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GEO-REFINE: GEOMETRY–APPEARANCE SYNERGY
FOR ROBUST SINGLE-IMAGE 3D SCENE GENERATION
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Figure 1: Geo-Refine generates a complete 3D scene from a single RGB image by coupling geome-
try–appearance preprocessing and appearance consistency—with a two-stage voxel–mesh localiza-
tion that first reasons about global layout and then refines mesh poses for collision-free, physically
plausible multi-object arrangements.

ABSTRACT

We introduce Geo-Refine, a single-image 3D scene generator that couples geom-
etry–appearance preprocessing with a two-stage voxel–mesh localization pipeline
to produce physically valid, visually complete multi-object scenes. Unlike prior
methods that either overfit to image priors or rely on sequential post-hoc segmen-
tation, Geo-Refine follows a unified, end-to-end formulation. Conditioned on one
RGB image, it first extracts clean object regions through high-precision mask-
ing, directional color-spill suppression, and multi-view appearance consistency,
then jointly optimizes object placement and fine mesh alignment. The global lay-
out is cast as an energy-guided voxel reasoning problem that enforces projection
evidence, ground support, and semantic co-location, while a subsequent mesh-
level refinement stage guarantees collision-free, contact-accurate geometry. Ex-
periments on diverse indoor and outdoor benchmarks show consistent gains in
CLIP, VQ, and GPT-4 metrics, along with sharper geometry, stable object inter-
actions, and improved multi-view fidelity over state-of-the-art image-to-3D base-
lines. These results highlight the value of Geo-refine for reliable single-image 3D
scene synthesis and understanding.
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1 INTRODUCTION

3D scene generation has emerged as a central problem in computer vision and graphics, with grow-
ing impact on applications such as digital content creation, game development, and robotics, which
aims to synthesize objects and scenes composed of multiple semantically meaningful meshs. Un-
like fused object generation, layout modeling enables downstream editing, physical reasoning, and
compositional manipulation, making it a critical capability for scalable 3D scene understanding and
synthesis (Huang et al. (2025); Ye et al. (2025); Hu et al. (2024); Yu et al. (2024)).

Current 3D generative methods often produce holistic meshes without explicit structures (Li et al.
(2025); Yang et al. (2024); Wu et al. (2024a)). This limitation stems from their design: most ap-
proaches are optimized for global geometry reconstruction, but lack explicit mechanisms for de-
composing objects into interpretable components. As a result, generated meshes are difficult to edit,
without physical plausibility in contact regions, and fail to support higher-level reasoning about
object functionality.

Several recent works attempt to address this by introducing decomposition pipelines (Yang et al.
(2025); Liu et al. (2025a); Lyu et al. (2024); Jiang et al. (2025); Li et al. (2024b)). They typi-
cally segment fused scenes into incomplete meshes or layouts and perform per-mesh reconstruction.
However, they suffer from two limitations. First, reliance on external segmentation priors—e.g.,
2D vision models or pretrained networks—propagates errors: failures in segmentation irreversibly
degrade generation quality. Second, sequential per-mesh processing is inefficient, with inference
cost scaling linearly with the number of meshes, limiting scalability to complex scenes. We propose
rethinking the pipeline via end-to-end, mesh-based 3D generation.

Our framework synthesizes an arbitrary number of disjoint meshes in a fixed-time budget, exploiting
the observation that while contacting regions create ambiguity, disjoint meshes can be generated in
parallel. To this end, we introduce an independently-mesh-packing strategy that maximizes space
utilization while preventing unintended fusions between contacting items. We further formulate
mesh grouping as a bipartite contraction problem, enabling a voxel-mesh hybrid localization that
maintains a fixed output length while remaining fully compatible with latent denoising generative
models. Building on this representation, each generated mesh is subsequently assembled into a
coherent full 3D scene, preserving the geometric fidelity of individual components while capturing
global spatial arrangements.

Extensive experiments demonstrate that our framework not only achieves superior quality and ef-
ficiency compared to prior baselines, but also provides explicit meshed that facilitate fine-grained
editing, enforce physical plausibility, and support flexible scene-level manipulations. We demon-
strate both quantitative gains in CLIP/VQ/GPT-4 metrics and qualitative improvements in generat-
ing semantically meaningful, manipulable 3D meshs. Our main contributions are summarized as
follows:

• We present Geo-Refine, a unified framework for single-image 3D scene generation that
jointly models global layout and fine-grained geometry without any external 2D/3D seg-
mentation priors.

• We develop a geometry–appearance preprocessing module that integrates high-precision
object masking, directional color-spill suppression, and multi-view appearance consistency
to provide clean, coherent object inputs.

• We introduce a two-stage voxel–mesh localization scheme: an energy-guided voxel rea-
soning stage for coarse global placement, followed by mesh-level refinement that ensures
collision-free alignment and physically valid contact geometry.

• We demonstrate consistent improvements in semantic fidelity, structural coherence, and
visual quality over state-of-the-art single-image 3D baselines across diverse indoor and
outdoor benchmarks.
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2 RELATED WORK

2.1 3D SCENE GENERATION

Research on 3D scene generation can be grouped into three complementary directions: isolated
object-level generation, holistic multi-object scene synthesis, and physical or relational reason-
ing.

Isolated Object-Level Generation. Representative isolated object-Level generation methods (Jun
& Nichol (2023); Liu et al. (2023); Shi et al. (2024); Liu et al. (2024); Pan et al. (2025); Shen et al.
(2025)) achieve strong geometry and texture quality. However, they do not explicitly model inter-
object relations or scene-level context, so extending them to multi-object scenes often results in
inconsistent layouts, collisions, or implausible arrangements.

Holistic Multi-Object Scene Generation. These works aim to directly synthesize entire scenes
while jointly reasoning about layout, geometry, and appearance. (Hu et al. (2024)) predicts image-
conditioned layouts and instantiates 3D assets. (Yu et al. (2024)) adopts diffusion-based priors
to generate semantically consistent indoor and outdoor layouts. (Feng et al. (2023)) exploits vi-
sion–language models to infer spatial arrangements. (Li et al. (2023)) extends generative placement
to outdoor environments. These methods typically lack fine-grained part-level control and may pro-
duce unrealistic local interactions, especially for cluttered or complex scenes.

Physical and Relational Reasoning. To ensure physically plausible and structurally coher-
ent scenes, recent physical and relational reasoning work integrates explicit reasoning or post-
optimization. (Pan & Liu (2025)) introduces reinforcement-based rewards encoding human-like
placement rules. (Chen et al. (2025))formulates layout refinement as a graph optimization prob-
lem Hybrid multi-view and depth constraints, as in (Zhang et al. (2024; 2025)), further enhance
geometric consistency. These approaches often require computationally expensive optimization or
multi-stage refinement and still cannot fully guarantee high-fidelity object geometry.

2.2 3D DENOISING GENERATIVE MODELS

3D-native denoising models for conditional 3D generation have seen substantial progress in recent
years. Research efforts focused on uncompressed 3D representations, such as point clouds (Li et al.
(2024a); Qu et al. (2023); Liu et al. (2025b); Kong & Wan (2025); Lan et al. (2025); Vogel et al.
(2024)), volumetric grids (Rasoulzadeh et al. (2025); Pinheiro et al. (2024); Maillard et al. (2024);
Wu et al. (2024b)), and Neural Radiance Fields (NeRFs) (Gu et al. (2023); Chen et al. (2023);
Chan et al. (2023); Jun & Nichol (2023); Höllein et al. (2024)). These representations face limita-
tions when applied to small or sparse datasets, often resulting in poor generalization and suboptimal
quality. For instance, direct volumetric diffusion models struggle with scalability and resolution
constraints, while NeRF-based diffusion methods are prone to view inconsistency and high compu-
tational overhead.

Architectural innovations further advance this paradigm. (Yang et al. (2024)) introduces high-
resolution latent embeddings to enhance surface detail reconstruction, while (Wen et al. (2025))
employs recursive 3D-aware diffusion to improve consistency across iterative generations. (Hu
et al. (2024); Yu et al. (2024)) demonstrate that latent denoising frameworks can scale to full-scene
generation, incorporating layout priors and semantic conditioning. (Huang et al. (2025)) extends dif-
fusion to multi-instance 3D generation, supporting compositional scene synthesis from single-view
input. Meanwhile, survey works (Kong et al. (2025); Chen & Wang (2024)) emphasize the synergy
between denoising generative models and efficient rendering backends such as 3D Gaussian Splat-
ting (Chen et al. (2024); Ververas et al. (2024)), highlighting their importance for high-quality and
editable synthesis.

In this work, we extend these 3D latent denoising models to support mesh-level generation and
physically plausible scene composition. By combining compact latent encoding with multi-view
consistency constraints and hybrid localization, our approach achieves superior fidelity in both ge-
ometry and appearance, while remaining computationally scalable.
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3 METHODOLOGY

Figure 2: Overall architecture of Geo-Refine. Our model performs geometry–appearance prepro-
cessing for clean object inputs, then encodes the image with DINOv2 features and applies parallel
geometry–relation attention to capture local details and global layout. Fused tokens are decoded into
high-fidelity 3D meshes with scene-level placement.

3.1 OVERALL STRUCTURE

As shown in Figure 2, our method generates a complete 3D scene from a single image by jointly
modeling object geometry, global spatial relations, and cross-object contextual cues. Using DinoV2
encoder (Oquab et al. (2024)), a preprocessed input image c is into a dual-stream latent representa-
tion: Geometry tokens gi ∈ RKg×C for fine object shape, Relation tokens r ∈ RKr×C for holistic
arrangement. The global latent set is defined as a combination:

Z = {(gi, r)}Ni=1 ∈ RN(Kg+Kr)×C . (1)

Parallel Attention Each transformer block contains three parallel attention branches: Geometry
Attention Ah

geom,i, Relation Attention Ah
rel, and Multi-Head Context Attention Ah

mh. We concatenate
the latent tokens as [g1; . . . ; gN ; r] and define the attentions as follows:

Ah
geom,i = softmax

(
Qh

i (K
h
i )

⊤

dh

)
, (2a)

Ah
rel = softmax

(
Qh

rel(K
h
rel)

⊤

dh

)
, (2b)

Ah
mh = softmax

(
Qh

mh(K
h
mh)

⊤

dh

)
. (2c)

Outputs from the three branches are summed with learnable weights and then passed through 3D
Decoder to generate independent, integrated and physically plausible meshes. Cross-attention to
encoded features f(c) is injected into all three branches to maintain alignment with the conditioning
image.

Latent Flow Training Given ground-truth latent Z0, we follow similar designs from the rectified
flow model (Liu et al. (2022)). The trained latent Zt is perturbed with Gaussian noise ϵ ∼ N (0, I)
at time t:

Zt = tZ0 + (1− t)ϵ. (3)

The transformer predicts a velocity field vθ, and the training loss is

Lflow = EZ0,ϵ,t ∥(ϵ− Z0)− vθ(Zt, t, f(c))∥22 . (4)
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The decoded meshes Mi and initial poses πi(0) initialize the subsequent coarse–fine optimization
stages (Sec. 3.3), where Ecoarse({πi}) and Emesh(πi) provide collision-free placement and high-
fidelity refinement.

By adding a parallel multi-head context branch to the geometry–relation dual attention, our network
captures local, global, and cross-object dependencies simultaneously. This capability is crucial for
robust image-to-3D scene generation and for producing accurate inputs to the downstream physics-
aware placement pipeline.

3.2 GEOMETRIC AND APPEARANCE PREPROCESSING

While recent works in 3D scene synthesis (Zhang et al. (2024); Lyu et al. (2024); Ardelean et al.
(2025)) have achieved impressive results, their performance is often bottle-necked by noisy or in-
consistent object inputs. To address these challenges, we introduce a geometry and appearance
preprocessing module composed of three innovations: high-precision object region extraction, di-
rectional color spill suppression, and multi-view appearance consistency optimization.

We formulate object masks as a prior-constrained optimization:

M̂j = argmin
Mj

Lseg(Mj , I) + λLspatial(Mj ,R), (5)

where Lseg ensures fidelity to the input image I and Lspatial incorporates scene-level priors R, such
as object–ground contact or occlusion hierarchy. We further emphasize high-curvature regions and
refine boundaries to preserve fine-grained edges.

Non-uniform color bleeding from lighting and reflections are severe problems with original images.
To mitigate these, we model observed colors as:

C(x) = Cobj(x) + α(x) · S(x), α(x) = σ
(
∇I(x) · dlight(x)

)
, (6)

where α(x) modulates spill contribution based on local gradients and illumination direction. This
selectively attenuates unwanted hues while preserving intrinsic textures.

Object appearance is associated with feature discrepancies:

Lcons =
∑

(v1,v2)

∥∥ϕ(F i
v1)− ϕ(F i

v2
)
∥∥2
2
, (7)

where ϕ(·) encodes appearance and boundary features. Color normalization and temporal coherence
regularization are applied to videos.

Together, these components produce clean and consistent object inputs for the voxel–mesh hybrid
localization stage. Detailed procedures, including iterative refinement and sampling strategies, are
provided in Appendix A.2.

3.3 SCENE-LEVEL VOXEL–MESH HYBRID LOCALIZATION

In order to place multiple objects into a coherent scene layout, we propose a two-stage voxel-mesh
hybrid localization scheme. The design aims to (i) perform efficient global layout reasoning that
avoids large-scale inter-object collisions and (ii) preserve local geometric fidelity and contact rela-
tionships through mesh-level refinement. It is inspired by advances in volumetric scene modeling
and multi-object layout optimization (Chen et al. (2023); Zhao et al. (2024); Shi et al. (2024)).

Preliminaries. Let O = {o1, . . . , oN} denote the set of N object meshes extracted from the
preprocessing stage (Sec. 3.2). Each object oi is associated with a high-resolution mesh Mi and an
initial pose (translation ti, rotation Ri, scale si). We denote V(M, r) as a voxelization operator that
maps mesh M to a binary occupancy grid at voxel resolution parameter r; the resulting voxel set
for object i is Vi = V(Mi, r).

3.3.1 STAGE I: COARSE GLOBAL PLACEMENT VIA VOXEL REASONING

We first compute a low-resolution voxel representation for each object:

Vi = V(Mi, rcoarse), i = 1, . . . , N, (8)

5
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Figure 3: Scene-Level Voxel–Mesh Hybrid Localization Pipeline. The method operates in two
sequential stages. Stage 1: Coarse Global Placement (left) estimates a low-resolution voxel rep-
resentation for each object and performs a global layout optimization Φ(·) guided by placement
energy Eplace. Stage 2: Fine Alignment (right) illustrate how mesh-level details are progressively
aligned with the scene to achieve accurate geometry and consistent physical interaction.

with rcoarse chosen to trade off fidelity and efficiency. Using voxel placements we can efficiently
evaluate overlaps between objects. For a pair (i, j), denote the overlap volume (number of intersect-
ing voxels) under candidate poses πi, πj as

Overlapij(πi, πj) =
∣∣ πi(Vi) ∩ πj(Vj)

∣∣. (9)

Define a collision graph G = (V,E) where vertices correspond to objects and an edge (i, j) ∈ E
exists if Overlapij > 0 under the current poses. We associate an edge weight wi,j that quantifies
the severity of the collision between objects i and j.

The coarse placement problem is formulated as minimizing a global energy:

Ecoarse({πi}) =
∑
i

Eplace(πi) + β
∑

(i,j)∈E

wij Φ(πi, πj), (10)

where:

• Eplace(πi) encodes unary placement priors (e.g., keep object centroid near an initial layout
estimate, respect floor contact or semantic anchors);

• Φ(·) is a collision penalty (e.g., quadratic or robust penalty) that penalizes non-zero overlap.

Unary Placement Term Eplace(πi). The first component of Eq. 10, Eplace(πi) is associated with
several complementary priors that jointly encourage each object i to occupy a semantically and
physically reasonable location in the reconstructed scene while remaining faithful to the input im-
age. It enforces projection consistency, requiring that the 3D mesh under pose πi projects back
to the image with a silhouette overlapping the detected 2D mask or bounding box, thereby tying
the 3D reconstruction to observable evidence. Ground-support constraint further encourages the
lowest surface to contact a valid supporting plane (such as the estimated floor or a detected table-
top), prevents floating placements and promotes physical stability. In addition, semantic-relation
prior leverages category-specific spatial statistics so the global arrangement reflects common reg-
ularities. Finally, scale-and-orientation ingredient penalizes implausible size changes or tilts by
anchoring each object’s dimensions and upright direction to distributions predicted by a single-view
3D estimator. These complementary cues ensure that Eplace encodes both image-level evidence and
scene-level commonsense, driving the coarse optimization toward physically valid, semantically
coherent placements before the finer mesh-level refinement of later stages.

6
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We minimize Eq. 10 using a combination of greedy updates and small continuous pose adjustments:
at each iteration, we (i) detect the highest-weight edge (i∗, j∗), (ii) attempt a minimal translation of
the object with lower placement cost to reduce overlap, and (iii) update the collision graph. This
iterative procedure converges quickly in practice and yields a collision-free (or low-collision) global
layout at voxel resolution.

3.3.2 STAGE II: FINE ALIGNMENT VIA MESH-BASED OPTIMIZATION

The coarse voxel placement provides pose initializations {π̃i}. We refine each object’s pose in the
high-resolution mesh domain to ensure exact contact geometry and high visual fidelity. For object i
we solve:

min
πi

EICP(πi) + µEcoll(πi; {πj ̸=i}) + η Ephys(πi), (11)

where

• EICP(πi) is an Iterative Closest Point (ICP) style term aligning Mi to target sup-
port/neighbor geometry (e.g., table surface or neighboring object contact patches):

EICP(πi) =
∑

v∈V(Mi)

ρ
(
dist(πi(v),Starget)

)
,

with ρ a robust penalty and Starget a set of scene surfaces/neighbor meshes.

• Ecoll(πi; {πj ̸=i}) penalizes mesh-level penetration with other objects (e.g., summed vertex
penetration depths or triangle-triangle distances).

• Ephys(πi) enforces physical plausibility constraints such as support stability (center of mass
over support polygon), uprightness or semantic orientation priors.

We optimize Eq. 11 using local nonlinear solvers (e.g., Gauss–Newton or LBFGS) combined with
projective ICP steps. Importantly, Ecoll is computed on a narrow band of vertices near contacts to
keep the optimization efficient.

4 EXPERIMENT

In this section, we conduct both qualitative and quantitative experiments to validate the effectiveness
of our proposed approach. We compare our method against several representative baselines and
evaluate performance with widely used metrics.

4.1 SETUP

Baselines We consider three recent 3D scene generation methods as baselines:
Gen3DSR(Ardelean et al. (2025)), MIDI-3D(Huang et al. (2025)), and PartPacker(Tang
et al. (2025)). These methods represent state-of-the-art techniques in 3D scene generation and
reconstruction, providing a solid foundation for comparison.

Metrics To assess generation quality, we adopt three widely used metrics following remarkable
3D scene generation methods(Yao et al. (2025)): (i) CLIP score, which measures semantic alignment
between the input image and the generated scene; (ii) VQ score, which reflects the visual quality and
mesh fidelity; and (iii) GPT-4 metric, which prompts us to rate semantic fidelity, object arrangement
plausibility, and visual realism.

Implementation details For evaluation, we constructed a benchmark set of 60 single-view im-
ages covering diverse domains, including indoor living spaces, outdoor urban streets, and synthetic
object-centric scenes. Each method is applied to generate corresponding 3D scenes. To ensure a
fair comparison, we standardize several settings: (i) all methods are run with the same number of
denoising steps (50 steps); (ii) meshes are voxelized and extracted at a fixed resolution of 3843 to
balance quality and efficiency; (iii) all meshes are simplified to 50k faces using decimation. In addi-
tion, we normalize scale and orientation by aligning generated meshes to a canonical unit cube and
grounding them to the floor plane.

7
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4.2 QUANTITATIVE EVALUATION

Method CLIP↑ VQ↑ GPT-4↓ Runtime↓
MIDI-3D 0.642 1.85 1.80 50s

Gen3DSR 0.573 2.03 2.25 6min

PartPacker 0.671 2.14 1.315 8s

Ours 0.684 2.301 1.025 5s

Table 1: Quantitative comparisons on CLIP score, VQ score, GPT-4 score, and runtime.

Results are shown in Table 1, and it is shown that our method consistently outperforms the baselines
across all three metrics. In particular, a decrease in GPT-4 score demonstrates that our approach
optimizes layout and object relationships to produce more accurate and plausible 3D scenes, while
the gains in CLIP and VQ scores highlight stronger semantic consistency and higher visual fidelity.

4.3 QUALITATIVE EVALUATION

Figure 4: Qualitative comparisons on 3D Scene Generation.

Beyond quantitative metrics, we conduct extensive qualitative evaluations to highlight the strengths
of our approach. Figure 4 compares scenes generated by our method with those from state-of-
the-art baselines (Ardelean et al. (2025); Huang et al. (2025); Tang et al. (2025)). Our framework
consistently produces higher-quality results across a variety of challenging scenarios.

First, the objects in our generated scenes exhibit more complete geometry and higher-fidelity tex-
tures, avoiding common artifacts such as over-smoothed surfaces or texture distortions. Second, our
preprocessing module ensures robust extraction of objects even when the background color closely
matches the object color, a case where existing methods often fail by either eroding object bound-
aries or introducing background leakage. Third, our appearance consistency optimization leads
to improved multi-view coherence, reducing edge jitter and color mismatch across different view-
points. Finally, the proposed voxel–mesh hybrid localization guarantees physically plausible object
layouts, effectively suppressing collisions, floating artifacts, and unrealistic placements.

Together, these advantages yield scenes that are not only visually more realistic, but also structurally
more coherent and semantically faithful to the input conditions. This is further corroborated by our

8
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user study, where human raters consistently preferred our results over competing baselines in terms
of geometry accuracy, appearance realism, and physical plausibility.

4.3.1 ABLATION STUDY

Object Region

Extraction

Color Spill

Supression

Appearance

Optimization
CLIP↑ VQ↑ GPT-4↓

× ✓ ✓ 53.14 1.733 2.75

✓ × ✓ 57.26 1.847 2.375

✓ ✓ × 62.67 2.046 1.875

✓ ✓ ✓ 68.43 2.301 1.025

Table 2: Ablation study of preprocessing and appearance optimization. “✓” denotes the module is
used and“x” means not used

To understand the role of Sec. 3.2, we perform a qualitative ablation focusing on the visual fidelity
of the generated scenes. Table 2 shows that with each innovation removed, performance decreased
according to different evaluation metrics, representing the effectiveness and validity of our module.

Figure 5: Ablation on Two-Stage Optimization. From left to right: Input Scene, w/o Stage 1, w/o
Stage 2, and the full pipeline (Stage 1+Stage2).

According to ablation study on voxel-mesh localization shown in Figure 5, Stage 1 performs global
coarse alignment, establishing the correct relative scale, orientation, and inter-object distances.
This early adjustment prevents large-scale inconsistencies that would otherwise propagate to later
refinements. Stage 2 focuses on fine alignment via mesh-based optimization, including sub-mesh
deformation, texture completion, and collision-aware placement.

Removing Stage 1 causes the optimization in Stage 2 to struggle with global drift, while removing
Stage 2 leaves subtle penetrations and floating artifacts unresolved. The complete pipeline, therefore,
benefits from the complementary strengths of both stages.

5 CONCLUSION

We presented Geo-Refine, a single-image 3D scene generator that fuses geometry–appearance pre-
processing with a voxel–mesh localization pipeline. By pairing projection-aware placement with
physical priors and fine mesh alignment, the method delivers strong semantic consistency, structural
coherence, and visual fidelity across varied scenarios. Looking ahead, we plan to extend this frame-
work to dynamic scenes and interactive editing, moving closer to real-time, physically grounded 3D
world modeling.

9
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A APPENDIX

A.1 THE USE OF LLM

We employed large language model (ChatGPT, GPT-5) solely for language refinement after com-
pleting the research and drafting the manuscript. The model assisted with grammar correction,
clarity improvements, and minor stylistic edits. No text, data, or ideas were generated beyond
these surface-level edits, and all substantive content—conceptualization, methodology, analysis,
and conclusions—was created entirely by the authors. The authors take full responsibility for the
final manuscript.

A.2 DETAILS OF GEOMETRIC AND APPEARANCE PREPROCESSING

A.2.1 HIGH-PRECISION OBJECT REGION EXTRACTION

Existing segmentation method (Yao et al. (2024)) achieve pixel-level accuracy but remain vulnerable
to boundary erosion in cluttered scenes and lack explicit scene-level priors, leading to ambiguous
object masks. To overcome this, we formulate object segmentation as a prior-constrained optimiza-
tion problem:

M̂j = argmin
Mj

Lseg(Mj , I) + λLspatial(Mj ,R), (12)

where Mj is the mask of object j, Lseg ensures fidelity to the image I , and Lspatial incorporates
relational priors R (e.g., object–ground contact, occlusion hierarchy).

To further refine geometry, we integrate object-aware sampling that emphasizes high-curvature re-
gions and boundary-focused refinement that iteratively sharpens mask edges. This approach pre-
serves fine-grained object boundaries and reduces over-eroding effects, providing more faithful in-
puts for downstream 3D reconstruction.

A.2.2 DIRECTIONAL COLOR SPILL SUPPRESSION

Conventional background removal and chroma-keying approaches typically treat color spill as a
global correction problem, which is insufficient in real-world imagery where reflective surfaces and
environmental lighting cause directional, non-uniform color bleeding. To address this, we propose
a direction-aware spill suppression mechanism, modeling observed colors as:

C(x) = Cobj(x) + α(x) · S(x), x ∈ Mi, (13)
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where Cobj(x) is the intrinsic texture, and S(x) is the spill component modulated by a coefficient

α(x) = σ (∇I(x) · dlight(x)) , (14)

with ∇I(x) denoting the local gradient and dlight(x) the estimated illumination direction.

This mechanism selectively attenuates unwanted hues while preserving intrinsic textures. In prac-
tice, illumination-conditioned filtering and contrast-preserving correction are applied, yielding
sharper geometry and higher-fidelity material appearance than global correction strategies.

A.2.3 MULTI-VIEW APPEARANCE CONSISTENCY OPTIMIZATION

In multi-view scenarios, existing methods (Mildenhall et al. (2020); Liu et al. (2021)) primarily fo-
cus on geometric consistency while neglecting appearance harmonization, resulting in color shifts
and edge jittering across views. To mitigate this, we introduce a feature-level alignment and nor-
malization scheme. Let F i

v denote feature embeddings of object i under view v; we minimize
inter-view discrepancies via:

Lcons =
∑

(v1,v2)

∥∥ϕ(F i
v1)− ϕ(F i

v2)
∥∥2
2
, (15)

where ϕ(·) encodes both appearance and boundary features.

We further apply a color normalization layer to enforce consistent mean and variance across views.
In video inputs, temporal coherence regularization is introduced to suppress jittering and flickering.
Together, these techniques significantly enhance mesh alignment accuracy and produce coherent
textures in downstream 3D synthesis.

By integrating high-precision extraction(Yao et al. (2024)), directional spill suppression, and multi-
view harmonization (e.g. optimization methods like (Zhao et al. (2024))), our preprocessing module
produces object inputs that are both geometrically accurate and visually coherent. This forms a
strong foundation for downstream voxel-mesh hybrid localization.
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