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Abstract

Benchmarks and evaluations are central to machine learning methodology and1

direct research in the field. Current evaluations commonly test systems in the ab-2

sence of humans. This position paper argues that the machine learning community3

should increasingly use centaur evaluations, in which humans and AI jointly solve4

tasks. Centaur Evaluations refocus machine learning development toward human5

augmentation instead of human replacement, they allow for direct evaluation of6

human-centered desiderata, such as interpretability and helpfulness, and they can7

be more challenging and realistic than existing evaluations. By shifting the focus8

from automation toward collaboration between humans and AI, centaur evaluations9

can drive progress toward more effective and human-augmenting machine learning10

systems.11

1 Introduction12

Benchmarks and evaluations are central to machine learning methodology and direct machine learning13

research [Sculley et al., 2018]. As machine learning systems expand into many parts of society,14

broader impacts of evaluations become important. This position paper is concerned with how (or how15

not) AI system evaluation incorporates humans. We argue that there should be more and more16

systematic centaur evaluations, in which humans and AI solve a task cooperatively.17

The progress of language models and their evaluation has been particularly rapid, leading to many18

new evaluation datasets in question-answer format [Hendrycks et al., 2021a, Wang et al., 2019, 2018,19

Chollet et al., 2024, Srivastava et al., 2023, Suzgun et al., 2023, Rein et al., 2024, Hendrycks et al.,20

2021b, Chen et al., 2021, Dua et al., 2019, Glazer et al., 2024, Chan et al., 2024] and interactive21

environments [Xie et al., 2024, Majumder et al., 2024, Deng et al., 2023, Zhou et al., 2024, Drouin22

et al., 2024]. Very few exceptions are centaur evaluations [Lee et al., 2024, Wijk et al., 2024, Shao23

et al., 2025] which include humans in the evaluation process.24

There are several explanations for why centaur evaluations are relatively rare. One lies in the history25

and culture of the field of machine learning, from the Turing Test to Imagenet, which are based on the26

idea of imitating a human activity with a machine learning model. Even beyond cultural reasons, there27

are clear incentives to evaluate for human imitation. Not only are such evaluations straightforward28

to formalize as supervised learning problems, but they are also comparably cheap: humans provide29

ample training data in the behavior being imitated. Finally, results are easy to communicate to the30

public, as most people have engaged in the behavior that systems are trained and evaluated to imitate,31

or at least know what it means to take a mathematics test in school, or a law school exam.32

We argue for the benefits of centaur evaluations in three arguments. First, centaur evaluations expand33

which capabilities of machines we can evaluate, in particular those involving human perception and34

dexterity (Section 3.1): “It is comparatively easy to make computers exhibit adult level performance35

on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a36

one-year-old when it comes to perception and mobility.” (Moravec [1990], p.15) Centaur evaluations37
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might lead us away from evaluating AI with exams [Metz, 2025] and toward evaluations that more38

closely resemble human use of machine learning systems.39

Our second argument for centaur evaluations is that they allow to directly evaluate human-centered40

features of machine learning models, such as interpretability [Casper et al., 2023], complementarity41

[Donahue et al., 2022], helpfulness [Bai et al., 2022], and the ability to ask follow-up questions [Li42

et al., 2023, Shaikh et al., 2024] (Section 3.2). This is in contrast to current evaluation methodologies,43

which require imperfect proxies for these desiderata.44

Finally, and for us most importantly, centaur evaluations can re-center machine learning practice45

toward human augmentation and away from a destructive path of human replacement, leaving some46

without economic power and wealth and others with high amounts of both (Section 3.3). Several47

economists call for technical change that focuses on human augmentation rather than replacement48

Acemoglu and Johnson [2023a], Brynjolfsson [2022], Brynjolfsson and McAfee [2011], but there is49

limited translation of these aspirations into engineering practice. We aim to provide a definition and50

arguments for centaur benchmarks as such an intervention into engineering practice.51

2 Defining Centaur Evaluations52

We first define what centaur evaluations are; compare Lee et al. [2024], Shao et al. [2025] for other53

formalizations. We use the term Centaur Evaluations in the memory of centaur chess (also known as54

advanced chess or freestyle chess), in which humans use chess computers in their play [Sollinger,55

2018]. This means direct involvement of humans in the testing process, not indirect process through56

labeling of evaluation datasets.57

A centaur benchmark for a machine learning system consists of three components:

Human A selection criterion for the human(s) involved in the evaluation, potentially allowing
the model to be tested to train humans together with their model (“bring-your-own-
human”) or from a distribution of humans, e.g., crowd workers.

Interface A set of actions that the machine learning system and the human can take to interact
through an interface, the representation of this interface to the human and the format of
submission of answers.

Scoring Scoring of submissions, which can be done through objective means or by a human
preference [Chiang et al., 2024], only based on outcomes or also including process. It
can also capture the resources, e.g., in terms of computation and human time, expended
during the evaluation.

A fourth (optional) component is a way to communicate transcripts. For many cooperative
tasks, how centaurs achieved a high score in a benchmark is helpful to improve machine learning
systems, and train human collaborators.

In principle, there are two types of centaur evaluations. The first is raising the restriction of current58

evaluation practice that it must not involve humans. We call these centaurized evaluations. Consider,59

for example, the Massive Multitask Language Understanding benchmark (MMLU) Hendrycks et al.60

[2021a] without the requirement that no human should be involved in the solution of the task. MMLU61

prompts are provided to a human with given requirements (human). The human and AI can interact62

sequentially in a chat interface, and the human submits the outcome (interface). Correct responses are63

recorded, subject to costs or limitations on the amount of tokens and/or human time used (scoring).64

The transcripts of interactions can be recorded, e.g., as a screen capture (transcript).65

Other evaluations are specifically designed with the additional affordances of centaur evaluations66

in mind. An example is an evaluation inspired by the paper Brynjolfsson et al. [2025] studying call67

center workers’ use of chatbots. A call center agent (human) interacts with a chatbot to help a client68

with a request. The agent and the LLM agent interact by chat (interaction). Satisfaction, time, and the69

number of tokens generated constitute the score (scoring). Finally, a transcript is shared to train call70

center agents and improve the chat bot (transcript).71
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2.1 Existing Centaur Evaluations72

There are a few examples of centaur evaluations in the literature. Peng et al. [2023] find a high73

increase in speed in coding a functional HTTP server of a centaur compared to a machine learning74

model and a human alone. The paper Mozannar et al. [2024a] studies a random assignment of coders75

using machine learning-powered coding recommendations in Visual Studio Code, also finding high76

speed-ups, as do Peng et al. [2023]. Cui et al. [2024] studies in a randomized controlled trial the77

impact of equipping humans with a machine learning system for support and find large productivity78

increases. Barke et al. [2023], Mozannar et al. [2024b] analyze the micro-structure of the interaction79

of humans and machine learning systems. Shao et al. [2025] proposes an interface for interactions in80

centaur evaluations, using collaborative agents instead of our notion of centaurs. They implement an81

asynchronous computation and communication handler with an interface similar to OpenAI’s Gym82

[Brockman et al., 2016]. Lee et al. [2024] conduct several centaur evaluations with crowdworkers in83

tasks of collaborative writing, summarization, and puzzles. While these are benchmarks, none of84

them is regularly reported for frontier models.85

2.2 Centaur Evaluations as a Gold Standard86

We argue that systematic centaur evaluations are beneficial. However, in many settings, this gold87

standard might be prohibitively expensive. In these cases, evaluation designers should be explicit88

about which centaur a benchmark aims to approximate, and test calibration. Synthetic centaur89

evaluations approximate centaur evaluation using interactive evaluations [Park et al., 2023, Aher90

et al., 2023] or even train tools in simulation [Wu et al., 2025].91

3 Why There Should Be More Centaur Evaluations92

We now make our case for centaur evaluations. First, centaur evaluations allow to evaluate AI more93

thoroughly (Section 3.1), they allow direct testing of human-centered desiderata like interpretability,94

human-augmentation, helpfulness, and grounding (Section 3.2), and, for us most importantly, re-center95

technological development toward human augmentation, while helping policymakers (Section 3.3).96

3.1 Centaur Evaluations Can Be Harder97

Current evaluations “saturate” fast. That is, AI models rapidly achieve very good results on eval-98

uations, leading to concerns that soon, humans might not be able to evaluate models [Arc Prize,99

2025, Metz, 2025]. We contend that this worry might be a consequence of how restrictive current100

evaluation formats are rather than a general limitations of humans in evaluating machine learning101

systems. Additionally, while most imitative evaluations might soon saturated, benchmark results may102

not transfer to real-world tasks because much of the hardness of operation in the real world stems103

from complex feedback loops and heterogeneity that only comes out in interaction with humans.104

Hence, while we laud more complex, realistic, and interactive evaluations (e.g., Xie et al. [2024],105

Majumder et al. [2024], Deng et al. [2023], Zhou et al. [2024], Drouin et al. [2024], Lee et al. [2024],106

Shao et al. [2025], Wijk et al. [2024]), there are strong reasons to consider centaur evaluations for107

harder and more realistic evaluations.108

One way in which centaur evaluations can be harder is mechanistic: Humans have more actions109

and more sensors available than even the most powerful multimodal models. Consider a call center110

benchmark. Human raters are still often able to distinguish whether they are talking to an AI or a111

human and will rate AI differently. In this case, a human replacement evaluation will have limited112

success unless the auditive Turing test is passed, and we can replace most call center workers113

altogether (more on this in Section 3.3). Similarly, many security-critical actions are exclusive114

to humans, which likely will persist into the future. Evaluating interactions with safety-critical115

systems requires evaluating a centaur. In contrast to a call center or a security-relevant setting,116

current evaluations look synthetic: school-level [Hendrycks et al., 2021b] and researcher-level117

mathematics [Glazer et al., 2024], general knowledge questions [Hendrycks et al., 2021a], and118

reading comprehension [Dua et al., 2019], among others. What they do have in common is that they119

have text as input, text as output, and a correct answer. The format of evaluations is restrictive and120

makes it hard for humans to create truly hard evaluations.121
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3.2 Centaur Evaluations Simplify the Evaluation of Human-Centered Desiderata122

Centaur evaluations also simplify the evaluation of human-centered desiderata such as explainability,123

interpretability, helpfulness, or grounding. One such desideratum, explainability, has received124

attention in policy for example in the European Union’s AI Act (European Union [2024], Art. 13,125

compare also Art. 52): “High-risk AI systems shall be designed and developed in such a way as to126

ensure that their operation is sufficiently transparent to enable deployers to interpret a system’s output127

and use it appropriately.” (emphasis added). Explainability is measured with explicit reference to128

humans, in this case, deployers. On the other hand, much of explainability evaluation uses proxies of129

explainability or mechanistic techniques, compare Casper et al. [2023]. With centaur evaluations,130

explainability can be directly evaluated as the ability of a human to act correctly based on system131

outputs.132

Additionally, current evaluations cloak achievements in human-centered development technology.133

One concrete example is the learning-to-defer literature, which studies when a machine learning134

system should defer to a human for a decision (see Bansal et al. [2021] for a theoretical model, and135

compare Yang et al. [2018], Okati et al. [2021], Mozannar and Sontag [2021], Madras et al. [2018],136

Keswani et al. [2022], Vodrahalli et al. [2022], Bansal et al. [2021], De et al. [2021]). In current137

evaluations that do not consider human-AI interplay, learning-to-defer is irrelevant. Successful138

deferral helps in real-world use, but current evaluations are blind to it.139

3.3 Reporting Relevant Artifacts140

Finally, centaur evaluations re-center the direction of progress in machine learning and can help141

decision-makers decide where to steer technological development.142

Technology and automation play an important role in the inequality of power and wealth [Karabar-143

bounis and Neiman, 2014, Autor, 2019]. One of the main channels through which inequality arises144

is that capital (so any non-human input to production) becomes more important and is owned by145

a smaller group than a few decades ago [Alvaredo et al., 2022]. We believe that keeping humans146

productive (as we formalize in this subsection) is important for machine learning development.147

To define human augmentation and human replacement precisely, we use notation from macroe-148

conomics (but the following should be self-contained. In this notation, K denotes capital, or the149

material means of production, L or labor is the human input, Y or output is the performance on a150

task, often measured in monetary terms. f : (K,L) 7→ Y is commonly called a production function.151

(We refer the interested reader to Romer, David [2018] for more macroeconomic modeling.) We152

will view model i’s performance on a centaur evaluation (including human, interface, and scoring153

components) through the lens of triples (i,K,L, Y ) where K denotes the amount of compute, L the154

amount of time a human time spent, and Y the performance on an economically relevant task. Fitting155

a function, we obtain the evaluation’s centaur production function156

Y = fi(K,L).

157

Definition 3.1. We call a machine learning system i with centaur production function fi human-158

augmenting if the marginal value of a human minute ∂fi
∂L ≫ 0 for relevant values K and L. If the159

marginal value of a human minute is approximately zero, ∂fi
∂L ≈ 0, for relevant values K and L, we160

call it human-replacing.161

Human augmenting technologies are more likely to produce high wages and sustain economic162

bargaining power for those who do not own capital, as supported by economists [Acemoglu and163

Johnson, 2023b,a, Brynjolfsson, 2022]. Even institutions at the center of technological disruption call164

for ways to increase the number of jobs, see Y Combinator’s open letter Combinator [2024].165

Centaur evaluations allow us to produce evaluations with direct meaning for human augmentation166

and impacts for the value of human time. In addition to human augmentation, we could evaluate167

fi(K,L): task achievement, fixed resources in terms of both human and compute (compare Coleman168

et al. [2017] for resource-controlled computing). Or we could evaluate maxK,L fi(K,L): maximal169

task achievement. Current evaluations, in contrast, are blind to human augmentation, as they evaluate170

fi(K, 0) (total task achievement absent humans under limited compute budget) or maxK fi(K, 0)171

(total task achievement absent humans under limited compute budget). If the goal is to succeed in172

current evaluations, there are no incentives for human augmentation.173
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