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Abstract

Interpreting the internal mechanisms of large neural networks remains a main1

challenge for trustworthy AI. Recent works such as MAIA (a Multimodal Auto-2

mated Interpretability Agent) have shown that agent-based systems can iteratively3

generate and test hypotheses about neuron function without the need for human4

intervention, which offers a scalable solution for mechanistic interpretability. How-5

ever, these agent-based systems rely on closed-source APIs, limiting reproducibility6

and access. To address this, we introduce OpenMAIA, an open-source implementa-7

tion of MAIA that replaces its main components with open-source models. To this8

end, we experiment with two state-of-the-art multimodal Large Language Models9

(LLMs) (Gemma-3-27B, Mistral-Small-3.2-24B) as backbone models, and update10

the agent’s interpretability toolset with open-source models. Following the neuron11

description evaluation protocol established in the original MAIA paper, applied12

across multiple vision backbones and synthetic neurons, OpenMAIA achieves pre-13

dictive accuracy comparable to Claude Sonnet 4 while converging more efficiently.14

These results demonstrate that competitive, agent-based interpretability can be15

achieved with a fully open stack, providing a practical and reproducible foundation16

for community-driven research.17

1 Introduction18

Understanding the functional role of individual neurons within deep neural networks remains a19

central challenge in mechanistic interpretability. While a variety of tools and techniques have been20

developed to support these analyses, they often rely heavily on manual inspection and expert intuition,21

limiting their scalability and reproducibility. To address these limitations, recent works such as22

MAIA (a Multimodal Automated Interpretability Agent) [1] have explored the use of autonomous23

agents for interpreting vision systems and neuron-level behaviors. In particular, MAIA combines24

multimodal reasoning with tools used in an iterative loop, enabling high-quality neuron explanations25

and systematic detection of spurious features, offering the potential to automate and systematize the26

interpretation procedure. However, MAIA strongly rely on commercial platforms and closed-source27

APIs, which restricts transparency, limits customization, includes overhead costs, and introduce28

barriers to their widespread use.29

In this work, we introduce OpenMAIA, an open-source implementation of MAIA that retains the30

agentic experimentation loop of MAIA while replacing closed components with state-of-the-art open31

multimodal LLMs. We experiment with Gemma-3-27B and Mistral-Small-3.2-24B [2, 3, 4], and32

provide updated open-source-based tools for image generation, editing, and summarization. By33

grounding the framework in openly available resources, OpenMAIA facilitates access and experimen-34

tation, enabling deeper mechanistic investigations than closed APIs permit. Figure 1 illustrates a35

simplified trace of the system: beginning with dataset exemplars, the agent proposes hypotheses, de-36
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signs targeted experiments, and iteratively refines them until producing a natural-language description37

of the neuron behavior.38

Our evaluation on the neuron description tasks introduced in MAIA shows that open backbones39

achieve competitive neuron explanations compared to Claude-Sonnet-4 [5], while converging more40

efficiently in shorter dialogues. Our results empirically demonstrate that state-of-the-art agent-based41

interpretability is feasible with a fully open stack, providing a foundation for transparent, scalable,42

and community-driven research in settings where interpretability is critical.43

DATASET EXEMPLARS HYPOTHESIS

H1: Tennis balls. 
H2: Dogs playing with balls.
H3: Yellow spherical objects.
H4: Images involving sports, specifically tennis.
H5: Clear foreground object and blurred 
background.

H1: Tennis balls (yellow-green spherical objects). 
H2: Round objects in general.
H3: Objects held in hands or mouths.
H4: Bright yellow-green colors.
H5: Sports-related objects and activities.

H1: Tennis balls (bright yellow-green spherical).
H2: Bright yellow-green colored objects.
H3: Spherical objects of a specific size.
H4: Sports equipment.
H5: Textured spherical objects.

RUN EXPERIMENT

···

a tennis ball on 
a grass court

···

Act: 15.94 Act: 1.11 Act: 19.80

···

Act: 3.01 Act: 11.27 Act: 7.25

a tennis ball on a 
white background

a baseball in 
a hand

a tennis ball in 
a hand

a red apple a tennis ball a green pear

···
Act: 16.83 Act: 10.52 Act: 3.29

ResNet-152 / Layer 4 / Unit 593

HYPOTHESIS REFINEMENT

The experiment confirms that the neuron 
activates much more strongly for tennis balls 
than for other objects like apples, cars, pears, 
or basketballs. This strongly supports 
Hypothesis 1 and weakens Hypothesis 3.

Test Hypothesis 2: Does the neuron also 
activate for dogs with tennis balls?

The results show very high activation for tennis 
balls (15.94-19.8), extremely low activation for 
other sports balls (0.57-4.31), slightly higher 
activation when tennis balls are held (19.8) vs. 
on the ground (15.94).

The next experiment will test Hypothesis_3 
(color combination) and Hypothesis_4 (texture 
pattern)!

The results strongly support Hypothesis_1! The 
tennis balls generated significantly higher 
activations (16.39-19.41). 

Now let me test the role of texture and context 
by editing tennis ball images!

···

···

···

··· NEURON DESCRIPTION

[DESCRIPTION]: This neuron is tuned to tennis 
balls, especially on high-contrast backgrounds, 
and responds strongly when animals interact 
with tennis balls. Its sensitivity is driven by the 
ball–animal combination, not just yellow 
spheres or background features.

[LABEL 1]: tennis ball detection
[LABEL 2]: animal-tennis ball interaction

[DESCRIPTION]: This neuron is selective for 
tennis balls in active play, responding most 
strongly when they are in motion or held by a 
player. Its activity reflects both visual features and 
dynamic context, indicating a role in processing 
motion-related aspects of tennis balls.

[LABEL 1]: Tennis balls in active play situations
[LABEL 2]: Tennis balls being held by players

[DESCRIPTION]: This neuron is selective for 
tennis balls’ distinctive features—yellow-green 
color, spherical shape, fuzzy texture, and seam 
patterns. It is scale-invariant and responds more in 
tennis-related contexts, with clean, bright balls 
eliciting stronger activation than worn ones. 
[LABEL 1]: Tennis balls

Act: 51.70

Act: 42.52

Act: 37.76

Act: 44.30 Act: 43.61

Act: 39.83 Act: 39.52

Act: 37.10 Act: 34.36

a lime green apple 
on a counter

a green tennis 
ball on a court

Figure 1: Simplified experiment for a single neuron across agents. Illustrative trace for ResNet-152
(layer 4, unit 593): agents start from dataset exemplars, propose hypotheses, and run targeted image
generation/editing experiments. Iterative refinement reveals selective features (e.g., tennis ball color,
context, interaction), concluding with a natural-language description and concise labels.

2 Related Work44

Tool-Based / Automated Neuron Labeling. Network Dissection [6] addressed automatic CNN45

interpretability by aligning individual units with a predefined set of concepts based on activation–mask46

overlap. While it provided a useful benchmark, its analysis was limited to a fixed, closed vocabulary.47

Building on the same idea, some works have taken advantage of CLIP’s open vocabulary space48

to improve neuron labeling. CLIP-Dissect [7] used the pre-trained CLIP model to assign open-49

vocabulary labels to neurons without retraining or manual annotation, offering an efficient and scalable50

approach to interpretability. FALCON [8] extended this line of work by enhancing label fidelity51

through counterfactual analysis and spatial filtering, though its outputs remain short phrases rather52

than richer descriptions. In contrast, MILAN [9] moved beyond tag interpretability by producing53

open-ended, natural-language descriptions of individual neurons. It does so by training a captioning54

model on top-activating image regions (neuron exemplars), using crowd-sourced human annotations.55

More recently, Describe-and-Dissect [10] leveraged pretrained models (BLIP for captioning, GPT-3.556

for summarization, and synthetic image generation for validation)[11, 12] in a three-stage pipeline,57

providing concise natural-language explanations.58

Agent-Based Interpretability. Early work by Bills et al. [13] used GPT-4 to generate natural-59

language explanations for neurons and test them through activation prediction, introducing a quanti-60

tative self-consistency measure. However, this framework was essentially single-pass and did not61

support iterative hypothesis refinement. Schwettmann et al. [14] advanced this paradigm with the62

FIND benchmark, where a language-based interpretability agent iteratively proposed, tested, and63

revised hypotheses on synthetic functions with known ground truth. Iteration improved descriptive64

accuracy but often failed to capture fine-grained behaviors. Most recently, MAIA [1] generalizes65

this agentic approach to the multimodal setting, equipping a pretrained multimodal LLM with tools66

for exemplar selection, synthetic image generation, targeted editing, and summarization. Through67

iterative experimentation, MAIA not only produces expert-level neuron explanations and interventions68

on spurious features but also extends to broader interpretability tasks such as bias detection and69

failure mode analysis.70

Recent Progress in Open Multimodal LLMs. Over the last two years, open-source multimodal71

large language models have made rapid progress. Early efforts such as BLIP-2 and LLaVA showed72

that linking vision encoders with LLMs could yield surprisingly capable visual assistants[15, 16],73
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while projects like OpenFlamingo and Otter scaled this approach to multi-image and multi-turn74

reasoning[17, 18, 19]. More recently, families such as Mistral 3 (Small, Medium, Large) and Gemma75

3 (1B–27B) have demonstrated strong multimodal reasoning and tool-use abilities, narrowing the76

gap with proprietary models (GPT-4o, Claude Sonnet 4)[20] while remaining efficient enough for77

consumer-grade hardware. To our knowledge, prior interpretability frameworks have not yet leveraged78

these open multimodal backbones, and OpenMAIA is the first automated, agent-based interpretability79

framework that is fully implemented on top of open-source models.80

3 OpenMAIA Framework81

We introduce OpenMAIA, which is based on the agentic iterative experimentation paradigm of82

MAIA [1], but is fully grounded in open-source models. We experiment with Gemma-3-27B and83

Mistral-Small-3.2-24B for the backbone multimodal LLMs, and update the tool suite introduced in84

MAIA with state-of-the-art open-source models.85

Multimodal LLM Backbone. We adopt Gemma-3-27B and Mistral-Small-3.2-24B as OpenMAIA’s86

multimodal backbones due to their validated strength in agentic tool use and vision–language87

reasoning. Independent evaluations show that both models excel despite their moderate size: in the88

LMSYS Vision Arena (Aug 2025), Gemma-3-27B-IT and Mistral-3.2 ranked #12 and #23 (Elo ≈116289

and 1135), surpassing larger open VLMs [21]. On VLM@school (multilingual visual QA), Mistral90

24B (42.9%) and Gemma 3 27B (40.2%) outperformed size-based expectations [22], while Gemma 391

achieved the lowest mean error on ORBIT object-property reasoning [23]. For agentic integration,92

both models support structured function calling, with Mistral 3.2 independently verified to improve93

API reliability in AWS Bedrock trials and aligning with the BFCL benchmark standard[24, 25].94

Together, these results establish them as efficient, reproducible, and high-performing choices for open95

multimodal interpretability agents.96

Tools. We updated the tool suite introduced in MAIA [1], replacing closed components with state-of-97

the-art open-source components. Below we provide the details of the updated tools.98

Image Generation. MAIA generated images for hypothesis testing with Stable Diffusion v1.5[26]99

and reported an ablation where DALL·E 3 [27] improved performance. It also documented prompt-100

following failures for SD-v1.5 that occasionally confused the agent’s conclusions [1]. Motivated by101

these limitations, we adopt FLUX.1 [dev], a 12B rectified-flow transformer released as open weights,102

which we deploy via Diffusers with 4-bit NF4 quantization. This configuration substantially reduces103

VRAM while maintaining practically useful visual quality, as shown in Diffusers’ quantization guide104

and model card comparisons; we use it to keep the agent loop interactive on a single high-memory105

GPU [28, 29, 30].106

Image Editing. MAIA performed text-guided edits with InstructPix2Pix, but noted frequent failures107

on precise or negative edits (e.g., removing objects or assigning attributes correctly) [31, 1]. We108

replace this with FLUX.1 Kontext [dev], an open-weights model that unifies generation and editing109

and is explicitly optimized for local edits, character/style consistency, and multi-turn workflows.110

Its technical report introduces KontextBench and reports strong single-turn quality and multi-turn111

consistency across local/global edits, reference character/style, and typography, aligning well with112

OpenMAIA’s causal intervention loop [32, 33].113

Image Summarization. MAIA used one of the first versions of GPT-4 with vision capabilities114

(GPT-4V) to (i) describe highlighted regions per image and (ii) summarize common content across115

exemplars, to mitigate confirmation bias [1]. For openness and semantic consistency with the agent,116

we instead reuse our backbones (Gemma 3 27B, Mistral Small 3.2). As we previously discussed,117

their strong performance on vision–language benchmarks makes them suitable for this task.118

4 Evaluation119

To test OpenMAIA, we follow the same quantitative evaluation protocol as in MAIA. Concretely,120

we evaluated OpenMAIA on the neuron description task across four vision backbones: ResNet-152,121

DINO ViT-S/8, CLIP RN50, and synthetic neurons with known ground truth—using two open122

multimodal LLM backbones (Gemma-3-27B and Mistral-Small-3.2-24B). For each condition, we123

sample neurons uniformly across layers, yielding 384 evaluations per backbone. For each model,124
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Figure 2: Comparison of LLM backbones. (a) Predictive activation evaluation. For each vision
backbone (ResNet-152, DINO ViT-S/8, CLIP RN50, Synthetic neurons) we aggregate activations
produced under each LLM backbone evaluation. The vertical segment per axis spans the mean of the
positive and neutral activations; the “+” marker denotes the mean positive activation and the “−”
marker the mean neutral activation. MAIA score is used only as a reference. (b) Tool usage. For
each LLM backbone, bars show the percentage of experiments that invoked each tool at least once.
(c) Conversation length. Average number of turns per experiment for each LLM backbone.

quality is assessed by whether the obtained labels can reliably distinguish positive from neutral125

generations in terms of neuron activations. In addition to these open models, we also report results for126

Claude-Sonnet-4 as a strong closed-source baseline. Finally, we include the original MAIA (GPT-4V)127

numbers as a reference: while not directly comparable due to differences in the tool suite, they help128

contextualize the impact of our open-source toolchain and illustrate the evolution of agent-based129

interpretability in terms of performance.130

Figure 2a shows that both Gemma-3-27B and Mistral-Small-3.2-24B achieve strong predictive gaps131

between positive and neutral generations, on par with Claude-Sonnet-4 and clearly outperforming the132

original MAIA baseline (GPT-4V). This indicates that fully open backbones and tools can produce133

competitive explanations without relying on proprietary APIs.134

Tool usage. As shown in Figure 2b, Gemma-3-27B and Mistral-Small-3.2-24B rely primarily on135

dataset exemplars and image generation, with occasional use of image editing, but make little use of136

image summarization or description tools. In contrast, Claude-Sonnet-4 employs a more diverse tool137

mix, including frequent calls to summarization modules. Interestingly, this diversity in tool usage138

correlates with overall performance: Claude Sonnet achieves the strongest predictive scores, followed139

by Mistral and then Gemma, mirroring the ordering of tool diversity. This suggests that a broader use140

of the available tools may contribute to more accurate neuron explanations.141

Efficiency. Figure 2c reports conversation length. Mistral-Small-3.2-24B reached conclusions in142

the fewest experimental iterations (∼5 on average), while Gemma-3-27B required slightly longer143

dialogues (∼7 turns). Claude-Sonnet-4, by contrast, often exceeded 10 turns. This suggests that144

OpenMAIA’s open backbones tend to converge more quickly, which is desirable for efficiency. At the145

same time, the longer trajectories of Claude-Sonnet-4 may reflect a more cautious style, repeatedly146

validating hypotheses before committing to a final description.147

5 Conclusion148

We introduced OpenMAIA, the first open-source interpretability agent, which is based on MAIA.149

OpenMAIA includes two open-source LLM backbones (Gemma 3 27B, Mistral Small 3.2), and150

an interpretability tools that is also based in open-source models. Our evaluation shows that the151

open-source LLM backbones achieve competitive results on neuron descriptions when compared152

to Claude-Sonnet-4, while converging more efficiently, with fewer experimental iterations. By153

eliminating dependence on closed-source APIs, OpenMAIA facilitates reproducible interpretations154

of model behavior, addressing the need for scalable, open, and free of cost framework in multimodal155

interpretability, which has been highlighted in recent surveys [34].156
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