
Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

DENOISING DIFFUSION PROBABILISTIC MODELS TO
PREDICT THE NUMBER DENSITY OF MOLECULAR
CLOUDS IN ASTRONOMY

Duo Xu1, Jonathan C. Tan⋆12, Chia-Jung Hsu1, Ye Zhu34

1Department of Astronomy
University of Virginia
Charlottesville, VA 22904-4235, USA
xuduo117@virginia.edu

2Department of Space, Earth & Environment
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

3Department of Computer Science
Illinois Institute of Technology
Chicago, IL 60616, USA

4Department of Computer Science
Princeton University
Princeton, NJ 08544, USA

ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs) have become the mainstream
generative approach in the Machine Learning and Computer Vision area, achiev-
ing the state-of-the-art performance in synthesizing high-quality images, videos,
and audio. In this work, we bring the DDPMs out of the data generation tasks, but
to a new scientific application field in astronomy for inferring the volume or num-
ber density of giant molecular clouds (GMCs) from projected mass surface density
maps. Specifically, we adopt magnetohydrodynamic (MHD) simulations with dif-
ferent global magnetic field strengths and large-scale dynamics, i.e., noncolliding
and colliding GMCs. We train a DDPM on both mass surface density maps and
their corresponding mass-weighted number density maps from different viewing
angles for all the simulations. We compare our performance with a more tradi-
tional empirical two-component and three-component power-law fitting method
and with a more traditional neural network machine learning approach (CASI-
2D). Experiments show that DDPMs achieve an order of magnitude improvement
in the accuracy of predicting number density compared to that by other methods,
demonstrating the promising potential of applying DDPMs in astrophysics.

1 INTRODUCTION

Giant molecular clouds (GMCs) are the birthplace of stars (Shu et al., 1987). Investigating the phys-
ical and chemical conditions of GMCs is a crucial step to understand the evolution of the interstellar
medium (ISM) and the formation of stars (McKee & Ostriker, 2007; Heyer & Dame, 2015). Among
all the physical quantities of GMCs, the number density or volume density is one of the most funda-
mental properties that relates to various physical quantity estimations, such as the free-fall time, the
magnetic field strength (Chandrasekhar & Fermi, 1953) and chemical reaction rates (Tielens & Ha-
gen, 1982). However, it is difficult to quantify the number density of GMCs from observations. The
traditional approach of estimating the number density of GMCs is based on observations of column
density and certain assumptions on the geometry of the clouds, for example, a cylindrical geom-
etry for filamentary structures or spherical geometry for dense cores (André et al., 2014). Bisbas
et al. (2021; 2023) proposed an empirical power-law to convert the observed column density to the
mean number density of GMCs based on the MHD simulations from Wu et al. (2017), which works
decently but with noticeable scatter. Another method to constrain the number density of GMCs is
utilizing density “probes”, such as cyanoacetylene (HC3N, Avery et al., 1982; Schloerb et al., 1983;
Li & Goldsmith, 2012). The relative intensity of different transitions of HC3N is sensitive to the
number density of the cloud, which makes it possible to constrain the mean number density directly
by observing multiple transitions of HC3N. Li & Goldsmith (2012) successfully observed J = 2−1
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and 10− 9 transitions of HC3N in Taurus B213 filament and constrained the molecular gas number
density to be around 1.8 × 104 cm−3. Unfortunately, the line ratio of HC3N can only probe the
number density at a relatively narrow range, between 104 and 106 cm−3 (Li & Goldsmith, 2012),
which limits its ability to infer the number density of the full range of structures that exist in GMCs.
Consequently, a novel method to infer the number density of GMCs under a variety of physical
conditions with high precision is in great demand. Machine learning makes it possible to learn from
both the morphology of the cloud and their column density to infer the mean number density rather
than using a simple average power-law conversion.

Machine learning has gained great popularity among astronomers. For example, Convolutional neu-
ral networks have been successfully applied to identify structures (Xu et al., 2020a;b; 2022a) and
infer physical quantities, such as protostellar outflow inclination angles and magnetic field direc-
tions (Xu et al., 2022b). More recently, Denoising Diffusion Probabilistic Models (DDPMs) Sohl-
Dickstein et al. (2015); Ho et al. (2020), originated from the natural thermodynamics problem, sim-
ulate a random walk process in the data space, which shares the intrinsic alignment and consistency
with most scientific problems. For example, the observed emission or absorption maps of GMCs
that derive the column density map are part of the results of the random walk of photons in the ISM,
i.e., the scattering process. Inferring the raw mass-weighted number density distribution based on
the observed column density inherits the basic concepts of diffusion models. In addition, DDPMs
have demonstrated their proficiency and robustness in image and audio generation (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Zhu et al., 2023b; Rombach et al., 2022; Zhu et al., 2023a), which are
suitable for the prediction task in astronomy. Therefore, our primary objective in this work is to
demonstrate the great potential for applying DDPMs in astronomy studies.

2 METHOD

The core formulation of diffusion models is inspired by non-equilibrium thermodynamics (Sohl-
Dickstein et al., 2015), which models a stochastic Markov chain of T steps in two directions. The
forward direction q, also known as the diffusion process, gradually adds stochastic Gaussian noises
to a data sample x0 following:

q(xt|xt−1) = N (
√

1− βtxt−1, βtI), (1)

where {βt}Tt = 1 are pre-scheduled variances. The other direction, often referred as reverse direc-
tion or generative process p, denoises a noisy sample xT from a standard Gaussian distribution to a
data sample x0 as:

xt−1 =
1√

1− βt

(xt −
βt√
1− αt

ϵθt (xt)) + σtzt, (2)

where ϵθt is the learnable noise predictor, zt ∼ N (0, I), and the variance of the reverse process σ2
t

is set to be σ2 = β. The actual neural network training process aims to learn the noise predictor to
optimize the variational lower bound on negative log likelihood:

L = Eq[−log p(xT )−
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
]. (3)

To adapt the diffusion models in our context, we deploy a diffusion model with a similar parameter
setup as in Ho et al. (2020). Specifically, the diffusion model has in total T = 1000 steps, and is
optimized using the variational loss in Equation 3, which makes valid the assumption that the reverse
direction converges to the Gaussian stochastic diffusion process. In particular, we provide xc as an
additional input condition to make the prediction follow each individual observational sample. We
train the diffusion model for 400 epochs and evaluate the performance on a sample in the test set.

3 EXPERIMENTS

Data. We carry out ideal MHD simulations based on the set-up of Wu et al. (2020), which were
conducted using the adaptive mesh refinement (AMR) code Enzo (Bryan et al., 2014) with a top grid
resolved by 2563 and 4 additional levels of refinement, achieving a resolution of 0.03125 pc1 within
a 128 pc3 domain. The simulations include heating/cooling based on a photo-dissociation model

11 pc=3.086× 1016 m
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Figure 1: Relation between the LOS mass-weighted number density and the column density for
different simulations. The rainbow color background indicates the 2D histogram of the distribution
between number density and column density for each simulation. The lines with errorbars represent
the mean and their standard deviation of each column density bin.

Table 1: Power-Law Fitting Results. Label, number of power-law components, break points of
power-law fittings in log scale, and power indices of each power-law component.

Label Components Break Points Power Indices
2PL 2 20.82 0.61/1.47
3PL 3 20.73/22.69 0.61/1.41/1.49

2PL-i 2 20.19 0.67/1.42
3PL-i 3 21.35/21.79 0.79/4.06/1.26

with FUV radiation field of G0 = 4 Habings and cosmic ray ionization rate ζ = 10−16 s−1, self-
gravity, magnetic fields and supersonic turbulence. The simulations do not include star formation
or feedback, so represent the structures that develop in the early phases of collapse up to the onset
of star formation. We select two different types of setup of the large-scale dynamics of the GMCs,
noncolliding and colliding GMCs. For each setup, we implement three different magnetic field
strengths, 10, 30, and 50 µG. In the colliding cases, the clouds have relative velocities of 10 km s−1,
and are offset by 0.5RGMC. The GMCs have an initial temperature of 15 K, but soon establish a
multiphase temperature structure. The simulations are run for 5 Myr. We take two evolutionary
stages, 3 and 4 Myr, for each setup run.

To enhance the diversity of the data set, we generate column density maps and their correspond-
ing line-of-sight (LOS) mass-weighted number density across different scales by adopting different
AMR levels with different physical resolutions. The image size in pixels is 128 × 128, with multi-
ple physical scales, including 32, 16, 8, 4 and 2 pc. In total, we have 7179 images in the data set,
in which 70% are used for the training set, and the remaining 30% are a test set. Figure 1 shows
the correlation between the LOS mass-weighted number density and the column density for differ-
ent simulations. Although the column density range is not the same for different simulations, it is
obvious that the relation between the mass-weighted number density and column density is similar.

Results. We adopt several different approaches to convert column density to mass-weighted number
density on the LOS. We start with power-law fitting on the relation between the LOS mass-weighted
number density of H nuclei (nH) and the column density of H nuclei (NH) for all simulations in
Figure 1. We adopt two-components and three components power law to fit the nH −NH relation,
i.e., nH = f(NH). Meanwhile, we conduct the “inverted” fitting, i.e., adopting two-component
and three component power laws to fit the NH − nH relation NH = f(nH) and then derive the
inverse function nH = f−1(NH). We summarize the fitting results in Table 1. We then follow the
power-law fitting results to convert the column density to mass-weighted number density. We show
the fitting results in Figure 2. In addition, we present the result from machine learning approaches,
including CASI-2D (Van Oort et al., 2019) and diffusion model, in Figure 2. It is obvious that there
is significant dispersion between the true mass-weighted number density nH,True and the predicted
number density nH,Pred that is converted by power-law and that predicted by CASI-2D. The pre-
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Figure 2: Summary of the performance of different approaches to convert the gas column density to
number density on all the data samples.
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Figure 3: Comparison between different approaches to converting gas column density to number
density on a sample in the test set.

dicted number density by the diffusion model has a much smaller dispersion around the true density.
We list the dispersion between nH,True and nH,Pred in Figure 2. The predicted number density by
the diffusion model is an order of magnitude better than that by all the other approaches. We show a
sample image from the test set and apply different approaches to obtain the predicted number den-
sity in Figure 3. Although the column density map is similar to the true number density map, there
is noticeable difference at relatively high column densities, where more structures are highlighted in
the true number density map but appear faint in the column density map. The number density map
predicted by the diffusion model is able to recreate the actual structures across a wide density range.

4 CONCLUSION

In this work, we deploy the DDPMs to predict the LOS mass-weighted number density of GMCs
from column density maps in astronomy. We achieve large improvements in the performance for
both synthetic test samples and real observational data, demonstrating the effectiveness and great
potential for astronomical applications using diffusion models.
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accio, M. A. Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, D. Mun-
shi, J. A. Murphy, P. Naselsky, F. Nati, C. B. Netterfield, F. Noviello, D. Novikov, I. Novikov,
N. Oppermann, C. A. Oxborrow, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, F. Pasian, L. Per-
otto, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointe-
couteau, G. Polenta, N. Ponthieu, G. W. Pratt, S. Prunet, J. L. Puget, J. P. Rachen, M. Rei-
necke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, M. Rossetti, G. Roudier,
J. A. Rubiño-Martı́n, B. Rusholme, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott,
J. D. Soler, V. Stolyarov, R. Sudiwala, D. Sutton, A. S. Suur-Uski, J. F. Sygnet, J. A. Tauber,
L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, G. Umana, L. Valenziano, J. Valivi-
ita, B. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus, N. Ysard, D. Yvon,
and A. Zonca. Planck intermediate results. XXXV. Probing the role of the magnetic field in the
formation of structure in molecular clouds. Astronomy and Astrophysics, 586:A138, February
2016. doi: 10.1051/0004-6361/201525896.

R. Rao, R. M. Crutcher, R. L. Plambeck, and M. C. H. Wright. High-Resolution Millimeter-Wave
Mapping of Linearly Polarized Dust Emission: Magnetic Field Structure in Orion. , 502(1):
L75–L78, July 1998. doi: 10.1086/311485.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.
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A BACKGROUND IN ASTROPHYSICS

In this section, we extend the background of the astrophysical problem we target to solve in this
work.

Giant molecular clouds (GMCs) are one of the most important components of the interstellar
medium (ISM) in galaxies. The ISM is the material that fills the space between stars, consisting
of gas and dust, as well as cosmic rays and magnetic fields (Spitzer, 1978). The ISM plays a crit-
ical role in the life cycle of galaxies, regulating the rate of star formation (e.g., Leroy et al., 2008;
Tacconi et al., 2020). GMCs are particularly important because they contain the majority of the
dense gas in the ISM, which is required for the formation of stars (e.g., Shu et al., 1987; Saintonge
& Catinella, 2022). The physical conditions within GMCs are highly complex and dynamic, with
variations in space and time of density, temperature, velocity, and magnetic field strength and direc-
tion. These conditions can lead to a wide range of phenomena, including the formation of protostars
and star clusters (e.g., McKee & Ostriker, 2007; Heyer & Dame, 2015; Krumholz et al., 2019), and
the formation of complex organic molecules (e.g., Herbst & van Dishoeck, 2009; Jørgensen et al.,
2020). Consequently, investigating the physical and chemical conditions of GMCs is a crucial step
towards understanding the complex physical processes that occur within the Milky Way, as well as
the properties and evolution of galaxies throughout the Universe.

Among all the physical quantities of GMCs, the density (ρ), i.e., mass per unit volume,2 is one of
the most fundamental properties that relates to various physical quantity estimations, such as the
free-fall time, the magnetic field strength (Davis, 1951; Chandrasekhar & Fermi, 1953; Beck, 2015)
and chemical reaction rates (Tielens & Hagen, 1982; Wakelam et al., 2010; Gong et al., 2017).
The free-fall time is depends on density as tff ∝ ρ−1/2. Considering measurement of magnetic
fields, one method commonly used is the Davis-Chandrasekhar-Fermi (DCF) method (Davis, 1951;
Chandrasekhar & Fermi, 1953; Beck, 2015). This estimates the plane-of-sky (POS) component of
the magnetic field using polarized thermal dust emission (Rao et al., 1998; Planck Collaboration
et al., 2016). The DCF method is based on the assumption that the magnetic field in the ISM is in a
state of equipartition with the turbulent kinetic energy of the gas. This means that the magnetic field
strength is proportional to the square root of the gas density and the turbulent velocity dispersion
of the gas. Thus, in the DCF method, a good estimation of the gas density is required to obtain
an accurate estimation of the magnetic field strength. Similarly, the gas density is a crucial factor
affecting the rates of astrochemical reactions (Wakelam et al., 2010; Gong et al., 2017). Thus, a
precise estimation of the gas density within GMCs is crucial for accurate prediction of molecular
abundances and a better understanding of the chemical evolution in GMCs.

However, it is difficult to quantify the number density of GMCs from observations. The traditional
approach of estimating the number density of GMCs is based on observations of column density
and certain assumptions on the geometry of the clouds, for example, a cylindrical geometry for
filamentary structures or spherical geometry for dense cores (André et al., 2014). Bisbas et al.
(2021; 2023) proposed an empirical power-law to convert the observed column density to the mean
number density of GMCs based on the MHD simulations from Wu et al. (2017), which works
decently but with noticeable scatter. Another method to constrain the number density of GMCs is
utilizing density “probes”, such as cyanoacetylene (HC3N, Avery et al., 1982; Schloerb et al., 1983;
Li & Goldsmith, 2012). The relative intensity of different transitions of HC3N is sensitive to the
number density of the cloud, which makes it possible to constrain the mean number density directly
by observing multiple transitions of HC3N. Li & Goldsmith (2012) successfully observed J = 2−1
and 10− 9 transitions of HC3N in Taurus B213 filament and constrained the number density of H2

molecules, nH2 ∼ (1.8 ± 0.7) × 104 cm−3. Note, nH = 2nH2 under the assumption that all H
is in the form of H2. Unfortunately, the line ratio of HC3N can only probe the number density at
a relatively narrow range, between ∼ 104 and 106 cm−3 (Li & Goldsmith, 2012), which limits its
ability to infer the number density of the full range of structures that exist in GMCs. Consequently, a
novel method to infer the number density of GMCs under a variety of physical conditions with high
precision is in great demand. Machine learning makes it possible to learn from both the morphology

2We will also use the number density of H nuclei as a metric of density. Under the assumption of an
abundance of one He nucleus for every 10 H nuclei in interstellar gas, we have a mass per H nucleus of
µH = 1.4mH = 2.34× 10−24 g. Thus nH = 1 cm−3 is equivalent to ρ = 2.34× 10−24 g cm−3.

10



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

of the cloud and their column density to infer the mean number density rather than using a simple
average power-law conversion.

Machine learning has gained great popularity among astronomers. For example, convolutional neu-
ral networks (CNNs) have been successfully applied to a series of tasks, including galaxy clas-
sification (Domı́nguez Sánchez et al., 2018; Becker et al., 2021), identification of structures like
protostellar outflows, stellar wind-driven bubbles and Galactic cirrus filaments (Xu et al., 2020a;b;
2022a; Smirnov et al., 2023) and infer physical quantities based on observations, such as protostellar
outflow inclination angles, magnetic field directions, stellar masses, exoplanet masses, galactic red-
shifts, and galactic star-formation rates (Liu et al., 2020; Zhang et al., 2022; Xu et al., 2022b; 2023;
Bisigello et al., 2023). Furthermore, CNNs have also been utilized to mitigate the impact of noise
in astronomical observations (Gheller & Vazza, 2022; Bartlett et al., 2023). For instance, Gheller &
Vazza (2022) employed CNNs to remove noise and artifacts of radio interferometric images, while
Bartlett et al. (2023) employed CNNs to diminish the impact of noise on various observation targets
and preserve the morphology of galaxies. Meanwhile, Generative Adversarial Networks (GANs)
have been applied to a variety of tasks (Hemmati et al., 2022; Sweere et al., 2022). Sweere et al.
(2022) applied GANs to generate super-resolution and de-noised images from the XMM−Newton
telescope. Hemmati et al. (2022) utilized GANs to effectively deblend galaxies from HST observa-
tions. More recently, Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated their
proficiency and robustness in image generation and editing(Sohl-Dickstein et al., 2015; Ho et al.,
2020; Zhu et al., 2023a), which are suitable for the prediction task in astronomy.

B DISCUSSIONS ON DDPMS OVER OTHER METHODS

While this work seems to be an intuitive and direct application to an existing astrophysical problem,
we provide our extended discussions on the reasons for the superiority of DDPMs compared to other
existing deep learning based methods for task of number density predication of molecular clouds in
astronomy.

The performance of the proposed diffusion model exhibits an improvement of one order of magni-
tude compared to some existing ML based methods such as CASI-2D (Van Oort et al., 2019) which
is a convolutional neural network similar to Variational Autoencoders (VAEs) (Kingma & Welling,
2014). In the context of machine learning, we discuss the reasons for the significant improvement
achieved by our proposed diffusion model as follows. The DDPMs are formulated based on the
Markov stochastic process and model a random walk in the data space, which aligns with most ex-
isting physics problems and is consistent with intrinsic properties of the natural world. In contrast,
CNNs and VAEs were originally designed for image classification and generation tasks in computer
vision and lack explicit connections to the physical world. For instance, the observed structure of
GMCs is likely to be shaped, at least in part, by turbulent motions that involve compressions in
a series of quasi-random directions. Then the overall mass surface density map is constructed by
summing a series of quasi-independent patches of volume density along the line of sight. Thus,
inferring the raw mass-weighted number density distribution based on the observed column den-
sity inherits the basic concepts of diffusion models. Furthermore, with respect to information loss,
DDPMs maintain the same data dimensionality throughout the entire denoising (i.e., prediction)
process, thus better preserving the information conveyed by the original data. In contrast, CNNs
and VAEs involve dimension reduction and information compression during training, resulting in
inevitable information loss for the prediction objective. In terms of traceability and interpretability,
we employ pre-defined Gaussian transition kernels to introduce and remove noise at each diffusion
step in DDPMs. This provides us with superior traceability and interpretability for the data transi-
tion compared to CNNs and VAEs, whose traceability relies on a relatively vague gradient descent
optimization direction.

11


	Introduction
	Method
	Experiments
	Conclusion
	Background in Astrophysics
	Discussions on DDPMs over other methods

