eta_t K \|\nabla F_S(\mathbf{x}_t)\| = C_\gamma (t+t_0+1)^2 \frac{1}{\mu(S)(t+t_0)} K \|\nabla F_S(\mathbf{x}_t)\|.$$

1644 We also set $\beta = 0$, $\lambda = \frac{1}{2\alpha}$, and $x = 2\alpha \log(1/\delta)$. For brevity, we denote $\Xi = 2C_\gamma(t+t_0+1)\mu(S)^{-1}K$ and $\Xi_T = 2C_\gamma(T+t_0+1)\mu(S)^{-1}K$. Moreover, according to the smoothness assumption, we know $\|\nabla F_S(\mathbf{x}_t)\| \leq (L\|\mathbf{x}_t\| + B)$.
 1645

1646 If $\theta = \frac{1}{2}$, for all $\alpha > 0$, we have the following inequality with probability $1 - \delta$
 1647

$$\begin{aligned} 1648 \quad & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i+t_0+1)(i+t_0) \gamma^i \\ 1649 \quad & \leq 2\alpha \log(1/\delta) + \frac{a}{\alpha} \sum_{t=1}^{T-1} \Xi^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1650 \quad & \end{aligned}$$

1674 If $\frac{1}{2} < \theta \leq 1$, we set $m_t = \Xi(L\|\mathbf{x}_t\| + B)$. Then for all $\alpha \geq b\Xi_T(L\|\mathbf{x}_T\| + B)$, we have the
 1675 following inequality with probability $1 - \delta$
 1676

$$\begin{aligned} 1677 & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i + t_0 + 1)(i + t_0) \gamma^i \\ 1678 & \leq 2\alpha \log(1/\delta) + \frac{a}{\alpha} \sum_{t=1}^{T-1} \Xi^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1680 & \\ 1681 & \\ 1682 & \\ 1683 \end{aligned}$$

1684 If $\theta > 1$, we set $m_t = \Xi(L\|\mathbf{x}_t\| + B)$ and $\delta = \delta$. Then, for all $\alpha \geq b\Xi_T(L\|\mathbf{x}_T\| + B)$, we have the
 1685 following inequality with probability $1 - 3\delta$
 1686

$$\begin{aligned} 1687 & - \sum_{t=1}^{T-1} \gamma^{-t} \langle \eta_t \nabla f(\mathbf{x}_t; z_{j_t}), \nabla F_S(\mathbf{x}_t) \rangle \sum_{i=t}^{T-1} (i + t_0 + 1)(i + t_0) \gamma^i \\ 1688 & \leq 2\alpha \log(1/\delta) + \frac{a}{\alpha} \sum_{t=1}^{T-1} \Xi^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1689 & \\ 1690 & \\ 1691 & \\ 1692 & \\ 1693 \end{aligned}$$

1694 We now consider the last term $-(t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle$. With a
 1695 similar analysis, we set $\xi_t = -(t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle$ and
 1696

$$1697 K_{t-1} = (t + t_0)(t + t_0 - 1)\eta_t K \|\nabla F_S(\mathbf{x}_t)\| = \mu(S)^{-1}(t + t_0 - 1)K \|\nabla F_S(\mathbf{x}_t)\|. \\ 1698$$

1699 We also set $\beta = 0$, $\lambda = \frac{1}{2\alpha}$, and $x = 2\alpha \log(1/\delta)$. According to the smoothness assumption, we
 1700 know $\|\nabla F_S(\mathbf{x}_t)\| \leq (L\|\mathbf{x}_t\| + B)$.
 1701

If $\theta = \frac{1}{2}$, for all $\alpha > 0$, we have the following inequality with probability at least $1 - \delta$
 1702

$$\begin{aligned} 1703 & - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \\ 1704 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\mu(S)^2 \alpha} \sum_{t=1}^T (t + t_0 - 1)^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1705 & \\ 1706 & \\ 1707 & \\ 1708 & \\ 1709 \end{aligned}$$

1710 If $\frac{1}{2} < \theta \leq 1$, we set $m_t = \mu(S)^{-1}(t + t_0 - 1)K(L\|\mathbf{x}_t\| + B)$. Then for all $\alpha \geq b\mu(S)^{-1}(T +$
 1711 $t_0 - 1)K(L\|\mathbf{x}_T\| + B)$, we have the following inequality with probability at least $1 - \delta$
 1712

$$\begin{aligned} 1713 & - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \\ 1714 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\mu(S)^2 \alpha} \sum_{t=1}^T (t + t_0 - 1)^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1715 & \\ 1716 & \\ 1717 & \\ 1718 & \\ 1719 \end{aligned}$$

1720 If $\theta > 1$, we set $m_t = \mu(S)^{-1}(t + t_0 - 1)K(L\|\mathbf{x}_t\| + B)$ and $\delta = \delta$. Then, for all $\alpha \geq b\mu(S)^{-1}(T +$
 1721 $t_0 - 1)K(L\|\mathbf{x}_T\| + B)$, we have the following inequality with probability at least $1 - 3\delta$
 1722

$$\begin{aligned} 1723 & - \sum_{t=1}^T (t + t_0)(t + t_0 - 1)\eta_t \langle \nabla f(\mathbf{x}_t; z_{j_t}) - \nabla F_S(\mathbf{x}_t), \nabla F_S(\mathbf{x}_t) \rangle \\ 1724 & \leq 2\alpha \log(1/\delta) + \frac{aK^2}{\mu(S)^2 \alpha} \sum_{t=1}^T (t + t_0 - 1)^2 \|\nabla F_S(\mathbf{x}_t)\|^2. \\ 1725 & \\ 1726 & \\ 1727 & \\ 1728 \end{aligned}$$

Finally, combining with these terms, we derive

$$\begin{aligned}
 & \sum_{t=1}^T \frac{(t+t_0-1)}{2\mu(S)} \|\nabla F_S(\mathbf{x}_t)\|^2 - \frac{aK^2}{\mu(S)^2\alpha} \sum_{t=1}^T (t+t_0-1)^2 \|\nabla F_S(\mathbf{x}_t)\|^2 \\
 & - \frac{L}{2} \sum_{t=1}^T \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2 \\
 & - L\gamma \sum_{t=1}^{T-1} \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2 + \sum_{t=1}^{T-1} (t+t_0+1)(t+t_0)\eta_t \|\nabla F_S(\mathbf{x}_t)\|^2 \\
 & - \sum_{t=1}^{T-1} L\gamma(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} \|\nabla F_S(\mathbf{x}_t)\|^2 \\
 & - \gamma \frac{a}{\alpha} \sum_{t=1}^{T-1} \Xi^2 \|\nabla F_S(\mathbf{x}_t)\|^2 + (T+t_0)(T+t_0-1)(F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))) \\
 & \leq L\gamma \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2 g(2\theta) \log^{2\theta}(2/\delta) + \frac{L}{2} \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} T K^2 g(2\theta) \log^{2\theta}(2/\delta) \\
 & + L\gamma(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2 g(2\theta) \log^{2\theta}(2/\delta) + (t_0-1)(t_0-2)(F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S))) \\
 & + 2\alpha \log(1/\delta) + \gamma 2\alpha \log(1/\delta). \tag{32}
 \end{aligned}$$

We want

$$\frac{(t+t_0-1)}{2\mu(S)} - \frac{aK^2}{\mu(S)^2\alpha} (t+t_0-1)^2 - \frac{L}{2} \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2} \geq 0$$

and

$$\frac{(t+t_0+1)}{\mu(S)} - L\gamma \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} - L\gamma(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} - \gamma \frac{a}{\alpha} \Xi^2 \geq 0.$$

Thus, we assume that t_0 satisfies the following conditions

$$\frac{(t_0-1)}{2\mu(S)} \geq \frac{L}{2} \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2};$$

and

$$\frac{(t_0+1)}{\mu(S)} \geq L\gamma \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2} + L\gamma(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)\mu(S)^2},$$

which means that

$$t_0 \geq \frac{(8C_\gamma)L}{(1-\gamma)^2\mu(S)} + 1;$$

and

$$t_0 \geq \frac{8C_\gamma(L\gamma + L\gamma(C_\gamma))}{(1-\gamma)\mu(S)} - 1.$$

Thus, we can further derive that $\alpha \geq \frac{aK^2(t+t_0-1)^2}{\frac{(t+t_0-1)}{2\mu(S)} - \frac{L}{2} \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2}}$ and

$$\alpha \geq \frac{\gamma a (2C_\gamma(t+t_0+1)\mu(S)^{-1}K)^2}{\frac{(t+t_0+1)}{\mu(S)} - L\gamma \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2} - L\gamma(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2}}.$$

When $\theta = \frac{1}{2}$, the above lower bounds of α are: $\alpha \geq \frac{aK^2(t+t_0-1)^2}{\frac{(t+t_0-1)}{2\mu(S)} - \frac{L}{2} \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2}}$,

$\alpha \geq \frac{\gamma a (2C_\gamma(t+t_0+1)\mu(S)^{-1}K)^2}{\frac{(t+t_0+1)}{\mu(S)} - L\gamma \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2} - L\gamma(C_\gamma) \frac{(8C_\gamma)}{(1-\gamma)^2\mu(S)^2}}$, and $\alpha > 0$, which implies that we should choose $\alpha = \mathcal{O}(T)$.

1782 When $\frac{1}{2} < \theta \leq 1$, the above lower bounds of α are: $\alpha \geq \frac{aK^2(t+t_0-1)^2}{\frac{(t+t_0-1)}{2\mu(S)} - \frac{L}{2} \frac{(8C\gamma)}{(1-\gamma)^2\mu(S)^2}}$, $\alpha \geq$
 1783 $\frac{\gamma a(2C\gamma(t+t_0+1)\mu(S)^{-1}K)^2}{\frac{(t+t_0+1)}{\mu(S)} - L\gamma \frac{(8C\gamma)}{(1-\gamma)^2\mu(S)^2} - L\gamma(C\gamma) \frac{(8C\gamma)}{(1-\gamma)^2\mu(S)^2}}$, $\alpha \geq b\Xi_T(L\|\mathbf{x}_T\| + B)$, and $\alpha \geq b\mu(S)^{-1}(T + t_0 - 1)K(L\|\mathbf{x}_T\| + B)$, which implies that we should choose $\alpha = \mathcal{O}\left(T \log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T\right)$.
 1784
 1785
 1786
 1787

1788 When $\theta > 1$, the above lower bounds of α are: $\alpha \geq \frac{aK^2(t+t_0-1)^2}{\frac{(t+t_0-1)}{2\mu(S)} - \frac{L}{2} \frac{(8C\gamma)}{(1-\gamma)^2\mu(S)^2}}$,
 1789 $\alpha \geq \frac{\gamma a(2C\gamma(t+t_0+1)\mu(S)^{-1}K)^2}{\frac{(t+t_0+1)}{\mu(S)} - L\gamma \frac{(8C\gamma)}{(1-\gamma)^2\mu(S)^2} - L\gamma(C\gamma) \frac{(8C\gamma)}{(1-\gamma)^2\mu(S)^2}}$, $\alpha \geq b\Xi_T(L\|\mathbf{x}_T\| + B)$, and $\alpha \geq b\mu(S)^{-1}(T + t_0 - 1)K(L\|\mathbf{x}_T\| + B)$, which implies that we should choose
 1790
 1791
 1792

$$1793 \quad 1794 \quad \alpha = \mathcal{O}\left(\log^{\theta-1}(\frac{T}{\delta})T\left(\log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) + \log^{\frac{\theta-1}{2}}(T/\delta) \log^{\frac{1}{2}}(1/\delta)\right) \log^{\frac{1}{2}} T\right). \\ 1795$$

1796 Note that the bound of $\|\mathbf{x}_T\|$ comes from (27).
 1797

1798 Thus, we derive that
 1799

$$1799 \quad (T+t_0)(T+t_0-1)(F_S(\mathbf{x}_{t+1}) - F_S(\mathbf{x}(S))) \\ 1800 \quad \leq L\gamma \frac{(8C\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2g(2\theta)\log^{2\theta}(2/\delta) + \frac{L}{2} \frac{(8C\gamma)}{(1-\gamma)\mu(S)^2} TK^2g(2\theta)\log^{2\theta}(2/\delta) \\ 1801 \quad + L\gamma(C\gamma) \frac{(8C\gamma)}{(1-\gamma)\mu(S)^2} (T-1)K^2g(2\theta)\log^{2\theta}(2/\delta) \\ 1802 \quad + (t_0-1)(t_0-2)(F_S(\mathbf{x}_1) - F_S(\mathbf{x}(S))) + 2\alpha \log(1/\delta) + \gamma 2\alpha \log(1/\delta). \\ 1803 \\ 1804 \\ 1805$$

1806 Putting the previous bounds together.
 1807

1808 If $\theta = 1$, with probability $1 - 6\delta$, we have
 1809

$$1809 \quad 1810 \quad F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \mathcal{O}\left(\frac{\log(1/\delta)}{T}\right).$$

1811 If $\frac{1}{2} < \theta \leq 1$, with probability $1 - 7\delta$, we have
 1812

$$1813 \quad 1814 \quad F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \mathcal{O}\left(\frac{\log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T} \log(\frac{1}{\delta})\right).$$

1815 If $\theta > 1$, with probability $1 - 10\delta$, we have
 1816

$$1817 \quad 1818 \quad F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \mathcal{O}\left(\frac{\left(\log^{(\theta+\frac{1}{2})}(\frac{1}{\delta}) + \Delta^{\frac{1}{2}}(\theta, T, \delta)\right) \log^{\frac{1}{2}} T}{T} \log^{\theta-1}(\frac{T}{\delta}) \log(\frac{1}{\delta})\right).$$

1819 The above bounds mean that with probability $1 - \delta$, there holds
 1820

$$1821 \quad 1822 \quad F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S)) = \begin{cases} \mathcal{O}\left(\frac{\log(1/\delta)}{T}\right) & \text{if } \theta = \frac{1}{2}, \\ \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T}\right) & \text{if } \theta \in (\frac{1}{2}, 1], \\ \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T}\right) & \text{if } \theta > 1. \end{cases} \quad (33)$$

1823 The proof is complete. □
 1824

1825 D.4 PROOF OF THEOREM 3.7

1826 *Proof.* Recall Assumption 2.7 (Polyak-Łojasiewicz condition), which gives
 1827

$$1828 \quad 1829 \quad F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) \leq \frac{1}{4\mu} \|\nabla F(\mathbf{x}_{T+1})\|^2 \leq \frac{1}{2\mu} (\|\nabla F(\mathbf{x}_{T+1}) - \nabla F_S(\mathbf{x}_{T+1})\|^2 + \|\nabla F_S(\mathbf{x}_{T+1})\|^2). \\ 1830 \\ 1831 \\ 1832 \\ 1833 \\ 1834 \\ 1835 \quad (34)$$

1836 From (27) and Lemma C.8, with probability $1 - \delta$ we have
 1837

$$\begin{aligned} 1838 \quad \|\nabla F(\mathbf{x}_{T+1}) - \nabla F_S(\mathbf{x}_{T+1})\|^2 &= \mathcal{O}\left(\frac{d + \log(\frac{1}{\delta})}{n} \|\mathbf{x}_{T+1}\|^2\right) \\ 1839 \\ 1840 \quad &= \mathcal{O}\left(\frac{d + \log(\frac{1}{\delta})}{n} \left(\log^{(2\theta+1)}(\frac{1}{\delta}) + \Delta(\theta, T, \delta)\right) \log T\right). \end{aligned} \quad (35)$$

1842 From the smoothness property in Lemma C.7 and the convergence bound in (33), with probability
 1843 $1 - \delta$, there holds
 1844

$$\begin{aligned} 1845 \quad \|\nabla F_S(\mathbf{x}_{T+1})\|^2 &\leq (2L)(F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))) \\ 1846 \\ 1847 \quad &= \begin{cases} \mathcal{O}\left(\frac{\log(1/\delta)}{T}\right) & \text{if } \theta = \frac{1}{2}, \\ 1848 \quad \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T}\right) & \text{if } \theta \in (\frac{1}{2}, 1], \\ 1849 \quad \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T}\right) & \text{if } \theta > 1. \end{cases} \\ 1850 \\ 1851 \end{aligned} \quad (36)$$

1852 Plugging (35) and (36) into (34), we derive that with probability $1 - 2\delta$, there holds: (1.) if $\theta = \frac{1}{2}$,
 1853

$$1854 \quad F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log(1/\delta)}{T} + \frac{d + \log(\frac{1}{\delta})}{n} \log^2(\frac{1}{\delta}) \log T\right);$$

1855 (2.) if $\theta \in (\frac{1}{2}, 1]$,

$$1856 \quad F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T} + \frac{d + \log(\frac{1}{\delta})}{n} \log^{(2\theta+1)}(\frac{1}{\delta}) \log T\right);$$

1857 (3.) if $\theta > 1$,

$$1858 \quad F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) \\ 1859 \quad = \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T} + \frac{d + \log(\frac{1}{\delta})}{n} \left(\log^{(2\theta+1)}(\frac{1}{\delta}) + \Delta(\theta, T, \delta)\right) \log T\right).$$

1860 We choose $T \asymp n$, then with probability at least $1 - \delta$, there holds
 1861

$$1862 \quad F(\mathbf{x}_{T+1}) - F(\mathbf{x}^*) = \begin{cases} \mathcal{O}\left(\frac{d + \log(\frac{1}{\delta})}{n} \log^2(\frac{1}{\delta}) \log n\right) & \text{if } \theta = \frac{1}{2}, \\ 1863 \quad \mathcal{O}\left(\frac{d + \log(\frac{1}{\delta})}{n} \log^{(2\theta+1)}(\frac{1}{\delta}) \log n\right) & \text{if } \theta \in (\frac{1}{2}, 1], \\ 1864 \quad \mathcal{O}\left(\frac{d + \log(\frac{1}{\delta})}{n} \log^{(2\theta+1)}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(\frac{n}{\delta}) \log n\right) & \text{if } \theta > 1. \end{cases}$$

1865 The proof is complete. □

1866 D.5 PROOF OF THEOREM 3.9

1867 *Proof.* By Lemma C.9, with probability $1 - \delta$ we have

$$\begin{aligned} 1868 \quad \|\nabla F(\mathbf{w}_{T+1}) - \nabla F_S(\mathbf{w}_{T+1})\|^2 \\ 1869 \\ 1870 \quad \leq \left(\|\nabla F_S(\mathbf{w}_{T+1})\| + \frac{\mu}{n} + 2\frac{B_* \log(4/\delta)}{n} + 2\sqrt{\frac{2\mathbb{E}[\|\nabla f(\mathbf{x}^*; z)\|^2] \log(4/\delta)}{n}}\right)^2 \\ 1871 \\ 1872 \quad \leq 4\left(\|\nabla F_S(\mathbf{w}_{T+1})\|^2 + 4\frac{B_*^2 \log^2(4/\delta)}{n^2} + 8\frac{\mathbb{E}[\|\nabla f(\mathbf{x}^*; z)\|^2] \log(4/\delta)}{n} + \frac{\mu^2}{n^2}\right). \end{aligned}$$

1873 From the smoothness property in Lemma C.7, if f is nonnegative and L -smooth, we have
 1874 $\|\nabla f(\mathbf{x}^*; z)\|^2 \leq 2L\nabla f(\mathbf{x}^*; z)$, implying that $\mathbb{E}[\|\nabla f(\mathbf{x}^*; z)\|^2] \leq 2LF(\mathbf{x}^*)$. Thus, with probability
 1875 $1 - \delta$ we have

$$\begin{aligned} 1876 \quad \|\nabla F(\mathbf{w}_{T+1}) - \nabla F_S(\mathbf{w}_{T+1})\|^2 \\ 1877 \\ 1878 \quad \leq 4\left(\|\nabla F_S(\mathbf{w}_{T+1})\|^2 + 4\frac{B_*^2 \log^2(4/\delta)}{n^2} + \frac{16LF(\mathbf{x}^*) \log(4/\delta)}{n} + \frac{\mu^2}{n^2}\right). \end{aligned} \quad (37)$$

Again, from the smoothness property in Lemma C.7 and the convergence bound in (33), with probability $1 - \delta$, there holds

$$\begin{aligned} \|\nabla F_S(\mathbf{x}_{T+1})\|^2 &\leq (2L)(F_S(\mathbf{x}_{T+1}) - F_S(\mathbf{x}(S))) \\ &= \begin{cases} \mathcal{O}\left(\frac{\log(1/\delta)}{T}\right) & \text{if } \theta = \frac{1}{2}, \\ \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T}\right) & \text{if } \theta \in (\frac{1}{2}, 1], \\ \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T}\right) & \text{if } \theta > 1. \end{cases} \end{aligned} \quad (38)$$

Plugging (38) into (37), with probability $1 - 2\delta$, we have: (1.) if $\theta = \frac{1}{2}$,

$$\|\nabla F(\mathbf{w}_{T+1}) - \nabla F_S(\mathbf{w}_{T+1})\|^2 = \mathcal{O}\left(\frac{\log(1/\delta)}{T} + \frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right); \quad (39)$$

(2.) if $\theta \in (\frac{1}{2}, 1]$,

$$\|\nabla F(\mathbf{w}_{T+1}) - \nabla F_S(\mathbf{w}_{T+1})\|^2 = \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T} + \frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right); \quad (40)$$

(3.) if $\theta > 1$,

$$\begin{aligned} \|\nabla F(\mathbf{w}_{T+1}) - \nabla F_S(\mathbf{w}_{T+1})\|^2 \\ = \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T} + \frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right). \end{aligned} \quad (41)$$

According to the Polyak-Łojasiewicz condition, we know

$$\begin{aligned} F(\mathbf{w}_{T+1}) - F(\mathbf{x}^*) &\leq \frac{1}{4\mu} \|\nabla F(\mathbf{w}_{T+1})\|^2 \\ &\leq (2\mu)^{-1} (\|\nabla F(\mathbf{w}_{T+1}) - \nabla F_S(\mathbf{w}_{T+1})\|^2 + \|\nabla F_S(\mathbf{w}_{T+1})\|^2). \end{aligned} \quad (42)$$

Plugging the convergence bound in (38) and the generalization bound in (39)-(41) into (42), with probability $1 - 3\delta$, we have (1.) if $\theta = \frac{1}{2}$,

$$F(\mathbf{w}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log(1/\delta)}{T} + \frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right);$$

(2.) if $\theta \in (\frac{1}{2}, 1]$,

$$F(\mathbf{w}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} T}{T} + \frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right);$$

(3.) if $\theta > 1$,

$$F(\mathbf{w}_{T+1}) - F(\mathbf{x}^*) = \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{3(\theta-1)}{2}}(T/\delta) \log^{\frac{1}{2}} T}{T} + \frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right).$$

We choose $T \asymp n^2$, then the following inequality holds with probability $1 - \delta$

$$F(\mathbf{w}_{T+1}) - F(\mathbf{x}^*) = \begin{cases} \mathcal{O}\left(\frac{\log^2(1/\delta)}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right) & \text{if } \theta = \frac{1}{2}, \\ \mathcal{O}\left(\frac{\log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} n}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right) & \text{if } \theta \in (\frac{1}{2}, 1], \\ \mathcal{O}\left(\frac{\log^{\frac{3(\theta-1)}{2}}(n/\delta) \log^{(\theta+\frac{3}{2})}(\frac{1}{\delta}) \log^{\frac{1}{2}} n}{n^2} + \frac{F(\mathbf{x}^*) \log(1/\delta)}{n}\right) & \text{if } \theta > 1. \end{cases}$$

The proof is complete. \square