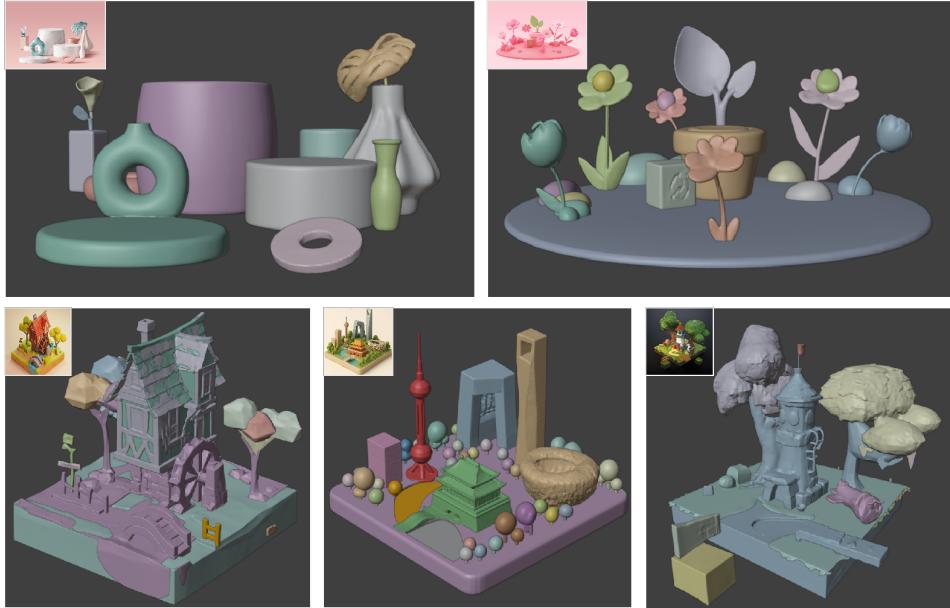


000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEO-REFINE: GEOMETRY-APPEARANCE SYNERGY FOR ROBUST SINGLE-IMAGE 3D SCENE GENERATION

005 **Anonymous authors**

006 Paper under double-blind review



030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: Geo-Refine generates a complete 3D scene from a single RGB image by coupling geometry-appearance preprocessing and appearance consistency—with a two-stage voxel-mesh localization that first reasons about global layout and then refines mesh poses for collision-free, physically plausible multi-object arrangements.

ABSTRACT

039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
We introduce Geo-Refine, a single-image 3D scene generator that couples geometry-appearance preprocessing with a two-stage voxel-mesh localization pipeline to produce physically valid, visually complete multi-object scenes. Unlike prior methods that either overfit to image priors or rely on sequential post-hoc segmentation, Geo-Refine follows a unified, end-to-end formulation. Conditioned on one RGB image, it first extracts clean object regions through high-precision masking, directional color-spill suppression, and multi-view appearance consistency, then jointly optimizes object placement and fine mesh alignment. The global layout is cast as an energy-guided voxel reasoning problem that enforces projection evidence, ground support, and semantic co-location, while a subsequent mesh-level refinement stage guarantees collision-free, contact-accurate geometry. Experiments on diverse indoor and outdoor benchmarks show consistent gains in CLIP, VQ, and GPT-4 metrics, along with sharper geometry, stable object interactions, and improved multi-view fidelity over state-of-the-art image-to-3D baselines. These results highlight the value of Geo-refine for reliable single-image 3D scene synthesis and understanding.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
3D scene generation has emerged as a central problem in computer vision and graphics, with growing
impact on applications such as digital content creation, game development, and robotics, which
aims to synthesize objects and scenes composed of multiple semantically meaningful meshes. Un-
like fused object generation, layout modeling enables downstream editing, physical reasoning, and
compositional manipulation, making it a critical capability for scalable 3D scene understanding and
synthesis (Huang et al. (2025); Ye et al. (2025); Hu et al. (2024); Yu et al. (2024)).063
064
065
066
067
068 Current 3D generative methods often produce holistic meshes without explicit structures (Li et al.
(2025); Yang et al. (2024); Wu et al. (2024a)). This limitation stems from their design: most ap-
proaches are optimized for global geometry reconstruction, but lack explicit mechanisms for de-
composing objects into interpretable components. As a result, generated meshes are difficult to edit,
without physical plausibility in contact regions, and fail to support higher-level reasoning about
object functionality.069
070
071
072
073
074
075
076 Several recent works attempt to address this by introducing decomposition pipelines (Yang et al.
(2025); Liu et al. (2025a); Lyu et al. (2024); Jiang et al. (2025); Li et al. (2024b)). They typi-
cally segment fused scenes into incomplete meshes or layouts and perform per-mesh reconstruction.
However, they suffer from two limitations. First, reliance on external segmentation priors—e.g.,
2D vision models or pretrained networks—propagates errors: failures in segmentation irreversibly
degrade generation quality. Second, sequential per-mesh processing is inefficient, with inference
cost scaling linearly with the number of meshes, limiting scalability to complex scenes. We propose
rethinking the pipeline via end-to-end, mesh-based 3D generation.077
078
079
080
081
082
083
084
085 Our framework synthesizes an arbitrary number of disjoint meshes in a fixed-time budget, exploiting
the observation that while contacting regions create ambiguity, disjoint meshes can be generated in
parallel. To this end, we introduce an **independently-mesh-packing** strategy that maximizes space
utilization while preventing unintended fusions between contacting items. We further formulate
mesh grouping as a bipartite contraction problem, enabling a **voxel-mesh hybrid localization** that
maintains a fixed output length while remaining fully compatible with latent denoising generative
models. Building on this representation, each generated mesh is subsequently assembled into a
coherent full 3D scene, preserving the geometric fidelity of individual components while capturing
global spatial arrangements.086
087
088
089
090 Extensive experiments demonstrate that our framework not only achieves superior quality and ef-
ficiency compared to prior baselines, but also provides explicit meshed that facilitate fine-grained
editing, enforce physical plausibility, and support flexible scene-level manipulations. We demon-
strate both quantitative gains in CLIP/VQ/GPT-4 metrics and qualitative improvements in generat-
ing semantically meaningful, manipulable 3D meshes. Our main contributions are summarized as
follows:091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
• We present **Geo-Refine**, a unified framework for **single-image 3D scene generation** that
jointly models global layout and fine-grained geometry without any external 2D/3D seg-
mentation priors.
• We develop a **geometry–appearance preprocessing module** that integrates high-precision
object masking, directional color-spill suppression, and multi-view appearance consistency
to provide clean, coherent object inputs.
• We introduce a **two-stage voxel–mesh localization scheme**: an energy-guided voxel rea-
soning stage for coarse global placement, followed by mesh-level refinement that ensures
collision-free alignment and physically valid contact geometry.
• We demonstrate consistent improvements in semantic fidelity, structural coherence, and
visual quality over state-of-the-art single-image 3D baselines across diverse indoor and
outdoor benchmarks.

108
109

2 RELATED WORK

110
111

2.1 3D SCENE GENERATION

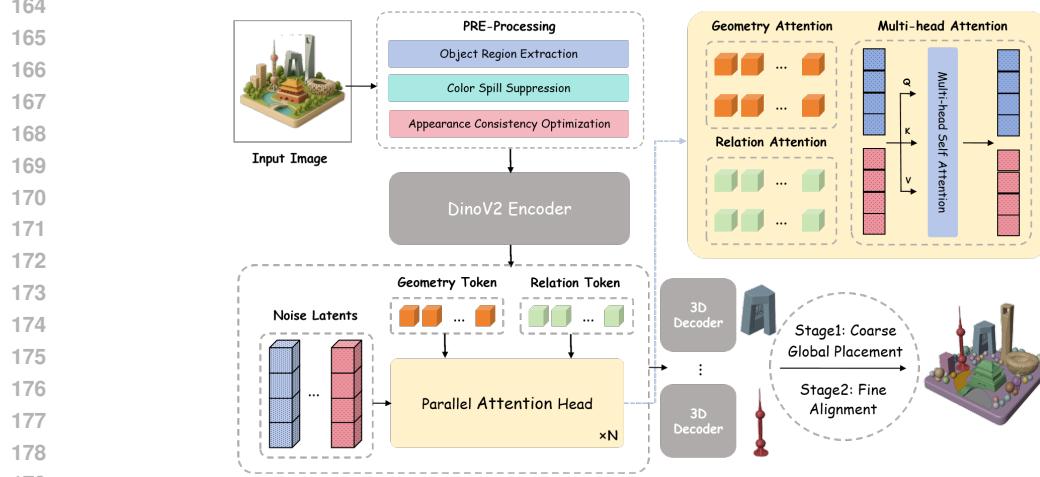
112
113
114
Research on 3D scene generation can be grouped into three complementary directions: **isolated**
object-level generation, **holistic multi-object scene synthesis**, and **physical or relational reasoning**.115
116
Isolated Object-Level Generation. Representative isolated object-level generation methods (Jun
117 & Nichol (2023); Liu et al. (2023); Shi et al. (2024); Liu et al. (2024); Pan et al. (2025); Shen et al.
118 (2025)) achieve strong geometry and texture quality. However, they do not explicitly model inter-
119 object relations or scene-level context, so extending them to multi-object scenes often results in
120 inconsistent layouts, collisions, or implausible arrangements.121
122
Holistic Multi-Object Scene Generation. These works aim to directly synthesize entire scenes
123 while jointly reasoning about layout, geometry, and appearance. (Hu et al. (2024)) predicts image-
124 conditioned layouts and instantiates 3D assets. (Yu et al. (2024)) adopts diffusion-based priors
125 to generate semantically consistent indoor and outdoor layouts. (Feng et al. (2023)) exploits vi-
126 sion-language models to infer spatial arrangements. (Li et al. (2023)) extends generative placement
127 to outdoor environments. These methods typically lack fine-grained part-level control and may pro-
128 duce unrealistic local interactions, especially for cluttered or complex scenes.129
130
Physical and Relational Reasoning. To ensure physically plausible and structurally coherent
131 scenes, recent physical and relational reasoning work integrates explicit reasoning or post-
132 optimization. (Pan & Liu (2025)) introduces reinforcement-based rewards encoding human-like
133 placement rules. (Chen et al. (2025)) formulates layout refinement as a graph optimization prob-
134 lem Hybrid multi-view and depth constraints, as in (Zhang et al. (2024; 2025)), further enhance
135 geometric consistency. These approaches often require computationally expensive optimization or
136 multi-stage refinement and still cannot fully guarantee high-fidelity object geometry.137
138

2.2 3D DENOISING GENERATIVE MODELS

139
140
3D-native denoising models for conditional 3D generation have seen substantial progress in recent
141 years. Research efforts focused on uncompressed 3D representations, such as point clouds (Li et al.
142 (2024a); Qu et al. (2023); Liu et al. (2025b); Kong & Wan (2025); Lan et al. (2025); Vogel et al.
143 (2024)), volumetric grids (Rasoulzadeh et al. (2025); Pinheiro et al. (2024); Maillard et al. (2024);
144 Wu et al. (2024b)), and Neural Radiance Fields (NeRFs) (Gu et al. (2023); Chen et al. (2023);
145 Chan et al. (2023); Jun & Nichol (2023); Höller et al. (2024)). These representations face limita-
146 tions when applied to small or sparse datasets, often resulting in poor generalization and suboptimal
147 quality. For instance, direct volumetric diffusion models struggle with scalability and resolution
148 constraints, while NeRF-based diffusion methods are prone to view inconsistency and high compu-
149 tational overhead.150
151
Architectural innovations further advance this paradigm. (Yang et al. (2024)) introduces high-
152 resolution latent embeddings to enhance surface detail reconstruction, while (Wen et al. (2025))
153 employs recursive 3D-aware diffusion to improve consistency across iterative generations. (Hu
154 et al. (2024); Yu et al. (2024)) demonstrate that latent denoising frameworks can scale to full-scene
155 generation, incorporating layout priors and semantic conditioning. (Huang et al. (2025)) extends dif-
156 fusion to multi-instance 3D generation, supporting compositional scene synthesis from single-view
157 input. Meanwhile, survey works (Kong et al. (2025); Chen & Wang (2024)) emphasize the synergy
158 between denoising generative models and efficient rendering backends such as 3D Gaussian Splat-
159 ting (Chen et al. (2024); Ververas et al. (2024)), highlighting their importance for high-quality and
160 editable synthesis.161
In this work, we extend these 3D latent denoising models to support mesh-level generation and
162 physically plausible scene composition. By combining compact latent encoding with multi-view
163 consistency constraints and hybrid localization, our approach achieves superior fidelity in both ge-
164 ometry and appearance, while remaining computationally scalable.

162

3 METHODOLOGY



180 **Figure 2: Overall architecture of Geo-Refine.** Our model performs geometry–appearance pre-
 181 processing for clean object inputs, then encodes the image with DINOv2 features and applies parallel
 182 geometry–relation attention to capture local details and global layout. Fused tokens are decoded into
 183 high-fidelity 3D meshes with scene-level placement.

185

3.1 OVERALL STRUCTURE

187 As shown in Figure 2, our method generates a complete 3D scene from a single image by jointly
 188 modeling object geometry, global spatial relations, and cross-object contextual cues. Using DINOv2
 189 encoder (Oquab et al. (2024)), a preprocessed input image c is into a dual-stream latent representa-
 190 **Geometry tokens** $g_i \in \mathbb{R}^{K_g \times C}$ for fine object shape, **Relation tokens** $r \in \mathbb{R}^{K_r \times C}$ for holistic
 191 arrangement. The global latent set is defined as a combination:

$$Z = \{(g_i, r)\}_{i=1}^N \in \mathbb{R}^{N(K_g + K_r) \times C}. \quad (1)$$

194 **Parallel Attention** Each transformer block contains three parallel attention branches: Geometry
 195 Attention $A_{\text{geom},i}^h$, Relation Attention A_{rel}^h , and Multi-Head Context Attention A_{mh}^h . We concatenate
 196 the latent tokens as $[g_1; \dots; g_N; r]$ and define the attentions as follows:

$$A_{\text{geom},i}^h = \text{softmax} \left(\frac{Q_i^h (K_i^h)^\top}{d_h} \right), \quad (2a)$$

$$A_{\text{rel}}^h = \text{softmax} \left(\frac{Q_{\text{rel}}^h (K_{\text{rel}}^h)^\top}{d_h} \right), \quad (2b)$$

$$A_{\text{mh}}^h = \text{softmax} \left(\frac{Q_{\text{mh}}^h (K_{\text{mh}}^h)^\top}{d_h} \right). \quad (2c)$$

205 Outputs from the three branches are summed with learnable weights and then passed through 3D
 206 Decoder to generate independent, integrated and physically plausible meshes. Cross-attention to
 207 encoded features $f(c)$ is injected into all three branches to maintain alignment with the conditioning
 208 image.

209 **Latent Flow Training** Given ground-truth latent Z_0 , we follow similar designs from the rectified
 210 flow model (Liu et al. (2022)). The trained latent Z_t is perturbed with Gaussian noise $\epsilon \sim \mathcal{N}(0, I)$
 211 at time t :

$$Z_t = tZ_0 + (1 - t)\epsilon. \quad (3)$$

214 The transformer predicts a velocity field v_θ , and the training loss is

$$\mathcal{L}_{\text{flow}} = \mathbb{E}_{Z_0, \epsilon, t} \|\epsilon - Z_0 - v_\theta(Z_t, t, f(c))\|_2^2. \quad (4)$$

216 The decoded meshes M_i and initial poses $\pi_i(0)$ initialize the subsequent coarse–fine optimization
 217 stages (Sec. 3.3), where $E_{\text{coarse}}(\{\pi_i\})$ and $E_{\text{mesh}}(\pi_i)$ provide collision-free placement and high-
 218 fidelity refinement.

219 By adding a parallel multi-head context branch to the geometry–relation dual attention, our network
 220 captures local, global, and cross-object dependencies simultaneously. This capability is crucial for
 221 robust image-to-3D scene generation and for producing accurate inputs to the downstream physics-
 222 aware placement pipeline.

224 3.2 GEOMETRIC AND APPEARANCE PREPROCESSING

226 While recent works in 3D scene synthesis (Zhang et al. (2024); Lyu et al. (2024); Ardelean et al.
 227 (2025)) have achieved impressive results, their performance is often bottle-necked by noisy or in-
 228 consistent object inputs. To address these challenges, we introduce a geometry and appearance
 229 preprocessing module composed of three innovations: high-precision object region extraction, di-
 230 rectional color spill suppression, and multi-view appearance consistency optimization.

231 We formulate object masks as a prior-constrained optimization:

$$232 \hat{M}_j = \arg \min_{M_j} \mathcal{L}_{\text{seg}}(M_j, I) + \lambda \mathcal{L}_{\text{spatial}}(M_j, \mathcal{R}), \quad (5)$$

233 where \mathcal{L}_{seg} ensures fidelity to the input image I and $\mathcal{L}_{\text{spatial}}$ incorporates scene-level priors \mathcal{R} , such
 234 as object–ground contact or occlusion hierarchy. We further emphasize high-curvature regions and
 235 refine boundaries to preserve fine-grained edges.

236 Non-uniform color bleeding from lighting and reflections are severe problems with original images.
 237 To mitigate these, we model observed colors as:

$$238 C(x) = C_{\text{obj}}(x) + \alpha(x) \cdot S(x), \quad \alpha(x) = \sigma(\nabla I(x) \cdot d_{\text{light}}(x)), \quad (6)$$

239 where $\alpha(x)$ modulates spill contribution based on local gradients and illumination direction. This
 240 selectively attenuates unwanted hues while preserving intrinsic textures.

241 Object appearance is associated with feature discrepancies:

$$242 \mathcal{L}_{\text{cons}} = \sum_{(v_1, v_2)} \|\phi(F_{v_1}^i) - \phi(F_{v_2}^i)\|_2^2, \quad (7)$$

243 where $\phi(\cdot)$ encodes appearance and boundary features. Color normalization and temporal coherence
 244 regularization are applied to videos.

245 Together, these components produce clean and consistent object inputs for the voxel–mesh hybrid
 246 localization stage. Detailed procedures, including iterative refinement and sampling strategies, are
 247 provided in Appendix A.2.

248 3.3 SCENE-LEVEL VOXEL–MESH HYBRID LOCALIZATION

249 In order to place multiple objects into a coherent scene layout, we propose a two-stage voxel–mesh
 250 hybrid localization scheme. The design aims to (i) perform efficient global layout reasoning that
 251 avoids large-scale inter-object collisions and (ii) preserve local geometric fidelity and contact
 252 relationships through mesh-level refinement. It is inspired by advances in volumetric scene modeling
 253 and multi-object layout optimization (Chen et al. (2023); Zhao et al. (2024); Shi et al. (2024)).

254 **Preliminaries.** Let $\mathcal{O} = \{o_1, \dots, o_N\}$ denote the set of N object meshes extracted from the
 255 preprocessing stage (Sec. 3.2). Each object o_i is associated with a high-resolution mesh \mathcal{M}_i and an
 256 initial pose (translation t_i , rotation R_i , scale s_i). We denote $\mathcal{V}(\mathcal{M}, r)$ as a voxelization operator that
 257 maps mesh \mathcal{M} to a binary occupancy grid at voxel resolution parameter r ; the resulting voxel set
 258 for object i is $V_i = \mathcal{V}(\mathcal{M}_i, r)$.

259 3.3.1 STAGE I: COARSE GLOBAL PLACEMENT VIA VOXEL REASONING

260 We first compute a low-resolution voxel representation for each object:

$$261 V_i = \mathcal{V}(\mathcal{M}_i, r_{\text{coarse}}), \quad i = 1, \dots, N, \quad (8)$$

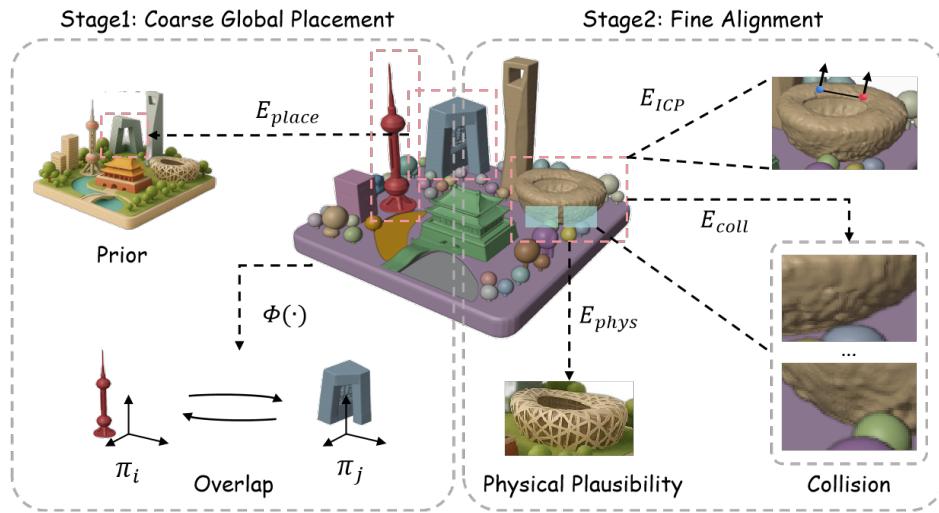


Figure 3: **Scene-Level Voxel–Mesh Hybrid Localization Pipeline.** The method operates in two sequential stages. **Stage 1: Coarse Global Placement** (left) estimates a low-resolution voxel representation for each object and performs a global layout optimization $\Phi(\cdot)$ guided by placement energy E_{place} . **Stage 2: Fine Alignment** (right) illustrate how mesh-level details are progressively aligned with the scene to achieve accurate geometry and consistent physical interaction.

with r_{coarse} chosen to trade off fidelity and efficiency. Using voxel placements we can efficiently evaluate overlaps between objects. For a pair (i, j) , denote the overlap volume (number of intersecting voxels) under candidate poses π_i, π_j as

$$\text{Overlap}_{ij}(\pi_i, \pi_j) = |\pi_i(V_i) \cap \pi_j(V_j)|. \quad (9)$$

Define a collision graph $G = (V, E)$ where vertices correspond to objects and an edge $(i, j) \in E$ exists if $\text{Overlap}_{ij} > 0$ under the current poses. We associate an edge weight $w_{i,j}$ that quantifies the severity of the collision between objects i and j .

The coarse placement problem is formulated as minimizing a global energy:

$$E_{coarse}(\{\pi_i\}) = \sum_i E_{place}(\pi_i) + \beta \sum_{(i,j) \in E} w_{i,j} \Phi(\pi_i, \pi_j), \quad (10)$$

where:

- $E_{place}(\pi_i)$ encodes unary placement priors (e.g., keep object centroid near an initial layout estimate, respect floor contact or semantic anchors);
- $\Phi(\cdot)$ is a collision penalty (e.g., quadratic or robust penalty) that penalizes non-zero overlap.

Unary Placement Term $E_{place}(\pi_i)$. The first component of Eq. 10, $E_{place}(\pi_i)$ is associated with several complementary priors that jointly encourage each object i to occupy a semantically and physically reasonable location in the reconstructed scene while remaining faithful to the input image. It enforces **projection consistency**, requiring that the 3D mesh under pose π_i projects back to the image with a silhouette overlapping the detected 2D mask or bounding box, thereby tying the 3D reconstruction to observable evidence. **Ground-support constraint** further encourages the lowest surface to contact a valid supporting plane (such as the estimated floor or a detected tabletop), prevents floating placements and promotes physical stability. In addition, **semantic-relation prior** leverages category-specific spatial statistics so the global arrangement reflects common regularities. Finally, **scale-and-orientation ingredient** penalizes implausible size changes or tilts by anchoring each object’s dimensions and upright direction to distributions predicted by a single-view 3D estimator. These complementary cues ensure that E_{place} encodes both image-level evidence and scene-level commonsense, driving the coarse optimization toward physically valid, semantically coherent placements before the finer mesh-level refinement of later stages.

We minimize Eq. 10 using a combination of greedy updates and small continuous pose adjustments: at each iteration, we (i) detect the highest-weight edge (i^*, j^*) , (ii) attempt a minimal translation of the object with lower placement cost to reduce overlap, and (iii) update the collision graph. This iterative procedure converges quickly in practice and yields a collision-free (or low-collision) global layout at voxel resolution.

3.3.2 STAGE II: FINE ALIGNMENT VIA MESH-BASED OPTIMIZATION

The coarse voxel placement provides pose initializations $\{\tilde{\pi}_i\}$. We refine each object’s pose in the high-resolution mesh domain to ensure exact contact geometry and high visual fidelity. For object i we solve:

$$\min_{\pi_i} E_{\text{ICP}}(\pi_i) + \mu E_{\text{coll}}(\pi_i; \{\pi_{j \neq i}\}) + \eta E_{\text{phys}}(\pi_i), \quad (11)$$

where

- $E_{\text{ICP}}(\pi_i)$ is an Iterative Closest Point (ICP) style term aligning \mathcal{M}_i to target support/neighbor geometry (e.g., table surface or neighboring object contact patches):

$$E_{\text{ICP}}(\pi_i) = \sum_{v \in \mathcal{V}(\mathcal{M}_i)} \rho(\text{dist}(\pi_i(v), \mathcal{S}_{\text{target}})),$$

with ρ a robust penalty and $\mathcal{S}_{\text{target}}$ a set of scene surfaces/neighbor meshes.

- $E_{\text{coll}}(\pi_i; \{\pi_{j \neq i}\})$ penalizes mesh-level penetration with other objects (e.g., summed vertex penetration depths or triangle-triangle distances).
- $E_{\text{phys}}(\pi_i)$ enforces physical plausibility constraints such as support stability (center of mass over support polygon), uprightness or semantic orientation priors.

We optimize Eq. 11 using local nonlinear solvers (e.g., Gauss–Newton or LBFGS) combined with projective ICP steps. Importantly, E_{coll} is computed on a narrow band of vertices near contacts to keep the optimization efficient.

4 EXPERIMENT

In this section, we conduct both qualitative and quantitative experiments to validate the effectiveness of our proposed approach. We compare our method against several representative baselines and evaluate performance with widely used metrics.

4.1 SETUP

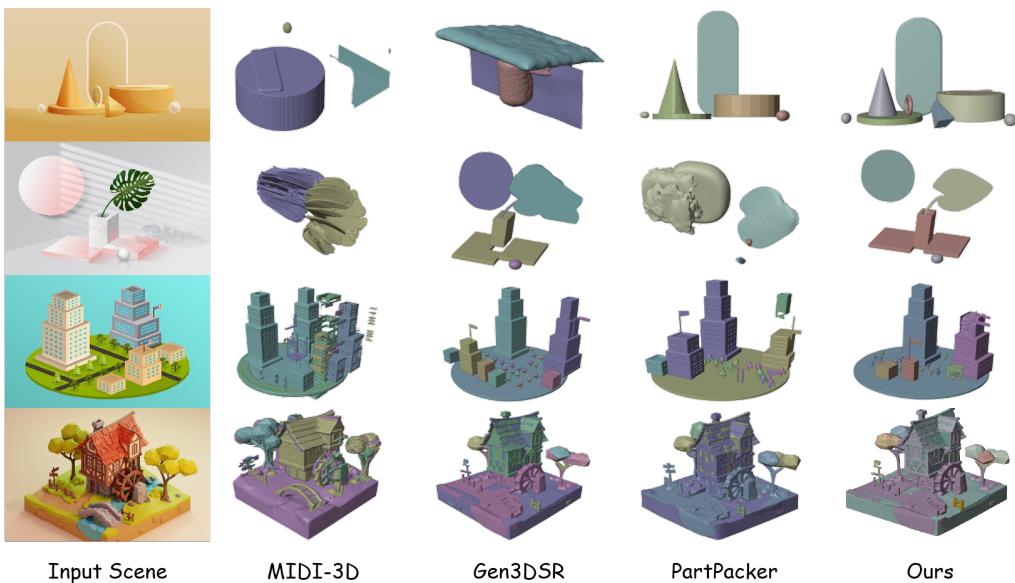
Baselines We consider three recent 3D scene generation methods as baselines: **Gen3DSR**(Ardelean et al. (2025)), **MIDI-3D**(Huang et al. (2025)), and **PartPacker**(Tang et al. (2025)). These methods represent state-of-the-art techniques in 3D scene generation and reconstruction, providing a solid foundation for comparison.

Metrics To assess generation quality, we adopt three widely used metrics following remarkable 3D scene generation methods(Yao et al. (2025)): (i) CLIP score, which measures semantic alignment between the input image and the generated scene; (ii) VQ score, which reflects the visual quality and mesh fidelity; and (iii) GPT-4 metric, which prompts us to rate semantic fidelity, object arrangement plausibility, and visual realism.

Implementation details For evaluation, we constructed a benchmark set of 60 single-view images covering diverse domains, including indoor living spaces, outdoor urban streets, and synthetic object-centric scenes. Each method is applied to generate corresponding 3D scenes. To ensure a fair comparison, we standardize several settings: (i) all methods are run with the same number of denoising steps (50 steps); (ii) meshes are voxelized and extracted at a fixed resolution of 384^3 to balance quality and efficiency; (iii) all meshes are simplified to 50k faces using decimation. In addition, we normalize scale and orientation by aligning generated meshes to a canonical unit cube and grounding them to the floor plane.

378 4.2 QUANTITATIVE EVALUATION
379

Method	CLIP \uparrow	VQ \uparrow	GPT-4 \downarrow	Runtime \downarrow
MIDI-3D	0.642	1.85	1.80	50s
Gen3DSR	0.573	2.03	2.25	6min
PartPacker	0.671	2.14	1.315	8s
Ours	0.684	2.301	1.025	5s

388 Table 1: Quantitative comparisons on CLIP score, VQ score, GPT-4 score, and runtime.
389390 Results are shown in Table 1, and it is shown that our method consistently outperforms the baselines
391 across all three metrics. In particular, a decrease in GPT-4 score demonstrates that our approach
392 optimizes layout and object relationships to produce more accurate and plausible 3D scenes, while
393 the gains in CLIP and VQ scores highlight stronger semantic consistency and higher visual fidelity.
394395 4.3 QUALITATIVE EVALUATION
396416 Figure 4: Qualitative comparisons on 3D Scene Generation.
417418 Beyond quantitative metrics, we conduct extensive qualitative evaluations to highlight the strengths
419 of our approach. Figure 4 compares scenes generated by our method with those from state-of-
420 the-art baselines (Ardelean et al. (2025); Huang et al. (2025); Tang et al. (2025)). Our framework
421 consistently produces higher-quality results across a variety of challenging scenarios.
422423 First, the objects in our generated scenes exhibit more complete geometry and higher-fidelity tex-
424 tures, avoiding common artifacts such as over-smoothed surfaces or texture distortions. Second, our
425 preprocessing module ensures robust extraction of objects even when the background color closely
426 matches the object color, a case where existing methods often fail by either eroding object bound-
427 aries or introducing background leakage. Third, our appearance consistency optimization leads
428 to improved multi-view coherence, reducing edge jitter and color mismatch across different view-
429 points. Finally, the proposed voxel–mesh hybrid localization guarantees physically plausible object
430 layouts, effectively suppressing collisions, floating artifacts, and unrealistic placements.431 Together, these advantages yield scenes that are not only visually more realistic, but also structurally
432 more coherent and semantically faithful to the input conditions. This is further corroborated by our

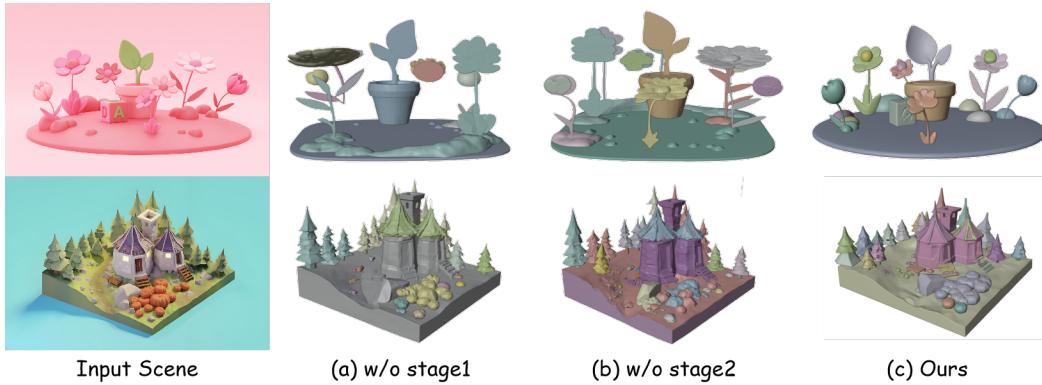
432 user study, where human raters consistently preferred our results over competing baselines in terms
 433 of geometry accuracy, appearance realism, and physical plausibility.
 434

435 **4.3.1 ABLATION STUDY**
 436

Object Region Extraction	Color Spill Supression	Appearance Optimization	CLIP↑	VQ↑	GPT-4↓
✗	✓	✓	53.14	1.733	2.75
✓	✗	✓	57.26	1.847	2.375
✓	✓	✗	62.67	2.046	1.875
✓	✓	✓	68.43	2.301	1.025

447 Table 2: Ablation study of preprocessing and appearance optimization. “✓” denotes the module is
 448 used and “✗” means not used
 449

450 To understand the role of Sec. 3.2, we perform a qualitative ablation focusing on the visual fidelity
 451 of the generated scenes. Table 2 shows that with each innovation removed, performance decreased
 452 according to different evaluation metrics, representing the effectiveness and validity of our module.
 453



467 Figure 5: Ablation on Two-Stage Optimization. From left to right: Input Scene, **w/o Stage 1**, **w/o**
 468 **Stage 2**, and the **full pipeline (Stage 1+Stage2)**.
 469

470 According to ablation study on voxel-mesh localization shown in Figure 5, Stage 1 performs **global**
 471 **coarse alignment**, establishing the correct relative scale, orientation, and inter-object distances.
 472 This early adjustment prevents large-scale inconsistencies that would otherwise propagate to later
 473 refinements. Stage 2 focuses on **fine alignment via mesh-based optimization**, including sub-mesh
 474 deformation, texture completion, and collision-aware placement.
 475

476 Removing Stage 1 causes the optimization in Stage 2 to struggle with global drift, while removing
 477 Stage 2 leaves subtle penetrations and floating artifacts unresolved. The complete pipeline, therefore,
 478 benefits from the complementary strengths of both stages.
 479

5 CONCLUSION

481 We presented Geo-Refine, a single-image 3D scene generator that fuses geometry–appearance pre-
 482 processing with a voxel–mesh localization pipeline. By pairing projection-aware placement with
 483 physical priors and fine mesh alignment, the method delivers strong semantic consistency, structural
 484 coherence, and visual fidelity across varied scenarios. Looking ahead, we plan to extend this frame-
 485 work to dynamic scenes and interactive editing, moving closer to real-time, physically grounded 3D
 486 world modeling.
 487

486 REFERENCES
487

488 Andreea Ardelean, Mert Özer, and Bernhard Egger. Gen3dsr: Generalizable 3d scene reconstruction
489 via divide and conquer from a single view, 2025. URL <https://arxiv.org/abs/2404.03421>.

490

491 Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman, Jeong Joon Park, Axel
492 Levy, Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Generative novel
493 view synthesis with 3d-aware diffusion models, 2023. URL <https://arxiv.org/abs/2304.02602>.

494

495 Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting. *arXiv preprint*, 2024. URL
496 <https://arxiv.org/abs/2401.03890>. Survey on Gaussian Splatting (3DGS).

497

498 Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, and Hao Su. Single-
499 stage diffusion nerf: A unified approach to 3d generation and reconstruction, 2023. URL <https://arxiv.org/abs/2304.06714>.

500

501 Shen Chen, Ruiyu Zhao, Jiale Zhou, Zongkai Wu, Jenq-Neng Hwang, and Lei Li. Causal reasoning
502 elicits controllable 3d scene generation, 2025. URL <https://arxiv.org/abs/2509.15249>.

503

504

505 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
506 Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
507 images. In *European Conference on Computer Vision (ECCV) 2024 (Oral)*, 2024. URL <https://arxiv.org/abs/2403.14627>. ECCV 2024.

508

509 Weixiong Feng et al. Layoutgpt: Compositional visual planning and generation with large language
510 models. In *OpenReview/ICLR Workshop/preprint*, 2023. URL <https://arxiv.org/abs/2305.15393>. arXiv preprint: 2305.15393 (commonly cited as LayoutGPT).

511

512

513 Jiatao Gu, Alex Trevithick, Kai-En Lin, Josh Susskind, Christian Theobalt, Lingjie Liu, and Ravi
514 Ramamoorthi. Nerfdiff: Single-image view synthesis with nerf-guided distillation from 3d-aware
515 diffusion, 2023. URL <https://arxiv.org/abs/2302.10109>.

516

517 Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A. Ross, Cordelia Schmid,
518 and Alireza Fathi. Scenecraft: An LLM agent for synthesizing 3D scenes as blender code. *Pro-
519 ceedings of Machine Learning Research (PMLR)*, 235:19252–19282, Jul 2024. URL <https://proceedings.mlr.press/v235/hu24g.html>. ICML 2024.

520

521 Zehuan Huang, Yuan-Chen Guo, Xingqiao An, Yunhan Yang, Yangguang Li, Zi-Xin Zou, Ding
522 Liang, Xihui Liu, Yan-Pei Cao, and Lu Sheng. Midi: Multi-instance diffusion for single image to
523 3d scene generation, 2025. URL <https://arxiv.org/abs/2412.03558>.

524

525 Lukas Hölein, Aljaž Božič, Norman Müller, David Novotny, Hung-Yu Tseng, Christian Richardt,
526 Michael Zollhöfer, and Matthias Nießner. Viewdiff: 3d-consistent image generation with text-to-
527 image models, 2024. URL <https://arxiv.org/abs/2403.01807>.

528

529 Shuyi Jiang, Qihao Zhao, Hossein Rahmani, De Wen Soh, Jun Liu, and Na Zhao. Gaussianblock:
530 Building part-aware compositional and editable 3d scene by primitives and gaussians, 2025. URL
<https://arxiv.org/abs/2410.01535>.

531

532 Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions, 2023. URL
<https://arxiv.org/abs/2305.02463>.

533

534 Di Kong and Qianhui Wan. Diffs-nocs: 3d point cloud reconstruction through coloring sketches to
535 nocs maps using diffusion models, 2025. URL <https://arxiv.org/abs/2506.12835>.

536

537 Lingdong Kong, Wesley Yang, Jianbiao Mei, Youquan Liu, Ao Liang, Dekai Zhu, Dongyue Lu, Wei
538 Yin, Xiaotao Hu, Mingkai Jia, Junyuan Deng, Kaiwen Zhang, Yang Wu, Tianyi Yan, Shenyuan
539 Gao, Song Wang, Linfeng Li, Liang Pan, Yong Liu, Jianke Zhu, Wei Tsang Ooi, Steven C. H.
Hoi, and Ziwei Liu. 3d and 4d world modeling: A survey, 2025. URL <https://arxiv.org/abs/2509.07996>.

540 Yushi Lan, Shangchen Zhou, Zhaoyang Lyu, Fangzhou Hong, Shuai Yang, Bo Dai, Xingang Pan,
 541 and Chen Change Loy. Gaussiananything: Interactive point cloud latent diffusion for 3d genera-
 542 tion. In *ICLR*, 2025.

543 Yang Li, Fanchen Peng, Feng Dou, Yao Xiao, and Yi Li. Pccdiff: Point cloud completion with
 544 conditional denoising diffusion probabilistic models. *Symmetry*, 16(12), 2024a. ISSN 2073-8994.
 545 doi: 10.3390/sym16121680. URL <https://www.mdpi.com/2073-8994/16/12/1680>.

546 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 547 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, and Yan-Pei Cao. Tripogs: High-fidelity 3d shape
 548 synthesis using large-scale rectified flow models, 2025. URL <https://arxiv.org/abs/2502.06608>.

549 Yiming Li, Zehong Wang, Yue Wang, Zhiding Yu, Zan Gojcic, Marco Pavone, Chen Feng, and
 550 Jose M. Alvarez. Memorize what matters: Emergent scene decomposition from multitraverse,
 551 2024b. URL <https://arxiv.org/abs/2405.17187>.

552 Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai.
 553 Matrixcity: A large-scale city dataset for city-scale neural rendering and beyond. In *Proceedings*
 554 of the IEEE/CVF International Conference on Computer Vision, pp. 3205–3215, 2023. URL
 555 <https://arxiv.org/abs/2309.16553>. ICCV 2023; dataset/project: MatrixCity.

556 Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel
 557 fields, 2021. URL <https://arxiv.org/abs/2007.11571>.

558 Minghua Liu, Mikaela Angelina Uy, Donglai Xiang, Hao Su, Sanja Fidler, Nicholas Sharp, and
 559 Jun Gao. Partfield: Learning 3d feature fields for part segmentation and beyond, 2025a. URL
 560 <https://arxiv.org/abs/2504.11451>.

561 Qihao Liu, Yi Zhang, Song Bai, Adam Kortylewski, and Alan Yuille. Direct-3d: Learning direct
 562 text-to-3d generation on massive noisy 3d data, 2024. URL <https://arxiv.org/abs/2406.04322>.

563 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 564 Zero-1-to-3: Zero-shot one image to 3d object, 2023. URL <https://arxiv.org/abs/2303.11328>.

565 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 566 transfer data with rectified flow, 2022. URL <https://arxiv.org/abs/2209.03003>.

567 Zhi-Song Liu, Chenhang He, and Lei Li. Efficient point clouds upsampling via flow matching,
 568 2025b. URL <https://arxiv.org/abs/2501.15286>.

569 Xiaoyang Lyu, Chirui Chang, Peng Dai, Yang-Tian Sun, and Xiaojuan Qi. Total-decom: Decom-
 570 posed 3d scene reconstruction with minimal interaction, 2024. URL <https://arxiv.org/abs/2403.19314>.

571 Léopold Maillard, Nicolas Sereyjol-Garros, Tom Durand, and Maks Ovsjanikov. Debara:
 572 Denoising-based 3d room arrangement generation, 2024. URL <https://arxiv.org/abs/2409.18336>.

573 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 574 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
 575 <https://arxiv.org/abs/2003.08934>.

576 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 577 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
 578 las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
 579 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
 580 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 581 2024. URL <https://arxiv.org/abs/2304.07193>.

582 Zhenyu Pan and Han Liu. Metaspacial: Reinforcing 3d spatial reasoning in vlms for the metaverse,
 583 2025. URL <https://arxiv.org/abs/2503.18470>.

594 Zijie Pan, Zeyu Yang, Xiatian Zhu, and Li Zhang. Efficient4d: Fast dynamic 3d object generation
 595 from a single-view video, 2025. URL <https://arxiv.org/abs/2401.08742>.
 596

597 Pedro O. Pinheiro, Joshua Rackers, Joseph Kleinhenz, Michael Maser, Omar Mahmood, An-
 598 drew Martin Watkins, Stephen Ra, Vishnu Sresht, and Saeed Saremi. 3d molecule generation
 599 by denoising voxel grids, 2024. URL <https://arxiv.org/abs/2306.07473>.
 600

601 Wentao Qu, Yuantian Shao, Lingwu Meng, Xiaoshui Huang, and Liang Xiao. A conditional
 602 denoising diffusion probabilistic model for point cloud upsampling, 2023. URL <https://arxiv.org/abs/2312.02719>.
 603

604 S. Rasoulzadeh, M. Bank, I. Kovacic, K. Schinegger, S. Rutzinger, and M. Wimmer. Archcomplete:
 605 Autoregressive 3d architectural design generation with hierarchical diffusion-based upsampling,
 606 2025. URL <https://arxiv.org/abs/2412.17957>.
 607

608 Yiyang Shen, Kun Zhou, He Wang, Yin Yang, and Tianjia Shao. High-fidelity 3d object generation
 609 from single image with rgbn-volume gaussian reconstruction model, 2025. URL <https://arxiv.org/abs/2504.01512>.
 610

611 Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
 612 diffusion for 3d generation, 2024. URL <https://arxiv.org/abs/2308.16512>.
 613

614 Jiaxiang Tang, Ruijie Lu, Zhaoshuo Li, Zekun Hao, Xuan Li, Fangyin Wei, Shuran Song, Gang
 615 Zeng, Ming-Yu Liu, and Tsung-Yi Lin. Efficient part-level 3d object generation via dual volume
 616 packing, 2025. URL <https://arxiv.org/abs/2506.09980>.
 617

618 Evgenios Ververas et al. Sags: Structure-aware 3d gaussian splatting. *arXiv preprint / ECCV 2024*,
 619 2024. URL <https://arxiv.org/abs/2404.19149>. ECCV 2024.
 620

621 Mathias Vogel, Keisuke Tateno, Marc Pollefeys, Federico Tombari, Marie-Julie Rakotosaona, and
 622 Francis Engelmann. P2p-bridge: Diffusion bridges for 3d point cloud denoising, 2024. URL
<https://arxiv.org/abs/2408.16325>.
 623

624 Hao Wen, Zehuan Huang, Yaohui Wang, Xinyuan Chen, and Lu Sheng. Ouroboros3d: Image-to-3d
 625 generation via 3d-aware recursive diffusion, 2025. URL <https://arxiv.org/abs/2406.03184>.
 626

627 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
 628 Yao. Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. *Advances in
 629 Neural Information Processing Systems*, 37:121859–121881, 2024a.
 630

631 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
 632 Yao. Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer, 2024b. URL
<https://arxiv.org/abs/2405.14832>.
 633

634 Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zheneng Chen, Chong-Wah Ngo, and Tao Mei.
 635 Hi3d: Pursuing high-resolution image-to-3d generation with video diffusion models, 2024. URL
 636 <https://arxiv.org/abs/2409.07452>.
 637

638 Yunhan Yang, Yuan-Chen Guo, Yukun Huang, Zi-Xin Zou, Zhipeng Yu, Yangguang Li, Yan-Pei
 639 Cao, and Xihui Liu. Holopart: Generative 3d part amodal segmentation, 2025. URL <https://arxiv.org/abs/2504.07943>.
 640

641 Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. Vitmatte: Boosting image
 642 matting with pretrained plain vision transformers. *Information Fusion*, 103:102091, 2024. doi:
 643 10.1016/j.inffus.2023.102091. URL <https://www.sciencedirect.com/science/article/abs/pii/S1566253523004074>.
 644

645 Kaixin Yao, Longwen Zhang, Xinhao Yan, Yan Zeng, Qixuan Zhang, Wei Yang, Lan Xu, Jiayuan
 646 Gu, and Jingyi Yu. Cast: Component-aligned 3d scene reconstruction from an rgb image, 2025.
 647 URL <https://arxiv.org/abs/2502.12894>.
 648

648 Chongjie Ye, Yushuang Wu, Ziteng Lu, Jiahao Chang, Xiaoyang Guo, Jiaqing Zhou, Hao Zhao,
 649 and Xiaoguang Han. Hi3dgen: High-fidelity 3d geometry generation from images via normal
 650 bridging, 2025. URL <https://arxiv.org/abs/2503.22236>.

651

652 Koven H. X. Yu et al. Wonderworld: Interactive 3d scene generation from a single image. *arXiv*
 653 preprint, 2024. URL <https://arxiv.org/abs/2406.09394>. arXiv:2406.09394.

654

655 D. Zhang et al. Vlm-r3: Region recognition, reasoning, and refinement for video/vision-language
 656 models. *arXiv preprint*, 2025. URL <https://arxiv.org/abs/2505.16192>. VLM
 657 region-refinement work (May 2025).

658

659 J. Zhang et al. Multiview scene graph. *NeurIPS 2024 Proceedings*, 2024. URL
 660 https://proceedings.neurips.cc/paper_files/paper/2024/hash/1fac855f8225e0b9cdb904ale0118fdc-Abstract-Conference.html. NeurIPS
 661 2024.

662

663 Zhengyi Zhao, Chen Song, Xiaodong Gu, Yuan Dong, Qi Zuo, Weihao Yuan, Liefeng Bo, Zilong
 664 Dong, and Qixing Huang. An optimization framework to enforce multi-view consistency for
 665 texturing 3d meshes using pre-trained text-to-image models. In *ECCV 2024*, 2024. doi: 10.1007/
 666 978-3-031-72764-1_9. URL https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/05282.pdf.

667

668

669 A APPENDIX

671 A.1 THE USE OF LLM

672 We employed large language model (ChatGPT, GPT-5) **solely for language refinement** after com-
 673 pleting the research and drafting the manuscript. The model assisted with grammar correction,
 674 clarity improvements, and minor stylistic edits. **No text, data, or ideas were generated beyond**
 675 **these surface-level edits**, and all substantive content—conceptualization, methodology, analysis,
 676 and conclusions—was created entirely by the authors. The authors take full responsibility for the
 677 final manuscript.

679 A.2 DETAILS OF GEOMETRIC AND APPEARANCE PREPROCESSING

681 A.2.1 HIGH-PRECISION OBJECT REGION EXTRACTION

683 Existing segmentation method (Yao et al. (2024)) achieve pixel-level accuracy but remain vulnerable
 684 to boundary erosion in cluttered scenes and lack explicit scene-level priors, leading to ambiguous
 685 object masks. To overcome this, we formulate object segmentation as a prior-constrained optimiza-
 686 tion problem:

$$687 \hat{M}_j = \arg \min_{M_j} \mathcal{L}_{\text{seg}}(M_j, I) + \lambda \mathcal{L}_{\text{spatial}}(M_j, \mathcal{R}), \quad (12)$$

688 where M_j is the mask of object j , \mathcal{L}_{seg} ensures fidelity to the image I , and $\mathcal{L}_{\text{spatial}}$ incorporates
 689 relational priors \mathcal{R} (e.g., object-ground contact, occlusion hierarchy).

691 To further refine geometry, we integrate object-aware sampling that emphasizes high-curvature re-
 692 gions and boundary-focused refinement that iteratively sharpens mask edges. This approach pre-
 693 serves fine-grained object boundaries and reduces over-eroding effects, providing more faithful in-
 694 puts for downstream 3D reconstruction.

695 A.2.2 DIRECTIONAL COLOR SPILL SUPPRESSION

697 Conventional background removal and chroma-keying approaches typically treat color spill as a
 698 global correction problem, which is insufficient in real-world imagery where reflective surfaces and
 699 environmental lighting cause directional, non-uniform color bleeding. To address this, we propose
 700 a **direction-aware spill suppression mechanism**, modeling observed colors as:

$$701 C(x) = C_{\text{obj}}(x) + \alpha(x) \cdot S(x), \quad x \in M_i, \quad (13)$$

702 where $C_{\text{obj}}(x)$ is the intrinsic texture, and $S(x)$ is the spill component modulated by a coefficient
 703

$$704 \quad \alpha(x) = \sigma(\nabla I(x) \cdot d_{\text{light}}(x)), \quad (14)$$

705 with $\nabla I(x)$ denoting the local gradient and $d_{\text{light}}(x)$ the estimated illumination direction.
 706

707 This mechanism selectively attenuates unwanted hues while preserving intrinsic textures. In practice,
 708 illumination-conditioned filtering and contrast-preserving correction are applied, yielding
 709 sharper geometry and higher-fidelity material appearance than global correction strategies.
 710

711 A.2.3 MULTI-VIEW APPEARANCE CONSISTENCY OPTIMIZATION

712 In multi-view scenarios, existing methods (Mildenhall et al. (2020); Liu et al. (2021)) primarily fo-
 713 cus on geometric consistency while neglecting appearance harmonization, resulting in color shifts
 714 and edge jittering across views. To mitigate this, we introduce a **feature-level alignment and nor-**
 715 **malization scheme**. Let F_v^i denote feature embeddings of object i under view v ; we minimize
 716 inter-view discrepancies via:

$$717 \quad \mathcal{L}_{\text{cons}} = \sum_{(v_1, v_2)} \|\phi(F_{v_1}^i) - \phi(F_{v_2}^i)\|_2^2, \quad (15)$$

720 where $\phi(\cdot)$ encodes both appearance and boundary features.
 721

722 We further apply a color normalization layer to enforce consistent mean and variance across views.
 723 In video inputs, temporal coherence regularization is introduced to suppress jittering and flickering.
 724 Together, these techniques significantly enhance mesh alignment accuracy and produce coherent
 725 textures in downstream 3D synthesis.

726 By integrating high-precision extraction(Yao et al. (2024)), directional spill suppression, and multi-
 727 view harmonization (e.g. optimization methods like (Zhao et al. (2024))), our preprocessing module
 728 produces object inputs that are both geometrically accurate and visually coherent. This forms a
 729 strong foundation for downstream voxel-mesh hybrid localization.
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755