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Abstract

Interpreting the internal mechanisms of large neural networks remains a main
challenge for trustworthy Al. Recent works such as MAIA (a Multimodal Auto-
mated Interpretability Agent) have shown that agent-based systems can iteratively
generate and test hypotheses about neuron function without the need for human
intervention, which offers a scalable solution for mechanistic interpretability. How-
ever, these agent-based systems rely on closed-source APIs, limiting reproducibility
and access. To address this, we introduce OpenMAIA, an open-source implementa-
tion of MAIA that replaces its main components with open-source models. To this
end, we experiment with two state-of-the-art multimodal Large Language Models
(LLMs) (Gemma-3-27B, Mistral-Small-3.2-24B) as backbone models, and update
the agent’s interpretability toolset with open-source models. Following the neuron
description evaluation protocol established in the original MAIA paper, applied
across multiple vision backbones and synthetic neurons, OpenMAIA achieves pre-
dictive accuracy comparable to Claude Sonnet 4 while converging more efficiently.
These results demonstrate that competitive, agent-based interpretability can be
achieved with a fully open stack, providing a practical and reproducible foundation
for community-driven research.

1 Introduction

Understanding the functional role of individual neurons within deep neural networks remains a
central challenge in mechanistic interpretability. While a variety of tools and techniques have been
developed to support these analyses, they often rely heavily on manual inspection and expert intuition,
limiting their scalability and reproducibility. To address these limitations, recent works such as
MAIA (a Multimodal Automated Interpretability Agent) [[1] have explored the use of autonomous
agents for interpreting vision systems and neuron-level behaviors. In particular, MAIA combines
multimodal reasoning with tools used in an iterative loop, enabling high-quality neuron explanations
and systematic detection of spurious features, offering the potential to automate and systematize the
interpretation procedure. However, MAIA strongly rely on commercial platforms and closed-source
APIs, which restricts transparency, limits customization, includes overhead costs, and introduce
barriers to their widespread use.

In this work, we introduce OpenMAIA, an open-source implementation of MAIA that retains the
agentic experimentation loop of MAIA while replacing closed components with state-of-the-art open
multimodal LLMs. We experiment with Gemma-3-27B and Mistral-Small-3.2-24B [2| |3 |4]], and
provide updated open-source-based tools for image generation, editing, and summarization. By
grounding the framework in openly available resources, OpenMAIA facilitates access and experimen-
tation, enabling deeper mechanistic investigations than closed APIs permit. Figure[I]illustrates a
simplified trace of the system: beginning with dataset exemplars, the agent proposes hypotheses, de-
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signs targeted experiments, and iteratively refines them until producing a natural-language description
of the neuron behavior.

Our evaluation on the neuron description tasks introduced in MAIA shows that open backbones
achieve competitive neuron explanations compared to Claude-Sonnet-4 [5]], while converging more
efficiently in shorter dialogues. Our results empirically demonstrate that state-of-the-art agent-based
interpretability is feasible with a fully open stack, providing a foundation for transparent, scalable,
and community-driven research in settings where interpretability is critical.
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Figure 1: Simplified experiment for a single neuron across agents. Illustrative trace for ResNet-152
(layer 4, unit 593): agents start from dataset exemplars, propose hypotheses, and run targeted image
generation/editing experiments. Iterative refinement reveals selective features (e.g., tennis ball color,
context, interaction), concluding with a natural-language description and concise labels.

2 Related Work

Tool-Based / Automated Neuron Labeling. Network Dissection [6] addressed automatic CNN
interpretability by aligning individual units with a predefined set of concepts based on activation—mask
overlap. While it provided a useful benchmark, its analysis was limited to a fixed, closed vocabulary.
Building on the same idea, some works have taken advantage of CLIP’s open vocabulary space
to improve neuron labeling. CLIP-Dissect [7]] used the pre-trained CLIP model to assign open-
vocabulary labels to neurons without retraining or manual annotation, offering an efficient and scalable
approach to interpretability. FALCON [8]] extended this line of work by enhancing label fidelity
through counterfactual analysis and spatial filtering, though its outputs remain short phrases rather
than richer descriptions. In contrast, MILAN [9] moved beyond tag interpretability by producing
open-ended, natural-language descriptions of individual neurons. It does so by training a captioning
model on top-activating image regions (neuron exemplars), using crowd-sourced human annotations.
More recently, Describe-and-Dissect [[10] leveraged pretrained models (BLIP for captioning, GPT-3.5
for summarization, and synthetic image generation for validation)[[L1,|12] in a three-stage pipeline,
providing concise natural-language explanations.

Agent-Based Interpretability. FEarly work by Bills et al. [[13] used GPT-4 to generate natural-
language explanations for neurons and test them through activation prediction, introducing a quanti-
tative self-consistency measure. However, this framework was essentially single-pass and did not
support iterative hypothesis refinement. Schwettmann et al. [14] advanced this paradigm with the
FIND benchmark, where a language-based interpretability agent iteratively proposed, tested, and
revised hypotheses on synthetic functions with known ground truth. Iteration improved descriptive
accuracy but often failed to capture fine-grained behaviors. Most recently, MAIA [[1] generalizes
this agentic approach to the multimodal setting, equipping a pretrained multimodal LL.M with tools
for exemplar selection, synthetic image generation, targeted editing, and summarization. Through
iterative experimentation, MAIA not only produces expert-level neuron explanations and interventions
on spurious features but also extends to broader interpretability tasks such as bias detection and
failure mode analysis.

Recent Progress in Open Multimodal LLMs. Over the last two years, open-source multimodal
large language models have made rapid progress. Early efforts such as BLIP-2 and LLaVA showed
that linking vision encoders with LLMs could yield surprisingly capable visual assistants[15] [16]],
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while projects like OpenFlamingo and Otter scaled this approach to multi-image and multi-turn
reasoning[[17} 18} |19]]. More recently, families such as Mistral 3 (Small, Medium, Large) and Gemma
3 (1B-27B) have demonstrated strong multimodal reasoning and tool-use abilities, narrowing the
gap with proprietary models (GPT-40, Claude Sonnet 4)[20] while remaining efficient enough for
consumer-grade hardware. To our knowledge, prior interpretability frameworks have not yet leveraged
these open multimodal backbones, and OpenMAIA is the first automated, agent-based interpretability
framework that is fully implemented on top of open-source models.

3 OpenMAIA Framework

We introduce OpenMAIA, which is based on the agentic iterative experimentation paradigm of
MAIA [1]], but is fully grounded in open-source models. We experiment with Gemma-3-27B and
Mistral-Small-3.2-24B for the backbone multimodal LLMs, and update the tool suite introduced in
MAIA with state-of-the-art open-source models.

Multimodal LLM Backbone. We adopt Gemma-3-27B and Mistral-Small-3.2-24B as OpenMAIA’s
multimodal backbones due to their validated strength in agentic tool use and vision-language
reasoning. Independent evaluations show that both models excel despite their moderate size: in the
LMSYS Vision Arena (Aug 2025), Gemma-3-27B-IT and Mistral-3.2 ranked #12 and #23 (Elo ~1162
and 1135), surpassing larger open VLMs [21]. On VLM @school (multilingual visual QA), Mistral
24B (42.9%) and Gemma 3 27B (40.2%) outperformed size-based expectations [22], while Gemma 3
achieved the lowest mean error on ORBIT object-property reasoning [23]]. For agentic integration,
both models support structured function calling, with Mistral 3.2 independently verified to improve
API reliability in AWS Bedrock trials and aligning with the BFCL benchmark standard[24] [25]].
Together, these results establish them as efficient, reproducible, and high-performing choices for open
multimodal interpretability agents.

Tools. We updated the tool suite introduced in MAIA [1]], replacing closed components with state-of-
the-art open-source components. Below we provide the details of the updated tools.

Image Generation. MAIA generated images for hypothesis testing with Stable Diffusion v1.5[26]
and reported an ablation where DALL-E 3 [27]] improved performance. It also documented prompt-
following failures for SD-v1.5 that occasionally confused the agent’s conclusions [1]]. Motivated by
these limitations, we adopt FLUX.1 [dev], a 12B rectified-flow transformer released as open weights,
which we deploy via Diffusers with 4-bit NF4 quantization. This configuration substantially reduces
VRAM while maintaining practically useful visual quality, as shown in Diffusers’ quantization guide
and model card comparisons; we use it to keep the agent loop interactive on a single high-memory
GPU [28, 29, 30].

Image Editing. MAIA performed text-guided edits with InstructPix2Pix, but noted frequent failures
on precise or negative edits (e.g., removing objects or assigning attributes correctly) [31, [1]. We
replace this with FLUX.1 Kontext [dev], an open-weights model that unifies generation and editing
and is explicitly optimized for local edits, character/style consistency, and multi-turn workflows.
Its technical report introduces KontextBench and reports strong single-turn quality and multi-turn
consistency across local/global edits, reference character/style, and typography, aligning well with
OpenMAIA’s causal intervention loop [32} 33]].

Image Summarization. MAIA used one of the first versions of GPT-4 with vision capabilities
(GPT-4V) to (i) describe highlighted regions per image and (ii) summarize common content across
exemplars, to mitigate confirmation bias [1]]. For openness and semantic consistency with the agent,
we instead reuse our backbones (Gemma 3 27B, Mistral Small 3.2). As we previously discussed,
their strong performance on vision—language benchmarks makes them suitable for this task.

4 Evaluation

To test OpenMAIA, we follow the same quantitative evaluation protocol as in MAJIA. Concretely,
we evaluated OpenMAIA on the neuron description task across four vision backbones: ResNet-152,
DINO ViT-S/8, CLIP RN50, and synthetic neurons with known ground truth—using two open
multimodal LLM backbones (Gemma-3-27B and Mistral-Small-3.2-24B). For each condition, we
sample neurons uniformly across layers, yielding 384 evaluations per backbone. For each model,
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Figure 2: Comparison of LLM backbones. (a) Predictive activation evaluation. For each vision
backbone (ResNet-152, DINO ViT-S/8, CLIP RN50, Synthetic neurons) we aggregate activations
produced under each LLM backbone evaluation. The vertical segment per axis spans the mean of the
positive and neutral activations; the “+” marker denotes the mean positive activation and the “—"
marker the mean neutral activation. MAIA score is used only as a reference. (b) Tool usage. For
each LLM backbone, bars show the percentage of experiments that invoked each tool at least once.
(c) Conversation length. Average number of turns per experiment for each LLM backbone.

quality is assessed by whether the obtained labels can reliably distinguish positive from neutral
generations in terms of neuron activations. In addition to these open models, we also report results for
Claude-Sonnet-4 as a strong closed-source baseline. Finally, we include the original MAIA (GPT-4V)
numbers as a reference: while not directly comparable due to differences in the tool suite, they help
contextualize the impact of our open-source toolchain and illustrate the evolution of agent-based
interpretability in terms of performance.

Figure 2h shows that both Gemma-3-27B and Mistral-Small-3.2-24B achieve strong predictive gaps
between positive and neutral generations, on par with Claude-Sonnet-4 and clearly outperforming the
original MAIA baseline (GPT-4V). This indicates that fully open backbones and tools can produce
competitive explanations without relying on proprietary APIs.

Tool usage. As shown in Figure Zb, Gemma-3-27B and Mistral-Small-3.2-24B rely primarily on
dataset exemplars and image generation, with occasional use of image editing, but make little use of
image summarization or description tools. In contrast, Claude-Sonnet-4 employs a more diverse tool
mix, including frequent calls to summarization modules. Interestingly, this diversity in tool usage
correlates with overall performance: Claude Sonnet achieves the strongest predictive scores, followed
by Mistral and then Gemma, mirroring the ordering of tool diversity. This suggests that a broader use
of the available tools may contribute to more accurate neuron explanations.

Efficiency. Figure 2k reports conversation length. Mistral-Small-3.2-24B reached conclusions in
the fewest experimental iterations (~5 on average), while Gemma-3-27B required slightly longer
dialogues (~7 turns). Claude-Sonnet-4, by contrast, often exceeded 10 turns. This suggests that
OpenMAIA’s open backbones tend to converge more quickly, which is desirable for efficiency. At the
same time, the longer trajectories of Claude-Sonnet-4 may reflect a more cautious style, repeatedly
validating hypotheses before committing to a final description.

5 Conclusion

We introduced OpenMALIA, the first open-source interpretability agent, which is based on MAIA.
OpenMAIA includes two open-source LLM backbones (Gemma 3 27B, Mistral Small 3.2), and
an interpretability tools that is also based in open-source models. Our evaluation shows that the
open-source LLM backbones achieve competitive results on neuron descriptions when compared
to Claude-Sonnet-4, while converging more efficiently, with fewer experimental iterations. By
eliminating dependence on closed-source APIs, OpenMAIA facilitates reproducible interpretations
of model behavior, addressing the need for scalable, open, and free of cost framework in multimodal
interpretability, which has been highlighted in recent surveys [34].
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