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ABSTRACT

Stochastic gradient descent with momentum (SGDM) is widely used in machine
learning, yet high-probability learning bounds for SGDM in non-convex settings
remain scarce. In this paper, we provide high-probability convergence bounds and
generalization bounds for SGDM. First, we establish such bounds for the gradi-
ent norm in the general non-convex case. The resulting convergence bounds are
tighter than existing theoretical results, and to the best of our knowledge, the ob-
tained generalization bounds are the first ones for SGDM. Next, under the Polyak-
Łojasiewicz condition, we derive bounds for the function-value error instead of the
gradient norm, and the corresponding learning rates are faster than in the general
non-convex case. Finally, by additionally assuming a mild Bernstein condition on
the gradient, we obtain even sharper generalization bounds whose learning rates
can reach Õ(1/n2) in the low-noise regime, where n is the sample size. Overall,
we provide a systematic study of high-probability learning bounds for non-convex
SGDM.

1 INTRODUCTION

Stochastic optimization plays an essential role in modern statistics and machine learning, as many
learning problems can be cast as stochastic optimization tasks. Over the past decades, there has
been substantial progress in the development of stochastic optimization algorithms, among which
stochastic gradient descent with momentum (SGDM) has attracted particular attention due to its
simplicity and low per-iteration computational cost (Goodfellow et al., 2016; Li & Orabona, 2020).
As a fundamental algorithm for stochastic optimization, SGDM has been remarkably successful in
natural language understanding, computer vision, and speech recognition (Krizhevsky et al., 2012;
Hinton et al., 2012; Sutskever et al., 2013).

Typically, SGDM augments stochastic gradient descent (SGD) with a momentum term in the update
rule, i.e., it uses the difference between the current and previous iterates. The intuition is that, if
the direction from the previous iterate to the current iterate is “correct”, then SGDM should exploit
this inertial direction—weighted by the momentum parameter—rather than relying solely on the
instantaneous gradient at the current iterate, as in plain SGD. Much of the state-of-the-art empirical
performance in deep learning has been achieved using SGDM (Huang et al., 2017; Howard et al.,
2017; He et al., 2016; Kim et al., 2021a). Yet, from a theoretical standpoint, the analysis of learning
bounds for SGDM remains relatively underdeveloped (Li et al., 2022; Li & Orabona, 2020).

The learning performance of SGDM can be studied from two complementary perspectives: conver-
gence bounds and generalization bounds. Convergence bounds focus on how well the algorithm op-
timizes the empirical risk, whereas generalization bounds quantify how the learned model performs
on unseen test data. From the convergence perspective, existing analyses of SGDM or determin-
istic gradient descent with momentum (DGDM) in non-convex settings are mostly in expectation
(Ochs et al., 2014; 2015; Ghadimi et al., 2015; Lessard et al., 2016; Yang et al., 2016; Wilson et al.,
2021; Gadat et al., 2018; Orvieto et al., 2020; Can et al., 2019; Li et al., 2022; Yan et al., 2018; Liu
et al., 2020), to mention only a few. However, expected bounds do not rule out the possibility of
extremely bad outcomes (Li & Orabona, 2020; Liu et al., 2023). Moreover, in practical large-scale
applications, the training procedure is typically run only once, since it can be very time-consuming.
For such single-run performance, high-probability bounds are more informative than expectation
bounds (Harvey et al., 2019). To the best of our knowledge, there are only two works that provide
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high-probability convergence bounds for SGDM (Li & Orabona, 2020; Cutkosky & Mehta, 2021).
Specifically, Cutkosky & Mehta (2021) assume that the gradient noise satisfies a θ-order moment
condition with θ ∈ (1, 2] and obtain a convergence rate of order Õ

(
T− θ−1

3θ−2
)

for the gradient norm,
where T denotes the number of iterations. Li & Orabona (2020) establish a convergence bound of
order Õ(1/

√
T ) for the squared gradient norm under sub-Gaussian gradient noise. As discussed in

Li et al. (2022), it is unclear whether this rate can be improved or extended to more general noise
models beyond the sub-Gaussian case. Overall, the convergence rates in Li & Orabona (2020);
Cutkosky & Mehta (2021) are relatively slow, and, importantly, no generalization bounds are pro-
vided in either work.

From the generalization perspective, existing results for SGDM and DGDM are even scarcer. Ong
(2017); Chen et al. (2018) derive expected generalization error bounds for DGDM with a specific
quadratic loss by using algorithmic stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016). Their
analysis, however, does not extend easily to general loss functions. It is conjectured in Chen et al.
(2018) that their uniform stability bound might also hold for general convex losses. Motivated by
this conjecture, Ramezani-Kebrya et al. (2024) study generalization error bounds for SGDM with
general loss functions. Somewhat surprisingly, they construct a counterexample showing that, even
for convex loss functions, the uniform stability gap (in expectation, over the internal randomness
of the algorithm) of SGDM run for multiple epochs can diverge. In a related direction, Attia &
Koren (2021) show that, in the general convex case, the uniform stability gap of deterministic Nes-
terov’s accelerated gradient (NAG) can decay exponentially fast with the number of iterations. We
emphasize that uniform stability is only a sufficient condition for generalization; it remains unclear
how weaker stability notions (such as on-average stability (Shalev-Shwartz et al., 2010)) behave for
SGDM. Overall, there are significant obstacles to establishing general generalization guarantees for
SGDM, especially for broad classes of loss functions. Furthermore, as in the convergence analysis
of SGDM, high-probability generalization bounds are substantially more challenging to derive than
expectation-based bounds (Bousquet et al., 2020; Bassily et al., 2020; Feldman & Vondrak, 2019).

Therefore, both high-probability convergence bounds and high-probability generalization bounds
for SGDM remain far from fully understood. Motivated by the above limitations, this paper aims to
establish such bounds for SGDM, with a particular focus on non-convex settings. For brevity, we
will refer to all bounds on the performance of the learned model on test data (including generaliza-
tion error bounds and excess-risk bounds) simply as generalization bounds. Our main contributions
can be summarized as follows.

• At a high level, we study the case where the stochastic gradient noise follows a sub-
Weibull distribution (Vladimirova et al., 2019; 2020; Kuchibhotla & Chakrabortty, 2018),
which generalizes the sub-Gaussian noise considered in Li & Orabona (2020) to poten-
tially heavier-tailed distributions. Our learning bounds under this assumption reveal how
the rates of convergence and generalization change as one moves from sub-Gaussian / sub-
exponential (light-tailed) noise to heavy-tailed noise with exponential-type tails.

• We first provide a high-probability analysis of SGDM in the general non-convex case. In
this setting, we derive convergence bounds of order Õ(1/T 1/2) and generalization bounds
of order Õ

(
d1/2/n1/2

)
for the squared gradient norm, where d is the dimension and n is

the sample size. The convergence bounds are tighter than those in related work. Moreover,
to the best of our knowledge, our high-probability generalization bounds are the first such
results for SGDM.

• We next analyze SGDM under the Polyak–Łojasiewicz condition for non-convex objec-
tives. In this case, we obtain sharper convergence bounds of order Õ(1/T ). Furthermore,
these bounds are established for the last iterate of SGDM and for the function-value er-
ror, rather than for the average iterate and gradient norm considered in the general non-
convex case. In addition, we derive generalization bounds of faster order Õ

(d+log(1/δ)
n

)
for SGDM, which, to our knowledge, have not been previously available.

• Finally, we impose a mild Bernstein condition on the gradient. Under this additional as-
sumption, we improve the generalization bound of order Õ

(d+log(1/δ)
n

)
to a bound of order

Õ(1/n2 + F ∗/n), where F ∗ denotes the optimal population risk. In the low-noise regime
where F ∗ is small, this bound yields a faster learning rate of order Õ(1/n2), showing a
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tighter dependence on the sample size n. Another attractive feature of this bound is that the
dimension d no longer appears, allowing it to easily incorporate massive neural networks
that are often high-dimensional.

In summary, by considering increasingly strong structural conditions on the objective function (from
general non-convexity, to PL, to PL plus a Bernstein condition), we establish a hierarchy of improved
learning bounds with different rates. This provides a systematic picture of the high-probability
learning guarantees for SGDM from both convergence and generalization perspectives.

The rest of the paper is organized as follows. Preliminaries are presented in Section 2. Our main
results are stated in Section 3. We conclude in Section 4. Numerical experiments are reported in
Section A. Appendix B, together with Table 1, summarizes our main results and the most relevant
related bounds of SGDM. All proofs are deferred to the Appendix.

2 PRELIMINARIES

2.1 NOTATIONS

Let X ⊆ Rd be the parameter space and let P be a probability measure on a sample space Z . Let
f : X ×Z → R+ be a (possibly non-convex) loss function. We consider the stochastic optimization
problem

min
x∈X

F (x) := Ez∼P[f(x; z)],

where F is referred to as the population risk and Ez∼P denotes expectation with respect to (w.r.t.)
the random variable z drawn from P.

In practice, the distribution P is unknown and we only observe a dataset S = {z1, . . . , zn} drawn
independently and identically (i.i.d.) from P. One typically optimizes the empirical risk

min
x∈X

FS(x) :=
1

n

n∑
i=1

f(x; zi).

To optimize FS , SGDM has been widely adopted (Polyak, 1964; Qian, 1999; Sutskever et al., 2013;
Li & Orabona, 2020). In this work we focus on Polyak’s momentum, also known as the heavy-ball
algorithm or classical momentum, which is arguably the most popular form of momentum in current
machine learning practice (Liu et al., 2020). The pseudocode of SGDM (Polyak’s momentum) is
given in Algorithm 1. The vanilla SGD update is

xt+1 = xt − ηt∇f(xt; zjt).

In Step 3 of Algorithm 1, SGDM introduces a momentum vector mt−1 and forms a momentum term
weighted by a parameter γ to adjust the gradient estimate ∇f(xt; zjt) of SGD. In Step 4, SGDM
then updates the iterate via

xt+1 = xt −mt.

Equivalently, the SGDM update can be written as

xt+1 = xt − ηt∇f(xt; zjt) + γ(xt − xt−1).

We now introduce some notation. Let B = supz∈Z ∥∇f(0; z)∥, where ∇f(·; z) denotes the gradi-
ent of f w.r.t. the first argument and ∥ · ∥ denotes the Euclidean norm. For any R > 0, we define
B(x0, R) := {x ∈ Rd : ∥x − x0∥ ≤ R} which denotes a ball with center x0 ∈ Rd and radius R.
Let x(S) ∈ argminx∈X FS(x) and x∗ ∈ argminX F (x). We write a ≍ b if there exist universal
constants c, c′ > 0 such that ca ≤ b ≤ c′a. Throughout the paper we use standard order-notation
such as O(·) and Õ(·).

2.2 ASSUMPTIONS

In this subsection we collect the assumptions that will be invoked in our main theorems.
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Assumption 2.1. The differentiable function f is (possibly) non-convex and, for any z ∈ Z , the
mapping x 7→ f(x; z) is L-smooth, i.e., for every x1,x2:

∥∇f(x1; z)−∇f(x2; z)∥ ≤ L∥x1 − x2∥,

where ∇ is the gradient operator and ∥ · ∥ is the Euclidean norm.

Remark 2.2. Further properties of smooth functions are collected in Lemma C.7.

Assumption 2.3. The gradient at x∗ satisfies a Bernstein-type moment condition: there exists B∗ >
0 such that for all integers k with 2 ≤ k ≤ n,

Ez

[
∥∇f(x∗; z)∥k

]
≤ 1

2
k!Ez

[
∥∇f(x∗; z)∥2

]
Bk−2

∗ .

Remark 2.4. The Bernstein condition is standard in learning theory. As shown in Wainwright (2019),
for a random variable X with mean µ = E[X] and variance σ2 = E[X2]−µ2, we say that X satisfies
the Bernstein condition with parameter b if for all integers k ≥ 2,

E
[
(X − µ)k

]
≤ 1

2
k!σ2bk−2.

The Bernstein condition is essentially equivalent to X being sub-exponential; see the discussion in
Remark 4 of Lei (2020). Classical sub-Gaussian and sub-exponential distributions satisfy this con-
dition, since their k-th moments are controlled by the second moment. In this sense, the Bernstein
condition is quite mild and, for instance, weaker than assuming that X is almost surely bounded.
Assumption 2.3 simply applies this Bernstein condition to the random variable ∥∇f(x∗; z)∥: it is
weaker than assuming that ∥∇f(x; z)∥, ∀x ∈ X , is uniformly bounded, while the latter bounded-
gradient assumption is widely used in stochastic optimization (Zhang et al., 2017).

Assumption 2.5. For all S ∈ Zn, and for some positive G > 0, the empirical risk satisfies

ηt∥∇FS(xt)∥ ≤ G, ∀t ∈ N.

Remark 2.6. In the theoretical analysis of stochastic optimization, it is common to assume a uni-
formly bounded stochastic gradient,

∥∇f(x; z)∥ ≤ G, ∀x ∈ X , ∀ z ∈ Z,

which is sometimes referred to as the Lipschitz continuity of f (Li et al., 2022; Li & Orabona, 2020).
Assumption 2.5 is a relaxation of this bounded-gradient assumption: it multiplies the gradient norm
of FS by the stepsize ηt instead of bounding each stochastic gradient ∇f(xt; z). Since the stepsizes
ηt decrease to zero, the gradients of FS are allowed to grow. For typical decay rates ηt = O(t−1/2)
or ηt = O(t−1) (Lei & Tang, 2021), Assumption 2.5 permits ∥∇FS(xt)∥ to grow at rates O(t1/2)
and O(t), respectively, without violating the condition.

In the next, we introduce the Polyak-Łojasiewicz (PL) condition.

Assumption 2.7. Fix a set X and let f∗ := minx∈X f(x). We say that a differentiable function
f : X → R satisfies the Polyak–Łojasiewicz condition with parameter µ > 0 on X if for all x ∈ X ,

f(x)− f∗ ≤ 1

2µ
∥∇f(x)∥2.

Remark 2.8. Fast rates cannot be achieved for free. The Polyak-Łojasiewicz condition is widely
used in the optimization community to obtain fast convergence rates (Necoara et al., 2019; Karimi
et al., 2016) and is one of the weakest curvature conditions to replace the strong convexity (Karimi
et al., 2016). Many important models are known to satisfy a PL inequality, at least locally. Notable
examples satisfying the PL condition include two-layer neural networks (Li & Yuan, 2017), matrix
completion (Sun & Luo, 2016), dictionary learning (Arora et al., 2015), and phase retrieval (Chen
& Candes, 2015). Kleinberg et al. (2018) provide empirical evidence that the (smoothed) loss of
practical deep networks locally exhibits a one-point convexity property of PL type. More rigorously,
Soltanolkotabi et al. (2018) analyze over-parameterized shallow networks with quadratic activations
and prove that, in the interpolation regime where the training loss is zero, the empirical risk satisfies
a PL inequality. These examples motivate our focus on studying SGDM under the PL curvature
assumption.
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Algorithm 1 SGD with Momentum (SGDM)
Require: stepsizes {ηt}t, dataset S = {z1, ..., zn}, and momentum parameter 0 < γ < 1.
Initializtion: x1 = 0, m0 = 0,

1: for t = 1, ..., T do
2: sample jt from the uniform distribution over the set {j : j ∈ [n]},
3: update mt = γmt−1 + ηt∇f(xt; zjt),
4: update xt+1 = xt −mt.
5: end for

In our analysis we will apply Assumption 2.7 both to the empirical risk FS and to the population risk
F . When studying optimization (training) performance, we assume that FS satisfies a PL inequality
with parameter µ(S); when studying generalization and excess risk, we assume that F satisfies a
(possibly different) PL inequality with parameter µ. We keep the notation µ(S) and µ separate to
emphasize that the curvature at the sample level need not coincide exactly with that of the underlying
population.

Finally, we specify an assumption on the noise of the stochastic gradient.
Assumption 2.9. The gradient noise ∇f(xt; zjt)−∇FS(xt) satisfies

Ejt

[
exp(∥∇f(xt; zjt)−∇FS(xt)∥/K)

1
θ

]
≤ 2, (1)

for some positive K and θ ≥ 1/2.
Remark 2.10. Li & Orabona (2020) assume the sub-Gaussian-type condition

Ejt

[
exp
(
∥∇f(xt; zjt)−∇FS(xt)∥2/K2

)]
≤ 2,

which ensures that the noise tails are dominated by those of a Gaussian distribution. In contrast,
Assumption 2.9 generalizes this to a richer class of distributions, including sub-exponential noise
(corresponding to θ = 1) and even heavier-tailed noise (θ > 1). Condition (1) is precisely the
defining property of a sub-Weibull random variable (Vladimirova et al., 2020): a random variable
X satisfying E[exp((|X|/K)1/θ)] ≤ 2 for some K > 0 and θ ≥ 1/2 is called sub-Weibull with
tail parameter θ, and larger θ means heavier tails (Kuchibhotla & Chakrabortty, 2018). Hence, the
learning bounds in this paper apply to a broad class of heavy-tailed gradient noise distributions. Our
motivation for studying sub-Weibull gradient noise is twofold. First, it allows us to explicitly quan-
tify how the convergence and generalization rates degrade when moving from sub-Gaussian/sub-
exponential (light-tailed) noise to heavy-tailed noise with exponential-type tails. Second, a growing
body of work provides empirical and theoretical evidence that the noise in stochastic optimization
algorithms is often heavier-tailed than sub-Gaussian (Panigrahi et al., 2019; Madden et al., 2024;
Gurbuzbalaban et al., 2021; Simsekli et al., 2019; Şimşekli et al., 2019; Zhang et al., 2020; 2019;
Wang et al., 2021; Gurbuzbalaban & Hu, 2021).

3 MAIN RESULTS

This section presents our main theoretical results.

3.1 LEARNING BOUNDS IN THE GENERAL NON-CONVEX CASE

In the general non-convex case, we cannot guarantee that the algorithm finds a global mini-
mizer, so we focus on approximate first-order stationary points. For the convergence analysis,
we are interested in iterates xt satisfying ∥∇FS(xt)∥2 ≤ ϵ, while for generalization we con-
sider ∥∇F (xt)∥2 ≤ ϵ. As is standard in the non-convex literature, we measure optimization
and generalization performance via the average squared gradient norms 1

T

∑T
t=1 ∥∇FS(xt)∥2 and

1
T

∑T
t=1 ∥∇F (xt)∥2, respectively.

3.1.1 CONVERGENCE BOUNDS

We first provide high-probability convergence bounds for SGDM. These bounds characterize how
the algorithm minimizes the empirical risk FS .

5
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Theorem 3.1. Let xt be the sequence of iterates generated by Algorithm 1. Set the stepsize as
ηt = ct−

1
2 , where c ≤ 1

4
(1−γ)3

3L−Lγ .

(1). If θ = 1
2 , suppose Assumptions 2.1 and 2.9 hold. Then for any δ ∈ (0, 1), with probability 1−δ,

1

T

T∑
t=1

∥∇FS(xt)∥2 = O
(
log(1/δ) log T√

T

)
.

(2). If 1
2 < θ ≤ 1, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any δ ∈ (0, 1), with

probability 1− δ,
1

T

T∑
t=1

∥∇FS(xt)∥2 = O

(
log2θ(1/δ) log T√

T

)
.

(3). If θ > 1, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any δ ∈ (0, 1), with probability
1− δ,

1

T

T∑
t=1

∥∇FS(xt)∥2 = O

(
logθ−1(T/δ) log(1/δ) + log2θ(1/δ) log T√

T

)
.

Remark 3.2. The bounds in Theorem 3.1 are all of order Õ(1/
√
T ). The dependence on the tail

parameter θ shows that larger θ leads to worse (slower) convergence, which matches the intuition
that heavier-tailed gradient noise degrades optimization performance. We now compare these results
with related work (Li & Orabona, 2020; Cutkosky & Mehta, 2021). Cutkosky & Mehta (2021)
analyze a different algorithmic setting that combines gradient clipping, a variant of momentum
(distinct from Polyak’s momentum), and normalized gradient descent. Their Theorem 2 establishes
a convergence bound of order

O
(
log(T/δ)

T
θ−1
3θ−2

)
for 1

T

∑T
t=1 ∥∇FS(xt)∥ under smoothness and a θ-moment condition on the gradient, where θ ∈

(1, 2]. In the case θ = 2, this rate becomes Õ(T−1/4). By Jensen’s inequality,(
1

T

T∑
t=1

∥∇FS(xt)∥

)2

≤ 1

T

T∑
t=1

∥∇FS(xt)∥2,

so Theorem 3.1 implies the same Õ(T−1/4) rate for 1
T

∑T
t=1 ∥∇FS(xt)∥. Li & Orabona (2020)

study Polyak’s momentum and, in their Theorem 1, obtain a convergence bound of order

O
(
log(T/δ) log T√

T

)
for 1

T

∑T
t=1 ∥∇FS(xt)∥2 under smoothness and sub-Gaussian gradient noise (i.e., θ = 1/2). Since

we also analyze Polyak’s momentum, the comparison with Li & Orabona (2020) is more natural.
Under the same assumptions, part (1) of Theorem 3.1 refines this to

O
(
log(1/δ) log T√

T

)
.

Although this improvement is only logarithmic, it may be the strongest possible refinement in the
general nonconvex setting we consider. For smooth nonconvex stochastic optimization with a first-
order oracle and controlled noise, the rate O(1/

√
T ) in terms of the expected squared gradient norm

is known to be optimal (up to logarithmic factors) (Arjevani et al., 2019). Consequently, under the
same structural assumptions, any further progress can only affect constants and logarithms but not
the leading 1/

√
T scaling. Theorem 2 in Li & Orabona (2020) further analyzes a variant of AdaGrad

with Polyak’s momentum, called delayed AdaGrad, whose stepsize does not depend on the current
gradient (Li & Orabona, 2019). The corresponding convergence bound is of order

max

{
O

(
d log3/2(T/δ)√

T

)
, O
(
d2 log2(T/δ)

T

)}
.
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When the dimension d is small, this gives a rate of order O
(
d log3/2(T/δ)/

√
T
)
, which is clearly

weaker than the dimension-free bounds in Theorem 3.1.

In the non-convex, stochastic setting, a clear separation between SGD and SGDM remains elusive
(Li & Orabona, 2020; Zou et al., 2018), even at the empirical level. For example, Kidambi et al.
(2018) provide theoretical and empirical evidence that standard momentum schemes—Polyak’s mo-
mentum and Nesterov Accelerated Gradient—do not enjoy a universal acceleration guarantee in the
stochastic regime. Even with optimally tuned hyperparameters, there exist instances where Polyak’s
momentum and Nesterov’s method do not outperform vanilla SGD. In particular, when the batch
size is small (e.g., 1), their performance is often nearly indistinguishable from, or even worse than,
that of SGD. This batch-size-one regime is exactly the setting we study here, and our theory is con-
sistent with these observations. A work (Li & Liu, 2022) derives high-probability convergence and
generalization results for SGD without momentum under the same assumptions, yielding rates of
the same order as those obtained here (up to constants and mild logarithmic factors). This paper
closes the theoretical gap for SGDM: we show that the widely used momentum method, under the
general nonconvex / PL / Bernstein assumptions, also enjoys high-probability convergence and gen-
eralization guarantees of comparable order to those known for SGD, so that SGDM has essentially
the same theoretical performance as SGD under these conditions. A promising direction for future
work is to extend our analysis to the large-batch regime and to investigate how the potential benefits
of momentum depend on batch-induced noise reduction.

3.1.2 GENERALIZATION BOUNDS

We now present high-probability generalization bounds for SGDM, which quantify how well the
learned models perform on the underlying data distribution.
Theorem 3.3. Let xt be the sequence of iterates generated by Algorithm 1. Set the stepsize as
ηt = ct−

1
2 , where c ≤ 1

4
(1−γ)3

3L−Lγ , and choose the number of iterations as T ≍ n/d.

(1). If θ = 1
2 , suppose Assumptions 2.1 and 2.9 hold. Then for any δ ∈ (0, 1), with probability 1−δ,

1

T

T∑
t=1

∥∇F (xt)∥2 = O
(( d

n

)1/2
log
(n
d

)
log3

(1
δ

))
.

(2). If 1
2 < θ ≤ 1, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any δ ∈ (0, 1), with

probability 1− δ,

1

T

T∑
t=1

∥∇F (xt)∥2 = O
(( d

n

)1/2
log
(n
d

)
log2θ+2

(1
δ

))
.

(3). If θ > 1, suppose Assumptions 2.1, 2.5, and 2.9 hold. Then for any δ ∈ (0, 1), with probability
1− δ,

1

T

T∑
t=1

∥∇F (xt)∥2 = O
(( d

n

)1/2(
log
(n
d

)
log2θ+2

(1
δ

)
+ logθ−1

( n

dδ

)
log2

(1
δ

)))
.

Remark 3.4. The bounds in Theorem 3.3 are of order Õ
(
(d/n)1/2

)
, and again heavier tails (larger

θ) lead to slower rates. As in Theorem 3.1, when θ = 1/2 Assumption 2.5 is no longer needed.
To the best of our knowledge, these are the first generalization bounds for SGDM. As discussed
in the introduction, algorithmic stability—in particular uniform stability—seems to fail for SGDM
with general loss functions, since the uniform stability gap may diverge even in convex settings
(Ramezani-Kebrya et al., 2024). This is consistent with the general principle that there is a trade-off
between convergence speed and stability: faster-converging algorithms tend to be less stable, and
vice versa (Chen et al., 2018). Our proof technique instead belongs to the uniform convergence ap-
proach (Bartlett & Mendelson, 2002; Bartlett et al., 2005; Xu & Zeevi, 2020; Mei et al., 2018; Foster
et al., 2018; Davis & Drusvyatskiy, 2021), which shows that the empirical risks of all hypotheses
in a class converge uniformly to their population risks (Shalev-Shwartz et al., 2010). In the general
non-convex case, a dependence on the ambient dimension d is typically unavoidable for such uni-
form convergence bounds (Feldman, 2016), which is reflected in the d-dependence in Theorem 3.3.
We emphasize, however, that in Section 3.3 we will obtain dimension-free generalization bounds by
imposing additional structure (a Bernstein condition) and working in the PL regime.
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3.2 LEARNING BOUNDS WITH POLYAK-ŁOJASIEWICZ CONDITION

In non-convex optimization under the Polyak-Łojasiewicz (PL) condition, we are interested in up-
per bounds on the function-value error. Accordingly, we measure optimization performance and
generalization performance via FS(xT+1)− FS(x(S)) and F (xT+1)− F (x∗), respectively.

3.2.1 CONVERGENCE BOUNDS

We first present high-probability convergence bounds for SGDM under the PL condition.

Theorem 3.5. Let xt be the sequence of iterates generated by Algorithm 1. Set the stepsize as
ηt = 1

µ(S)(t+t0)
such that t0 ≥ max{ 12L−4Lγ

µ(S)(1−γ)3 ,
(8Cγ)L

(1−γ)2µ(S) + 1,
8Cγ(Lγ+Lγ(Cγ))

(1−γ)µ(S) − 1, 1}, where
Cγ = 1 + 2

ln2 γ
− 3

ln γ is a constant that depends only on γ.

(1). If θ = 1
2 , suppose Assumptions 2.1 and 2.9 hold, and assume that FS satisfies Assumption 2.7

with parameter 2µ(S). Then, for any δ ∈ (0, 1), with probability 1− δ,

FS(xT+1)− FS

(
x(S)

)
= O

(
log(1/δ)

T

)
.

(2). If 1
2 < θ ≤ 1, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that FS satisfies

Assumption 2.7 with parameter 2µ(S). Then, for any δ ∈ (0, 1), with probability 1− δ,

FS(xT+1)− FS

(
x(S)

)
= O

(
logθ+

3
2 (1/δ) log1/2 T

T

)
.

(3). If θ > 1, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that FS satisfies Assumption
2.7 with parameter 2µ(S). Then, for any δ ∈ (0, 1), with probability 1 − δ, we have the following
inequality

FS(xT+1)− FS

(
x(S)

)
= O

(
logθ+

3
2 (1/δ) log

3(θ−1)
2 (T/δ) log1/2 T

T

)
.

Remark 3.6. Theorem 3.5 shows that, under the PL condition, SGDM enjoys fast convergence rates:
the Õ(1/

√
T ) rate in Theorem 3.1 is improved to a faster Õ(1/T ) rate. By the smoothness property

in Lemma C.7,
∥∇FS(xT+1)∥2 ≤ 2L

(
FS(xT+1)− FS(x(S))

)
,

so the bounds in Theorem 3.5 also apply (up to constants) to the squared gradient norm
∥∇FS(xT+1)∥2. Moreover, when θ = 1/2, Assumption 2.5 is not needed. As in the non-PL case,
larger θ (heavier tails) deteriorates the convergence rate. One can also verify that these PL-based
convergence bounds are strictly sharper than the corresponding results in Li & Orabona (2020);
Cutkosky & Mehta (2021). To the best of our knowledge, fast Õ(1/T ) high-probability rates for
SGDM in non-convex settings under PL-type assumptions have not previously been established in
the literature.

3.2.2 GENERALIZATION BOUNDS

We next present high-probability generalization bounds for SGDM under the PL condition.

Theorem 3.7. Let xt be the sequence of iterates generated by Algorithm 1. Set the stepsize as
ηt = 1

µ(S)(t+t0)
such that t0 ≥ max{ 12L−4Lγ

µ(S)(1−γ)3 ,
(8Cγ)L

(1−γ)2µ(S) + 1,
8Cγ(Lγ+Lγ(Cγ))

(1−γ)µ(S) − 1, 1}, where
Cγ = 1 + 2

ln2 γ
− 3

ln γ is a constant that depends only on γ, and choose T ≍ n.

(1). If θ = 1
2 , suppose Assumptions 2.1 and 2.9 hold, assume that FS satisfies Assumption 2.7 with

parameter 2µ(S), and that F satisfies Assumption 2.7 with parameter 2µ. Then, for any δ ∈ (0, 1),
with probability 1− δ,

F (xT+1)− F (x∗) = O
(
d+ log(1/δ)

n
log2

(1
δ

)
log n

)
.
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(2). If 1
2 < θ ≤ 1, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that FS satisfies

Assumption 2.7 with parameter 2µ(S), and that F satisfies Assumption 2.7 with parameter 2µ.
Then, for any δ ∈ (0, 1), with probability 1− δ,

F (xT+1)− F (x∗) = O
(
d+ log(1/δ)

n
log2θ+1

(1
δ

)
log n

)
.

(3). If θ > 1, suppose Assumptions 2.1, 2.5 and 2.9 hold, and assume that FS satisfies Assumption
2.7 with parameter 2µ(S), and that F satisfies Assumption 2.7 with parameter 2µ. Then, for any
δ ∈ (0, 1), with probability 1− δ,

F (xT+1)− F (x∗) = O
(
d+ log(1/δ)

n
log2θ+1

(1
δ

)
log

3(θ−1)
2

(n
δ

)
log n

)
.

Remark 3.8. The quantity F (xT+1) − F (x∗) measures the gap between the population risk of
the last iterate and the optimal population risk, and is often referred to as the excess risk in learn-
ing theory (London, 2017; Feldman & Vondrak, 2019; Bassily et al., 2020). Theorem 3.7 shows
that, when both the empirical risk FS and population risk F satisfy the PL condition, SGDM en-
joys generalization bounds of order Õ

(
(d + log(1/δ))/n

)
, improving the dependence on n com-

pared to the general non-convex case in Theorem 3.3. By the smoothness property in Lemma C.7,
∥∇F (xT+1)∥2 ≤ 2L

(
F (xT+1) − F (x∗)

)
, so the bounds in Theorem 3.7 also directly control

∥∇F (xT+1)∥2. We also emphasize that, in contrast with Section 3.1, the bounds in Section 3.2
are stated for the last iterate of SGDM rather than the time-averaged iterate. Overall, the pair of
results Theorems 3.5 and 3.7 illustrates the qualitative picture that in the general non-convex regime
one can expect Õ(1/

√
T ) and Õ(1/

√
n) rates, while under PL-type curvature the rates improve to

Õ(1/T ) and Õ(1/n), respectively.

3.3 LEARNING BOUNDS WITH BERNSTEIN CONDITION

In this section, we derive sharper generalization bounds by imposing the Bernstein condition. We
assume that the set X satisfies X ⊆ B(x∗, R).
Theorem 3.9. Let xt be the sequence of iterates generated by Algorithm 1. Set the stepsize as
ηt = 1

µ(S)(t+t0)
such that t0 ≥ max{ 12L−4Lγ

µ(S)(1−γ)3 ,
(8Cγ)L

(1−γ)2µ(S) + 1,
8Cγ(Lγ+Lγ(Cγ))

(1−γ)µ(S) − 1, 1}, where
Cγ = 1 + 2

ln2 γ
− 3

ln γ is a constant that depends only on γ, and choose T ≍ n2.

(1). If θ = 1
2 , suppose Assumptions 2.1, 2.3 and 2.9 hold, assume that FS satisfies Assump-

tion 2.7 with parameter 2µ(S), and that F satisfies Assumption 2.7 with parameter 2µ. If

n ≥ cL2(d+log(
8 log(2nR+2)

δ ))

µ2 , where c is an absolute constant, then for any δ ∈ (0, 1), with probabil-
ity 1− δ,

F (xT+1)− F (x∗) = O
(
log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
.

(2). If 1
2 < θ ≤ 1, suppose Assumptions 2.1, 2.3, 2.5 and 2.9 hold, assume that FS satisfies As-

sumption 2.7 with parameter 2µ(S), and that F satisfies Assumption 2.7 with parameter 2µ. If

n ≥ cL2(d+log(
8 log(2nR+2)

δ ))

µ2 , where c is an absolute constant, then for any δ ∈ (0, 1), with probabil-
ity 1− δ,

F (xT+1)− F (x∗) = O

(
logθ+

3
2 (1/δ) log1/2 n

n2
+

F (x∗) log(1/δ)

n

)
.

(3). If θ > 1, suppose Assumptions 2.1, 2.3, 2.5 and 2.9 hold, assume that FS satisfies As-
sumption 2.7 with parameter 2µ(S), and that F satisfies Assumption 2.7 with parameter 2µ. If

n ≥ cL2(d+log(
8 log(2nR+2)

δ ))

µ2 , where c is an absolute constant, then for any δ ∈ (0, 1), with probabil-
ity 1− δ,

F (xT+1)− F (x∗) = O

(
log

3(θ−1)
2 (n/δ) logθ+

3
2 (1/δ) log1/2 n

n2
+

F (x∗) log(1/δ)

n

)
.
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(4). Furthermore, if we additionally assume F (x∗) = O(1/n), then the bounds in (1)–(3) simplify,
respectively, to

O
(
log2(1/δ)

n2

)
, O

(
logθ+

3
2 (1/δ) log1/2 n

n2

)
, O

(
log

3(θ−1)
2 (n/δ) logθ+

3
2 (1/δ) log1/2 n

n2

)
.

Remark 3.10. Theorem 3.9 shows that, under the assumptions of Theorem 3.7 together with the
Bernstein condition, the excess risk can be improved to

Õ
(
F (x∗)

n
+

1

n2

)
.

Here F (x∗) is the minimal population risk and is typically very small. Compared with Theorems 3.3
and 3.7, Theorem 3.9 therefore yields strictly sharper bounds. A well-known drawback of the
uniform-convergence approach is that, for general non-convex problems, it usually leads to learning
bounds with a square-root dependence on the dimension d (Feldman, 2016), as seen in Theorem 3.3.
A distinctive advantage of Theorem 3.9 is that, by exploiting Assumption 2.3, we remove the de-
pendence on d in the upper bound, making the bounds more suitable for high-dimensional models.
The auxiliary assumption F (x∗) = O(1/n) in part (4) is only used to illustrate the attainable rates
under a low-noise condition. Strictly speaking, F (x∗) is independent of n, but assumptions such as
F (x∗) = O(1/n) or even F (x∗) = 0 are standard in the literature; see, for example, Zhang et al.
(2017); Zhang & Zhou (2019); Srebro et al. (2010); Liu et al. (2018); Lei & Ying (2020). In general,
O(1/n2)-type generalization bounds are rare in learning theory. Theorem 3.9 provides, to the best
of our knowledge, the first high-probability Õ(1/n2) generalization guarantees for SGDM.

4 CONCLUSIONS

This paper investigates high-probability convergence and generalization bounds for stochastic gra-
dient descent with momentum (SGDM) in non-convex settings, thus providing a unified view of its
optimization and generalization behavior. Our bounds, derived under a sub-Weibull noise model, ex-
hibit different rates that explicitly capture the effect of moving from sub-Gaussian/sub-exponential
(i.e., light-tailed) noise to genuinely heavy-tailed regimes on both convergence and generalization.
We hope that these results offer a clearer theoretical picture of when and how SGDM is guaranteed
to perform well, and that they serve as a foundation for further studies of momentum-based methods
in modern non-convex learning problems.
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A NUMERICAL EXPERIMENTS

We now present numerical experiments illustrating how the generalization bounds behave as the tail
parameter θ varies. Let FS(x) and FS′(x) denote the risks built on the training set S and the test set
S′, respectively, where

FS′(x) =
1

|S′|
∑
z∈S′

f(x; z),

and |S′| is the cardinality of S′. We use FS′(x) as an empirical proxy for the population risk F (x).

We consider six datasets available from the LIBSVM dataset: Heart, Fourclass, German, Australian,
Diabetes, and Phishing (Chang & Lin, 2011). For each dataset, we take 80 percents as the training
dataset and leave the remaining 20 percents as the testing dataset. According to Algorithm 1, the
momentum update can be written as

mt = γmt−1 + ηt(∇FS(xt) +∇f(xt; zjt)−∇FS(xt)) = γmt−1 + ηt(∇FS(xt) + et),

where et = ∇f(xt; zjt) − ∇FS(xt) is the gradient noise. In each update of our experiments, for
each coordinate we independently draw a sample from a sub-Weibull distribution to model et in
Assumption 2.9. If every coordinate of et is sub-Weibull, then |et| is also sub-Weibull; this follows
from Lemma 3.4 of Bastianello et al. (2021) and part (c) of Proposition 2.1 of Kim et al. (2021b).
Since we assume that the stochastic gradient is an unbiased estimator of the exact gradient, we shift
and scale the distribution in order to get a random vector with zero mean and the variance equal 1.
To examine the effect of the tail parameter, we consider θ ∈ {1/2, 1, 5}.

We work with a generalized linear model ℓ(⟨x, x⟩) for binary classification, where ℓ is the logistic
link function ℓ(s) = (1+e−s)−1. Our first experiment uses the Huber loss: f(x, z) = 1

2 (ℓ(⟨x, x⟩)−
y)2 if |ℓ(⟨x, x⟩)− y| ≤ τ and τ(|ℓ(⟨x, x⟩)− y| − 1

2τ) otherwise. We set τ = 0.1, γ = 0.9 and ηt =

0.1t−
1
2 , run the algorithm for a given number of passes over the data, repeat experiments 100 times,

and report the average of results. The behavior of the empirical quantity 1
T

∑T
t=1 ∥∇FS′(xt)∥2 as a

function of the number of passes is shown in Fig. 1. The curves are consistent with the generalization
bounds of Theorem 3.3: larger θ (heavier tails) yield worse generalization behavior, and the case
θ = 5 performs noticeably worse, in line with the theoretical regime θ > 1.

Our second experiment uses the squared loss: f(x, z) = (ℓ(⟨x, x⟩) − y)2. The corresponding
behavior of 1

T

∑T
t=1 ∥∇FS′(xt)∥2 versus the number of passes is reported in Fig. 2. Again, increas-

ing θ systematically leads to worse generalization performance, which is in clear agreement with
Theorem 3.3.
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Figure 1: The generalization bound 1
T

∑T
t=1 ∥∇FS′(xt)∥2 versus the number of passes for different

choices of θ ∈ {1/2, 1, 5} and different datasets in the setting of huber loss.
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Figure 2: The generalization bound 1
T

∑T
t=1 ∥∇FS′(xt)∥2 versus the number of passes for different

choices of θ ∈ {1/2, 1, 5} and different datasets in the setting of square loss.

B SUMMARY OF RESULTS

We compare the main results of this paper with the most relevant high-probability results of SGDM
in the literature in Table 1.

We briefly explain the notation used in Table 1. Entry [1] corresponds to Li & Orabona (2020),
and entry [2] to Cutkosky & Mehta (2021). The second result of [1] is derived for a variant of
SGDM, namely delayed AdaGrad with momentum, whose stepsize does not depend on the current
gradient. The assumption “θ-order moment” means that the gradient satisfies Ez[∥∇f(xt; z)∥θ] ≤
Gθ for some constant G and θ ∈ (1, 2]. “S-S” denotes a second-order smoothness assumption
(Cutkosky & Mehta, 2021). Cutkosky & Mehta (2021) also derive two additional convergence
bounds (Theorems 3 and 6 therein) for the last iterate of SGDM under a warm-up learning-rate
schedule and several other tricks. These bounds have rates similar to those reported for [2] in
Table 1, but their assumptions are rather involved and hard to summarize concisely, so we omit them
for brevity. “LN” stands for the low-noise condition F (x∗) = O(1/n), and the parameter θ in the
table refers to Assumption 2.9.

The detailed comparisons between our bounds and those of Li & Orabona (2020) and Cutkosky
& Mehta (2021) have already been discussed in the main text (see the corresponding remarks), so
we do not repeat them here. At a glance, Table 1 shows that our work provides a collection of
high-probability generalization bounds that are not available in the prior literature, together with
convergence bounds that achieve strictly faster rates under comparable assumptions.

C PRELIMINARIES

This section collects preliminaries, including basic properties of the sub-Weibull distribution and
several auxiliary lemmas used in the proofs.

C.1 SUB-WEIBULL DISTRIBUTION

Define the Lp norm of a random variable X by ∥X∥p = (E|X|p)1/p for any p ≥ 1. A sub-Weibull
random variable X (denoted X ∼ subW(θ,K)) can be characterized in several equivalent ways.

Proposition C.1 ((Vladimirova et al., 2020; Bastianello et al., 2021)). Given θ ≥ 0, the following
properties are equivalent:

• ∃K1 > 0 such that P (|X| ≥ t) ≤ 2 exp
(
− (t/K1)

1/θ
)

, ∀t > 0;
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Table 1: Summary of Results.

REF. ASSUMPTION MEASURE LEARNING BOUND

[1] 2.1, θ = 1
2

1
T

∑T
t=1 ∥∇FS(xt)∥2 O

(
log(T/δ) log T√

T

)
2.1, θ = 1

2
1
T

∑T
t=1 ∥∇FS(xt)∥2 max

{
O
(

d log
3
2 (T/δ)√
T

)
,O

(
d2 log2(T/δ)

T

)}
[2] θ-ORDER MOMENT (θ ∈ (1, 2]), 2.1 1

T

∑T
t=1 ∥∇FS(xt)∥ O

(
log(T/δ)

T
p−1
3p−2

)
θ-ORDER MOMENT (θ ∈ (1, 2]), 2.1, S-S 1

T

∑T
t=1 ∥∇FS(xt)∥ O

(
log(T/δ)

T
2p−2
5p−3

)

OURS

2.1, θ = 1
2

1
T

∑T
t=1 ∥∇FS(xt)∥2 O

(
log(1/δ) log T√

T

)
2.1, 2.5, θ ∈ ( 1

2
, 1] 1

T

∑T
t=1 ∥∇FS(xt)∥2 O

(
log2θ(1/δ) log T√

T

)
2.1, 2.5, θ > 1 1

T

∑T
t=1 ∥∇FS(xt)∥2 O

(
logθ−1(T/δ) log(1/δ)+log2θ(1/δ) log T√

T

)
2.1, θ = 1

2
1
T

∑T
t=1 ∥∇F (xt)∥2 O

((
d
n

) 1
2 log(n

d
) log3( 1

δ
)
)

2.1, 2.5, θ ∈ ( 1
2
, 1] 1

T

∑T
t=1 ∥∇F (xt)∥2 O

((
d
n

) 1
2 log(n

d
) log(2θ+2)( 1

δ
)
)

2.1, 2.5, θ > 1 1
T

∑T
t=1 ∥∇F (xt)∥2 O

((
d
n

) 1
2 (log(n

d
) log(2θ+2)( 1

δ
) + logθ−1( n

dδ
) log2( 1

δ
))
)

2.1, 2.7, θ = 1
2

FS(xT+1)− FS(x(S)) O
(

log(1/δ)
T

)
2.1, 2.5, 2.7, θ ∈ ( 1

2
, 1] FS(xT+1)− FS(x(S)) O

(
log

(θ+3
2
)
( 1
δ
) log

1
2 T

T

)
2.1, 2.5, 2.7, θ > 1 FS(xT+1)− FS(x(S)) O

(
log

(θ+3
2
)
( 1
δ
) log

3(θ−1)
2 (T/δ) log

1
2 T

T

)
2.1, 2.7, θ = 1

2
F (xT+1)− F (x∗) O

(
d+log( 1

δ
)

n
log2( 1

δ
) log n

)
2.1, 2.5, 2.7, θ ∈ ( 1

2
, 1] F (xT+1)− F (x∗) O

(
d+log( 1

δ
)

n
log(2θ+1)( 1

δ
) logn

)
2.1, 2.5, 2.7, θ > 1 F (xT+1)− F (x∗) O

(
d+log( 1

δ
)

n
log(2θ+1)( 1

δ
) log

3(θ−1)
2 (n

δ
) logn

)
2.1, 2.7, 2.3, θ = 1

2
F (xT+1)− F (x∗) O

(
log2( 1

δ
)

n2 +
F (x∗) log( 1

δ
)

n

)
2.1, 2.5, 2.7, 2.3, θ ∈ ( 1

2
, 1] F (xT+1)− F (x∗) O

(
log

(θ+3
2
)
( 1
δ
) log

1
2 n

n2 + F (x∗) log(1/δ)
n

)
2.1, 2.5, 2.7, 2.3, θ > 1 F (xT+1)− F (x∗) O

(
log

3(θ−1)
2 (n/δ) log

(θ+3
2
)
( 1
δ
) log

1
2 n

n2 + F (x∗) log(1/δ)
n

)
2.1, 2.7, 2.3, LN, θ = 1

2
F (xT+1)− F (x∗) O

(
log2( 1

δ
)

n2

)
2.1, 2.5, 2.7, 2.3, LN, θ ∈ ( 1

2
, 1] F (xT+1)− F (x∗) O

(
log

(θ+3
2
)
( 1
δ
) log

1
2 n

n2

)
2.1, 2.5, 2.7, 2.3, LN, θ > 1 F (xT+1)− F (x∗) O

(
log

3(θ−1)
2 (n/δ) log

(θ+3
2
)
( 1
δ
) log

1
2 n

n2

)
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• ∃K2 > 0 such that ∥X∥k ≤ K2k
θ, ∀k ≥ 1;

• ∃K3 > 0 such that E[exp
(
(λ|X|)1/θ

)
] ≤ exp

(
(λK3)

1/θ
)
, ∀λ ∈ (0, 1/K3);

• ∃K4 > 0 such that E
[
exp

(
(|X|/K4)

1/θ
)]

≤ 2.

The parameters K1,K2,K3,K4 differ each by a constant that only depends on θ.

We list several concentration inequalities for sums and martingales with sub-Weibull increments.
Lemma C.2 ((Vladimirova et al., 2020; Wong et al., 2020; Madden et al., 2024)). Suppose
X1, · · · , Xn are sub-Weibull(θ) random variables with respective parameters K1, . . . ,Kn. Then,
for all t ≥ 0,

P

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−
(

t

g(θ)
∑n

i=1 Ki

)1/θ
)
,

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1.

The next two lemmas provide sub-Weibull analogues of martingale concentration bounds.
Lemma C.3 (Theorem 2 in (Li, 2021); see also (Fan & Giraudo, 2019)). Let θ ∈ (0,∞) be given.
Assume that (Xi, i = 1, · · · , N) is a sequence of Rd-valued martingale differences with respect to
filtration Fi, i.e. E[Xi|Fi−1] = 0, and it satisfies the following weak exponential-type tail condition:

for some θ > 0 and all i = 1, ..., N we have for some scalar 0 < Ki, E
[
exp

( ∥∥∥Xi

Ki

∥∥∥ 1
θ )] ≤ 2.

Assume that Ki < ∞ for each i = 1, ..., N . Then for an arbitrary N ≥ 1 and t > 0,

P

(
max
n≤N

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥ ≥ t

)
≤ 4

[
3 + (3θ)

2θ 128
∑N

i=1 K
2
i

t2

]
exp

−

(
t2

64
∑N

i=1 K
2
i

) 1
2θ+1

 .

Lemma C.4 (Sub-Weibull Freedman Inequality; Proposition 11 in (Madden et al., 2024)). Let
(Ω,F , (Fi), P ) be a filtered probability space. Let (ξi) and (Ki) be adapted to (Fi). Let n ∈ N,
then for all i ∈ [n], assume Ki−1 ≥ 0, E[ξi|Fi−1] = 0, and

E
[
exp

(
(|ξi|/Ki−1)

1/θ
)
|Fi−1

]
≤ 2

where θ ≥ 1/2. If θ > 1/2, assume there exists (mi) such that Ki−1 ≤ mi.

If θ = 1/2, let a = 2. Then for all x, β ≥ 0, and α > 0, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑

i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β). (2)

and for all x, β, λ ≥ 0,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑

i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
.

If θ ∈
(
1
2 , 1
]
, let a = (4θ)2θe2 and b = (4θ)θe. For all x, β ≥ 0, and α ≥ bmaxi∈[n] mi, and

λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑

i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β). (3)

and for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n] mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑

i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
.
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If θ > 1, let δ ∈ (0, 1), a = (22θ+1 + 2)Γ(2θ + 1) + 23θΓ(3θ+1)
3 and b = 2 logθ−1(n/δ). For all

x, β ≥ 0, and α ≥ bmaxi∈[n] mi, and λ ∈
[
0, 1

2α

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑

i=1

aK2
i−1 ≤ α

k∑
i=1

ξi + β

} ≤ exp(−λx+ 2λ2β) + 2δ. (4)

and for all x, β ≥ 0, and λ ∈
[
0, 1

bmaxi∈[n] mi

]
,

P

 ⋃
k∈[n]

{ k∑
i=1

ξi ≥ x and
k∑

i=1

aK2
i−1 ≤ β

} ≤ exp

(
−λx+

λ2

2
β

)
+ 2δ.

C.2 AUXILIARY LEMMAS

Lemma C.5 ((Lei & Tang, 2021)). Let e be the base of the natural logarithm. There holds the
following elementary inequalities.

(a) If θ ∈ (0, 1), then
∑t

k=1 k
−θ ≤ t1−θ/(1− θ);

(b) If θ = 1, then
∑t

k=1 k
−θ ≤ log(et);

(c) If θ > 1, then
∑t

k=1 k
−θ ≤ θ

θ−1 .

(d)
∑t

k=1
1

k+k0
≤ log(t+ 1).

Lemma C.6 ((Li & Orabona, 2020)). For any T ≥ 1 and sequences (at) and (bt), it holds that

T∑
t=1

at

t∑
i=1

bi =

T∑
t=1

bt

T∑
i=t

ai and
T∑

t=1

at

t−1∑
i=0

bi =

T−1∑
t=1

bt

T∑
i=t+1

ai.

Lemma C.7. Let ⟨·, ·⟩ denote the inner product. If f is L-smooth, then the following standard
properties hold (Nesterov, 2014; Ward et al., 2019): for any z ∈ Z and every x1,x2:

f(x1; z)− f(x2; z) ≤ ⟨x1 − x2,∇f(x2; z)⟩+
1

2
L∥x1 − x2∥2,

(2L)−1∥∇f(x; z)∥2 ≤ f(x; z)− inf
x

f(x; z).

The next two lemmas are uniform-convergence results that control the gap between the population
gradient ∇F and the empirical gradient ∇FS ; they are key tools in our generalization analysis.

Lemma C.8 (Corollary 2 in (Lei & Tang, 2021)). Denoted by BR = B(0, R). Let δ ∈ (0, 1) and
S = {z1, ..., zn} be a set of i.i.d. samples. Suppose Assumption 2.1 holds. Then with probability at
least 1− δ we have

sup
x∈BR

∥∇F (x)−∇FS(x)∥ ≤ (LR+B)√
n

(
2 + 2

√
48e

√
2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)
,

where B = supz∈Z ∥∇f(0; z)∥ and L is the smoothness constant.

Lemma C.9 (Lemma B.4 in (Li & Liu, 2022); (Xu & Zeevi, 2020)). Suppose Assumptions 2.1 and
2.3 hold, and assume that the population risk F satisfies the PL-type inequality F (x) − F (x∗) ≤
1
2µ∥∇F (x)∥2 for some µ > 0. If n ≥ cL2(d+log(

8 log(2nR+2)
δ ))

µ2 , then, for all x ∈ X ⊆ B(x∗, R) and
any δ > 0, with probability at least 1− δ

∥∇F (x)−∇FS(x)∥ ≤ ∥∇FS(x)∥+
µ

n
+

2B∗ log(4/δ)

n
+

√
8E[∥∇f(x∗; z)∥2] log(4/δ)

n
,

where c is an absolute constant, and where B∗ is the constant from Assumption 2.3.
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D PROOF OF MAIN RESULTS

D.1 PROOF OF THEOREM 3.1

Proof. By Assumption 2.1, we have

FS(xt+1)− FS(xt)

≤⟨xt+1 − xt,∇FS(xt)⟩+
1

2
L∥xt+1 − xt∥2 = −⟨mt,∇FS(xt)⟩+

1

2
L∥mt∥2. (5)

We first control the term −⟨mt,∇FS(xt)⟩. We have

− ⟨mt,∇FS(xt)⟩
=− γ⟨mt−1,∇FS(xt)⟩ − ⟨ηt∇f(xt; zjt),∇FS(xt)⟩
=− γ⟨mt−1,∇FS(xt−1)⟩+ γ⟨mt−1,∇FS(xt−1)−∇FS(xt)⟩ − ⟨ηt∇f(xt; zjt),∇FS(xt)⟩
≤ − γ⟨mt−1,∇FS(xt−1)⟩ − ⟨ηt∇f(xt; zjt),∇FS(xt)⟩+ γ∥mt−1∥∥∇FS(xt−1)−∇FS(xt)∥
≤ − γ⟨mt−1,∇FS(xt−1)⟩+ Lγ∥mt−1∥2 − ⟨ηt∇f(xt; zjt),∇FS(xt)⟩, (6)

where the last inequality uses L-smoothness of FS and the update xt − xt−1 = −mt−1. By
recurrence and using m0 = 0, we derive

− ⟨mt,∇FS(xt)⟩ ≤ L

t−1∑
i=1

γt−i∥mi∥2 −
t∑

i=1

γt−i⟨ηi∇f(xi; zji),∇FS(xi)⟩. (7)

Taking a summation from t = 1 to t = T yields

FS(xT+1)− FS(x1)

≤L

T∑
t=1

t−1∑
i=1

γt−i∥mi∥2 −
T∑

t=1

t∑
i=1

γt−i⟨ηi∇f(xi; zji),∇FS(xi)⟩+
1

2
L

T∑
t=1

∥mt∥2. (8)

By Lemma C.6, we have

L

T∑
t=1

t−1∑
i=1

γt−i∥mi∥2 ≤ L

T∑
t=1

γ−t∥mt∥2
T∑
i=t

γi ≤ L

T∑
t=1

γ−t∥mt∥2
γt

1− γ
=

L

1− γ

T∑
t=1

∥mt∥2.

(9)

Furthermore, using Lemma C.6, we have

−
T∑

t=1

t∑
i=1

γt−i⟨ηi∇f(xt; zji),∇FS(xi)⟩

=−
T∑

t=1

t∑
i=1

γt−i⟨ηi(∇f(xi; zji)−∇FS(xi)),∇FS(xi)⟩ −
T∑

t=1

t∑
i=1

γt−i⟨ηi(∇FS(xi)),∇FS(xi)⟩

=−
T∑

t=1

γ−t⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩
T∑
i=t

γi −
T∑

t=1

γ−t⟨ηt(∇FS(xt)),∇FS(xt)⟩
T∑

t=1

γi

≤−
T∑

t=1

γ−t⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩
T∑
i=t

γi −
T∑

t=1

ηt∥∇FS(xt)∥2

=−
T∑

t=1

1− γT−t+1

1− γ
⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩ −

T∑
t=1

ηt∥∇FS(xt)∥2. (10)

Plugging (9) and (10) into (8), we obtain
T∑

t=1

ηt∥∇FS(xt))∥2 ≤ FS(x1)− FS(xS) +
L

1− γ

T∑
t=1

∥mt∥2

−
T∑

t=1

1− γT−t+1

1− γ
⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩+

1

2
L

T∑
t=1

∥mt∥2. (11)
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It is clear that

Ejt

[
−1− γT−t+1

1− γ
⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩

]
= 0,

implying that it is a martingale difference sequence (MDS). We thus use Lemma C.4 to bound
it. Specifically, we set ξt = − 1−γT−t+1

1−γ ⟨ηt(∇f(xt; zjt) − ∇FS(xt)),∇FS(xt)⟩, Kt−1 =
1−γT−t+1

1−γ ηtK∥∇FS(xt)∥, β = 0, λ = 1
2α , and x = 2α log(1/δ).

If θ = 1
2 , for all α > 0, we have the following inequality with probability 1− δ

−
T∑

t=1

1− γT−t+1

1− γ
⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩

≤ 2α log(1/δ) +
aK2

α

T∑
t=1

η2t (
1− γT−t+1

1− γ
)2∥∇FS(xt)∥2

≤ 2α log(1/δ) +
aK2

α
(
1− γT

1− γ
)2

T∑
t=1

η2t ∥∇FS(xt)∥2.

If θ ∈ ( 12 , 1], according to Assumption 2.5, we set mt =
1−γT

1−γ KG. Then for all α ≥ b 1−γT

1−γ KG,
we have the following inequality with probability 1− δ

−
T∑

t=1

1− γT−t+1

1− γ
⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩

≤2α log(1/δ) +
aK2

α
(
1− γT

1− γ
)2

T∑
t=1

η2t ∥∇FS(xt)∥2.

If θ > 1, according to Assumption 2.5, we set mt = 1−γT

1−γ KG and δ = δ. Then, for all α ≥
b 1−γT

1−γ KG, we have the following inequality with probability 1− 3δ

−
T∑

t=1

1− γT−t+1

1− γ
⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩

≤2α log(1/δ) +
aK2

α
(
1− γT

1− γ
)2

T∑
t=1

η2t ∥∇FS(xt)∥2.

Then, we control the term
∑T

t=1 ∥mt∥2.
T∑

t=1

∥mt∥2 =

T∑
t=1

∥∥∥γmt−1 + (1− γ)
ηt∇f(xt; zjt)

1− γ

∥∥∥2
≤

T∑
t=1

(
γ∥mt−1∥2 + (1− γ)

∥∥∥ηt∇f(xt; zjt)

1− γ

∥∥∥2)
=

T−1∑
t=1

γ∥mt∥2 +
T∑

t=1

(1− γ)
∥∥∥ηt∇f(xt; zjt)

1− γ

∥∥∥2)
≤

T∑
t=1

γ∥mt∥2 +
T∑

t=1

(1− γ)
∥∥∥ηt∇f(xt; zjt)

1− γ

∥∥∥2),
where the first inequality holds due to the Jensen’s inequality and the second equality follows from
∥m0∥ = 0. Thus, we have

T∑
t=1

∥mt∥2 ≤
T∑

t=1

1

(1− γ)2
∥ηt∇f(xt; zjt)∥2. (12)
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This inequality implies that

T∑
t=1

∥mt∥2 ≤ 2

(1− γ)2

T∑
t=1

η2t ∥∇f(xt; zjt)−∇FS(xt)∥2 +
2

(1− γ)2

T∑
t=1

η2t ∥∇FS(xt)∥2.

Since ∥∇f(xt; zjt)−∇FS(xt)∥ is a sub-Weibull random variable, we have

E

[
exp

(
η2t ∥∇f(xt; zjt)−∇FS(xt)∥2

η2tK
2

) 1
2θ

]
≤ 2,

which means that η2t ∥∇f(xt; zjt) − ∇FS(xt)∥2 ∼ subW(2θ, η2tK
2). Applying Lemma C.2, we

get the following inequality with probability 1− δ

T∑
t=1

2

(1− γ)2
η2t ∥∇f(xt; zjt)−∇FS(xt)∥2 ≤ 2

(1− γ)2
K2g(2θ) log2θ(2/δ)

T∑
t=1

η2t .

Then, we plug the bound of −
∑T

t=1
1−γT−t+1

1−γ ⟨ηt(∇f(xt; zjt) − ∇FS(xt)),∇FS(xt)⟩ and the

bound of
∑T

t=1 ∥mt∥2 into (11), we obtain

T∑
t=1

ηt∥∇FS(xt)∥2 ≤ FS(x1)− FS(x(S)) +
( L

1− γ
+

1

2
L
) 2

(1− γ)2

T∑
t=1

η2t ∥∇FS(xt)∥2

+ 2α log(1/δ) +
aK2

α
(
1− γT

1− γ
)2

T∑
t=1

η2t ∥∇FS(xt)∥2

+
( L

1− γ
+

1

2
L
) 2

(1− γ)2
K2g(2θ) log2θ(2/δ)

T∑
t=1

η2t ,

implying that

T∑
t=1

ηt

(
1−

( L

1− γ
+

1

2
L
) 2

(1− γ)2
ηt −

aK2

α
(
1− γT

1− γ
)2ηt

)
∥∇FS(xt)∥2

≤ FS(x1)− FS(xS) + 2α log(1/δ) + (
L

1− γ
+

1

2
L)

2

(1− γ)2
K2g(2θ) log2θ(2/δ)

T∑
t=1

η2t .

When c = η1 ≤ 1
8

(1−γ)2

L
1−γ + 1

2L
= 1

4
(1−γ)3

3L−Lγ , then

( L

1− γ
+

1

2
L
) 2

(1− γ)2
ηt ≤

1

4
, ∀t. (13)

When aK2

α ( 1−γT

1−γ )2ηt ≤ 1
4 , then

α ≥ 4(
1− γT

1− γ
)2η1aK

2.

Thus, if α ≥ 4( 1−γT

1−γ )2η1aK
2 = 4( 1−γT

1−γ )2caK2 and η1 ≤ 1
8

(1−γ))2

L
1−γ + 1

2L
, we derive that

T∑
t=1

ηt∥∇FS(xt)∥2

≤2(FS(x1)− FS(x(S))) + 4α log(1/δ) + 2(
L

1− γ
+

1

2
L)

2

(1− γ)2
K2g(2θ) log2θ(2/δ)

T∑
t=1

η2t .
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Putting the previous bounds together. Hence, if θ = 1
2 , taking α = 4( 1−γT

1−γ )2η1aK
2 =

8( 1−γT

1−γ )2η1K
2, with probability 1− 2δ, we have

T∑
t=1

ηt∥∇FS(xt)∥2 ≤ 2(FS(x1)− FS(x(S))) + 32(
1− γT

1− γ
)2η1K

2 log(1/δ)

+ (
L

1− γ
+

1

2
L)

4

(1− γ)2
K2g(1) log(2/δ)

T∑
t=1

η2t .

If 1
2 < θ ≤ 1, taking α = max

{
b 1−γT

1−γ KG, 4( 1−γT

1−γ )2η1aK
2
}

= max
{
(4θ)θe 1−γT

1−γ KG, 4( 1−γT

1−γ )2η1(4θ)
2θe2K2

}
, with probability 1− 2δ, we have

T∑
t=1

ηt∥∇FS(xt)∥2 ≤ 2(FS(x1)− FS(x(S)))

+ 4max

{
(4θ)θe

1− γT

1− γ
KG, 4(

1− γT

1− γ
)2η1(4θ)

2θe2K2

}
log(

1

δ
)

+ (
L

1− γ
+

1

2
L)

4

(1− γ)2
K2g(2θ) log2θ(2/δ)

T∑
t=1

η2t .

If θ > 1, taking α = max
{
b 1−γT

1−γ KG, 4( 1−γT

1−γ )2η1aK
2
}

, that is

α = max
{
2 logθ−1(T/δ)

1− γT

1− γ
KG, 4(

1− γT

1− γ
)2η1((2

2θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3
)K2

}
.

Thus, with probability 1− 4δ, we have
T∑

t=1

ηt∥∇FS(xt)∥2 ≤ 2(FS(x1)− FS(x(S)))

+ (
L

1− γ
+

1

2
L)

4

(1− γ)2
K2g(2θ) log2θ(2/δ)

T∑
t=1

η2t

+ 4 log(1/δ)max
{
2 logθ−1(T/δ)

1− γT

1− γ
KG,

4(
1− γT

1− γ
)2η1((2

2θ+1 + 2)Γ(2θ + 1) +
23θΓ(3θ + 1)

3
)K2

}
.

Note that the dependence on confidence parameter 1/δ in above bounds is logarithmic. One can
replace δ to δ/2 or δ/4. Through this simple transformation, we have the following results: (1.) if
θ = 1, under Assumptions 2.1 and 2.9, with probability 1− δ, we have

1

T

T∑
t=1

∥∇FS(xt)∥2 ≤ 1

c
√
T

T∑
t=1

ηt∥∇FS(xt)∥2 = O

(
1√
T

log(1/δ)

T∑
t=1

η2t

)

= O
(

1√
T

log(1/δ) log T

)
; (14)

(2.) if 1
2 < θ ≤ 1, under Assumptions 2.1, 2.5, and 2.9, with probability 1− δ, we have

1

T

T∑
t=1

∥∇FS(xt)∥2 ≤ 1

c
√
T

T∑
t=1

ηt∥∇FS(xt)∥2 = O

(
1√
T

log2θ(1/δ)

T∑
t=1

η2t

)

= O
(

1√
T

log2θ(1/δ) log T

)
; (15)
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(3.) if θ > 1, under Assumptions 2.1, 2.5, and 2.9, with probability 1− δ, we have

1

T

T∑
t=1

∥∇FS(xt)∥2 ≤ 1

c
√
T

T∑
t=1

ηt∥∇FS(xt)∥2

=O

(
logθ−1(T/δ) log(1/δ) + log2θ(1/δ)

∑T
t=1 η

2
t√

T

)

=O

(
logθ−1(T/δ) log(1/δ) + log2θ(1/δ) log T√

T

)
, (16)

where the bound of
∑T

t=1 η
2
t follows from Lemma C.5. The proof is complete.

D.2 PROOF OF THEOREM 3.3

Proof. The proof is divided into three parts.

(1.) In the first part, we prove the bound of ∥xt∥. ∥xt∥ characterizes the bound of B(0, R), i.e., at
iterate t, R = Rt = ∥xt∥, because xt traverses over a ball with an increasing radius as t increases.
Therefore one should apply Lemma C.8 with an increasing R.

From the update xt+1 = xt −mt, by a summation and using m1 = 0, we get xt+1 = −
∑t

i=1 mi.
Using mi = γmi−1 + ηi∇f(xi; zji) and recurrence, we have

mi =

i∑
k=1

γi−kηk∇f(xk; zjk).

According to Lemma C.6, this gives that

xt+1 = −
t∑

i=1

i∑
k=1

γi−kηk∇f(xk; zjk) = −
t∑

i=1

1− γt−i+1

1− γ
ηi∇f(xi; zji). (17)

Thus, we have

∥xt+1∥ =
1

1− γ

∥∥∥ t∑
i=1

(1− γt−i+1)ηi∇f(xi; zji)
∥∥∥

≤ 1

1− γ

∥∥∥ t∑
i=1

(1− γt−i+1)ηi(∇f(xi; zji)−∇FS(xi))
∥∥∥+ 1

1− γ

∥∥∥ t∑
i=1

(1− γt−i+1)ηi∇FS(xi)
∥∥∥.

(18)

Let’s consider the first term
∥∥∥∑t

i=1(1 − γt−i+1)ηi(∇f(xi; zji) − ∇FS(xi))
∥∥∥. It is clear that

Eji [(1− γt−i+1)ηi(∇f(xi; zji)−∇FS(xi))] = 0, which means that it is a MDS. Moreover, since
∥∇f(xi; zji)−∇FS(xi)∥ ∼ subW(θ,K), we have

E

[
exp

(
∥ηi(1− γt−i+1)(∇f(xi; zji)−∇FS(xi))∥

ηi(1− γt)K

) 1
θ

]
≤ 2.

Then, we can apply Lemma C.3 to derive the following inequality

P

(
max
1≤t≤T

∥∥∥∥∥
t∑

i=1

(1− γt−i+1)ηi(∇f(xi; zji)−∇FS(xi))

∥∥∥∥∥ ≥ x

)

≤ 4

[
3 + (3θ)

2θ 128K2(1− γT )
∑T

i=1 η
2
i

x2

]
exp

−

(
x2

64K2(1− γT )
∑T

i=1 η
2
i

) 1
2θ+1

 .
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Setting the term 4 exp

{
−
(

x2

64K2(1−γT )
∑T

i=1 η2
i

) 1
2θ+1

}
equal to δ, we get x = 8 log(θ+

1
2 )( 4δ )K(1−

γT )
1
2 (
∑T

i=1 η
2
i )

1
2 . Thus, with probability 1− 3δ − 8(3θ)2θ

log2θ+1 4
δ

δ, we have

max
1≤t≤T

∥∥∥∥∥
t∑

i=1

(1− γt−i+1)ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥ ≤ 8 log(θ+
1
2 )(

4

δ
)K(1− γT )

1
2

( T∑
i=1

η2i

) 1
2

.

(19)

Since θ ≥ 1/2 and δ ∈ (0, 1), we have log2θ+1 4
δ > 1. Thus, (19) means that with probability

1− 3δ − 8(3θ)2θδ, we have

max
1≤t≤T

∥∥∥∥∥
t∑

i=1

(1− γt−i+1)ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥ ≤ 8 log(θ+
1
2 )(

4

δ
)K(1− γT )

1
2

( T∑
i=1

η2i

) 1
2

.

Now, with probability 1− δ, we can derive

max
1≤t≤T

∥∥∥∥∥
t∑

i=1

(1− γt−i+1)ηi(∇f(wi; zji)−∇FS(wi))

∥∥∥∥∥
≤8 log(θ+

1
2 )
(4(3 + 8(3θ)2θ)

δ

)
K(1− γT )

1
2

( T∑
i=1

η2i

) 1
2

= O(1). (20)

For the second term
∥∥∥∑t

i=1(1− γt−i+1)ηi∇FS(xi)
∥∥∥, we have

∥∥∥ t∑
i=1

(1− γt−i+1)ηi∇FS(xi)
∥∥∥2 ≤

( t∑
i=1

(1− γt−i+1)ηi

)( t∑
i=1

(1− γt−i+1)ηi∥∇FS(xi)∥2
)

≤
( t∑

i=1

ηi

)( t∑
i=1

ηi∥∇FS(xi)∥2
)
, (21)

where the first inequality follows form the Schwarz’s inequality, and where the second inequality
follows from the fact that 0 < γ < 1, ηi > 0 and ∥∇FS(xi)∥ ≥ 0. For the sake of the presenta-
tion, we introduce a notation ∆(θ, T, δ) = logθ−1(T/δ) log(1/δ)Iθ>1, where Iθ>1 is an indication
function. Thus with probability 1− δ we have the following inequality uniformly for all t = 1, ..., T∥∥∥ t∑

i=1

(1− γt−i+1)ηi∇FS(xi)
∥∥∥2 ≤

( t∑
i=1

ηi

)( t∑
i=1

ηi∥∇FS(xi)∥2
)

=
( t∑

i=1

ηi

)
O

(
∆(θ, T, δ) + log2θ(1/δ)

t∑
i=1

η2i

)
, (22)

where the last equation follows from the results of (14), (15), and (16).

Plugging (20), (21) and (22) into (18), we have the following inequality uniformly for all t = 1, ..., T
with probability at least 1− 2δ

∥xt+1∥ = O

(
log(θ+

1
2 )(

1

δ
)(1− γT )

1
2 (

T∑
i=1

η2i )
1
2

)
+

(( t∑
i=1

ηi

)
O
(
∆(θ, T, δ) + log2θ(1/δ)

t∑
i=1

η2i
)) 1

2

(23)

= O
(
log(θ+

1
2 )(

1

δ
)(1− γT )

1
2 log

1
2 T

)
+
(
t
1
2O
(
∆(θ, T, δ) + log2θ(1/δ) log t

)) 1
2

≤ O
(
t
1
4

(
∆

1
2 (θ, T, δ) + log(θ+

1
2 )(

1

δ
) log

1
2 T
))

, (24)

where the second equation follows from Lemma C.5.
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(2.) In the second part, we prove the bound of max1≤t≤T ∥∇F (xt) − ∇FS(xt)∥. According to
Lemma C.8, with probability 1− δ we have

max
1≤t≤T

∥∇F (xt)−∇FS(xt)∥

≤ (LRT +B)√
n

(
2 + 2

√
48e

√
2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)

≤ (L∥xT ∥+B)√
n

(
2 + 2

√
48e

√
2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)
. (25)

Plugging (24) into (25), with probability 1 − 3δ we have the following inequality uniformly for all
t = 1, ...T

max
1≤t≤T

∥∇F (xt)−∇FS(xt)∥ ≤

LO
(
T

1
4

(
∆

1
2 (θ, T, δ) + log(θ+

1
2 )( 1δ ) log

1
2 T
))

+B
√
n

(
2 + 2

√
48e

√
2(log 2 + d log(3e)) +

√
2 log(

1

δ
)

)
,

which means that we have the following inequality uniformly for all t = 1, ...T with probability
1− δ

max
1≤t≤T

∥∇F (xt)−∇FS(xt)∥2

=O

(
T

1
2

(
∆(θ, T, δ) + log(2θ+1)( 1δ ) log T

)
n

×
(
d+ log(

1

δ
)
))

. (26)

(3.) In the third part, we prove the bound of 1
T

∑T
t=1 ∥∇F (xt)∥2. Firstly, we can derive the follow-

ing inequality with probability 1− 2δ
T∑

t=1

ηt∥∇F (xt)∥2

≤2

T∑
t=1

ηt∥∇F (xt)−∇FS(xt)∥2 + 2

T∑
t=1

ηt∥∇FS(xt)∥2

≤2

T∑
t=1

ηt max
1≤t≤T

∥∇F (xt)−∇FS(xt)∥2 + 2

T∑
t=1

ηt∥∇FS(xt)∥2

≤2

T∑
t=1

ηtO
(T 1

2

(
∆(θ, T, δ) + log(2θ+1)( 1δ ) log T

)
n

(
d+ log(

1

δ
)
))

+O
(
∆(θ, T, δ) + log2θ(1/δ) log T

)
,

where the last inequality follows from (26) and the results of (14), (15), and (16).

Therefore, we have

1

T

T∑
t=1

∥∇F (xt)∥2 ≤ 1

c
√
T

T∑
t=1

ηt∥∇F (xt)∥2

=O

(√
T
(
∆(θ, T, δ) + log(2θ+1)( 1δ ) log T

)
n

×
(
d+ log(

1

δ
)
))

+O

(
∆(θ, T, δ) + log2θ(1/δ) log T√

T

)
.

Taking T ≍ n
d , we have the following inequality with probability 1− 2δ

1

T

T∑
t=1

∥∇F (xt)∥2 = O
(( d

n

) 1
2
(
log(

n

d
) log(2θ+2)(

1

δ
) + ∆(θ,

n

d
, δ) log(1/δ)

))
,
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which means with probability at least 1− δ we have

1

T

T∑
t=1

∥∇F (xt)∥2 =O
(( d

n

) 1
2
(
log(

n

d
) log(2θ+2)(

1

δ
) + ∆(θ,

n

d
, δ) log(1/δ)

))
=O

(( d
n

) 1
2
(
log(

n

d
) log(2θ+2)(

1

δ
) + logθ−1(n/dδ) log2(1/δ)Iθ>1

))
.

The proof is complete.

D.3 PROOF OF THEOREM 3.5

Proof. The proof of Theorem 3.5 is relatively complex and is divided into two parts.

(1.) In the first part, we prove the bound of ∥xt+1∥, characterizing the bound of B(0, R), i.e.,
at iterate t + 1, R = Rt+1 = ∥xt+1∥. Recall that in (13), we need ηt ≤ 1

8
(1−γ)2

L
1−γ + 1

2L
. Since

ηt =
1

µ(S)(t+t0)
, when t0 ≥ 8( L

1−γ + 1
2L)

µ(S)(1−γ)2 = 12L−4Lγ
µ(S)(1−γ)3 , we have ηt ≤ 1

8
(1−γ)2

L
1−γ + 1

2L
. Thus, we can use

(23) to bound ∥xt+1∥. According to (23), we have the following inequality with probability 1 − δ
uniformly for all t = 1, ...T

∥xt+1∥ = O

(
log(θ+

1
2 )(

1

δ
)(

T∑
t=1

η2t )
1
2 +

( t∑
i=1

ηi

) 1
2
(
∆

1
2 (θ, T, δ) + logθ(1/δ)

( t∑
i=1

η2i

) 1
2
))

≤ O
((

log(θ+
1
2 )(

1

δ
) + ∆

1
2 (θ, T, δ)

)
log

1
2 T

)
, (27)

where ∆(θ, T, δ) = logθ−1(T/δ) log(1/δ)Iθ>1, and where the last inequality follows from ηt =
1

µ(S)(t+t0)
with t0 ≥ 1 and Lemma C.5.

(2.) In the second part, we prove the bound of FS(xT+1)− FS(x(S)). It is clear that

FS(xt+1)− FS(xt)

≤⟨xt+1 − xt,∇FS(xt)⟩+
1

2
L∥xt+1 − xt∥2

≤− γ⟨mt−1,∇FS(xt−1)⟩+ Lγ∥mt−1∥2 − ⟨ηt∇f(xt; zjt),∇FS(xt)⟩+
1

2
L∥mt∥2

=− γ⟨mt−1,∇FS(xt−1)⟩+ Lγ∥mt−1∥2 − ⟨ηt∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩

− ηt∥∇FS(xt)∥2 +
1

2
L∥mt∥2,

where the second inequality follows from (6). We can derive that

1

2
ηt∥∇FS(xt)∥2 + FS(xt+1)− FS(xt)

≤− γ⟨mt−1,∇FS(xt−1)⟩+ Lγ∥mt−1∥2 − ⟨ηt∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩

− 1

2
ηt∥∇FS(xt)∥2 +

1

2
L∥mt∥2.

Since ηt =
1

µ(S)(t+t0)
, it implies that

1

2
ηt∥∇FS(xt)∥2 + FS(xt+1)− FS(xS)

≤(1− 2

t+ t0
)(FS(xt)− FS(xS))− γ⟨mt−1,∇FS(xt−1)⟩+ Lγ∥mt−1∥2

− ⟨ηt∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩+
1

2
L∥mt∥2.
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Multiplying both sides by (t+ t0)(t+ t0 − 1), we get

(t+ t0 − 1)

2µ(S)
∥∇FS(xt)∥2 + (t+ t0)(t+ t0 − 1)(FS(xt+1)− FS(xS))

≤− (t+ t0)(t+ t0 − 1)γ⟨mt−1,∇FS(xt−1)⟩+ (t+ t0)(t+ t0 − 1)Lγ∥mt−1∥2

+ (t+ t0)(t+ t0 − 1)
1

2
L∥mt∥2

+ (t+ t0 − 1)(t+ t0 − 2)(FS(xt)− FS(xS))

− (t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩.

Taking a summation from t = 1 to t = T , we derive that

T∑
t=1

(t+ t0 − 1)

2µ(S)
∥∇FS(xt)∥2 + (T + t0)(T + t0 − 1)(FS(xT+1)− FS(xS))

≤ −
T∑

t=1

(t+ t0)(t+ t0 − 1)γ⟨mt−1,∇FS(xt−1)⟩+
T∑

t=1

(t+ t0)(t+ t0 − 1)Lγ∥mt−1∥2

+

T∑
t=1

(t+ t0)(t+ t0 − 1)
1

2
L∥mt∥2

+ (t0 − 1)(t0 − 2)(FS(x1)− FS(xS))

−
T∑

t=1

(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩.

Since m0 = 0, we get

T∑
t=1

(t+ t0 − 1)

2µ(S)
∥∇FS(xt)∥2 + (T + t0)(T + t0 − 1)(FS(xT+1)− FS(xS))

≤ −
T∑

t=1

(t+ t0)(t+ t0 − 1)γ⟨mt−1,∇FS(xt−1)⟩+
T−1∑
t=1

(t+ t0 + 1)(t+ t0)Lγ∥mt∥2

+

T∑
t=1

(t+ t0)(t+ t0 − 1)
1

2
L∥mt∥2

+ (t0 − 1)(t0 − 2)(FS(x1)− FS(xS))

−
T∑

t=1

(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩. (28)

We first bound the term
∑T−1

t=1 (t + t0 + 1)(t + t0)∥mt∥2. Note that from the Jensen’s inequality,
we have

∥mt∥2 = ∥γmt−1 +
1− γ

1− γ
ηt∇f(xt; zjt)∥2 ≤ γ∥mt−1∥2 +

1

1− γ
∥ηt∇f(xt; zjt)∥2.

By recurrence, it gives that

∥mt∥2 ≤
t∑

i=1

γt−i

1− γ
∥ηi∇f(xi; zji)∥2.
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Thus, we have
T−1∑
t=1

(t+ t0 + 1)(t+ t0)∥mt∥2

≤
T−1∑
t=1

(t+ t0 + 1)(t+ t0)

t∑
i=1

γt−i

1− γ
∥ηi∇f(xi; zji)∥2

=

T−1∑
t=1

γ−t

1− γ
∥ηt∇f(xt; zjt)∥2

T−1∑
i=t

γi(i+ t0 + 1)(i+ t0) (29)

Considering
∑T−1

i=t (i+ t0 + 1)(i+ t0)γ
i, we have

T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

≤
∫ T−1

t

(i+ t0 + 1)(i+ t0)γ
idi

≤
∫ T−1

t

(i+ t0 + 1)2γidi

=
γi

ln γ
(i+ t0 + 1)2

∣∣∣i=T−1

i=t
− 2

∫ T−1

t

(i+ t0 + 1)γidi

=
γi

ln γ
(i+ t0 + 1)2

∣∣∣i=T−1

i=t
− 2
[ γi

ln2 γ
(i+ t0 + 1)

∣∣∣i=T−1

i=t
−
∫ T−1

t

γidi
]
.

Solving the above integral, and since ln γ < 0, we get
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

≤− γt

ln γ
(t+ t0 + 1)2 + 2

γt

ln2 γ
(t+ t0 + 1)− 2

γt

ln γ
≤ (Cγ)γ

t(t+ t0 + 1)2, (30)

where Cγ = 1 + 2 1
ln2 γ

− 3
ln γ , which is a constant only depend on γ. Thus, according to (29), we

have
T−1∑
t=1

(t+ t0 + 1)(t+ t0)∥mt∥2 ≤
T−1∑
t=1

(t+ t0 + 1)2
(Cγ)

(1− γ)
∥ηt∇f(xt; zjt)∥2

≤ (Cγ)

(1− γ)µ(S)2

T−1∑
t=1

(t+ t0 + 1)2

(t+ t0)2
∥∇f(xt; zjt)∥2.

And since (t+t0+1)2

(t+t0)2
= (1 + 1

t+t0
)2 ≤ 4, then we have

T−1∑
t=1

(t+ t0 + 1)(t+ t0)∥mt∥2

≤ (4Cγ)

(1− γ)µ(S)2

T−1∑
t=1

∥∇f(xt; zjt)∥2

≤ (8Cγ)

(1− γ)µ(S)2

( T−1∑
t=1

∥∇f(xt; zjt)−∇FS(xt)∥2 + ∥∇FS(xt)∥2
)
.

Since ∥∇f(xt; zjt)−∇FS(xt)∥ ∼ subW(θ,K), we get E
[
exp

(
∥∇f(xt;zjt )−∇FS(xt)∥2

K2

) 1
2θ

]
≤ 2.

According to Lemma C.2, we get the following inequality with probability at least 1− δ
T−1∑
t=1

∥∇f(xt; zjt)−∇FS(xt)∥2 ≤ (T − 1)K2g(2θ) log2θ(2/δ).
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Thus, with probability at least 1− δ, we have

T−1∑
t=1

(t+ t0 + 1)(t+ t0)∥mt∥2 ≤ (8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ)

+

T−1∑
t=1

(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2. (31)

Similarly, with probability at least 1− δ, we can derive

T∑
t=1

(t+ t0)(t+ t0 − 1)∥mt∥2

≤ (8Cγ)

(1− γ)µ(S)2
TK2g(2θ) log2θ(2/δ) +

T∑
t=1

(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2.

We then bound −
∑T

t=1(t+ t0)(t+ t0 − 1)⟨mt−1,∇FS(xt−1)⟩. Recall that from (7), we know

−⟨mt,∇FS(xt)⟩ ≤ L

t−1∑
i=1

γt−i∥mi∥2 −
t∑

i=1

γt−i⟨ηi∇f(xi; zji),∇FS(xi)⟩.

Since m0 = 0, we have

−
T∑

t=1

(t+ t0)(t+ t0 − 1)⟨mt−1,∇FS(xt−1)⟩

=−
T−1∑
t=1

(t+ t0 + 1)(t+ t0)⟨mt,∇FS(xt)⟩

≤
T−1∑
t=1

(t+ t0 + 1)(t+ t0)L

t−1∑
i=1

γt−i∥mi∥2

−
T−1∑
t=1

(t+ t0 + 1)(t+ t0)

t∑
i=1

γt−i⟨ηi∇f(xi; zji),∇FS(xi)⟩

≤
T−1∑
t=1

(t+ t0 + 1)(t+ t0)L

t∑
i=1

γt−i∥mi∥2

−
T−1∑
t=1

(t+ t0 + 1)(t+ t0)

t∑
i=1

γt−i⟨ηi∇f(xi; zji),∇FS(xi)⟩

=

T−1∑
t=1

γ−t∥mt∥2L
T−1∑
i=t

γi(i+ t0 + 1)(i+ t0)

−
T−1∑
t=1

γ−t⟨ηt∇f(xt; zjt),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

=

T−1∑
t=1

γ−t∥mt∥2L
T−1∑
i=t

γi(i+ t0 + 1)(i+ t0)

−
T−1∑
t=1

γ−t⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

−
T−1∑
t=1

γ−t⟨ηt∇FS(xt),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i,
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where the second equation holds by using Lemma C.6.

With a similar analysis to (31), it is clear that with probability 1− δ
T−1∑
t=1

γ−t∥mt∥2L
T−1∑
i=t

γi(i+ t0 + 1)(i+ t0) ≤ LCγ

T−1∑
t=1

∥mt∥2(t+ t0 + 1)2

≤L(Cγ)
(8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ) +

T−1∑
t=1

L(Cγ)
(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2.

And we also have

−
T−1∑
t=1

γ−t⟨ηt∇FS(xt),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

≤−
T−1∑
t=1

γ−t(t+ t0 + 1)(t+ t0)⟨ηt∇FS(xt),∇FS(xt)⟩
T−1∑
i=t

γi

≤−
T−1∑
t=1

(t+ t0 + 1)(t+ t0)⟨ηt∇FS(xt),∇FS(xt)⟩

=−
T−1∑
t=1

(t+ t0 + 1)(t+ t0)ηt∥∇FS(xt)∥2.

Thus, we have

−
T∑

t=1

(t+ t0)(t+ t0 − 1)⟨mt−1,∇FS(xt−1)⟩

≤ −
T−1∑
t=1

γ−t⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

−
T−1∑
t=1

(t+ t0 + 1)(t+ t0)ηt∥∇FS(xt)∥2 + L(Cγ)
(8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ)

+

T−1∑
t=1

L(Cγ)
(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2.

We now consider the term −
∑T−1

t=1 γ−t⟨ηt(∇f(xt; zjt) − ∇FS(xt)),∇FS(xt)⟩
∑T−1

i=t (i + t0 +

1)(i+ t0)γ
i. Denoted by ξt = −γ−t⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩

∑T−1
i=t (i+ t0+1)(i+

t0)γ
i. We know that Ejtξt = −Ejtγ

−t⟨ηt(∇f(xt; zjt) − ∇FS(xt)),∇FS(xt)⟩
∑T−1

i=t (i + t0 +
1)(i+ t0)γ

i = 0, implying that it is a martingale difference sequence. We use Lemma C.4 to bound
this term.

From (30), it is clear that |γ−t⟨ηt(∇f(xt; zjt)−∇FS(xt)),∇FS(xt)⟩
∑T−1

i=t (i+t0+1)(i+t0)γ
i| ≤

(Cγ)(t+ t0 + 1)2ηt∥∇f(xt; zjt)−∇FS(xt))∥∥∇FS(xt)∥. We set

Kt−1 = Cγ(t+ t0 + 1)2ηtK∥∇FS(xt)∥ = Cγ(t+ t0 + 1)2
1

µ(S)(t+ t0)
K∥∇FS(xt)∥.

We also set β = 0, λ = 1
2α , and x = 2α log(1/δ). For brevity, we denote Ξ = 2Cγ(t + t0 +

1)µ(S)−1K and ΞT = 2Cγ(T + t0 + 1)µ(S)−1K. Moreover, according to the smoothness as-
sumption, we know ∥∇FS(xt)∥ ≤ (L∥xt∥+B).

If θ = 1
2 , for all α > 0, we have the following inequality with probability 1− δ

−
T−1∑
t=1

γ−t⟨ηt∇f(xt; zjt),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

≤2α log(1/δ) +
a

α

T−1∑
t=1

Ξ2∥∇FS(xt)∥2.
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If 1
2 < θ ≤ 1, we set mt = Ξ(L∥xt∥ + B). Then for all α ≥ bΞT (L∥xT ∥ + B), we have the

following inequality with probability 1− δ

−
T−1∑
t=1

γ−t⟨ηt∇f(xt; zjt),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

≤2α log(1/δ) +
a

α

T−1∑
t=1

Ξ2∥∇FS(xt)∥2.

If θ > 1, we set mt = Ξ(L∥xt∥+B) and δ = δ. Then, for all α ≥ bΞT (L∥xT ∥+B), we have the
following inequality with probability 1− 3δ

−
T−1∑
t=1

γ−t⟨ηt∇f(xt; zjt),∇FS(xt)⟩
T−1∑
i=t

(i+ t0 + 1)(i+ t0)γ
i

≤2α log(1/δ) +
a

α

T−1∑
t=1

Ξ2∥∇FS(xt)∥2.

We now consider the last term −(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩. With a
similar analysis, we set ξt = −(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩ and

Kt−1 = (t+ t0)(t+ t0 − 1)ηtK∥∇FS(xt)∥ = µ(S)−1(t+ t0 − 1)K∥∇FS(xt)∥.

We also set β = 0, λ = 1
2α , and x = 2α log(1/δ). According to the smoothness assumption, we

know ∥∇FS(xt)∥ ≤ (L∥xt∥+B).

If θ = 1
2 , for all α > 0, we have the following inequality with probability at least 1− δ

−
T∑

t=1

(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩

≤2α log(1/δ) +
aK2

µ(S)2α

T∑
t=1

(t+ t0 − 1)2∥∇FS(xt)∥2.

If 1
2 < θ ≤ 1, we set mt = µ(S)−1(t + t0 − 1)K(L∥xt∥ + B). Then for all α ≥ bµ(S)−1(T +

t0 − 1)K(L∥xT ∥+B), we have the following inequality with probability at least 1− δ

−
T∑

t=1

(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩

≤2α log(1/δ) +
aK2

µ(S)2α

T∑
t=1

(t+ t0 − 1)2∥∇FS(xt)∥2.

If θ > 1, we set mt = µ(S)−1(t+t0−1)K(L∥xt∥+B) and δ = δ. Then, for all α ≥ bµ(S)−1(T+
t0 − 1)K(L∥xT ∥+B), we have the following inequality with probability at least 1− 3δ

−
T∑

t=1

(t+ t0)(t+ t0 − 1)ηt⟨∇f(xt; zjt)−∇FS(xt),∇FS(xt)⟩

≤2α log(1/δ) +
aK2

µ(S)2α

T∑
t=1

(t+ t0 − 1)2∥∇FS(xt)∥2.
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Finally, combining with these terms, we derive
T∑

t=1

(t+ t0 − 1)

2µ(S)
∥∇FS(xt)∥2 −

aK2

µ(S)2α

T∑
t=1

(t+ t0 − 1)2∥∇FS(xt)∥2

− L

2

T∑
t=1

(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2

− Lγ

T−1∑
t=1

(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2 +

T−1∑
t=1

(t+ t0 + 1)(t+ t0)ηt∥∇FS(xt)∥2

−
T−1∑
t=1

Lγ(Cγ)
(8Cγ)

(1− γ)µ(S)2
∥∇FS(xt)∥2

− γ
a

α

T−1∑
t=1

Ξ2∥∇FS(xt)∥2 + (T + t0)(T + t0 − 1)(FS(xT+1)− FS(x(S)))

≤Lγ
(8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ) +

L

2

(8Cγ)

(1− γ)µ(S)2
TK2g(2θ) log2θ(2/δ)

+ Lγ(Cγ)
(8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ) + (t0 − 1)(t0 − 2)(FS(x1)− FS(x(S)))

+ 2α log(1/δ) + γ2α log(1/δ). (32)

We want

(t+ t0 − 1)

2µ(S)
− aK2

µ(S)2α
(t+ t0 − 1)2 − L

2

(8Cγ)

(1− γ)2µ(S)2
≥ 0

and
(t+ t0 + 1)

µ(S)
− Lγ

(8Cγ)

(1− γ)µ(S)2
− Lγ(Cγ)

(8Cγ)

(1− γ)µ(S)2
− γ

a

α
Ξ2 ≥ 0.

Thus, we assume that t0 satisfies the following conditions

(t0 − 1)

2µ(S)
≥ L

2

(8Cγ)

(1− γ)2µ(S)2
;

and
(t0 + 1)

µ(S)
≥ Lγ

(8Cγ)

(1− γ)µ(S)2
+ Lγ(Cγ)

(8Cγ)

(1− γ)µ(S)2
,

which means that

t0 ≥ (8Cγ)L

(1− γ)2µ(S)
+ 1;

and

t0 ≥ 8Cγ(Lγ + Lγ(Cγ))

(1− γ)µ(S)
− 1.

Thus, we can further derive that α ≥ aK2(t+t0−1)2

(t+t0−1)

2µ(S)
−L

2

(8Cγ )

(1−γ)2µ(S)2

and

α ≥ γa(2Cγ(t+t0+1)µ(S)−1K)2

(t+t0+1)

µ(S)
−Lγ

(8Cγ )

(1−γ)2µ(S)2
−Lγ(Cγ)

(8Cγ )

(1−γ)2µ(S)2

.

When θ = 1
2 , the above lower bounds of α are: α ≥ aK2(t+t0−1)2

(t+t0−1)

2µ(S)
−L

2

(8Cγ )

(1−γ)2µ(S)2

,

α ≥ γa(2Cγ(t+t0+1)µ(S)−1K)2

(t+t0+1)

µ(S)
−Lγ

(8Cγ )

(1−γ)2µ(S)2
−Lγ(Cγ)

(8Cγ )

(1−γ)2µ(S)2

, and α > 0, which implies that we should choose

α = O (T ) .
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When 1
2 < θ ≤ 1, the above lower bounds of α are: α ≥ aK2(t+t0−1)2

(t+t0−1)

2µ(S)
−L

2

(8Cγ )

(1−γ)2µ(S)2

, α ≥

γa(2Cγ(t+t0+1)µ(S)−1K)2

(t+t0+1)

µ(S)
−Lγ

(8Cγ )

(1−γ)2µ(S)2
−Lγ(Cγ)

(8Cγ )

(1−γ)2µ(S)2

, α ≥ bΞT (L∥xT ∥ + B), and α ≥ bµ(S)−1(T + t0 −

1)K(L∥xT ∥+B), which implies that we should choose α = O
(
T log(θ+

1
2 )( 1δ ) log

1
2 T
)

.

When θ > 1, the above lower bounds of α are: α ≥ aK2(t+t0−1)2

(t+t0−1)

2µ(S)
−L

2

(8Cγ )

(1−γ)2µ(S)2

,

α ≥ γa(2Cγ(t+t0+1)µ(S)−1K)2

(t+t0+1)

µ(S)
−Lγ

(8Cγ )

(1−γ)2µ(S)2
−Lγ(Cγ)

(8Cγ )

(1−γ)2µ(S)2

, α ≥ bΞT (L∥xT ∥ + B), and α ≥ bµ(S)−1(T +

t0 − 1)K(L∥xT ∥+B), which implies that we should choose

α = O
(
logθ−1(

T

δ
)T
(
log(θ+

1
2 )(

1

δ
) + log

θ−1
2 (T/δ) log

1
2 (1/δ)

)
log

1
2 T

)
.

Note that the bound of ∥xT ∥ comes from (27).

Thus, we derive that

(T + t0)(T + t0 − 1)(FS(xt+1)− FS(x(S)))

≤Lγ
(8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ) +

L

2

(8Cγ)

(1− γ) µ(S)2
TK2g(2θ) log2θ(2/δ)

+ Lγ(Cγ)
(8Cγ)

(1− γ)µ(S)2
(T − 1)K2g(2θ) log2θ(2/δ)

+ (t0 − 1)(t0 − 2)(FS(x1)− FS(x(S))) + 2α log(1/δ) + γ2α log(1/δ).

Putting the previous bounds together.

If θ = 1, with probability 1− 6δ, we have

FS(xT+1)− FS(x(S)) = O
(
log(1/δ)

T

)
.

If 1
2 < θ ≤ 1, with probability 1− 7δ, we have

FS(xT+1)− FS(x(S)) = O

(
log(θ+

1
2 )( 1δ ) log

1
2 T

T
log(

1

δ
)

)
.

If θ > 1, with probability 1− 10δ, we have

FS(xT+1)− FS(x(S)) = O
(( log(θ+ 1

2 )( 1δ ) + ∆
1
2 (θ, T, δ)

)
log

1
2 T

T
logθ−1(

T

δ
) log(

1

δ
)
)
.

The above bounds mean that with probability 1− δ, there holds

FS(xT+1)− FS(x(S)) =


O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+3
2
)( 1

δ ) log
1
2 T

T

)
if θ ∈ ( 12 , 1],

O
(

log(θ+3
2
)( 1

δ ) log
3(θ−1)

2 (T/δ) log
1
2 T

T

)
if θ > 1.

(33)

The proof is complete.

D.4 PROOF OF THEOREM 3.7

Proof. Recall Assumption 2.7 (Polyak-Łojasiewicz condition), which gives

F (xT+1)− F (x∗) ≤ 1

4µ
∥∇F (xT+1)∥2 ≤ 1

2µ
(∥∇F (xT+1)−∇FS(xT+1)∥2 + ∥∇FS(xT+1)∥2).

(34)
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From (27) and Lemma C.8, with probability 1− δ we have

∥∇F (xT+1)−∇FS(xT+1)∥2 = O
(
d+ log( 1δ )

n
∥xT+1∥2

)
= O

(
d+ log( 1δ )

n

(
log(2θ+1)(

1

δ
) + ∆(θ, T, δ)

)
log T

)
. (35)

From the smoothness property in Lemma C.7 and the convergence bound in (33), with probability
1− δ, there holds

∥∇FS(xT+1)∥2 ≤ (2L)(FS(xT+1)− FS(x(S)))

=


O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+3
2
)( 1

δ ) log
1
2 T

T

)
if θ ∈ ( 12 , 1],

O
(

log(θ+3
2
)( 1

δ ) log
3(θ−1)

2 (T/δ) log
1
2 T

T

)
if θ > 1.

(36)

Plugging (35) and (36) into (34), we derive that with probability 1− 2δ, there holds: (1.) if θ = 1
2 ,

F (xT+1)− F (x∗) = O
(
log(1/δ)

T
+

d+ log( 1δ )

n
log2(

1

δ
) log T

)
;

(2.) if θ ∈ ( 12 , 1],

F (xT+1)− F (x∗) = O

(
log(θ+

3
2 )( 1δ ) log

1
2 T

T
+

d+ log( 1δ )

n
log(2θ+1)(

1

δ
) log T

)
;

(3.) if θ > 1,

F (xT+1)− F (x∗)

= O
( log(θ+ 3

2 )( 1δ ) log
3(θ−1)

2 (T/δ) log
1
2 T

T
+

d+ log( 1δ )

n

(
log(2θ+1)(

1

δ
) + ∆(θ, T, δ)

)
log T

)
.

We choose T ≍ n, then with probability at least 1− δ, there holds

F (xT+1)− F (x∗) =


O
(

d+log( 1
δ )

n log2( 1δ ) logn
)

if θ = 1
2 ,

O
(

d+log( 1
δ )

n log(2θ+1)( 1δ ) logn
)

if θ ∈ ( 12 , 1],

O
(

d+log( 1
δ )

n log(2θ+1)( 1δ ) log
3(θ−1)

2 (nδ ) logn
)

if θ > 1.

The proof is complete.

D.5 PROOF OF THEOREM 3.9

Proof. By Lemma C.9, with probability 1− δ we have

∥∇F (wT+1)−∇FS(wT+1)∥2

≤
(
∥∇FS(wT+1)∥+

µ

n
+ 2

B∗ log(4/δ)

n
+ 2

√
2E[∥∇f(x∗; z)∥2] log(4/δ)

n

)2
≤4
(
∥∇FS(wT+1)∥2 + 4

B2
∗ log

2(4/δ)

n2
+ 8

E[∥∇f(x∗; z)∥2] log(4/δ)
n

+
µ2

n2

)
.

From the smoothness property in Lemma C.7, if f is nonnegative and L-smooth, we have
∥∇f(x∗; z)∥2 ≤ 2L∇f(x∗; z), implying that E[∥∇f(x∗; z)∥2] ≤ 2LF (x∗). Thus, with proba-
bility 1− δ we have

∥∇F (wT+1)−∇FS(wT+1)∥2

≤4
(
∥∇FS(wT+1)∥2 + 4

B2
∗ log

2(4/δ)

n2
+

16LF (x∗) log(4/δ)

n
+

µ2

n2

)
. (37)
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Again, from the smoothness property in Lemma C.7 and the convergence bound in (33), with prob-
ability 1− δ, there holds

∥∇FS(xT+1)∥2 ≤ (2L)(FS(xT+1)− FS(x(S)))

=


O
(

log(1/δ)
T

)
if θ = 1

2 ,

O
(

log(θ+3
2
)( 1

δ ) log
1
2 T

T

)
if θ ∈ ( 12 , 1],

O
(

log(θ+3
2
)( 1

δ ) log
3(θ−1)

2 (T/δ) log
1
2 T

T

)
if θ > 1.

(38)

Plugging (38) into (37), with probability 1− 2δ, we have: (1.) if θ = 1
2 ,

∥∇F (wT+1)−∇FS(wT+1)∥2 = O
( log(1/δ)

T
+

log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
; (39)

(2.) if θ ∈ ( 12 , 1],

∥∇F (wT+1)−∇FS(wT+1)∥2 = O
( log(θ+ 3

2 )( 1δ ) log
1
2 T

T
+

log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
;

(40)

(3.) if θ > 1,

∥∇F (wT+1)−∇FS(wT+1)∥2

= O
( log(θ+ 3

2 )( 1δ ) log
3(θ−1)

2 (T/δ) log
1
2 T

T
+

log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
. (41)

According to the Polyak-Łojasiewicz condition, we know

F (wT+1)− F (x∗) ≤ 1

4µ
∥∇F (wT+1)∥2

≤(2µ)−1(∥∇F (wT+1)−∇FS(wT+1)∥2 + ∥∇FS(wT+1)∥2). (42)

Plugging the convergence bound in (38) and the generalization bound in (39)-(41) into (42), with
probability 1− 3δ, we have (1.) if θ = 1

2 ,

F (wT+1)− F (x∗) = O
( log(1/δ)

T
+

log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
;

(2.) if θ ∈ ( 12 , 1],

F (wT+1)− F (x∗) = O
( log(θ+ 3

2 )( 1δ ) log
1
2 T

T
+

log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
;

(3.) if θ > 1,

F (wT+1)− F (x∗) = O
( log(θ+ 3

2 )( 1δ ) log
3(θ−1)

2 (T/δ) log
1
2 T

T
+

log2(1/δ)

n2
+

F (x∗) log(1/δ)

n

)
.

We choose T ≍ n2, then the following inequality holds with probability 1− δ

F (wT+1)− F (x∗) =


O
(

log2(1/δ)
n2 + F (x∗) log(1/δ)

n

)
if θ = 1

2 ,

O
(

log(θ+3
2
)( 1

δ ) log
1
2 n

n2 + F (x∗) log(1/δ)
n

)
if θ ∈ ( 12 , 1],

O
(

log
3(θ−1)

2 (n/δ) log(θ+3
2
)( 1

δ ) log
1
2 n

n2 + F (x∗) log(1/δ)
n

)
if θ > 1.

The proof is complete.
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