Under review as a conference paper at ICLR 2026

HIGH PROBABILITY BOUNDS FOR NON-CONVEX
STOCHASTIC OPTIMIZATION WITH MOMENTUM

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic gradient descent with momentum (SGDM) is widely used in machine
learning, yet high-probability learning bounds for SGDM in non-convex settings
remain scarce. In this paper, we provide high-probability convergence bounds and
generalization bounds for SGDM. First, we establish such bounds for the gradi-
ent norm in the general non-convex case. The resulting convergence bounds are
tighter than existing theoretical results, and to the best of our knowledge, the ob-
tained generalization bounds are the first ones for SGDM. Next, under the Polyak-
Lojasiewicz condition, we derive bounds for the function-value error instead of the
gradient norm, and the corresponding learning rates are faster than in the general
non-convex case. Finally, by additionally assuming a mild Bernstein condition on
the gradient, we obtain even sharper generalization bounds whose learning rates

can reach O(1/n?) in the low-noise regime, where n is the sample size. Overall,
we provide a systematic study of high-probability learning bounds for non-convex
SGDM.

1 INTRODUCTION

Stochastic optimization plays an essential role in modern statistics and machine learning, as many
learning problems can be cast as stochastic optimization tasks. Over the past decades, there has
been substantial progress in the development of stochastic optimization algorithms, among which
stochastic gradient descent with momentum (SGDM) has attracted particular attention due to its
simplicity and low per-iteration computational cost (Goodfellow et al., 2016;|Li & Orabona, [2020).
As a fundamental algorithm for stochastic optimization, SGDM has been remarkably successful in
natural language understanding, computer vision, and speech recognition (Krizhevsky et al., 2012;
Hinton et al., 2012; \Sutskever et al.l 2013)).

Typically, SGDM augments stochastic gradient descent (SGD) with a momentum term in the update
rule, i.e., it uses the difference between the current and previous iterates. The intuition is that, if
the direction from the previous iterate to the current iterate is “correct”, then SGDM should exploit
this inertial direction—weighted by the momentum parameter—rather than relying solely on the
instantaneous gradient at the current iterate, as in plain SGD. Much of the state-of-the-art empirical
performance in deep learning has been achieved using SGDM (Huang et al., 2017; [Howard et al.|
2017;|He et al.; 2016} |[Kim et al.|[2021a). Yet, from a theoretical standpoint, the analysis of learning
bounds for SGDM remains relatively underdeveloped (Li et al., 2022;|Li & Orabonal, |2020).

The learning performance of SGDM can be studied from two complementary perspectives: conver-
gence bounds and generalization bounds. Convergence bounds focus on how well the algorithm op-
timizes the empirical risk, whereas generalization bounds quantify how the learned model performs
on unseen test data. From the convergence perspective, existing analyses of SGDM or determin-
istic gradient descent with momentum (DGDM) in non-convex settings are mostly in expectation
(Ochs et al.; 2014520155 |Ghadimi et al., 2015} |[Lessard et al., 2016; Yang et al.,[2016} [Wilson et al.,
2021 |Gadat et al., 2018}; |Orvieto et al.,|2020; (Can et al., 2019; L1 et al., 2022; Yan et al., 2018} |Liu
et al., |2020), to mention only a few. However, expected bounds do not rule out the possibility of
extremely bad outcomes (Li & Orabonal 2020; Liu et al., [2023). Moreover, in practical large-scale
applications, the training procedure is typically run only once, since it can be very time-consuming.
For such single-run performance, high-probability bounds are more informative than expectation
bounds (Harvey et al.,[2019). To the best of our knowledge, there are only two works that provide
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high-probability convergence bounds for SGDM (L1 & Orabona, 2020} |Cutkosky & Mehta, [2021).
Specifically, |Cutkosky & Mehta (2021)) assume that the gradient noise satisfies a 6-order moment

condition with 6 € (1, 2] and obtain a convergence rate of order O(T*Se@%) for the gradient norm,
where T' denotes the number of iterations. [Li & Orabona) (2020) establish a convergence bound of
order O(1/+/T) for the squared gradient norm under sub-Gaussian gradient noise. As discussed in
Li et al.| (2022), it is unclear whether this rate can be improved or extended to more general noise
models beyond the sub-Gaussian case. Overall, the convergence rates in [Li & Orabonal (2020);
Cutkosky & Mehta (2021)) are relatively slow, and, importantly, no generalization bounds are pro-
vided in either work.

From the generalization perspective, existing results for SGDM and DGDM are even scarcer. |(Ong
(2017); (Chen et al.| (2018)) derive expected generalization error bounds for DGDM with a specific
quadratic loss by using algorithmic stability (Bousquet & Elisseeff}, 2002; Hardt et al.,|2016)). Their
analysis, however, does not extend easily to general loss functions. It is conjectured in (Chen et al.
(2018) that their uniform stability bound might also hold for general convex losses. Motivated by
this conjecture, Ramezani-Kebrya et al.| (2024)) study generalization error bounds for SGDM with
general loss functions. Somewhat surprisingly, they construct a counterexample showing that, even
for convex loss functions, the uniform stability gap (in expectation, over the internal randomness
of the algorithm) of SGDM run for multiple epochs can diverge. In a related direction, Attia &
Koren| (2021) show that, in the general convex case, the uniform stability gap of deterministic Nes-
terov’s accelerated gradient (NAG) can decay exponentially fast with the number of iterations. We
emphasize that uniform stability is only a sufficient condition for generalization; it remains unclear
how weaker stability notions (such as on-average stability (Shalev-Shwartz et al.,|2010)) behave for
SGDM. Overall, there are significant obstacles to establishing general generalization guarantees for
SGDM, especially for broad classes of loss functions. Furthermore, as in the convergence analysis
of SGDM, high-probability generalization bounds are substantially more challenging to derive than
expectation-based bounds (Bousquet et al., 2020; Bassily et al., 2020; |[Feldman & Vondrak, 2019).

Therefore, both high-probability convergence bounds and high-probability generalization bounds
for SGDM remain far from fully understood. Motivated by the above limitations, this paper aims to
establish such bounds for SGDM, with a particular focus on non-convex settings. For brevity, we
will refer to all bounds on the performance of the learned model on test data (including generaliza-
tion error bounds and excess-risk bounds) simply as generalization bounds. Our main contributions
can be summarized as follows.

* At a high level, we study the case where the stochastic gradient noise follows a sub-
Weibull distribution (VIadimirova et al.| 2019} [2020; [Kuchibhotla & Chakraborttyl, 2018]),
which generalizes the sub-Gaussian noise considered in |Li & Orabona (2020) to poten-
tially heavier-tailed distributions. Our learning bounds under this assumption reveal how
the rates of convergence and generalization change as one moves from sub-Gaussian / sub-
exponential (light-tailed) noise to heavy-tailed noise with exponential-type tails.

* We first provide a high-probability analysis of SGDI![ in the general non-convex case. In
this setting, we derive convergence bounds of order O(1/7"/2) and generalization bounds

of order O (dl/ 2 /nt/ 2) for the squared gradient norm, where d is the dimension and n is
the sample size. The convergence bounds are tighter than those in related work. Moreover,
to the best of our knowledge, our high-probability generalization bounds are the first such
results for SGDM.

* We next analyze SGDM under the Polyak—t.ojasiewicz condition for non-convex objec-

tives. In this case, we obtain sharper convergence bounds of order (5(1 /T). Furthermore,
these bounds are established for the last iterate of SGDM and for the function-value er-
ror, rather than for the average iterate and gradient norm considered in the general non-
convex case. In addition, we derive generalization bounds of faster order O(%ﬂm)
for SGDM, which, to our knowledge, have not been previously available.

* Finally, we impose a mild Bernstein condition on the gradient. Under this additional as-
sumption, we improve the generalization bound of order O (%(1/6)) to a bound of order
O(1/n? + F* /n), where F* denotes the optimal population risk. In the low-noise regime

where F'™* is small, this bound yields a faster learning rate of order (5(1 /n?), showing a
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tighter dependence on the sample size n. Another attractive feature of this bound is that the
dimension d no longer appears, allowing it to easily incorporate massive neural networks
that are often high-dimensional.

In summary, by considering increasingly strong structural conditions on the objective function (from
general non-convexity, to PL, to PL plus a Bernstein condition), we establish a hierarchy of improved
learning bounds with different rates. This provides a systematic picture of the high-probability
learning guarantees for SGDM from both convergence and generalization perspectives.

The rest of the paper is organized as follows. Preliminaries are presented in Section 2] Our main
results are stated in Section [3] We conclude in Section f] Numerical experiments are reported in
Section [A] Appendix [B] together with Table [I] summarizes our main results and the most relevant
related bounds of SGDM. All proofs are deferred to the Appendix.

2 PRELIMINARIES

2.1 NOTATIONS

Let X C R? be the parameter space and let IP be a probability measure on a sample space Z. Let
f X xZ — Ry be a (possibly non-convex) loss function. We consider the stochastic optimization
problem

in F'(x) :=E, 3 2)],
min F(x) := E.vp[f (x; 2)]
where F' is referred to as the population risk and E, p denotes expectation with respect to (w.r.t.)
the random variable z drawn from P.

In practice, the distribution PP is unknown and we only observe a dataset S = {z1, ..., 2,} drawn
independently and identically (i.i.d.) from P. One typically optimizes the empirical risk

n

min Fs(x) := %Zf(x; 2;).

XEX P
To optimize F's, SGDM has been widely adopted (Polyakl |1964;|Qianl 1999 Sutskever et al., 2013
Li & Orabona, [2020). In this work we focus on Polyak’s momentum, also known as the heavy-ball
algorithm or classical momentum, which is arguably the most popular form of momentum in current

machine learning practice (Liu et al., [2020). The pseudocode of SGDM (Polyak’s momentum) is
given in Algorithm[I] The vanilla SGD update is

Xep1 = X¢ — NV (Xe5 25,)-

In Step 3 of Algorithm [T} SGDM introduces a momentum vector m;_; and forms a momentum term
weighted by a parameter +y to adjust the gradient estimate V f(xy; z;,) of SGD. In Step 4, SGDM
then updates the iterate via

Xt41 = X¢ — M.

Equivalently, the SGDM update can be written as

Xep1 = X¢ — NtV (X5 th) +y(xe — X¢-1)-

We now introduce some notation. Let B = sup, ¢z ||V f(0; 2)||, where V f(-; z) denotes the gradi-
ent of f w.r.t. the first argument and || - || denotes the Euclidean norm. For any R > 0, we define
B(x0, R) := {x € R% : ||x — x| < R} which denotes a ball with center xq € R? and radius R.
Let x(S) € argminkey Fg(x) and x* € argminy F'(x). We write a < b if there exist universal
constants ¢, ¢’ > 0 such that ca < b < ¢’a. Throughout the paper we use standard order-notation

such as O(-) and O(.).

2.2 ASSUMPTIONS

In this subsection we collect the assumptions that will be invoked in our main theorems.
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Assumption 2.1. The differentiable function f is (possibly) non-convex and, for any z € Z, the
mapping x — f(x; z) is L-smooth, i.e., for every x1, Xa:

IV f(x152) = Vf(x2;2)[| < Lf[x1 — %2,

where V is the gradient operator and || - || is the Euclidean norm.

Remark 2.2. Further properties of smooth functions are collected in Lemma|[C.7}

Assumption 2.3. The gradient at x* satisfies a Bernstein-type moment condition: there exists B, >
0 such that for all integers k£ with2 < k < n,

E.[IVF(32)I] < gHE[IVF(x2)|?) B2,

Remark 2.4. The Bernstein condition is standard in learning theory. As shown in[Wainwright|(2019)),
for arandom variable X with mean 1 = E[X] and variance 02 = E[X?]— 2, we say that X satisfies
the Bernstein condition with parameter b if for all integers k& > 2,

E[(X — )] < %k! o2

The Bernstein condition is essentially equivalent to X being sub-exponential; see the discussion in
Remark 4 of [Lei| (2020). Classical sub-Gaussian and sub-exponential distributions satisfy this con-
dition, since their k-th moments are controlled by the second moment. In this sense, the Bernstein
condition is quite mild and, for instance, weaker than assuming that X is almost surely bounded.
Assumption [2.3| simply applies this Bernstein condition to the random variable ||V f(x*; z)||: it is
weaker than assuming that ||V f(x; 2)||, Vx € X, is uniformly bounded, while the latter bounded-
gradient assumption is widely used in stochastic optimization (Zhang et al.,[2017).

Assumption 2.5. For all S € Z", and for some positive G > 0, the empirical risk satisfies
n|VEs(x)|| <G, VteN.

Remark 2.6. In the theoretical analysis of stochastic optimization, it is common to assume a uni-
formly bounded stochastic gradient,

IVFx;2)] <G, Vxe X, VzeZ,

which is sometimes referred to as the Lipschitz continuity of f (Li et al.,[2022;Li & Orabonal [2020).
Assumption[2.3]is a relaxation of this bounded-gradient assumption: it multiplies the gradient norm
of Fs by the stepsize 7; instead of bounding each stochastic gradient V f(x;; z). Since the stepsizes
71, decrease to zero, the gradients of Flg are allowed to grow. For typical decay rates 1, = O(t’l/ 2)
orn; = O(t') (Lei & Tang} 2021), Assumption [2.5] permits ||V Fs(x;)|| to grow at rates O(t'/2)
and O(t), respectively, without violating the condition.

In the next, we introduce the Polyak-t.ojasiewicz (PL) condition.

Assumption 2.7. Fix a set X and let f* := minyecx f(x). We say that a differentiable function
f + & — R satisfies the Polyak-Ft.ojasiewicz condition with parameter ;¢ > 0 on X if for all x € &,

* 1 2
fx) - < o IVF)II
Remark 2.8. Fast rates cannot be achieved for free. The Polyak-Lojasiewicz condition is widely
used in the optimization community to obtain fast convergence rates (Necoara et al.l 2019; [Karimi
et al.l |2016) and is one of the weakest curvature conditions to replace the strong convexity (Karimi
et al.|2016). Many important models are known to satisfy a PL inequality, at least locally. Notable
examples satisfying the PL condition include two-layer neural networks (Li & Yuan, [2017), matrix
completion (Sun & Luol [2016)), dictionary learning (Arora et al., 2015), and phase retrieval (Chen
& Candes, 2015). Kleinberg et al.| (2018)) provide empirical evidence that the (smoothed) loss of
practical deep networks locally exhibits a one-point convexity property of PL type. More rigorously,
Soltanolkotabi et al.|(2018) analyze over-parameterized shallow networks with quadratic activations
and prove that, in the interpolation regime where the training loss is zero, the empirical risk satisfies
a PL inequality. These examples motivate our focus on studying SGDM under the PL curvature
assumption.
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Algorithm 1 SGD with Momentum (SGDM)

Require: stepsizes {1 }:, dataset S = {z1, ..., 2z, }, and momentum parameter 0 < v < 1.
Initializtion: x; = 0, mg = 0,

1: fort=1,...,T do

2:  sample j; from the uniform distribution over the set {j : j € [n]},

3:  update my = ymy—1 + 1V f(x¢; 25,)s

4:  update X441 = X; — My

5: end for

In our analysis we will apply Assumption[2.7]both to the empirical risk Fis and to the population risk
F'. When studying optimization (training) performance, we assume that Fg satisfies a PL inequality
with parameter 1(S); when studying generalization and excess risk, we assume that F' satisfies a
(possibly different) PL inequality with parameter ;. We keep the notation p(.S) and p separate to
emphasize that the curvature at the sample level need not coincide exactly with that of the underlying
population.

Finally, we specify an assumption on the noise of the stochastic gradient.
Assumption 2.9. The gradient noise V f(x¢; 2;,) — VFs(x;) satisfies

Ej, | exp(I1V £ xii ,) = VEs (x|l /K)F| <2, (M

for some positive K and 6 > 1/2.
Remark 2.10. |Li & Orabonal (2020) assume the sub-Gaussian-type condition

B, [exp (I (et 24) — VESGeI?/K?)] < 2,

which ensures that the noise tails are dominated by those of a Gaussian distribution. In contrast,
Assumption generalizes this to a richer class of distributions, including sub-exponential noise
(corresponding to # = 1) and even heavier-tailed noise (¢ > 1). Condition is precisely the
defining property of a sub-Weibull random variable (Vladimirova et al., [2020): a random variable
X satisfying E[exp((|X|/K)'/?)] < 2 for some K > 0 and § > 1/2 is called sub-Weibull with
tail parameter #, and larger # means heavier tails (Kuchibhotla & Chakrabortty, 2018). Hence, the
learning bounds in this paper apply to a broad class of heavy-tailed gradient noise distributions. Our
motivation for studying sub-Weibull gradient noise is twofold. First, it allows us to explicitly quan-
tify how the convergence and generalization rates degrade when moving from sub-Gaussian/sub-
exponential (light-tailed) noise to heavy-tailed noise with exponential-type tails. Second, a growing
body of work provides empirical and theoretical evidence that the noise in stochastic optimization
algorithms is often heavier-tailed than sub-Gaussian (Panigrahi et al.; 2019; Madden et al.| [2024;
Gurbuzbalaban et al.| 2021} [Simsekli et al.| 2019; Simsekli et al.| 2019 [Zhang et al., 2020; 2019;
Wang et al., 2021; Gurbuzbalaban & Hul [2021]).

3 MAIN RESULTS

This section presents our main theoretical results.

3.1 LEARNING BOUNDS IN THE GENERAL NON-CONVEX CASE

In the general non-convex case, we cannot guarantee that the algorithm finds a global mini-
mizer, so we focus on approximate first-order stationary points. For the convergence analysis,
we are interested in iterates x; satisfying ||V Fs(x;)||> < e, while for generalization we con-
sider |[VF(x;)||> < e. As is standard in the non-convex literature, we measure optimization
I

and generalization performance via the average squared gradient norms 7 Z?:l IV Fs(x:)||* and

A S V()

3.1.1 CONVERGENCE BOUNDS

2, respectively.

We first provide high-probability convergence bounds for SGDM. These bounds characterize how
the algorithm minimizes the empirical risk Fis.
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Theorem 3.1. Let x; be the sequence of iterates generated by Algorithm Set the stepsize as

1(1-9)°
13L—L7"

N = ct_%, where ¢ <

(1). If6 = %, suppose Assumptionsand@hold. Then for any 6 € (0, 1), with probability 1 — 6,

1y 2 _ of(1oB(1/5) logT
P2 IsGI = o PERTEED).

(2). If% < 0 < 1, suppose Assumptions and@hold. Then for any 6 € (0,1), with

probability 1 — 6,
T 20
1 log™(1/96) logT
= g VF, ool =),
T v H S(Xt>|| < \/T

(3). If 0 > 1, suppose Assumptions @ and hold. Then for any 6 € (0,1), with probability

1-90,
log? = (T/6) log(1/8) + log?*(1/6) log T
= .

Remark 3.2. The bounds in Theorem [3.1| are all of order O(1/v/T). The dependence on the tail
parameter 6 shows that larger 0 leads to worse (slower) convergence, which matches the intuition
that heavier-tailed gradient noise degrades optimization performance. We now compare these results
with related work (Li & Orabona), 2020} [Cutkosky & Mehta, 2021). [Cutkosky & Mehtal (2021
analyze a different algorithmic setting that combines gradient clipping, a variant of momentum
(distinct from Polyak’s momentum), and normalized gradient descent. Their Theorem 2 establishes

a convergence bound of order
log(T'/9)
o ( e
T30—2

for 1 Zthl IV Fs(x)| under smoothness and a #-moment condition on the gradient, where 0 €

T
1
O IVEsG)|? = 0

t=1

(1,2]. In the case 6 = 2, this rate becomes O(T~'/4). By Jensen’s inequality,

1 & g
(TZIIVFs(Xt)H) < fZHVFs(Xt)HQ,
t=1 t=1

so Theorem [3.1|implies the same O(T~/4) rate for ", [V Fs(x;)|. Li & Orabonal (2020)
study Polyak’s momentum and, in their Theorem 1, obtain a convergence bound of order

o (1og(:r<;s% logT>

for 2321 |V Fs(x)||? under smoothness and sub-Gaussian gradient noise (i.e., = 1/2). Since
we also analyze Polyak’s momentum, the comparison with [Li & Orabonal (2020) is more natural.
Under the same assumptions, part (1) of Theorem [3.1]refines this to

O(log(l/\j)f]ogT) |

Although this improvement is only logarithmic, it may be the strongest possible refinement in the
general nonconvex setting we consider. For smooth nonconvex stochastic optimization with a first-
order oracle and controlled noise, the rate O(1/+/T) in terms of the expected squared gradient norm
is known to be optimal (up to logarithmic factors) (Arjevani et al.},[2019). Consequently, under the
same structural assumptions, any further progress can only affect constants and logarithms but not
the leading 1/+/T scaling. Theorem 2 in|Li & Orabonal(2020) further analyzes a variant of AdaGrad
with Polyak’s momentum, called delayed AdaGrad, whose stepsize does not depend on the current
gradient (Li & Orabona, [2019). The corresponding convergence bound is of order

d log®?(T/6) d2 log?(T/6)
max{@(\ﬁ) , O(T) } .
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When the dimension d is small, this gives a rate of order O(d log®?(T/6) /T ), which is clearly
weaker than the dimension-free bounds in Theorem [3.1]

In the non-convex, stochastic setting, a clear separation between SGD and SGDM remains elusive
(L1 & Orabona, 2020; [Zou et al., [2018)), even at the empirical level. For example, [Kidambi et al.
(2018)) provide theoretical and empirical evidence that standard momentum schemes—Polyak’s mo-
mentum and Nesterov Accelerated Gradient—do not enjoy a universal acceleration guarantee in the
stochastic regime. Even with optimally tuned hyperparameters, there exist instances where Polyak’s
momentum and Nesterov’s method do not outperform vanilla SGD. In particular, when the batch
size is small (e.g., 1), their performance is often nearly indistinguishable from, or even worse than,
that of SGD. This batch-size-one regime is exactly the setting we study here, and our theory is con-
sistent with these observations. A work (L1 & Liul 2022)) derives high-probability convergence and
generalization results for SGD without momentum under the same assumptions, yielding rates of
the same order as those obtained here (up to constants and mild logarithmic factors). This paper
closes the theoretical gap for SGDM: we show that the widely used momentum method, under the
general nonconvex / PL / Bernstein assumptions, also enjoys high-probability convergence and gen-
eralization guarantees of comparable order to those known for SGD, so that SGDM has essentially
the same theoretical performance as SGD under these conditions. A promising direction for future
work is to extend our analysis to the large-batch regime and to investigate how the potential benefits
of momentum depend on batch-induced noise reduction.

3.1.2 GENERALIZATION BOUNDS

We now present high-probability generalization bounds for SGDM, which quantify how well the
learned models perform on the underlying data distribution.

Theorem 3.3. Let x; be the sequence of iterates generated by Algorithm [I) Set the stepsize as
1(1-)°
43L—L~

(1). If6 = % suppose Assumptionsandhold. Then for any ¢ € (0, 1), with probability 1 — 6,

P iveee = o (5)we(§) e ().

(2)']91];%' <1 0 ? 1, suppose Assumptions and hold. Then for any § € (0,1), with
probavility 1 — o,

1 . .
Ny = ct™ 2, where ¢ < , and choose the number of iterations as T < n/d.

F 2 ivre = of (4) os(5) 15 (5)).

(3). If 6 > 1, suppose Assumptions and hold. Then for any ¢ € (0, 1), with probability
1-49,

3o erort = o (3)"(ea() e (3) « () ().

Remark 3.4. The bounds in Theorem |3.3|are of order O((d /n)/ 2), and again heavier tails (larger
0) lead to slower rates. As in Theorem [3.1) when § = 1/2 Assumption is no longer needed.
To the best of our knowledge, these are the first generalization bounds for SGDM. As discussed
in the introduction, algorithmic stability—in particular uniform stability—seems to fail for SGDM
with general loss functions, since the uniform stability gap may diverge even in convex settings
(Ramezani-Kebrya et al.,|2024)). This is consistent with the general principle that there is a trade-off
between convergence speed and stability: faster-converging algorithms tend to be less stable, and
vice versa (Chen et al., 2018)). Our proof technique instead belongs to the uniform convergence ap-
proach (Bartlett & Mendelson,[2002} Bartlett et al.,2005; |Xu & Zeevi, |2020; Mei et al., [2018}; [Foster,
et al., 2018} Davis & Drusvyatskiy, [2021), which shows that the empirical risks of all hypotheses
in a class converge uniformly to their population risks (Shalev-Shwartz et al.l 2010). In the general
non-convex case, a dependence on the ambient dimension d is typically unavoidable for such uni-
form convergence bounds (Feldman, |2016), which is reflected in the d-dependence in Theorem
We emphasize, however, that in Section@ we will obtain dimension-free generalization bounds by
imposing additional structure (a Bernstein condition) and working in the PL regime.
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3.2 LEARNING BOUNDS WITH POLYAK-LOJASIEWICZ CONDITION

In non-convex optimization under the Polyak-Lojasiewicz (PL) condition, we are interested in up-
per bounds on the function-value error. Accordingly, we measure optimization performance and
generalization performance via Fg(x741) — Fs(x(95)) and F(xp41) — F(x*), respectively.

3.2.1 CONVERGENCE BOUNDS

We first present high-probability convergence bounds for SGDM under the PL condition.
Theorem 3.5. Let x; be the sequence of iterates generated by Algorithm Set the stepsize as

_ 1 12L—4L (8Cy)L 8C, (Ly+L7(C,))
n = u(S)(tth 5 such that to > max{#(s e Wﬂ)’g, Tt T 1 (11/)#(75) — 1,1}, where
Cy=1+ m 5 hfv is a constant that depends only on .

(1). If0 = 2, suppose Assumptlons 2 1 and 2 hold, and assume that FS satisfies Assumption l2:7]
with parameter 244(S). Then, for any 9 wzth probability 1 —

log(1/6
Fs(xpi1) — Fs(x(S)) = O<g(T/)> '
(2). If 3 5 < 0 < 1, suppose Assumpttons Eand hold and assume that Fgs satisfies

Assumption l2:7]w1th parameter 2p(S). Then, for any 6 € (0,1), with probability 1 — 0,

Fs(x741) — FS(X(S)) _ O<10g9+2(1/;) log1/2T> |

(3). If 0 > 1, suppose Assumptions [2.1] 2.3 and 2.9\ hold, and assume that Fs satisfies Assumption
- 2.7\ with parameter 2u(S). Then, for any 6 € (0,1), with probability 1 — ¢, we have the following
inequality

o 0+3 o 3(0-1) RYE
Fs(xri1) — Fs(x(S)) = @<1g (1/8)tog” = (1/5) o T>.

Remark 3.6. Theorem 3.5]shows that, under the PL condition, SGDM enjoys fast convergence rates:
the O(1/ \f ) rate in Theorem.ls improved to a faster O(1/T) rate. By the smoothness property
in Lemma|[C.7]
IVEs(x741)* < 2L(Fs(xr41) — Fs(x(9))),

so the bounds in Theorem [3.5] also apply (up to constants) to the squared gradient norm
|V Fs(x7+1)]|?. Moreover, when 6 = 1/2, Assumption [2.5]is not needed. As in the non-PL case,
larger 6 (heavier tails) deteriorates the convergence rate. One can also verify that these PL-based
convergence bounds are strictly sharper than the corresponding results in |Li & Orabonal (2020);

Cutkosky & Mehta (2021). To the best of our knowledge, fast 6(1 /T) high-probability rates for
SGDM in non-convex settings under PL-type assumptions have not previously been established in
the literature.

3.2.2 GENERALIZATION BOUNDS

We next present high-probability generalization bounds for SGDM under the PL condition.
Theorem 3.7. Let x; be the sequence of iterates generated by Algorithm[I| Set the stepsize as

_ 1 12L—4L (8C,)L 8C., (Ly+Ly(Cy))
N = sy Such that to > max{ e ﬂ/ﬂ)’d, Ttay L 0 ’Y’Y)H&YS)W — 1,1}, where
Cy=1+ 1n§ p 137 is a constant that depends only on v, and choose T' < n.

(1). If 0 = 2, suppose Assumptions |2. cmd 9 hold, assume that Fg satisfies Assumption |2.7|with
parameter 21(S), and that F satisfies A smmpttonn 2.7\with parameter 2y1. Then, for any § € (0, 1),

with probability 1 —
. d+log(1/6 1
F(xr41) — F(x*) = (9(5(/) log® (5) logn) .



Under review as a conference paper at ICLR 2026

(2). If < 6 < 1, suppose Assumpnons ’ F and hold, and assume that Fg satisfies
Assumptlon E 2.7) with parameter 2u(S), and that satzs es Assumption with parameter 2.
Then, for any d € (0, 1), with probability 1 —

Flxri) — F(x*) = cf)(“k’s(l/‘s) 10g29+1(§) logn>.

(3). If 0 > 1, suppose Assumptions 2.1} 2.3)and 2.9 hold, and assume that Fs satisfies Assumption
- with parameter 2(S), and that F satisfies Assumption|2.7] n with parameter 2u. Then, for any
0 € (0,1), with probability 1 —

w d+1log(1/d) 99411 Gy
F(xr41) — F(x*) = O(n log (5) log (5) logn

Remark 3.8. The quantity F(x7y1) — F(x*) measures the gap between the population risk of
the last iterate and the optimal population risk, and is often referred to as the excess risk in learn-
ing theory (London| 2017; [Feldman & Vondrakl [2019; Bassily et al., 2020). Theorem |3l7| shows
that, when both the empirical risk Fig and population risk F' satisfy the PL condition, SGDM en-
joys generalization bounds of order O((d + log(1/4))/n), improving the dependence on n com-
pared to the general non-convex case in Theorem [3.3] By the smoothness property in Lemma [C.7}
[VF(xr41)[|? < 2L(F(x741) — F(x*)), so the bounds in Theorem lso directly control
|[VF(x741)||?. We also emphasize that, in contrast with Section the bounds in Section
are stated for the last iterate of SGDM rather than the time-averaged iterate. Overall, the pair of
results Theoremg@ and[3.7)illustrates the qualitative picture that in the general non-convex regime
one can expect O(1/+v/T) and O(1/+/n) rates, while under PL-type curvature the rates improve to

O(1/T) and O(1/n), respectively.

3.3 LEARNING BOUNDS WITH BERNSTEIN CONDITION

In this section, we derive sharper generalization bounds by imposing the Bernstein condition. We
assume that the set X satisfies X C B(x*, R).

Theorem 3.9. Let x; be the sequence of iterates generated by Algorithm Set the stepsize as

8C,)L 8C, (Ly+LA(C.
such that ty > max{ul(?gL(lzle)m (1( 7 L(S) +1, ”((1 Vﬁ/)ﬂzé)”)) — 1,1}, where

is a constant that depends only on v, and choose T =< n?.

_ 1
e = RS (EEt0)

C"/_l+1n'y In~y

(1) If0 = 2, suppose Assumptlons 2 I 2. 3 and m hold, assume that Fg satisfies Assump-

tion n with parameter 2u(S), and tha satls es Assumption @ with parameter 2u. If
81og(2nR+2)
n > eL? (d—HOg(Iﬂ )), where c is an absolute constant, then for any 6 € (0, 1), with probabil-
ity 1 =9,
. log=(1/6 F(x*)log(1/6
F@ﬂg_nx)—o(g</) e logl1/)),

(2). If L 5 < 0 < 1, suppose Assumpttons? ! . and 9 hold, assume that Fs satisfies As-
s

sumption with parameter 2(S), and atisfies A ssumptlon n with parameter 2u. If
2 8log(2nR+2)

n> cL (d+10g(42 5 )), where c is an absolute constant, then for any 6 € (0, 1), with probabil-

ity 1 =4,

Flxra) — Fx") = O(log”?’u/&) log'/%n . F(x*)log(1/5)> |

n? n

(3). If 0 > 1, suppose Assumptions 2.1} 2.3| 2.3] and 2.9 hold, assume that Fs satisfies As-
sumption @ with parameter 2u(S), and that F satisfies Assumption n 2.7| with parameter 2u. If
cL? (d-+log(*EZER))

n > e , where c is an absolute constant, then for any 0 € (0, 1), with probabil-
ityl—4,
(6—1)
log™ 2 (n/d) lo 1/6) log"?n  F(x*)log(1/6
F&ﬂﬂﬂﬁ)0<g (0/0) o 30/5) g | Pl log(1/5))
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(4). Furthermore, if we additionally assume F(x*) = O(1/n), then the bounds in (1)—(3) simplify,
respectively, to

0<1og2(1/5)> O<10g9+3(1/5) log1/2n) O<log3<921) (n/d) 1og9+%(1/(5) log1/2n>

n2 n2 n?

Remark 3.10. Theorem shows that, under the assumptions of Theorem [3.7] together with the
Bernstein condition, the excess risk can be improved to

(5(F(X*) 42 ) :

n n?
Here F'(x*) is the minimal population risk and is typically very small. Compared with Theorems
and Theorem therefore yields strictly sharper bounds. A well-known drawback of the
uniform-convergence approach is that, for general non-convex problems, it usually leads to learning
bounds with a square-root dependence on the dimension d (Feldman, 2016), as seen in Theorem
A distinctive advantage of Theorem is that, by exploiting Assumption we remove the de-
pendence on d in the upper bound, making the bounds more suitable for high-dimensional models.
The auxiliary assumption F'(x*) = O(1/n) in part (4) is only used to illustrate the attainable rates
under a low-noise condition. Strictly speaking, F'(x*) is independent of n, but assumptions such as
F(x*) = O(1/n) or even F'(x*) = 0 are standard in the literature; see, for example, Zhang et al.
(2017);/Zhang & Zhou! (2019);|Srebro et al.|(2010); |Liu et al.| (2018); |Lei & Ying (2020). In general,
O(1/n?)-type generalization bounds are rare in learning theory. Theorem provides, to the best

of our knowledge, the first high-probability o (1/n?) generalization guarantees for SGDM.

4 CONCLUSIONS

This paper investigates high-probability convergence and generalization bounds for stochastic gra-
dient descent with momentum (SGDM) in non-convex settings, thus providing a unified view of its
optimization and generalization behavior. Our bounds, derived under a sub-Weibull noise model, ex-
hibit different rates that explicitly capture the effect of moving from sub-Gaussian/sub-exponential
(i.e., light-tailed) noise to genuinely heavy-tailed regimes on both convergence and generalization.
We hope that these results offer a clearer theoretical picture of when and how SGDM is guaranteed
to perform well, and that they serve as a foundation for further studies of momentum-based methods
in modern non-convex learning problems.
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A NUMERICAL EXPERIMENTS

We now present numerical experiments illustrating how the generalization bounds behave as the tail
parameter 6 varies. Let Fg(x) and Fg/(x) denote the risks built on the training set S and the test set
S’, respectively, where

Fo () = 57 3 1x:2)

z€S8’
and |S’| is the cardinality of S”. We use Fls/(x) as an empirical proxy for the population risk F'(x).

We consider six datasets available from the LIBSVM dataset: Heart, Fourclass, German, Australian,
Diabetes, and Phishing (Chang & Lin, 2011). For each dataset, we take 80 percents as the training
dataset and leave the remaining 20 percents as the testing dataset. According to Algorithm T} the
momentum update can be written as

my; = ymy_1 + 0 (VFs(x¢) + Vf(xs525,) — VFs(xt)) = yme1 + 0 (VFs(x:) + ),

where e, = V f(xy;2;,) — VFg(x;) is the gradient noise. In each update of our experiments, for
each coordinate we independently draw a sample from a sub-Weibull distribution to model e; in
Assumption If every coordinate of e; is sub-Weibull, then |e;| is also sub-Weibull; this follows
from Lemma 3.4 of |Bastianello et al.| (2021)) and part (c) of Proposition 2.1 of |[Kim et al.[(2021b).
Since we assume that the stochastic gradient is an unbiased estimator of the exact gradient, we shift
and scale the distribution in order to get a random vector with zero mean and the variance equal 1.
To examine the effect of the tail parameter, we consider 6 € {1/2,1,5}.

We work with a generalized linear model ¢((x, z)) for binary classification, where ¢ is the logistic
link function £(s) = (1-+e~*)~!. Our first experiment uses the Huber loss: f(x, 2) = 1 (¢({x,z))—
y)?if [0((x,z)) —y| < 7 and 7(|(((x, z)) — y| — $7) otherwise. We set 7 = 0.1,y = 0.9 and nj, =
0.1t~ =, run the algorithm for a given number of passes over the data, repeat experiments 100 times,
and report the average of results. The behavior of the empirical quantity - Zle |V Fs(x4)]| as a
function of the number of passes is shown in Fig.[I] The curves are consistent with the generalization

bounds of Theorem larger 6 (heavier tails) yield worse generalization behavior, and the case
0 = 5 performs noticeably worse, in line with the theoretical regime 6 > 1.

Our second experiment uses the squared loss: f(x,z) = (¢({x,z)) — y)?. The corresponding

behavior of £ ZtT:l |V Fs:(x;)||* versus the number of passes is reported in Fig.[2| Again, increas-
ing 6 systematically leads to worse generalization performance, which is in clear agreement with
Theorem B3]
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Figure 1: The generalization bound Zthl |V Fs/ (x¢)]|? versus the number of passes for different

choices of # € {1/2, 1,5} and different datasets in the setting of huber loss.
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Figure 2: The generalization bound Z;‘le IV Fs:(x¢)||? versus the number of passes for different
choices of § € {1/2,1,5} and different datasets in the setting of square loss.

B SUMMARY OF RESULTS

We compare the main results of this paper with the most relevant high-probability results of SGDM
in the literature in Table [Il

We briefly explain the notation used in Table [T} Entry [1] corresponds to [Li & Orabona| (2020),
and entry [2] to [Cutkosky & Mehtal (2021). The second result of [1] is derived for a variant of
SGDM, namely delayed AdaGrad with momentum, whose stepsize does not depend on the current
gradient. The assumption “f-order moment” means that the gradient satisfies E. [||V f(x; 2)||?] <
G? for some constant G and § € (1,2]. “S-S” denotes a second-order smoothness assumption
(Cutkosky & Mehtal [2021). [Cutkosky & Mehtal (2021)) also derive two additional convergence
bounds (Theorems 3 and 6 therein) for the last iterate of SGDM under a warm-up learning-rate
schedule and several other tricks. These bounds have rates similar to those reported for [2] in
Table[]] but their assumptions are rather involved and hard to summarize concisely, so we omit them
for brevity. “LN” stands for the low-noise condition F'(x*) = O(1/n), and the parameter € in the
table refers to Assumption[2.9]

The detailed comparisons between our bounds and those of [Li & Orabonal (2020) and [Cutkosky
(2021) have already been discussed in the main text (see the corresponding remarks), so
we do not repeat them here. At a glance, Table [I] shows that our work provides a collection of
high-probability generalization bounds that are not available in the prior literature, together with
convergence bounds that achieve strictly faster rates under comparable assumptions.

C PRELIMINARIES

This section collects preliminaries, including basic properties of the sub-Weibull distribution and
several auxiliary lemmas used in the proofs.

C.1 SUB-WEIBULL DISTRIBUTION

Define the L, norm of a random variable X by || X|, = (E|X|?)'/P for any p > 1. A sub-Weibull
random variable X (denoted X ~ subW (6, K')) can be characterized in several equivalent ways.

Proposition C.1 ((Vladimirova et al., 2020} [Bastianello et all [2021))). Given 6 > 0, the following
properties are equivalent:

« 3K, > 0 such that P(|X| > t) < 2exp (f (t/K1)1/0>, vt > 0;
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Table 1: Summary of Results.

REF. ASSUMPTION MEASURE LEARNING BOUND
" =1 YL, [VFs(x)|? O (leel/pyresT )
2.1)0=1 LT [VFs(x)|? max{O(d1°gj(TT/5)),O(d2 1og;(T/6>)}
2] 0-ORDER MOMENT (0 € (1,2]), A IVEs(x)| O(';‘?ﬁ)
0-ORDER MOMENT (0 € (1,2]),[2.1{S-S L7, [[VFs(x.)|| O(Té%)
2.1{0 =3 7 T IV Fs(xo)|? O el o™
2500 € (4,1) LT VEs () ol a/9ies T
AfR.slo>1 LY | VFs(xe)| O(log“l('r/a) logm%mg”m/& log'r)
2.1]0 =1 T IVFG)I? O((4)% log() log* (1))
21250 3.1 EXLL IV O( () tog(3) 105 +(4))
Ours 2.1]ps]o > 1 ESEIVFeI? O((2)} (og(3)1og™ 2 (3) 108" () 108(3))
2.aff2.7[0 =1 Fs(xr41) — Fs(x(S)) O(M
|2.1 2.5|2.7|0 € (2,1] Fs(xr41) — Fs(x(5)) O(%M
2.1l.s|l2.7] 0 > 1 Fs(xr41) — Fs(x(S)) 1) 1°gw+%)(%"°g%”””°g%T
21[l7fo =1 F(xri1) — F(x") o(%ﬂﬂ log?(3) logn)
pafkslkrlee ¢ F(xr41) — F(x") O L5 Q) 155 (20+1) (1) Jog g
2.10R.s[l2.7l0 > 1 F(xr1) — F(x*) o(%’“ﬂlog@””(%)logw{”(g)bgn)
2.1l 7R3l =L F(xry1) — F(x*) o(=E w)
|2.1 2.5|[2.7)R.3] 6 € (2,1] Fxrsn) — F(x7) o= P st n £ ios1/5))
2.1 2.5"2.7 2.3)6>1 Flxrir) — F(x*) 0(1023(551) <"/5>1zg(9*%)<%>log% n 4 Fesss))
212 7]p3[LNio = 1 F(xr41) — F(x") o(lin,f;)
|2.1 2s[7[ps| v o e 2 Fxrs1) - F(x®) o= P st n
2.1"2.5 2.7"2.3 LN, 6> 1 F(xri1) — F(x") 0(1“%%2‘"/‘”122(“%)(%)'°g% )

17
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» 3K5 > 0 such that | X ||, < Kok?, Yk > 1;
* 3K3 > 0 such that Elexp (A|X|)/?)] < exp ((AK3)'/?), VA € (0,1/K3);
* 3Ky > 0 such that E [exp (| X|/K4)'?)] < 2.

The parameters K1, Ko, K3, K4 differ each by a constant that only depends on 6.

We list several concentration inequalities for sums and martingales with sub-Weibull increments.

Lemma C.2 ((Vladimirova et al., 2020; Wong et al. [2020; Madden et al., 2024)). Suppose
X1, , X, are sub-Weibull(0) random variables with respective parameters K, ..., K,. Then,

forallt > 0,
; 1/0
P >t] <2exp —(n) ,
(2 x]=) <2 (- Gargrs) )

where g(0) = (4e)? for § < 1 and g(0) = 2(2¢6)? for 6 > 1.

>

i=1

The next two lemmas provide sub-Weibull analogues of martingale concentration bounds.
Lemma C.3 (Theorem 2 in (Li} [2021); see also (Fan & Giraudol [2019)). Let 6 € (0, 00) be given.

Assume that (X;,i = 1,--- , N) is a sequence of R%-valued martingale differences with respect to
filtration F;, i.e. B[X;|F;_1] = 0, and it satisfies the following weak exponential-type tail condition:
1
. e
for some 0 > 0 and all i = 1,..., N we have for some scalar 0 < K, E[exp (’ )Igb )] < 2.

Assume that K; < oo foreachi =1, ..., N. Then for an arbitrary N > 1 andt > 0,
N 2 2 261+1
128> .0 K; t
P <m<a]ifc > t> <4 |3+ (30)20 21_111 exp{ — <>

2 N

t 64>, K7
Lemma C.4 (Sub-Weibull Freedman Inequality; Proposition 11 in (Madden et al., 2024))). Let
(Q, F,(F:), P) be a filtered probability space. Let (§;) and (K;) be adapted to (F;). Let n € N,
then for all i € [n], assume K;_1 > 0, E[¢;|F;—1] = 0, and

]E{GXP ((|§¢\/Ki71)1/6) \]—"i,l} <2
where 6 > 1/2. If 0 > 1/2, assume there exists (m;) such that K;_1 < m,.
If0=1/2,leta =2. Thenforallx,3 >0, and o > 0, and \ € [0, i}

k k k
P U {Z& > x and ZaKi{l < az& +5} < exp(—Az +2)%3). )
i=1

ken] © i=1 i=1

and for all x, 3, )\ > 0,

k k
P U{Z§i>mandZaKi21<B} <exp<—)\x+/\226>.

keln] ©i=1 i=1

n

X,

i=1

Ifo € (%,1}, let a = (49)2062 and b = (49)06. For all x,3 > 0, and o > bmax;c[,) m;, and
e [0, 5],

k k k
P U {Z& > x and ZaKiz_l < aZ@ + B} < exp(=Az + 2)\%p). 3)
k€[n] ~ i=1 i=1 i=1

and forall x,3 > 0, and \ € [O %],

> bmax;g[n] Mi

k k
P U{Z§i>xandZaKf_1<B} <exp(—)\:c—|—)\;5>.

ke [n] =1 =1
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If0 > 1,let 6 € (0,1), a = (229 +2)I'(20 + 1) + % and b = 21og? 1 (n/5). For all

x, >0, and o > bmax;c(n) my, and A € [O, 2@]

P U{Z&ZxandZaI(ll<aZ§z+ﬂ} <exp(—Az +2X\2B) +26.  (4)

ke[n]

and forall x, 5 > 0, and )\ € [0 é]

> bmax;e[n) mi |’

P U {Z&ZaﬁandZaKl 1 < } gexp(—)\x+/\22ﬂ>+25.

ke(n]

C.2 AUXILIARY LEMMAS

Lemma C.5 ((Lei & Tang, 2021)). Let e be the base of the natural logarithm. There holds the
following elementary inequalities.

(@) If0 € (0,1), then >_p_, k=0 < t'=9/(1 — 0);
(b) If 0 = 1, then 22:1 k0 < log(et);
() If0 > 1, then Y _ k=% < 5%

(d) Yoy 7o < log(t +1).
Lemma C.6 ((Li & Orabonal [2020)). For any T > 1 and sequences (a;) and (b;), it holds that

1 T
bt E Q.
1

1=t+1

T

T t—1
Z ag b; = Z by a; and Z ai Z b; =
t t=1 =0

t=1 i=1 t=1 1=

T—

t=

Lemma C.7. Let (-,-) denote the inner product. If f is L-smooth, then the following standard
properties hold (Nesterov}, |2014;|Ward et al., 2019): for any z € Z and every x;, Xa:

f(x152) = f(x2;2) < (x1 — %2, Vf(x2;2)) + %Lllxl — x|,
L) HIVI(x;2)|1” < f(x;2) — inf f(x; z).

The next two lemmas are uniform-convergence results that control the gap between the population
gradient V F' and the empirical gradient V Fg; they are key tools in our generalization analysis.

Lemma C.8 (Corollary 2 in (Lei & Tang} 2021)). Denoted by Br = B(0, R). Let 6 € (0,1) and
S ={z1,..., 2n} be a set of i.i.d. samples. Suppose Assumption holds. Then with probability at
least 1 — 0 we have

(LR + B)

sup ||[VF(x) — VFs(x)|| < ——
s IVE(x) )l Tn

where B = sup,c z |V f(0; z)|| and L is the smoothness constant.

Lemma C.9 (Lemma B .4 in (Li & Liul 2022); (Xu & Zeevil [2020)). Suppose Assumptions[2.1|and
- 2.3 hold, and assume that the population risk F' satisfies the PL-type inequality F(x) — F(x*) <

8105(2nR+2)
EHVF( x)||2 for some . > 0. If n > eL® (d+10g(u2 D then, forallx € X C B(x*, R) and
any 6 > 0, with probability at least 1 — 0

IVF(x) — VFs(x)|| < ||[VFs(x)]| + % 4, 2B. 105(4/& N \/81E[||Vf(x*;z)ll2] log(4/9)

(2 + 2\/4seﬂ(1og2 + dlog(3e)) + 210g((15)> :

)

where c is an absolute constant, and where B, is the constant from Assumption
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D PROOF OF MAIN RESULTS

D.1 PROOF OF THEOREM [3.1]

Proof. By Assumption[2.1] we have
Fs(x¢+1) — Fs(xt)
1 1
<{xer1 =%y, VEs(x0)) + 5 Lllxer1 — x;|* = —(my, VFs(x,)) + §L||mt||2~ o)
We first control the term —(m;, VFg(x;)). We have
— <mt,VFS(Xt)>

—y{my_1, VFs(x¢)) — (0:V f (%45 25,), VEs(xt))
—y(my—1, VFs(x¢-1)) + v(my—1, VEs(x—1) — VFs(x¢)) — V(%45 25, ), VEs(x4))

IA

—y(me_1, VFs(x¢t-1)) — (mV (x5 25,), VFs(xt)) + vl[my—1[|[[VEs(x¢-1) — VEs(x¢) ||
< —y(my_1, VFs(x¢-1)) + Lyllme_1 ||* = 0V f (x4 25,), VFs(x¢)), (6)
where the last inequality uses L-smoothness of Fig and the update x; — x;—1 = —m;_;. By
recurrence and using my = 0, we derive
t—1 t
— (g, VEs(x)) < LYo il = 300t iV £ 25), VFs(x)). (D)

i=1 i=1
Taking a summation from ¢ = 1 to ¢t = T yields

Fs(x711) — Fs(x1)
T t—1 t

§L227t_iHmi||2 szt iV f(xi525,), VFs(x:)) + LZHthQ. (8)
t=1

t=1 i=1 1 i=1
By Lemma|[C.6] we have

T -1 T
i g L
LZZ’Yt [[m; H2<LZ’Y | Z’Y <LZ’Y t||th2 ZEZHthZ-
t=1 i=1 t=1
)
Furthermore, using Lemma|[C.6] we have
T _
= > AT V(%63 25,), VEs(x:))
t=1 i=1
Tt . T
== ATV (x5 25) — VEs(x:)), VEs(x:)) = > > 4" (mi(VFs(x:)), VFs(x;))
=1 i=1 =1 i=1

T T

T
2—27 (M(V f(x¢;25,) — VFs(x4)), VEs(x¢) Z’y —Z'y (n:(VFs(x¢)), VEs(x¢) Z#
i=t t=1 t=1
T T T

<- ZV (e (V f (%45 25,) — VFS(Xt))aVFS(Xt»Z’Yi*ZWHVFS(XMF
1=t t=1
T _,YT t+1 T
=— Z (m(Vf(x1525,) = VFs(x1)), VEs(x0)) = > mel|VFs(x0)|>, (10)

t=1

Plugglng @) and (I'I;G[) into (8), we obtain

T T
L
Yl VEsx))I? < Fs(x1) — Fs(xs) + Fp— D Im?
t=1

t=1

T _,YT t+1 | X
—~ Z (ne(V f (x4 2,) — VFs(x1)), VFs(x)) + 5LZ me|2. (1)
t=1
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It is clear that
1— ,YT—t—&-l
Ej, —ﬁ@?t(vﬂxtézﬁ) — VFs(xt)), VFs(xt)) | =0,
implying that it is a martingale difference sequence (MDS). We thus use Lemma to bound

it. Specifically, we set & = —£<nt(v f(xe:2),) — VFs(x4)), VFs(xe))s Kiq =
and x = 2alog(1/0).

T—t+1
177771J(||VFS(>Q) =0,)\=

204’

Ifo = %, for all @ > 0, we have the following inequality with probability 1 — §

T t+1
- Z (me(Vf(x4: 25,) = VFs(x¢)), VFs(xz))
aK> e 2
< 2alog(1/6) + o Znt (ﬁ) [V Fs ()|
t=1
K T

< 2alog(1/6) +

T
)2y n IV Es(x)]
t=1

If 6 € (3, 1], according to Assumption , we set my = 1;]; KG@. Then for all @ > bl:’; KG@G,
we have the following inequality with probability 1 — ¢

T t+1

- Z - (1e(V £ (x1:.23,) — VEs(x)). VEs (1))

aK ~T

T
<20log(1/6) + YV Fs o)
t=1

If 6 > 1, according to Assumption [2.5) we set m; = 1*7
b L K G, we have the following inequality with probablhty 1-36

T t+1
- Z (e (V f (43 25,) — VEs(x4)), VFs (1))

<2al0s(1/6) + X

T
2277 IV Fs(x:)
t=1

Then, we control the term Y7, [|m,||.

T T
V f(xe; 24,
>l = 3 [mes + 11 2S5
t=1 t=1
T
<> (Mmea P+ (1-7)
t=1

T-—1 T
neV f (x5 2,
R DR BRI LALLIES
t=1 =1 I=n

‘2
me(xt;zjt) ‘2)
1—v

T T
neV f (x5 25,) ||2
< Sl + 30 - 1Lz
t=1 t=1

where the first inequality holds due to the Jensen’s inequality and the second equality follows from
|lmgo|| = 0. Thus, we have

T T
> | < Z HntVf(Xt»ZJt)ll? (12)
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This inequality implies that

T
2
Z [l | < A= Zm IV £ (xe3 2,) = VEFs ()| + e Y IVEs(xo)]*
t=1

(1

Since ||V f(x¢; 2;,) — VFs(x¢)]| is a sub-Weibull random variable, we have

2 } 2\ 3¢
NIV £ (x5 25,) — VEs(x4) ||
<
P ( ni K2 =2

E

which means that n? ||V f(x; z;,) — VFs(x)]|? ~ subW(20,n?K?). Applying Lemmal|C.2 we
get the following inequality with probability 1 — ¢

29(26) log™ (2/5)

t

Z 277tva(xt,ZJt) VFS<Xt)H2 S

t=1 1

[\
M*ﬂ

—* K
(1—=7)?

T—t+1

Then, we plug the bound of — Zt 1 ﬁmt(Vf(xt; zj,) — VFs(xy)), VFs(x;)) and the
bound of thl | m;||? into , we obtain

T T
L 1 2
2 < — T o D 2 2
> mlVEs I < Pola) = Fs((S)) + (=5 + 35) =g 2 IV Fs (el
aK? L= d
+ 2alog(1/6) + 2} 0V P (x0)|
t=1

L 1 2 -
+(E+§L)W 9(26) log? 2/5;77,

implying that
T
L 1 2 aK? 1—~7T
1—( 7L) - 2 Fs(x)||?
gn< T ) et~ S (P ) IV s
L 1 2 d
< Fs(x1) — Fs(xs) + 2alog(1/6) + (—— + = L) ——— K?g(20) 1og™* (2/5) Z
l—v 27 (1—9)? —
N2
Whenc—m_él(é:)%L—i%WL) then
L 1 2 1
L)i Vit 13
(1— Tl a— et = (13)

1—7" 2
>4 K-
0> (5= ma
2 _ 2 1 (1—9))? :
Thus, if @ > 4( ) mak 4( ) caK?andn < & L1 We derive that
— 2
T
Dl VESs (xo)I1?
t=1
L 1 2 d
< - log(1 — )1
<2(Fg(x1) — Fs(x(S5))) + 4a log( /6)+2(177+2L)(17 ) 24(26) log* (2/6) ;
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T

Putting the previous bounds together. Hence, if § = 3, taking o = 4(1;’7 PmaK? =
8(1 7 )2m1 K2, with probability 1 — 26, we have

_ AT
ZntI\VFs(Xt)\|2 < 2(Fs(x1) — Fs(x(9))) + 32(11 _77 )?m K *log(1/6)
t=1
L 1 4 d
+(71_7+§L)7(1_7)2 1)log(2/6) z::

If3<0<1, takmgoz—max{bl1 KG, (5 ) r]laK2}
— max {(49)%1 T KG, 452 (49)2%21(2}, with probability 1 — 25, we have

T
Yl VEs(x)|* < 2(Fs(x1) = Fs(x(5)))

1 T
+ 4max {(49)96

T
-7 I—9" 1 20 2 1-2 1
l—nyG’4(1—7)m(40) eK}log((S)

L 1 4

Ha ata

T
K?9(20)10g*(2/6) Y ;.
t=1

If > 1, taking @ = max {bl T RG A )2n1aK2}, that is
1—~T 1—~T 2391(360 + 1
a = max {2log9*1(T/5) 1RG4 )2 (220! +2)T(20 + 1) + ﬁ)}@}.
1—7 1—7 3
Thus, with probability 1 — 44, we have
T
> mllVEs(xo)lI” < 2(Fs(x1) — Fs(x(S)))
t=1
T
L 1 4
+(——+L)—— 20)log?(2/6)
(1_7 5 )(1_7) %g( g~ (2/9) z::

+ 4log(1/6) max {2 log?=1(T/9) 117

2391“(:;0 + 1))K2}.

1—’7T 2 20+1
4( 1=~ ) ((2 +2) (20 +1) +

Note that the dependence on confidence parameter 1/§ in above bounds is logarithmic. One can

replace d to /2 or §/4. Through this simple transformation, we have the following results: (1.) if
6 = 1, under Assumptions[2:1and 2.9} with probability 1 — &, we have

1< 1 & 1 L
7 > IVEs(x)|* < o > nllVEs(x)|* = 0 <ﬁ10g(1/5) Zn?)

t=1 t=1

1
=0 (\/T log(1/4) logT) ; (14)

2.)if % < 0 < 1, under Assumptions and with probability 1 — §, we have
1 & 1 <& 1 )
=D IVEs(x)|? < —= > el VFs(x:)[? = O ( log*(1/5) Zn?)
T t=1 VT t=1 VT t=1

=0 (\/1? log??(1/9) 10gT> ; (15)

23



Under review as a conference paper at ICLR 2026

(3.) if @ > 1, under Assumptions 2.1} 2.3] and[2.9] with probability 1 — d, we have

T
;; IV Fs ()12 < \FZmHVFs(Xt)HQ
o <1og"—1(:r/5) log(1/68) +1og? (1/6) 2, ng)

VT
_0 log?~1(T/6) log(1/8) + log?® (1/6) log T (16)
VT ’
where the bound of ZtT:1 n? follows from Lemma The proof is complete. O

D.2 PROOF OF THEOREM [3.3]

Proof. The proof is divided into three parts.

(1.) In the first part, we prove the bound of ||x¢||. ||x¢|| characterizes the bound of B(0, R), i.e., at
iterate t, R = R; = ||x;||, because x; traverses over a ball with an increasing radius as ¢ increases.
Therefore one should apply Lemma[C.8] with an increasing R.

From the update x;1; = x; — my, by a summation and using m; = 0, we get x;4; = — 22:1 m;.
Using m; = ym;_1 + n;V f(x;; z;,) and recurrence, we have

m; = 'V f (x5 25,)-

k=1

According to Lemma|C.6] this gives that

Xpp1 = — zt: zi:Wi_kﬁka(Xk; Zjy) = — zt: 1_17_t_;+1ﬁivf(xi; 2j,)- (17
i=1 k=1 i=1
Thus, we have
el = —HZ Y f (3525, |
HZ )0V F (i 25,) — Vs () H+—HZ A0V Fg ()],

(18)

Let’s consider the first term H S (= AT (V (x4 25,) — VFs(xi))H. It is clear that

E;, [(1 =+~ N0 (V f(x45 25,) — VFs(x;))] = 0, which means that it is a MDS. Moreover, since
|V f(xi;25,) — VEs(x;)|| ~ subW (6, K), we have

1

] <

Bl

E

exp

<||7h'(1 — TIN5 25) — VFS(Xz‘))H)
ni(1 =~ K

Then, we can apply Lemma[C.3|to derive the following inequality

P < max > m)
1<t<T
1
£C2 20+1
exp 4§ —
64K2(1 —~T) 1 2

24

t

> = NV f (x5 25,) — VFs(x2))

=1

20 128K2(1 —7T) 1 n?]

2

<4 [3+(39)
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1

Setting the term 4 exp {— (641(2(17;”5) ST 772) 3671
i=1"1q

'yT)%(ZiTzl n2)z. Thus, with probability 1 — 35 — %(5 we have

T 1

1 4 2

<8log " D)KLy (Don)
=1

19)

} equal to §, we get 7 = 810g(9+%)(%)K(1—

D A=A YV f(wis 25,) — VEs(wi))

=1

max
1<t<T

Since § > 1/2 and 6 € (0,1), we have log26Ur1 % > 1. Thus, means that with probability
1 — 36 — 8(30)%965, we have

t

Z(l — ATV f(wi; 25,) — VFEs(wi))

i=1

=

max
1<t<T

§810g(9+%)(§) %(Zm)

Now, with probability 1 — 4, we can derive

t

priss ;(1 — YN (V f(wis 2j,) — VEs(wy)) ’
0+1) 4(3+8(39)29) % 3 _
<8log ™) () K(1 (Z i)’ =0, (20)

For the second term H Zle(l — ), V Fs (%)

, we have

t

H D (1=~ V()

o+

t

T2 (=) (0 -V Ese) )

i—1 i=1 i=1
< (zt:m)(i:ni||VFS(Xi)|2)> 2n
=1 =1

where the first inequality follows form the Schwarz’s inequality, and where the second inequality
follows from the fact that 0 < v < 1, 7; > 0 and ||[VFs(x;)|| > 0. For the sake of the presenta-

tion, we introduce a notation A(0, T, §) = logefl(T/(S) log(1/6)Ip~1, where Iy~ is an indication
function. Thus with probability 1 — § we have the following inequality uniformly forallt = 1,...,T

(Zm) (imnws(xi)?)
:(ini)o <A(9,T, 8) +1og29(1/5)2n§), (22)

i=1 i=1

HZ YV Fs(x;)

where the last equation follows from the results of (I4), (T3)), and (T6).

Plugging (20), (ZI) and (22) into (8], we have the following inequality uniformly forall ¢ = 1, ..., T
with probability at least 1 — 29

el = O <1ogw+ D51 =) Zm 5) + ((Zm)O(Awm 5) +1og29<1/6>2n$))

i=1 =1
(23)
=0 (log(9+l)((1s)(1 — 4T)2 log? T) - (t%o(A(e,T, 8) + log®*(1/6) log t))i
<0 ( t1(A3(0,T,6) +log?*3 )(%)log% T)) , (24)

where the second equation follows from Lemma|C.3]

25



Under review as a conference paper at ICLR 2026

(2.) In the second part, we prove the bound of max;<¢<r |[VF(x:) — VFs(x;)||. According to
Lemma [C.8] with probability 1 — § we have

max IVE(x:) — VFEs(x:)]|

1<t<

<(LEr + B) <2+2\/48e\/§(1og2+d10g(36)) + 210%(1)>
Y 5
<(L||XT\/|7|{LB) (2 +21/48ev/3(log 2 + dlog(3e)) + /2 1og((1;)> : (25)

Plugging into (25)), with probability 1 — 3§ we have the following inequality uniformly for all
t=1,..T
<
1r<nta<XT||VF(Xt) VEs(x)| <
LO(T% (A%(6,T,6) +log*2) (1) log? T)) + B !
( 4( 2 ( ) \(/)g; (5)log2T)) 2+2\/48e\/§(10g2+d10g(36))+ 2log(g) '

which means that we have the following inequality uniformly for all ¢ = 1,...7" with probability
1-946

max [|[VE(x¢) — VEs(x¢)|?

1<t<T

1 (20+1) (1
(9( (A(0,T,6) + log (3)18T) <d+10g((15))> , (26)

n

(3.) In the third part, we prove the bound of £ ZtT: L IVF(x;)||?. Firstly, we can derive the follow-
ing inequality with probability 1 — 2§

T
D mllVEG)|?
t=1

T T
<2 0| VF(xe) = VEs(xo)lI* +2 )l VEs(x0) |

t=1 t=1
T T

<2 Zm fél%XT IVE () = VEs(x)|* +2 ) mel VEs(x)?

t=1
A0, T,6) +log® ™D (1) 1og T)

<2277t ( — (d—l—log(%)))

+ O(A(a, T,6) +log? (1/6) log T>7
where the last inequality follows from (26) and the results of (I4), (I3), and (I6).

Therefore, we have

1 <& 1 &
“STIVEE)IE < —= Y n|[VF(x)|?
T;:lll (1) C\/T;:ln” (xt)]
(2041) (1)1,
o (AT ) ()

n

A(0,T,5) +1og* (1/8) log T

Taking T < @, we have the following inequality with probability 1 — 26

*ZIIVF xlf =0 ((£)7 (loe5) 106225 + 20, 5. 6)10501/5) ).
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which means with probability at least 1 — § we have
1« d\ z n 1 n
= 2 IVEE)|? =0 ((n) (1og(5) 1082 (5) + A(6, ., 9) 1og<1/6>))
t=1

d\s n 1
= - i (204+2) = 0—1 2
© ((n) (1o(5) 108+ (5) +log"~* (n/d8) log <1/6>H9>1)) .
The proof is complete. R

D.3 PROOF OF THEOREM 3.3

Proof. The proof of Theorem [3.3]is relatively complex and is divided into two parts.

(1.) In the first part, we prove the bound of ||x;41]|, characterizing the bound of B(0, R), i.e.,

. . 1—~)2 .
at iterate t + 1, R = Ry;41 = ||x¢+1/]- Recall that in 1) we need 7; < %1%_:)%]; Since

_ 1 8(725+3L) _ 12L—4l~ 1 (1—9)?
Nt = 8 (Tt0)° when tg > =72 = a8 =7 Ve have n; < S L 110 Thus, we can use

(23) to bound ||x¢+1]]. According to (23], we have the following inequality with probability 1 — &
uniformly forall ¢t =1,...T

t

el = 0 <log(9+5)((15)(im2)5 w(n) (atema + 10g9(1/5)(zt:17?> ))

<o ((1og<"+%)<§> +21(0.7.)) log? T) | e

=

where A(6,T,6) = log? (T /8)1og(1/8)Tp=1, and where the last inequality follows from 7, =
m with tg > 1 and Lemma

(2.) In the second part, we prove the bound of Fis(x741) — Fs(x(5)). It is clear that
FS(Xt+1) — Fs(x¢)

1
<(Xt41 — Xi, VFs(x)) + §L||Xt+1 - x?

1
< —y(my_1, VEs(x¢-1)) + Lylmy_1||* — 0V f (x4 25,), VFs(x¢)) + §LH11f1t||2
= — y(my_1, VFs(x¢—1)) + Ly|me_1 || — 0V f (%43 25,) — VFs(x¢), VEs(xt))
1
—ne|[VFs(xe)||* + §L||mt|\27

where the second inequality follows from (6). We can derive that

1
§Ut||VFS(Xt)||2 + Fs(x¢11) — Fs(x¢)
< —y(my_1, VFEs(x¢-1)) + Lylme_1 ||* = 0V f (x4 25,) — VFs(x¢), VFs(x))
1 1
- 577t||VFS(Xt)||2 + §L||mt||2-

1

Since N = PMIEEDE

it implies that

1
5771t||VFS(Xt)||2 + Fs(x¢41) — Fs(xs)
2
<(1- m)(FS(Xt) — Fs(xs)) = v{my_1, VFs(x;-1)) + Ly[my, ||

1
=V f(x152,) = VFs(x0), VFs(x0)) + 5 Ll

27
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Multiplying both sides by (¢ + t9)(t + to — 1), we get

%HVFS( OlI? + (¢4 to) (t +to — 1) (Fs(xe41) — Fs(xs))

< — (t+to)(t + to — 1)y(my—1, VFs(x-1)) + (£ + to) (t + to — 1) Ly[Jmy—1 ||
+ (t+to)(t +to — 1)%L||mt|\2
+(t+to—1)(t +to — 2)(Fs(x¢) — Fs(xs))
= (t+to)(t+to — Dne(Vf(xs525,) — VFs(xt), VEs(x1)).

Taking a summation from ¢t = 1 to ¢ = 7', we derive that

Z (t W;j?s—) 1) IV Fs(x¢)||? 4+ (T 4 to)(T 4 to — 1)(Fs(x711) — Fs(xs))
t=1

T T
< =Y (t+to)(t+to — V)y(my_y, VEs(x; 1)) + 3 _(t +to)(t + to — 1) Lry|[my_y ||?
t=1 t=1

1
+ D (+ to)(t+ to — D3 Ly

- 114

+
=~

0 — D)(to — 2)(Fs(x1) — Fs(xs))

M*ﬂ

(t+to)(t+to — 1)n(Vf(xe525,) — VEs(x¢), VFg(xy)).

t=1

Since my = 0, we get

T

) WWFS(X:&)HQ + (T + to)(T + to — 1)(Fs(x741) — Fs(xs))

t=1

< — Z(t + to)(t +ty — 1)fy<mt_1,VFS(xt_1)> + - (t +to + 1)(t + tO)L'YHthZ
Tt:1 1 t=1

+ D (t+to)(t+1o — 1)§L||mt||2

Tt — 1)(to — 2)(Fs(x1) — Fs(xs))

-

(t +to)(t +to = V)me(V f(xt; 25,) = VFs(xt), VFs(x1)). (28)

o
Il

1

We first bound the term Y1 ' (t + to + 1)(t + to)||m;|?. Note that from the Jensen’s inequality,
we have

1-—
P ® = [y + me(Xt,th)HQ S 7llntVf(Xt,zgt)ll2~

1

By recurrence, it gives that

t—1

t
Y
Jom? < 5 eV £ O 25 P
=1
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Thus, we have
T-1

(]

(t +to 4+ 1)(t + to)||my||?
t=1
T—1

M

1—v
_ T-1
Vi(xe; 25,) 227 i+to+ 1)@+ to) (29)

t

T-1
_gl

1

t i
(t+to+1)(t+t0)D e i 23|
=1

Considering ZZT;tl(z +to + 1)(i + to)7*, we have
T—1

D (i +to+1)(i +to)y’

i=t

T-1
S/ (i +to + 1) (i + to)y'di
t

T-1 }
g/ (i +to + 1)*y'di
t

o ,[=T—1
= + t 1
Iy (i+to+1)

% i=T—1

T (i 4 1o + 1)

T—1 )
- 2/ (i +to + 1)vidi

i=T—1 T-1
—/ fyldz'].
1=t t

i
_ —2 (it +1
e ettt D)
Solving the above integral, and since Iny < 0, we get

T—1

D (i +to+1)(i + o)y’

i=t

t t

t
<— ll(t+to+1) +2172 (t+t0+1)—217—7S(Cﬂ,)’yt(t+to+1)2, (30)
n’y

i=t

where C, = 1+ 2

ln , which is a constant only depend on ~. Thus, according to ( , we
have

!

-1

t=1

(t+1to+1)?
< ( 2 Z t-if)t ||Vf(Xt;th)H2.

= C
(t+ to+ 1)t -+ 1) oy < Z (4 t0 + 0P 2 e o 23 P

And since % (1+ W) < 4, then we have
T-1

> (t+to+ 1)(t + to)|my?
<((‘§;)(52 Z 194 xes 2501

<T@ (anXt,zﬁ ~ Vs + [V Fs(x) -

<2.

Since |V f(x4; 25,) — VEs(x¢)|| ~ subW (6§, K), we get E |exp ( ‘lvf(x“z‘“;zv&(x‘)ﬂz ) 26}
According to Lemma|[C.2] we get the following inequality with probability at least 1 — §

DIV F(xeizi,) = VEs(xo)|* < (T = 1)K?g(26) log™ (2/9).
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Thus, with probability at least 1 — d, we have

T-1

(8C5) 2 20
t+to + 1)(t+to)|my|]? < ——L—(T — 1)K?¢(26) log*’(2/6
T—1
(8C5) 2
+ ————— ||V Fs(x¢)]|*- (31)
Similarly, with probability at least 1 — §, we can derive
T
Dt + to)(t+ to — 1)[my||?
t=1
(8C)) e -
< TK 2910g (2/6) + VFs(x .
eI (2/9) g T IVEsGI?

We then bound — Z;T:l(t +to)(t +to — 1){(my_1, VFs(x¢—1)). Recall that from , we know

t—1

—(my, VFs(x;)) < LY 4" my|* - va “miV f (%35 25,), VFs (%))
=1 =1

Since mg = 0, we have

T
— > (t+to)(t+to — 1) (my_1, VFs(x1-1))

t=1
T-1
== (t+to+1)(t +to)(my, VFs(x¢))
t=1
T-1 t—1
< (4 to + 1)(E+ 1)L Y Ay
t=1 i=1
T-1 t }
(t+to+1)(t+t0) Y A mVf(xi52;,), VFs(xi))
t=1 i=1
T-1 t )
(t+to+1)(t+to)L Y 7'~ ||m;|
t=1 =1
T-1
(t +to + 1)(t + to) Zv iV f(xi525,), VFs(x;))
t=1 i=1
T-1 T-1 ]
=3y lme 2Ly i+ to + 1)(i + to)
t=1 1=t
T—1 T-1 )
= vV F(xa323,), VEs(x0)) (i + to + 1)(i + o)y
t=1 i=t
T-1 T-1 ‘
=D v PL Y A i+ to + 1)(i + o)
t=1 =t
T-1 T-1
— S (Y (% 2,) — VEFs(x4)), VEs(xe)) S (i to + 1)(i + to)’
t=1 =t
T-1 T-1 )
=Y v mVFs(x:), VEs(x1)) Y (i + to + 1) (i + o),
t=1 i=t
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where the second equation holds by using Lemma|C.6
With a similar analysis to (31),, it is clear that with probability 1 — §

T-1 T-1 T—1
S ATHmPL Y A i+t + 1)+ to) < LCy Y [my|*(t + o +1)°
t=1 i=t t=1
(8CY) o 1 K2e(20) 10s2” (S (8C,) P
SL(C’Y)(l _V)M(S)Q(T 1)K*"g(20)log™(2/0) + ;L(Cw)(l _W)M(S)QHVFs( Ol
And we also have
= > v mVFs(xe), VFs(x)) D (i + to + 1) (i + to)7’
;i11 = T-1
<= ATt +to + 1)(t + to) (0 V Fs(xy), VEs(x:)) Z 7
T—1
<= ) (t+to+1)(t+1to)(n:VFs(x¢), VEFs(x¢))
éi
= (t+t0 +1)(t+t0)77t||VFs(Xt)||2
Thus, we have =
= (t+to)(t +to — 1)(my_1, VFs(x-1))
t=1
Z T OV £ 00323~ VEs(0)), VEs)) 30+t + 1)+t
T-1 l:t(gc )
2 v 2 20
- ;(t +to 4+ 1)(t +to)ne ||V Es(x¢)[|” + L(Cw)w(T —1)K=g(20)log™(2/6)
- (C,) e
We now con51der the term — Et Y e (V f (%45 25,) — VFs(x4)), VFEs(x¢)) ZZ . Y+ to +
D)(i+to)y". Dentedby & = =1 ((V 15 2) ~V ), V() 2 i+ 1)+
to)y'. We know that E;,& = —E; v " (n:(Vf(xe;25,) — VFs(xt)), VEs(x¢)) ZZTZ (i 4 to +

1)(i +to)y* = 0, implying that it is a martingale difference sequence. We use Lemmato bound
this term.

From (30). itis clear that |y~ (n(V £ (x1: 25, )—V Fis (x1)), Vs (x:)) -7 (i-to+1) (i-+t0)7°| <
(C)(t + to + 1)%me |V f(xs: 23,) — VEs (xe)I[IIV Fs (1) We set

K 1=0C(t+to+ 1) K| VFs(xq)|| = Cy(t + to + 1) K| VFs(x)|-

1
p(S)(t + to)
We also set 8 = 0, A\ = 5-, and x = 2alog(1/d). For brevity, we denote = = 2C, (t + to +
Dp(S) 'K and E1 = 20 (T +to + 1)u(S) LK. Moreover, according to the smoothness as-
sumption, we know ||VFS(xt)|| < (L||x¢|| + B).

Ifo = 1 , for all o > 0, we have the following inequality with probability 1 — §
T-1 -1 ‘
= AT eV F(xe323,), VEs(x0)) (i + to + 1)(i + o)y
t=1 i=t
-
<2alog(1/6) + — > 2RV Es(x)|*-

t=1
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If L <6 <1, wesetmy = E(L||x;|| + B). Then for all @ > bZ7(L|x7| + B), we have the
following inequality with probability 1 — §

T-1 T-1

= AT V(%43 25,), VEs(x4)) (i + to + 1) (i + t0)y'
t=1 i=t
T-1

a
<2alog(1/8) + S Z 22|V Fs (x|,
t=1

If 0 > 1, we set my = Z(L||x¢|| + B) and 6 = 4. Then, for all @ > b=r(L||xr|| + B), we have the
following inequality with probability 1 — 36

T-1 T-1

= AT V(i 23,), VEs(x0)) S (i to + 1) (i + to)y'
t=1 i=t
T-1

a —
<2alog(1/0) + o Z 22|V Fs(x)|1%.

t=1

We now consider the last term —(t + o) (t + to — 1) (V f (x4 25,) — VFs(x¢), VFs(x)). With a
similar analysis, we set £ = —(t + to)(t + to — 1)m(V f(x¢; 25,) — VFs(x;), VFs(x;)) and

Kio1=(t+to)(t+to — K|V Fs(xq)|| = p(S) " (t + to — 1) K[|V Fs(x¢)|-

We also set 3 = 0, A = 35—, and ¢ = 2alog(1/§). According to the smoothness assumption, we
know ||V Fs(x¢)|| < (L[x]| + B).

If6 = 5, for all @ > 0, we have the following inequality with probability at least 1 — ¢

Mﬂ

(t+to)(t+to — 1)ne(V f(xt;25,) — VEs(xt), VEs(x¢))

“
Il
-

T
<2alog(1/0) + Z +1to — 1)?|VFs(x)|*.
=1

If £ <0 <1 wesetmy = pu(S)~ 1t +to — 1)K (L|x¢|| + B). Then for all o > bu(S)"*(T +
to — 1) K(L||x7| + B), we have the following inequality with probability at least 1 — §

MH

( +t0)(t+t0 — 1)’[]t<Vf(Xt,Z]t) VFs(Xt),VFs(Xt»

H
Il
—

2 T
<2alog(1/6) + Z t+to — 1)?|VFs(x)|.
=1

If0 > 1, wesetmy = pu(S) ™ (t+to—1)K(L||x¢||+ B) and § = §. Then, for all o > bu(S) (T +
to — 1)K (L||xr|| + B), we have the following inequality with probability at least 1 — 3§

MH

( +t0)(t+t0 — 1)’[]t<Vf(Xt,Z]t) VFs(Xt),VFs(Xt»

t=1

2 T
<2alog(1/0) + Z t+to — 1)?[VFs (x|
-1
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Finally, combining with these terms, we derive

9 T
Z”to v <t>|\2—&Z(t+to—1f\\vzﬁs<xt>|ﬁ

t=1 t=1
T
L
-3 Z S IVEs e
t—
T-—1 T-—1
07 Y g VG + 3 (o + 1)1+ o) Vs (x|
t=1 t=1
T-1
(8C,) :
=3 G s IV Fs (xa) |
— (T~ u(S5)

T-1
— = D ZVES ()P + (T + to) (T + to — 1)(Es(xr41) = Fs(x(S)))

(;é*v) 2 L (8C,) 2 5

gLVW(T —1)K?%g(20)log*(2/5) + ngK 9(260)10g* (2/6)

L0 (C) s s (T = D?(26) log™ (2/8) + (1 = Dlta ~ 2 (Fs(ox1) - Fi(x(5))

+ 2alog(1/6) + v2alog(1/96). (32)
We want

(t+to—1) akK? L (8C,)
(s etV T Ty 2
and
(t+1to+1) (8C,) (¢ (8C,) a2 > 0.

u(S) A= u(S)? VA us)E  Ta
Thus, we assume that ¢ satisfies the following conditions
(to — 1) S £ (8C,) ]
2u(S) 2 (1—7)2u(S)?’

and

(to +1) (8C5)
WS = T uE)

which means that

8C,)L
tO > ( 72) + 17
(1 =)2p(S)
and
y s 8O+ IN(Gy)
- (@ =y)us)
Thus, we can further derive that o > + +t0“ff)2(t:rt° _é)czw) and
L, S 2 a-mTus)?
2C, (t+to+1 'K
«Q Z (t+to+1) oLt ((SC ? o i )( )) (8Cy)
n(S) Taz 7)%(5)2 v(Cy (1—7)2u(s)2

aK?(t+to—1)?
Gtio-D_ 1 B0y >
2p(S) 2 (1-7)2u(S)?

When 6 = %, the above lower bounds of « are: o >

> Ya(2C, (t+to+1)u(S) "t K)?

=  (t+tg+1) —I~ (8C~) _L ( ) (8Cy)
() A—nZu®?2 N a=2uE?

a=0(T).

o , and o > 0, which implies that we should choose
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1 aK?(t4tg—1)>

When 5 < 6 < 1, the above lower bounds of a are: o > GFg-0_ L Bop T @ 2
2u(5) 2 (1—v)2u(s)2
7a(2C, (t+to+ ()" K)? = o
(Fto+D _ W(sca,()) — () [ > buT(L||XT|‘ + B), and o > b,u(S) (T—|— to —
T e e 6 LA A CE B TR
1 1
1)K (L||x7]|| 4+ B), which implies that we should choose o = O (T log(”f)(%) log? T) )
. aK?(t4+tg—1)>
When 6 > 1, the above lower bounds of «v are: o > =51 oy —>
2u(8) 2 (1-7)2u(S)?
va(2C, (t+to+1)u(S) " K)? = -1
@ 2 g Iy RCe) Ly (Cy)— D s > bEr(L|[xr| + B), and a = bu(S) (T +
#(S) Ta=0Zu)Z T T 2u(s)2

to — 1) K(L||x7|| + B), which implies that we should choose
T 1 =
a=0 (logel((S)T(log(GJr%)(d) + log%(T/é) log%(l/é)) log? T) :
Note that the bound of ||x7 || comes from (27).
Thus, we derive that
(T'+ t0)(T +to — 1) (Fs(Xt41) — Fs(x(5)))
(8Cy)
<Ly ——= "3
(1= y)u(5)?
(8¢5)

= u(sP
+ (to = D)(to — 2)(Fs(x1) — Fs(x(5))) + 2alog(1/§) + v2alog(1/6).

2 L (8C,) 2
(T — 1)K?%g(20)10g* (2/5) + §WTK 9(20)10g* (2/6)
+ Ly(C, (T — 1)K2g(20)10g** (2/6)

Putting the previous bounds together.

If & = 1, with probability 1 — 66, we have

Fs(xrs1) — Fs(x(8)) = O (W) .

T

If % < 6 < 1, with probability 1 — 74, we have

0003) (1) oo
Fs(xr41) — Fs(x(S)) =0 <1 g (1:5)1 g Tlog((ls)> .

If 6 > 1, with probability 1 — 109, we have

(1og(9 (L) + Al (9,T,5)) log? T 1
— log’ " (5) log(5) )

Fs(xrs1) = Fs(x(8)) = O

The above bounds mean that with probability 1 — ¢, there holds
log(1/8) . 1
O (g#) if 6= bR

log*3)(1)log? T 1
Fs(xr41) — Fs(x(8)) = { © ( T it 0e 1 (33)
o <1og(9+ (1) log : (T/8) log3 T) $ 01
The proof is complete. ]

D.4 PROOF OF THEOREM 3.7]
Proof. Recall Assumption [2.7) (Polyak-Lojasiewicz condition), which gives

1 1
F(xry1) — F(x") < @HVF(XTH)H2 < @(HVF(XTH) — VFs(xr1) > + [|[VFs (xr41) 1)
(34)
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From (27) and Lemma [C.8] with probability 1 — § we have

d + log(L
VP Gersn) = VFsCernl? = 0 (CEE e 2)

d+log(3 1
—0 (Og(é)(log@”l)() FA@O,T, 5)) log T) . (35)
n 1)
From the smoothness property in Lemma [C.7] and the convergence bound in (33)), with probability
1 — 6, there holds
IV Es(x741)1* < (2L)(Fs(x7+41) — Fs(x(5)))
0 (LW‘”) it g=1

0+3) 3
_ O(log (T)long i 96(% 1], 36)
O(l‘)g(”%)( )lo;: )(T/6)1°g2T> if 6>1.

Plugging and l) into , we derive that with probability 1 — 26, there holds: (1.) if = %,

log(1/4) d—|—log(%)
+
T n

F(xry1) - Fx")=0 ( 10g2((15)10gT> ;

(2)if 6 € (3,1],
log®*2) (LY 1ogz T d + log(*
F<XT+1>F<><*>0< E)logt T LIRS g Ly tog )
3)ifo > 1,

F(x741) — F(x7)

5

_ O<1og<9+z>(};) log™ =" (T/5) log? T d+log(3) (
T n

We choose T' < n, then with probability at least 1 — , there holds

N

log(%ﬂ)(%) + A(0,T, (5)) log T).

o %g()log( )logn) it =1,

Flxri1) — F(x*) = { O (L0800 155200 (1 )logn) it 0e(d.1),
O(%g(%n gD (1) log 95”(g)1ogn) it 0> 1.

The proof is complete. O

D.5 PROOF OF THEOREM [3.9]

Proof. By Lemma|C.9] with probability 1 — § we have
IVF(wr1) = VEs(wr1)|?

B log B, log(4/6)

+2

S(||VE§(WT+1)|| +g \/2E |V f(x*;2)]]2 ]10g(4/5))2

ca(19Fsury I + 4221 (4/6) (ElITS6es2)] Mog(4/5)+§).

From the smoothness property in Lemma if f is nonnegatwe and L-smooth, we have
|V f(x*;2)||? < 2LV f(x*;z), implying that ]E[||Vf(x*;z)||2] < 2LF(x*). Thus, with proba-
bility 1 — § we have
IVF(wr41) = VEs(wr1)|?
B?log?(4/6)  16LF(x*)log(4/6) u2>

<A(IVEs(wr)|P + 4725702 - +5).
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Again, from the smoothness property in Lemma [C.7]and the convergence bound in (33)), with prob-
ability 1 — 6, there holds

IVFs(xr41)[* < (2L)(Fs(x7+41) — Fs(x(5)))
O (530 ir o=,
lo, (6+%) 1y 1o0 %
_ O<g EF&) g2 T if 0¢ (% ] (38)

0 <logw+g)<§)l°g3(92—1) T/t test T) it 9> 1.

Plugging into , with probability 1 — 26, we have: (1.) if = %
1/5) | g (4/8) | Flc)log(1/5),

T n? n

(39)

1
IVF(wri1) = VEs(wrs)|? = 022

(2. if 6 € (3,1],

log®F ) (Llog? T log®(1/6)  F(x*)log(1/s
IVE(wrs) - VEs(wra)|? = 05T g (o), O os(/0)),

n2 n
(40)
3. if 0 > 1,
IVE(Wry1) — VFs(WT+1)|I2
log ) (1)log™ T (T/8)log? T 10g2(1/5) F(x*)log(1/9)
—of - 10) )@
n n
According to the Polyak-t.ojasiewicz condition, we know
1
F(wri) — F(x") < @HVF(WTH)H2
<@2u) T H(IVF(wrs1) = VEs(wr)|” + [ VEs (wr1)[|?). 42)

Plugging the convergence bound in @ and the generalization bound in (39)-@I) into (@#2), with
probability 1 — 39, we have (1.) if 0 = 5

log(1/0) | 0g"(1/8) | Flo) log(1/8))

T n? n

Fwry1) — F(x*) = 0(

(2. if 6 € (3,1],

log®*) (L) log? T N log?(1/9) N F(x*)log(l/é)).

F(wry) - F(x') = O( 02 n

(3)ifo > 1,

N

Fwpy) — F(x*) =0

(1og<0+3>(;)1og = (T/6)log? T log2(1/§)+F(x*)10g(1/5))
T n2 n '

We choose T < n?, then the following inequality holds with probability 1 — §

O<10g27§21/5) + P )log(l/é)) ifo =1,
Flwrar) — F(x*) = o 10g<9+%>752%)1og% n 1og(1/5 ) ifo e (L,1]
o (log M (n/a)l:g“ Dhioghn  r >1og<1/6))1f9 o1
The proof is complete. O
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