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ABSTRACT

We present the first comprehensive finite-time global convergence analysis of
policy gradient for infinite horizon average reward Markov decision processes
(MDPs). Specifically, we focus on ergodic tabular MDPs with finite state and action
spaces. Our analysis shows that the policy gradient iterates converge to the optimal
policy at a sublinear rate of O

(
1
T

)
, where T represents the number of iterations.

Performance bounds for discounted reward MDPs cannot be easily extended to
average reward MDPs as the bounds grow proportional to the fifth power of the
effective horizon. Recent work on such extensions makes a smoothness assumption
that has not been verified. Thus, our primary contribution is in providing the first
complete proof that the policy gradient algorithm converges globally for average-
reward MDPs, without such an assumption. We also obtain the corresponding
finite-time performance guarantees. In contrast to the existing discounted reward
performance bounds, our performance bounds have an explicit dependence on
constants that capture the complexity of the underlying MDP. Motivated by this
observation, we reexamine and improve the existing performance bounds for
discounted reward MDPs. We also present simulations that empirically validate
the result.

1 INTRODUCTION

Average reward Markov Decision Processes (MDPs) find applications in domains where decisions
are made over time to optimize long-term performance. Some of these applications include resource
allocation, portfolio management in finance, healthcare, and robotics (Ghalme et al., 2021; Bielecki
et al., 1999; Patrick & Begen, 2011; Mahadevan, 1996; Tadepalli & Ok, 1998). Approaches for
determining the optimal policy can be broadly categorized into dynamic programming algorithms
(such as value and policy iteration (Murthy et al., 2024; Abbasi-Yadkori et al., 2019; Gosavi, 2004))
and gradient-based algorithms. Although gradient-based algorithms are heavily used in practice
(Schulman et al., 2015; Baxter & Bartlett, 2000), the theoretical analysis of their global convergence
is a relatively recent undertaking.

While extensive research has been conducted on the global convergence of policy gradient methods
in the context of discounted reward MDPs (Agarwal et al., 2020; Khodadadian et al., 2021), compara-
tively less attention has been given to its average reward counterpart. Contrary to average reward
MDPs, the presence of a discount factor (γ < 1) serves as a source of contraction that alleviates
the technical challenges involved in analyzing the performance of various algorithms in the context
of discounted reward MDPs. Consequently, many algorithms designed for average reward MDPs
are evaluated using the framework of discounted MDPs, where the discount factor approaches one
(Grand-Clément & Petrik, 2024).

In the context of discounted reward MDPs, the projected policy gradient (PPG) algorithm converges
as

ρ∗γ − ρπk
γ ≤ O

(
1

(1− γ)
5

)
(1)

where γ is the discount factor, πk is the policy obtained at the k-th iteration of the PPG algorithm,
ρ∗γ represents the optimal value function, and ργπk represents the value function iterates obtained
through projected gradient ascent (Xiao, 2022b). Let ρπ denote the average reward associated with
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some policy π. It is well known that ρπ = limγ→1(1− γ)ρπγ under some mild conditions (Puterman,
1994; Bertsekas, 2007). Utilizing this relationship in equation 1, we observe the upper bound tends
to infinity in the limit γ → 1. Hence, it is necessary to devise an alternate approach to study the
convergence of policy gradient in the context of average reward MDPs.

1.1 RELATED WORK

There is a wealth of literature on discounted reward MDPs. Fazel et al. (2018) were among the first to
establish the global convergence of policy gradients, specifically within the domain of linear quadratic
regulators. Bhandari & Russo (2024) established a connection between the policy gradient and policy
iteration objectives, determining conditions under which policy gradient algorithms converge to
the globally optimal solution. Agarwal et al. (2020) offer convergence bounds of O( 1

ϵ2(1−γ)6 ) for
policy gradient and O( 1

ϵ(1−γ)2 ) for natural policy gradient, where ϵ represents the suboptimality. It is
noteworthy that while their convergence bounds for policy gradient rely on the cardinality of the state
and action space, the convergence bounds for natural policy gradient are independent of them. Xiao
(2022b) enhance the O( 1

ϵ2(1−γ)6 ) policy gradient bounds by refining the dependency on the discount
factor, yielding improved bounds of O( 1

ϵ(1−γ)5 ). Zhang et al. (2021) prove that variance-reduced
versions of stochastic policy gradient also converge to the global optimal solution. They achieve
this through a gradient truncation mechanism. Mei et al. (2020) analyze global convergence of
softmax-based gradient methods and prove exponential rejection of suboptimal policies.

The global convergence of policy gradient methods has been extensively studied in the context of
planning for average reward Markov Decision Processes (MDPs). Even-Dar et al. (2009) and Murthy
& Srikant (2023) provide foundational results for natural policy gradient methods, proving their global
convergence for finite state and action spaces. Extending this work, Grosof et al. (2024) analyze the
more challenging case of infinite state spaces, establishing theoretical guarantees for convergence
in this general setting. A critical contribution of our work lies in proving that the smoothness of
the average reward holds for a large class of MDPs in the tabular setting. This smoothness property
allows us to establish the first global convergence bounds for policy gradient methods in average
reward MDPs, eliminating the need for previously unverified and restrictive smoothness assumptions.

In the learning context, actor-critic and gradient-based methods have been a central focus for analyzing
average reward MDPs. Konda & Tsitsiklis (1999) investigate two-time-scale actor-critic algorithms,
employing linear function approximation for value functions and demonstrating asymptotic local
convergence to a stationary point. Similarly, Bhatnagar et al. (2009) analyze four gradient-based
methods, including natural policy gradients, and establish asymptotic local convergence using
an ODE-based framework. Addressing global convergence, Bai et al. (2023) study policy gradient
methods under the assumption that the average reward is smooth with respect to the policy parameters,
achieving a regret bound of O(T 1/4). Ganesh et al. (2024) consider the average reward natural actor-
critic algorithm which does not rely on knowledge of mixing time, and provide a regret bound of
O
√
T . However, the results in both of these works rely on unverified smoothness assumptions, leaving

open questions about their applicability to general MDPs. Our contributions further strengthen the
understanding of when these assumptions might indeed be true.

1.2 CONTRIBUTIONS

In this subsection, we outline the key contributions of this paper.

• Elimination of Smoothness Assumption: Unlike previous work which assumes the un-
derlying average cost function is smooth, we prove its smoothness by introducing a new
analysis technique. This technique addresses the key difficulty of the lack of uniqueness
of the value function in average-reward problems. We overcome this challenge by using a
projection technique to ensure uniqueness and leveraging the properties of the projection to
prove smoothness. This removes a significant assumption and strengthens the theoretical
foundations of policy gradient methods in average reward MDPs.

• Expression for Smooth Average Cost: We derive an explicit expression for the average
cost that is shown to be smooth in the policy π. This contribution is critical as it provides
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a deeper understanding and new insights into the behaviour of the average reward MDPs
under policy gradient methods.

• Sublinear Convergence Bounds: Using the above smoothness property, we present finite
time bounds on the optimality gap over time, showing that the iterates approach the optimal
policy with an overall regret of O (log (T )) . In contrast, the regret bounds in Bai et al. (2023)
are atleast O

(
T

1
4

)
without learning error and with tabular parametrization. In place of the

discount factor and the cardinality of the state and action spaces in the discounted setting,
our finite-time performance bounds involves a different parameter which characterizes the
complexity of the underlying MDP.

• Extension to Discounted Reward MDPs: Our analysis can also be applied to the discounted
reward MDP problem to provide stronger results than the state of the art. In particular, we
show that our performance bounds for discounted MDPs can be expressed in terms of a
problem complexity parameter, which can be independent of the size of the state and action
spaces in some problems.

• Experimental Validation: We simulate the performance of policy gradient across a simple
class of MDPs to empirically evaluate its performance. The simulations illustrate the impact
of MDP complexity on convergence rates. Unlike previous results, where the bounds depend
solely on the size of the state and action spaces, these simulations demonstrate how the
underlying structure of the MDP can result in significantly different convergence rates, even
with fixed state and action spaces. These observations further validate the theoretical bounds
derived for the convergence of projected policy gradient in average reward MDPs.

2 PRELIMINARIES

In this section, we introduce our model, address the limitations of applying the optimality gap bounds
from discounted reward MDPs to the average reward scenario, present the gradient ascent update,
and discuss the assumptions underlying our analysis.

2.1 AVERAGE REWARD MDP FORMULATION

We consider the class of infinite horizon average reward MDPs with finite state space S and finite
action space A. The environment is modeled as a probability transition kernel denoted by P. We
consider a class of randomized policies Π = {π : S → ∆(A)}, where a policy π maps each state
to a probability vector over the action space. The transition kernel corresponding to a policy π
is represented by Pπ : S → S, where Pπ(s′|s) =

∑
a∈A π(a|s)P(s′|s, a) denotes the single step

probability of moving from state s to s′ under policy π. Let r(s, a) denote the single step reward
obtained by taking action a ∈ A in state s ∈ S . The single-step reward associated with a policy π at
state s ∈ S is defined as rπ(s) =

∑
a∈A π(a|s)r(s, a).

The infinite horizon average reward objective ρπ associated with a policy π is defined as:

ρπ = lim
N→∞

Eπ

[∑N−1
n=0 rπ(sn)

]
N

, (2)

where the expectation is taken with respect to Pπ. The average reward is independent of the initial
state distribution under some mild conditions (Ross, 1983; Bertsekas, 2007) and can be alternatively
expressed as ρπ =

∑
s∈S dπ(s)rπ(s), where dπ(s) is the stationary measure corresponding to state s

under the transition kernel Pπ , ensuring that dπ satisfies the equation dπPπ = dπ . Associated with a
policy is a relative state value function vπ ∈ R|S| that satisfies the following average reward Bellman
equation

ρπ1+ vπ = rπ + Pπvπ, (3)

where 1 is the all ones vector (Puterman, 1994; Bertsekas, 2007). Note that vπ is unique up to
an additive constant. Setting

∑
s∈S dπ(s)vπ(s) = 0 imposes an additional constraint over vπ,

providing a unique value function vector denoted by vπ0 , known as the basic differential reward
function (Tsitsiklis & Van Roy, 1999). It can be shown that vπ0 can alternatively expressed as
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vπ0 (s) = Eπ [
∑∞

n=0 (r
π(sn)− ρπ) |s0 = s]. Hence any element in the set {vπ0 + c1 : c ∈ R} is a

solution vπ to the Bellman equation equation 3.

The relative state action value function Qπ ∈ RS×A associated with a policy π is defined as:

Qπ(s, a) = r(s, a) +
∑
s′∈S
a′∈A

P (s′|s, a)π(a′|s′)Qπ(s′, a′)− ρπ ∀ (s, a) ∈ S ×A (4)

Similar to vπ, Qπ is also unique up to an additive constant. Analogously, every solution Qπ of
equation 4 can be expressed as an element in the set {Qπ

0 (s, a) + c1 : c ∈ R} where Qπ
0 (s, a) =

Eπ [
∑∞

n=0 (r
π(sn)− ρπ) |s0 = s, a0 = a]. Upon averaging equation 4 with policy π, it follows that

vπ(s) =
∑

a∈A π(a|s)Qπ(s, a). The average reward policy gradient theorem (Sutton & Barto, 2018)
for policies parameterized by θ is given by:

∂ρ

∂θ
=
∑
s∈S

dπ(s)
∑
a∈A

∂π(s, a)

∂θ
Qπ(s, a) (5)

As we focus on tabular policies in this paper, our parameterization aligns with the tabular policy,
where θ is equivalent to π. The policy gradient update considered is defined below.

πk+1 := ProjΠ

[
πk + η

∂ρπ

∂π

∣∣∣∣∣
π=πk

]
∀k ≥ 0, (6)

where ProjΠ denotes the orthogonal projection in the Euclidean norm onto the space of randomized
policies Π and η denotes the step size of the update. In the following subsection, we recall the
policy gradient result within the framework of discounted reward MDPs and address why it cannot
be directly applied to the average reward scenario.

2.2 RELATIONSHIP TO DISCOUNTED REWARD MDPS

Let ρπµ,γ := µT (1− γPπ)−1rπ represent the discounted reward value function associated with policy
π, under the initial distribution µ ∈ ∆S and where γ represents the discount factor (Bertsekas, 2007).
Consider the projected policy gradient update given below.

πk+1 := ProjΠ

[
πk + η

∂ρπµ,γ
∂π

∣∣∣∣∣
π=πk

]
∀k ≥ 0. (7)

When the step size η = (1−γ)3

2γ| A | , the iterates πk generated from projected gradient ascent equation 7
satisfy the following equation:

ρ∗µ,γ − ρπk
µ,γ ≤ 256|S||A |

k(1− γ)5

∥∥∥∥∥dπ
∗

µ,γ

µ

∥∥∥∥∥
2

∞

, (8)

where ρ∗µ,γ represents the optimal value function under initial distribution µ, and dπ
∗

µ,γ := (1 −
γ)µT (1− γPπ∗

)−1 represents the state occupancy measure under optimal policy π∗ (Xiao, 2022b).
Under some mild conditions the average reward ρπ associated with a policy π and the value function
ρπµ,γ(s) are related as below:

ρπ = lim
γ→1

(1− γ)ρπµ,γ(s). (9)

Note that the above relation (Bertsekas, 2007; Ross, 1983) holds for all s ∈ S and all µ ∈ ∆S since
the average reward is independent of the initial state distribution. Upon leveraging the relation in
equation 9 and multiplying equation 8 with (1− γ), it is apparent that the upper bound of equation 8
in the limit of γ → 1 tends to infinity. This is due to (1− γ)

4 that remains in the denominator
of equation 8 upon multiplying with (1− γ). Therefore it is necessary to devise an alternative proof
technique in order to analyze the global convergence of policy gradient in the context of average
reward MDPs. Prior to presenting the main result and its proof, we state the assumption used in our
analysis.
Assumption 1. For every policy π ∈ Π, the transition matrix Pπ associated with the induced Markov
chain is irreducible and aperiodic. This assumption also means that there exist constants Ce < ∞
and λ ∈ [0, 1) such that for any k ∈ N and any π ∈ Π, the Markov chain corresponding to Pπ is
geometrically ergodic i.e., ∥ (Pπ)

k − 1 (dπ)
⊤ ∥∞ ≤ Ceλ

k.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 MAIN RESULTS

Theorem 1. Let ρπk be the average reward corresponding to the policy iterates πk, obtained
through the policy gradient update equation 6. Let ρ∗ represent the optimal average reward, that is,
ρ∗ = maxπ∈Π ρπ . There exist constants LΠ

2 and CPL, determined by the underlying MDP, such that
when the step size η < 1

LΠ
2

, the following holds:

• For all MDPs it is true that,

ρ∗ − ρπk ≤ 1
1

ρ∗−ρπ0
+ νk

, ∀k ≥ 0. (10)

where ν :=
(

1
32C2

PL|S|LΠ
2

)(
1 + 4

(
1

32C2
PL|S|LΠ

2

))− 3
2

• For simple MDPs (i.e. LΠ
2 ≪ 1) we obtain exponential convergence, that is

ρ∗ − ρπk ≤ c−
k
2

(
ρ∗ − ρπ0

) 1

2k , ∀k ≥ 0 (11)

where 1
c = 32|S|LΠ

2 C
2
PL < 1.

Remark: It is worth noting that the above bounds correspond to a regret of O(log(T )). While
regret is typically a concept associated with online learning settings, we present it here to facilitate
the development of learning algorithms inspired by the findings of this work. All previous results on
convergence for discounted MDPs are of the form σ

kp (Agarwal et al., 2020; Mei et al., 2022; Xiao,
2022a), where σ is a large constant. However, since the worst sub-optimality is 1, the bound σ

kp

becomes less meaningful for initial k. In contrast, our bound 1
1

ρ∗−ρπ0 +νk
is meaningful from the very

first iteration. The maximum sub-optimality is ρ∗ − ρπ0 at k = 0, and it decreases monotonically
thereafter.

Our second result, an observation that is novel to this work, shows that simple MDPs exhibit much
faster (linear) convergence rates. This explains why techniques like reward shaping, which simplify
the MDP, can be highly effective.

3.1 KEY IDEAS AND PROOF OUTLINE

A similar result was proved for discounted reward MDPs in Agarwal et al. (2020); Xiao (2022a).
An important property pivotal to the global convergence analysis of the projected policy gradient
is the smoothness of the discounted reward value function. Demonstrating the smoothness of the
discounted reward value function is relatively straightforward due to the contractive properties of the
discount factor. However, this poses a significant challenge in the context of average reward MDPs.
Here, the absence of a discount factor as a source of contraction, coupled with the lack of uniqueness
in the average reward value function, complicates the task of proving the smoothness of the average
reward. Therefore, the first important property we prove is the smoothness of average reward.

3.1.1 SMOOTHNESS OF AVERAGE REWARD

A differentiable function f : C → R is called L-smooth if it satisfies

∥∇f(y)−∇f(x)∥2 ≤ L∥y − x∥2 ∀y, x ∈ C. (12)

where C is some subset of Rn. Further if the function is L-smooth, it satifies the following property.∣∣∣∣∣f(y)− f(x)− ⟨∇f(x), y − x⟩

∣∣∣∣∣ ≤ L

2
∥y − x∥2 ∀y, x ∈ C, (13)

From the above definition, it is apparent that if f is L-smooth then cf is |c|L-smooth for any c ∈ R.
It can be shown that the infinite horizon discounted reward V π

µ,γ is 2γ| A |
(1−γ)3 -smooth. Leveraging the

result in equation 9, one can see that the smoothness constant of ρπ is limγ→1
2γ| A |
(1−γ)2 → ∞. Hence,

5
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the smoothness of the discounted reward cannot be leveraged to show the smoothness of the average
reward.

In this paper, we establish the smoothness of the infinite horizon average reward by first establishing
the smoothness of the associated relative value function. We then leverage the average reward
Bellman Equation 3 to establish the smoothness of the average reward in terms of the smoothness
of the relative value function. However, since the relative value function is unique up to an additive
constant, we consider the projection of the value function onto the subspace orthogonal to the 1
vector. This provides us with an unique representation of the value function whose smoothness can
be evaluated.

Let Φ ∈ R|S|×|S| be the projection matrix that maps any vector to its orthogonal projection in the
Euclidean norm onto the subspace perpendicular to the 1 vector. Then the following lemma holds.
Lemma 1. Let I be the identity matrix and 1 be the all ones vector, both of dimension |S|. Then the

orthogonal projection matrix is given by Φ =
(
I − 11

⊤

|S|

)
. The unique value function vπϕ is obtained

as a solution to the following fixed point equation,

vπϕ = Φ
(
rπ + Pπvπϕ − ρπ1

)
(14)

and can be alternatively represented as

vπϕ = (I − ΦPπ)
−1

Φrπ. (15)

Since Pπ has 1 as its Perron Frobenius eigenvalue, (I − Pπ) is a singular matrix. It can be verified
that Φ1 = 0, hence 1 is an eigenvector of ΦPπ for all π with a corresponding eigenvalue of 0. It can
subsequently be proven that the rest of the eigenvalues of ΦPπ are all less than one in terms of their
absolute value and hence equation 15 is well defined.

With a unique closed form for the average reward value function established, the subsequent task is to
determine its smoothness constant. Given that the smoothness constant of a function f corresponds
to the largest eigenvalue of its Hessian, we adopt an analytical approach similar to that presented in
Agarwal et al. (2020). This involves utilizing directional derivatives and evaluating the maximum
rate of change of derivatives across all directions within the policy space. It’s important to note that
since we are maximizing over directions expressible as differences between any two policies within
the policy space, the resulting Lipschitz and smoothness constants are referred to as the restricted
Lipschitz and smoothness constants, respectively. The restricted smoothness of the average reward
value function is stated below.
Lemma 2. For any policy π ∈ Π, there exist constants Cm, Cp, Cr, κr ∈ R+ which are determined
by the underlying MDP, such that the value function vπϕ is 4

(
2C3

mC2
pκr + C2

mCpCr

)
-smooth.

Since the average reward value function is Lipschitz and smooth with respect to its policy, one can
directly utilize this property to establish the Lipschitzness and smoothness of the average reward.
These results are characterized in the following lemmas.
Lemma 3. For any policy π ∈ Π, there exist constants Cm, Cp, Cr, κr ∈ R+ which are determined
by the underlying MDP, such that the average reward ρπ is LΠ

1 -Lipschitz.∣∣∣∣∣〈∂ρπ∂π
, π′ − π

〉∣∣∣∣∣ ≤ LΠ
1 ∥π′ − π∥2, ∀π, π′ ∈ Π, (16)

where LΠ
1 = 2(Cr + CpCmκr + 2(C2

mCpκr + CmCr))

The restricted Lipschitzness of the average reward is utilized to prove its restricted smoothness.
Lemma 4. For any policy π ∈ Π, there exist constants Cm, Cp, Cr, κr ∈ R+ which are determined
by the underlying MDP, such that the average reward ρπ is LΠ

2 -smooth.∣∣∣∣∣〈π′ − π,
∂2ρπ

∂π2
(π′ − π)

〉∣∣∣∣∣ ≤ LΠ
2

2
∥π′ − π∥22 ∀π, π′ ∈ Π, (17)

where LΠ
2 = 4(C2

pC
2
mκr + CpCmCr + (Cp + 1)(C2

mCpκr + CmCr) + 4(C3
mC2

pκr + C2
mCpCr)).

6
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Table 1: Constants capturing the MDP Complexity
Definition Range Remark

Cm maxπ∈Π∥(I − ΦPπ)−1∥
2Ce|S|
1−λ

See Assumption 1
for definition of Ce and λ

Lowest rate of mixing

Cp maxπ,π′∈Π
∥Pπ′

−Pπ∥
∥π′−π∥2

[0,
√
| A |] Diameter of transition kernel

Cr maxπ,π′
∥rπ

′
−rπ∥∞

∥π′−π∥2
[0,
√
| A |] Diameter of reward function

κr maxπ∥Φrπ∥∞ [0, 2) Variance of reward function

LΠ
1

2 Cr + CpCmκr +
2(C2

mCpκr + CmCr)
[0, k1

√
| A |C2

m] Restricted Lipschitz constant

LΠ
2

4 C2
pC

2
mκr+CpCmCr+(Cp+

1)(C2
mCpκr + CmCr) +

4(C3
mC2

pκr + C2
mCpCr)

[0, k2| A |C3
m] Restricted smoothness constant

Cp, Cm are defined using operator norm w.r.t. L∞ norm. Precisely,

Cm = maxπ max||v||∞≤1 ||(I − ΦPπ)−1v||∞, and Cp = maxπ,π′∈Π max||v||∞≤1
||(Pπ′

−Pπ)v||∞
||π′−π||2

Note that the restricted Lipschitz constant of the average reward is upper bounded by its general
Lipschitz constant:

max
π′∈Π:∥π′−π∥2≤1

∣∣∣∣∣〈∂ρπ∂π
, π′ − π

〉∣∣∣∣∣ ≤ max
u∈RS ×A:∥u∥2≤1

∣∣∣∣∣〈∂ρπ∂π
, u
〉∣∣∣∣∣ (18)

By confining our analysis of the smoothness constants to the policy class, we introduce a dependency
of our convergence bounds on MDP-specific constants, including Cr, Cp, Cm, Ce and κr. These
constants capture the complexity of the underlying MDP and are exclusive to the analysis presented
in this paper, as there appears to be no such dependency observed in the global convergence bounds
of Agarwal et al. (2020). A more detailed description of these constants can be found in Table 1,
where k1 and k2 represent MDP-independent numeric constants. These constants, which rely on the
characteristics of the MDP, suggest that the projected policy gradient may achieve faster convergence
in MDPs with lower complexity as opposed to those with higher complexity. The range of these
constants can be found in Appendix A. We now proceed to analyze the convergence of projected
policy gradient utilizing the smoothness of the average reward.

3.1.2 CONVERGENCE OF POLICY GRADIENT

Using the smoothness property of the average reward, it is possible to show that the improvement
in the successive average reward iterates is bounded from below by the product of the smoothness
constant and the difference in the policy iterates, as described in the lemma below.

Lemma 5. Let ρπk be the average reward corresponding to the policy iterate πk obtained from
equation 6. Let LΠ

2 be as in Lemma 4. Then,

ρπk+1 − ρπk ≥ LΠ
2

2
∥πk+1 − πk∥2, ∀k ∈ N. (19)

Successively increasing iterates are not sufficient to guarantee finite time global convergence bounds.
It is therefore necessary to bound the suboptimality associated with each iterate. We do so by
leveraging the performance difference lemma stated below.
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Lemma 6. Let ρ∗ be the globally optimal average reward. Then for any π ∈ Π, the suboptimality of
ρπ can be expressed as:

ρ∗ − ρπ =
∑
s

dπ
∗
(s)
∑
a

Qπ(s, a)[π∗(a|s)− π(a|s)]. (20)

Proof. The proof can be found in Cao (1999).

In the next lemma, we upper bound the right-hand side of equation 20 in terms of the gradient of ρπ.
Lemma 7. The suboptimality of any π ∈ Π satisfies:

ρ∗ − ρπ ≤ CPL max
π′∈Π

〈
π′ − π,

∂ρπ

∂π

〉
, ∀π ∈ Π, (21)

where CPL = maxπ∈Π
s∈S

dπ∗
(s)

dπ(s) .

Note that CPL is a constant that is proportional to the size of the state space. We do not know if
the appearance of such a constant is inevitable or not; however, it should be noted such a constant
appears in prior works on discounted reward problems as well (Agarwal et al., 2020; Xiao, 2022a).

It is possible to further upper bound the expression in Lemma 7 using the smoothness property of the
average reward.
Lemma 8. Let πk be the policy iterates generated by equation 6. Then for all π′ ∈ Π it is true that,〈∂ρπk+1

∂πk+1
, π′ − πk+1

〉
≤ 4
√

|S|LΠ
2 ∥πk+1 − πk∥, (22)

Lemmas 5,7 and 8 are combined to prove the result in Theorem 1.

3.2 EXTENSION TO DISCOUNTED REWARD MDPS

Existing performance bounds in the context of discounted reward MDPs require an iteration com-
plexity of O

(
|S||A |
(1−γ)5ϵ

)
to achieve policies with suboptimality of ϵ (Xiao, 2022a). These bounds are

independent of the hardness of the underlying MDP. Our approach improves on this bound, yield-
ing an O(

|S|LΠ
2

ϵ ) iteration complexity, where LΠ
2 = C2

p Ĉ
2
mκr + CpĈmCr + (Cp + 1)(Ĉ2

mCpκr +

ĈmCr) + 4(Ĉ3
mC2

pκr + Ĉ2
mCpCr),where Ĉm := ∥(I − γPπ)−1∥. It is straightforward to see that

Ĉm ≤ 1
1−γ . Hence, the iteration complexity improves to O

(
LΠ

2 |S|
(1−γ)5ϵ

)
, as the constants satisfy

κr ≤ 2 and Cp, Cr ≤
√
|A|. Further, the approach considered in this paper provides faster conver-

gence rates for MDPs with low complexity, i.e., MDPs that have low values of Cp or Cr. The exact
performance bounds can be obtained from an approach similar to the one outlined in Kumar et al.
(2023), where LΠ

2 represents the restricted smoothness constant of the discounted return ρπγ . This
constant can be derived through a process analogous to the one described in this paper.

For instance, consider a trivial MDP for which Cp = 0 or κr = 0 (implies Cr = 0), i.e., an
MDP where the transition kernel is independent of the action enacted. For this trivial MDP every
policy is an optimal policy. The state of the art convergence guarantees (Xiao, 2022a), still requires
O(|S||A |ϵ−1) iterations for ϵ close optimal policy. Whereas, the performance bounds presented in
this paper predict O(|S|ϵ−1) iterations for convergence. Thus the constant LΠ

2 captures the hardness
of the MDP. Therefore, MDPs with lower complexity, i.e., lower values of LΠ

2 , converge faster than
MDPs with higher complexity, thus improving on current complexity-independent bounds.

4 SIMULATIONS

Here, we present simulations corresponding to two MDP complexity measures. In order to study the
convergence of projected policy gradient in the context of average reward MDPs and its dependence
on the underlying MDP complexity, we present simulation results corresponding to two complexity
measures: the cardinality of state and action spaces, and the diameter of the reward function.
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(a) Convergence as a function of state space cardi-
nality

(b) Convergence as a function of reward variance

Figure 1: Improvement in average reward as a function of MDP complexity

Figure 1(a) considers MDPs with (|S|, | A |) = {(3, 3), (9, 9), (81, 81)}. We construct the transition
kernel and the reward function in the same manner for all MDPs, which we discuss in the appendix.
Projected policy gradient was implemented for 2000 iterations and the overall average reward is
plotted as a function of iteration number. As expected, the convergence rate is slower when (|S|, | A |)
are larger due to the fact that the reward smoothness constant is larger. This reduction stems from
small values of CM , Cr, Cp, which are characteristic of MDPs with smaller state and action space
cardinalities when the transition kernel and reward structures are similar. A less obvious result is
that, even for MDPs with a fixed cardinality of state and action spaces, the rate of convergence
can be considerably different as shown in Figure 1(b). For this simulation, we fix the state and
action space cardinality at (|S|, | A |) = (16, 16). We randomly generate a transition kernel, which
remains constant across different single-step reward functions corresponding to varying reward
variances. In particular, we consider four different reward variances - no variance, low, high and
maximal variance. We recall the definition of Cr found in Table 1. We see that Cr scales with
reward variance. Specifically, Cr is large when small changes to the policy result in significant
modifications to the mean reward. Therefore, we anticipate that higher reward variance will lead to
slower convergence. Additional details are found in the appendix. The observed convergence trend
aligns with the theoretical bounds obtained, indicating that MDPs with small values of Cr tend to
converge relatively faster.

Next, we discuss the impact of Cp on convergence of policy gradient. We consider MDPs of size 16,
i.e., (|S|, | A |) = (16, 16). We generate three different transition kernels. The first is uniform, so
the actions do not change the transition probabilities, the second is deterministic (i.e., there exists
some s′ ∈ S such that P(s′|s, a) = 1 for all (s, a) ∈ (S,A)), and the last is non-uniform but
stochastic transition kernel. We recall the definition of Cp from Table 1. We see that Cp is larger
when the transition probabilities change by a greater amount with small changes to the policy. Thus,
deterministic MDPs should have higher Cp values then ones that are more stochastic. Additional
details are provided in the appendix. We run the policy gradient algorithm considered in this paper
for each MDP setting and plot the overall change in average reward as a function of iterations, for
3000 iterations. Figure 2 indicates that policy gradient in MDPs corresponding to small values
of Cp converges relatively faster than for MDPs corresponding to large values of Cp. Hence, the
performance bounds obtained in Theorem 1 are in some sense, more representative of the empirical
convergence trend of the policy gradient algorithm.

Note on Limitations and Future Work: Although we study tabular policies, this approach can
be generalized to parametric class of policies. This study uses the exact value of the gradient and
does not account for learning errors in the analysis. Nonetheless, we highlight that this is the first
comprehensive proof of global convergence for policy gradient methods in average reward MDPs.
Future work will focus on incorporating learning errors into this framework.
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Figure 2: Convergence as a function of Cp

5 CONCLUSION

In this paper, we presented the first comprehensive finite-time global convergence analysis of policy
gradient for infinite horizon average reward MDPs. Key contributions include eliminating the
smoothness assumption from previous work, deriving an explicit expression for the smooth average
cost, and proving sublinear convergence with a regret of O(log (T )). Our findings offer a more
general and robust understanding of policy gradient methods in average reward MDPs, addressing
long-standing challenges such as the lack of uniqueness in value functions. We also extended our
analysis to discounted reward MDPs, providing stronger performance bounds by incorporating a
complexity parameter beyond state and action space sizes. The theoretical results were further
supported by simulations that highlighted how the structure of the underlying MDP influences
convergence rates. These insights open avenues for refining performance bounds and exploring
real-world applications in both average and discounted reward MDPs.
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A SMOOTHNESS OF AVERAGE REWARD

A.1 PROOF OF LEMMA 1

Consider the subspace orthogonal E to the all ones vector 1 ∈ R|S| defined below:

E = span
{
θ ∈ R|S| : θ⊤1 = 0.

}
(23)

The orthogonal projection vϕ of a vector v in the Euclidean norm onto the subspace E is defined as:

vϕ = argmin
u∈E

||v − u||2 (24)

It can be checked that the closed form expression for vϕ is given by:

vϕ =

(
I − 11

⊤

|S|

)
v (25)

where I ∈ R|S|×|S| is the identity matrix.
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Consider the projection of the vector rπ + Pπvπ − ρπ1 onto E for any policy π ∈ Π. The above
projection is identical to the projection of rπ + Pπvπ onto E, since ρπ1 lies in the nullspace of Φ.

Φ(rπ − ρπ1+ Pπv) = (rπ − ρπ1+ Pπv)−
〈
1, rπ − ρπ1+ Pπv

〉 1
|S|

(26)

=(rπ + Pπv)−
〈
1, rπ + Pπv

〉 1
|S|

(27)

=rπ − ⟨rπ,1⟩ 1
|S|

+ Pπv − ⟨1,Pπv⟩ 1
|S|

(28)

=rπ − ⟨rπ,1⟩ 1
|S|

+ Pπv − 1

|S|
(1⊤Pπv) (29)

=(I − 11
⊤

|S|
)rπ + (I − 11

⊤

|S|
)Pπv (30)

=Φ [rπ + Pπv] . (31)

Consider the average reward Bellman equation corresponding to policy π ∈ Π:

ρπ1+ vπ = rπ + Pπvπ (32)

Imposing an additional constraint vπ⊤
1 = 0 yields a unique average reward value function denoted

by vπϕ . Moreover, it is true that,

Φvπϕ +Φρπ1 =Φrπ +ΦPπvπϕ (33)

=⇒ Φvπϕ =Φrπ +ΦPπvπϕ , (34)
(a)
=⇒ vπϕ =Φ[rπ + Pπvπϕ ], (35)

where (a) is true because vπ⊤
1 = 0 =⇒ Φvπ = vπ. Thus the projected value function with an

unique representation is given by:

vπϕ = [I − ΦPπ]
−1

Φrπ, (36)

and the existence of the inverse is proven in Subsection A.2, Lemma 12. An alternate expression for
the projected value function is given by: vπϕ =

(
I + 11

⊤D − 11
⊤

|S|

)
vπ0 , where D ∈ R|S|×|S| is a

diagonal matrix whose entries correspond to the stationary measure over the states associated with
policy π. See Tsitsiklis & Van Roy (1999) for more details.

A.2 PROOF THAT EIGENVALUES OF (I − ΦPπ) ARE NON-ZERO

In this subsection, we introduce the lemmas required to establish the proof of the eigenvalues of(
I − 11

⊤

|S|

)
Pπ being nonzero. We use the following notation: 1 ∈ Rn represents the all ones vector

and I ∈ Rn×n is the identity matrix.

Lemma 9. Let A ∈ Rn×n be a stochastic matrix. It is true that

((
I − 11

⊤

n

)
A

)k

=

(
I − 11

⊤

n

)
Ak. (37)
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Proof. For any k ∈ N, consider,(
I − 11

⊤

n

)
Ak

(
I − 11

⊤

n

)
A =

(
Ak − 11

⊤

n
Ak

)(
A− 11

⊤

n
A

)
(38)

= Ak+1 − 11
⊤

n
Ak+1 −Ak 11

⊤

n
A+

11
⊤

n
Ak 11

⊤

n
A (39)

(a)
= Ak+1 − 11

⊤

n
Ak+1 − 11

⊤

n
A+

11
⊤

n

11
⊤

n
A, (40)

(b)
= Ak+1 − 11

⊤

n
Ak+1 − 11

⊤

n
A+

11
⊤

n
A, (41)

= Ak+1 − 11
⊤

n
Ak+1. (42)

=

(
I − 11

⊤

n

)
Ak+1 (43)

where (a) is true because Ak
1 = 1 and (b) follows from the fact that 1

⊤
1

n = 1. From mathematical
induction it thus follows that,((

I − 11
⊤

n

)
A

)k

=

(
I − 11

⊤

n

)
Ak ∀k ∈ N. (44)

Lemma 10. For any irreducible and aperiodic stochastic matrix A ∈ Rn×n, it is true that

lim
k→∞

((
I − 11

⊤

n

)
A

)k

= 0 (45)

Proof. From Lemma 9 we have,((
I − 11

⊤

n

)
A

)k

=

(
I − 11

⊤

n

)
Ak ∀k ∈ N (46)

Since A is irreducible and aperiodic, the following limit converges to the stationary distribution
d ∈ Rn

+ associated with A.

lim
k→∞

Ak = 1d⊤ (47)

Consider the following,

lim
k→∞

((
I − 11

⊤

n

)
A

)k

= lim
k→∞

(
I − 11

⊤

n

)
Ak (48)

=

(
I − 11

⊤

n

)
lim
k→∞

Ak (49)

=

(
I − 11

⊤

n

)
1d⊤ (from Equation equation 47), (50)

=1d⊤ − 11
⊤

n
1d⊤ (51)

(a)
=1d⊤ − 1d⊤ (52)
=0. (53)

where (a) is true because 1
⊤
1

n = 1.

Lemma 11. Let A ∈ Rn×n be a matrix such that limk→∞ Ak = 0. Then (I −A)−1 =
∑∞

k=0 A
k.
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Proof. For any K ∈ N, consider the following,

(I −A)

(
K∑

k=0

Ak

)
= I −AK+1, (54)

=⇒ (I −A)

(
lim

K→∞

K∑
k=0

Ak

)
= lim

K→∞

(
I −AK+1

) (a)
= I, (55)

where (a) follows from the fact that limk→∞ Ak = 0. Hence the inverse of (I −A) can be expressed
as (I −A)−1 =

∑∞
k=0 A

k.

Lemma 12. Let A ∈ Rn×n be an irreducible and aperiodic stochastic matrix. Then the matrix(
I −

(
I − 11

⊤

n

)
A
)

is invertible and its inverse is given by:(
I −

(
I − 11

⊤

n

)
A

)−1

=

∞∑
k=0

(
I − 11

⊤

n

)
Ak (56)

Proof. Let λi be eigenvalues of
(
I − 11

⊤

n

)
A. Then λk

i represents the eigenvalues of((
I − 11

⊤

n

)
A
)k

. But from Lemma 10, we know that

lim
k→∞

((
I − 11

⊤

n

)
A

)k

= 0 (57)

Since eigenvalues are continuous functions of their corresponding matrices and all eigenvalues of a
zero matrix are zero, we thus have,

lim
k→∞

λk
i = 0 ∀i ∈ {1, . . . , n} (58)

Equation 58 thus implies that |λi| < 1,∀i ∈ {1, . . . , n}. Hence the matrix
(
I −

((
I − 11

⊤

n

)
A
))

has all non zero eigenvalues and is thus invertible. From Lemma 11, we know that

(I −A)−1 =

∞∑
k=0

Ak (59)

when limk→∞ Ak = 0. Since, limk→∞

((
I − 11

⊤

n

)
A
)k

= 0 from Lemma 10, we have the
following result, (

I −
(
I − 11

⊤

n

)
A

)−1

=

∞∑
k=0

(
I − 11

⊤

n

)
Ak (60)

From definition we have Φ =
(
I − 11

⊤

n

)
. Hence the inverse (1− ΦPπ)

−1
=
∑∞

k=0 Φ (Pπ)
k exists

and is well defined for all π ∈ Π.

A.3 SMOOTHNESS OF THE AVERAGE REWARD VALUE FUNCTION vπϕ

In order to prove the smoothness of the average reward value function and the infinite horizon average
reward, we consider an analysis inspired by Agarwal et al. (2020), where instead of computing the
maximum eigenvalue of the associated Hessian matrices, we consider the maximum value of the
directional derivative across all directions within the policy class.

Let π, π′ ∈ Π be any policies within the policy class. Then define πα as a convex combination of
policies π and π′. That is

πα : = (1− α)π + απ′ (61)

= π + α(π′ − π) (62)
= π + αu (63)
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where u = π′ − π.

Since πα is linear in α, it is true that

∇απα =
d(π + αu)

dα
= u, and ∇2

απα = 0. (64)

This thus implies,

∥∇απα∥2 = ∥u∥2 ≤ ∥π′ − π∥1 ≤ 2S, and ∥∇2
απα∥2 = 0, (65)

Thus, πα is both ∥u∥2-Lipschitz and 0-smooth with respect to α, for all u that can be represented as
the difference of any two policies.

From the definition of Pπ , we have

Pπα(s′|s) =
∑
a∈A

πα(a|s)P(s′|s, a) (66)

=
∑
a∈A

[π(a|s) + αu(a|s)]P(s′|s, a) (67)

=⇒ ∂Pπα(s′|s)
∂α

=
∑
a∈A

u(a|s)P(s′|s, a). (68)

That is,

∇αPπα = Pu, consequently ∇2
αPπα = 0. (69)

From the definition of rπ , we have

rπα(s) =
∑
a∈A

πα(a|s)r(s, a) (70)

=
∑
a∈A

[π(a|s) + αu(a|s)] r(s, a) (71)

=⇒ ∂rπα(s)

∂α
=
∑
a∈A

u(a|s)r(s, a). (72)

That is,

∇αr
πα = ru, consequently ∇2

αr
πα = 0. (73)

Hence the policy πα, the associated reward rπα and the transition kernel Pπα are all Lipschitz and
smooth with respect to α.

Lemma 13. Let A(α) ∈ Rn×n be a matrix such that (I −A(α)) is invertible for all α ∈ [0, 1].
Define M(α) := (I −A(α))

−1. Then it is true that,

∂2M(α)

∂α2
=

∂M(α)

∂α

∂A(α)

∂α
M(α) +M(α)

∂2A(α)

∂α2
M(α) +M(α)

∂A(α)

∂α

∂M(α)

∂α
. (74)

Proof.

M(α) (I −A(α)) = I (75)
∂M(α)

∂α
(I −A(α))−M(α)

∂A(α)

∂α
= 0 (76)

∂M(α)

∂α
= M(α)

∂A(α)

∂α
M(α) (77)

∂2M(α)

∂α2
=

∂

∂α

(
M(α)

∂A(α)

∂α
M(α)

)
, (78)

=
∂M(α)

∂α

∂A(α)

∂α
M(α) +M(α)

∂2A(α)

∂α2
M(α) +M(α)

∂A(α)

∂α

∂M(α)

∂α
(79)
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Consider the following definition utilized in the proofs of the upcoming lemmas.

Mπα = [I − ΦPπα ]
−1 (80)

Lemma 14. Recall the definition of the projected average reward value function vπϕ in Equation equa-
tion 36. Value function vπϕ is 2C2

mCpκr + 2CmCr-Lipschitz in Π, that is∣∣∣∣∣
〈
∂vπϕ
∂π

, π′ − π

〉∣∣∣∣∣ ≤ 2
(
C2

mCpκr + CmCr

)
∥π′ − π∥2, ∀π, π′ ∈ Π. (81)

Proof.

vπα

ϕ = MπαΦrπα (82)

=⇒
∂vπα

ϕ

∂α
=

∂Mπα

∂α
Φrπα +MπαΦ

∂rπα

∂α
(83)

= Mπα
∂ΦPπα

∂α
MπαΦrπα +MπαΦ

∂rπα

∂α
, (from Lemma 13), (84)

= MπαΦPuMπαΦrπα +MπαΦru, (from equation 69 and equation 73).
(85)

=⇒
∥∥∥∂vπα

ϕ

∂α

∥∥∥
∞

= ∥MπαΦPuMπαΦrπα +MπαΦru∥∞ (86)

≤ ∥Mπα∥∞∥Φ∥∞∥Pu∥∞∥Mπα∥∞∥Φrπα∥∞ + ∥Mπα∥∞∥Φru∥∞ (87)

≤ 2C2
mCpκr + 2CmCr. (88)

The constants Cm, Cp, Cr and κr are characterized in Table 1 with their respective bounds in Lemma
18.

We can now build on the previous lemma to prove the smoothness of the average reward value
function.

Lemma 15. The value function vπϕ is 8(C3
mC2

pκr + C2
mCpCr)-smooth in Π. That is,〈

π′ − π,
∂2vπϕ(s)

∂π
(π′ − π)

〉
≤ 8

(
C3

mC2
pκr + C2

mCpCr

)
∥π′ − π∥22 ∀π′, π ∈ Π, s ∈ S (89)

Proof. From Lemma 14, it is true that

∂vπα

ϕ

∂α
=MπαΦPuMπαΦrπα +MπαΦru

=⇒
∂2vπα

ϕ

∂α2
=

∂

∂α

[
MπαΦPuMπαΦrπα +MπαΦru

]

=
∂Mπα

∂α
ΦPuMπαΦrπα +MπαΦPu ∂M

πα

∂α
Φrπα +MπαΦPuMπαΦ

∂rπα

∂α

+
∂Mπα

∂α
Φru

=Mπα
∂ΦPπα

∂α
MπαΦPuMπαΦrπα +MπαΦPuMπα

∂ΦPπα

∂α
MπαΦrπα

+MπαΦPuMπαΦ
∂rπα

∂α
+Mπα

∂ΦPπα

∂α
MπαΦru, (from Lemma 13),

=MπαΦPuMπαΦPuMπαΦrπα +MπαΦPuMπαΦPuMπαΦrπα

+MπαΦPuMπαΦru +MπαΦPuMπαΦru, (from equation 69 and equation 73).
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Considering the L∞ norm,∥∥∥∂2vπα

ϕ

∂α2

∥∥∥
∞

= 2∥MπαΦPuMπαΦPuMπαΦrπα +MπαΦPuMπαΦru∥∞

≤ 2∥MπαΦPuMπαΦPuMπαΦrπα∥∞ + ∥MπαΦPuMπαΦru∥∞
≤ 8(C3

mC2
pκr + C2

mCpCr).

Hence, we obtain,

〈
π′ − π,

∂2vπϕ(s)

∂π
(π′ − π)

〉
≤ 8

(
C3

mC2
pκr + C2

mCpCr

)
∥π′ − π∥22 ∀π′, π ∈ Π, s ∈ S (90)

A.4 LIPSCHITZNESS OF THE INFINITE HORIZON AVERAGE REWARD ρπ

The Lipschitzness and smoothness of the projected value function vπϕ is leveraged through the average
reward Bellman equation to prove the Lipschitzness and smoothness of the infinite horizon average
reward.

Lemma 16. Recall the average reward Bellman Equation corresponding to a policy π and projected
value function vπϕ in Equation equation 32. The average reward ρπ is LΠ

1 -Lipschitz.∣∣∣∣∣〈∂ρπ∂π
, π′ − π

〉∣∣∣∣∣ ≤ LΠ
1 ∥π′ − π∥2, ∀π, π′ ∈ Π, (91)

where LΠ
1 = 2(Cr + CpCmκr + 2(C2

mCpκr + CmCr))

Proof. From Equation equation 32,

ρπ1 = rπ + Pπvπϕ − vπϕ . (92)

Taking derivative with respect to α,

∂ρπα

∂α
1 =

∂rπα

∂α
+

∂Pπα

∂α
vπα

ϕ + Pπα
∂vπα

ϕ

∂α
−

∂vπα

ϕ

∂α
(93)

(94)
= Φru +ΦPuvπα + (Pπα − I)(MπαΦPuMπαΦrπα +MπαΦru), (from Lemma 14)

(95)
= Φru +ΦPuMπαΦrπα + (Pπα − I)(MπαΦPuMπαΦrπα +MπαΦru), (96)

(from equation 73 and equation 69).
(97)

Considering the L∞ norm of the above expression,∣∣∣∂ρπα

∂α

∣∣∣ =∥∥∥ Φru +ΦPuMπαΦrπα + (Pπα − I)(MπαΦPuMπαΦrπα +MπαΦru)
∥∥∥
∞
, (98)

≤ ∥Φru∥∞ + ∥ΦPuMπαΦrπα∥∞ + ∥Pπα − I∥∞(∥MπαΦPuMπαΦrπα∥∞ + ∥MπαΦru∥∞),
(99)

≤ 2∥ru∥∞ + 2∥PuMπαΦrπα∥∞ + ∥Pπα − I∥(∥MπαΦPuMπαΦrπα∥∞ + ∥MπαΦru∥∞),
(100)

≤ 2Cr + 2CpCmκr + 2(2C2
mCpκr + 2CmCr). (101)
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A.5 SMOOTHNESS OF THE INFINITE HORIZON AVERAGE REWARD ρπ

Lemma 17. The average reward ρπ is LΠ
2 -smooth.∣∣∣∣∣〈π′ − π,

∂2ρπ

∂π2
(π′ − π)

〉∣∣∣∣∣ ≤ LΠ
2

2
∥π′ − π∥22 ∀π, π′ ∈ Π, (102)

where LΠ
2 = 4(C2

pC
2
mκr + CpCmCr + (Cp + 1)(C2

mCpκr + CmCr) + 4(C3
mC2

pκr + C2
mCpCr)).

Proof. From Lemma 16, we have

∂ρπα

∂α
1 = Φru +ΦPuMπαΦrπα + (Pπα − I)(MπαΦPuMπαΦrπα +MπαΦru). (103)

Taking the derivative again, and repeatedly invoking Equations equation 69,equation 73 and Lemma
13, it follows that,

∂2ρπα

∂α2
1 =0 +

∂

∂α
(ΦPuMπαΦrπα) +

∂

∂α

(
(Pπα − I)(MπαΦPuMπαΦrπα +MπαΦru)

)
(104)

=ΦPuMπαΦPuMπαΦrπα +ΦPuMπαΦru + (Pu)(MπαΦPuMπαΦrπα +MπαΦru)
(105)

+ (Pπα − I)
(
MπαΦPuMπαΦPuMπαΦrπα +MπαΦPuMπαΦPuMπαΦrπα

(106)

+MπαΦPuMπαΦru +MπαΦPuMπαΦru
)
, (107)

=ΦPuMπαΦPuMπαΦrπα +ΦPuMπαΦru + (Pu)(MπαΦPuMπαΦrπα +MπαΦru)
(108)

+ 2(Pπα − I)
(
MπαΦPuMπαΦPuMπαΦrπα +MπαΦPuMπαΦru

)
. (109)

Considering the L∞ norm of the above expression,

∣∣∣∂2ρπα

∂α2

∣∣∣ ≤∥ΦPuMπαΦPuMπαΦrπα∥∞ + ∥ΦPuMπαΦru∥∞ + ∥(Pu)(MπαΦPuMπαΦrπα

+MπαΦru)∥∞ + 2∥(Pπα − I)
(
MπαΦPuMπαΦPuMπαΦrπα +MπαΦPuMπαΦru

)
∥∞

≤4(C2
pC

2
mκr + CpCmCr + (Cp + 1)(C2

mCpκr + CmCr) + 4(C3
mC2

pκr + C2
mCpCr)).

Remark: The smoothness and Lipschitz constant analysis of both the average reward value functions
and the infinite horizon average reward are constrained to all directions u, such that every u = π− π′

can be expressed as a difference of any two policies π, π′ ∈ Π. Hence the smoothness and Lipschitz
constants derived are restricted to the directions that can be expressed as this difference and hence are
referred to as restricted smoothness/Lipschitzness.

A.6 TABLE OF CONSTANTS CAPTURING MDP COMPLEXITY

We restate the table of constants and their description here for the sake of convenience.
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Table 2: Constants capturing the MDP Complexity
Definition Range Remark

Cm maxπ∈Π∥(I − ΦPπ)−1∥ 2Ce|S|
1−λ Lowest rate of mixing

Cp maxπ,π′∈Π
∥Pπ′

−Pπ∥
∥π′−π∥2

[0,
√
A] Diameter of transition kernel

Cr maxπ,π′
∥rπ

′
−rπ∥∞

∥π′−π∥2
[0,

√
A] Diameter of reward function

κr maxπ∥Φrπ∥∞ [0, 2] Variance of reward function

LΠ
1

2 Cr + CpCmκr + 2(C2
mCpκr + CmCr) [0, k1

√
AC2

m] Restricted Lipschitz constant

LΠ
2

4 C2
pC

2
mκr+CpCmCr+(Cp+1)(C2

mCpκr+

CmCr) + 4(C3
mC2

pκr + C2
mCpCr)

[0, k2AC3
m] Restricted smoothness constant

Lemma 18. The constants Cp, Cr, Cm, κr in Table 2 and other operator norms are bounded as
below:

1. ∥Φ∥ := max∥v∥∞≤1∥Φv∥∞ ≤ 2.

2. ∥Pπ∥ = max∥v∥∞≤1∥Pπv∥∞ ≤ max∥v∥∞≤1∥v∥∞ = 1.

3. κr = maxπ∥Φrπ∥∞ ≤ 2

4. Cm ≤ 2CeS
1−λ

5. Cp = max
u= π′−π

∥π′−π∥2
,π′,π∈Π

max∥v∥∞≤1∥Puv∥∞ ≤
√
A.

6. Cr = max
u= π′−π

∥π′−π∥2
,π′,π∈Π

∥Ru∥∞ ≤
√
A.

Proof. 1. Consider the projection matrix Φ,

∥Φ∥∞ = max
∥v∥∞≤1

∥Φv∥∞ ≤ max
∥v∥∞

(110)

= max
s∈S

∣∣∣∣v(s)− ∑
s∈S v(s)

S

∣∣∣∣ (111)

≤ max
s∈S

|v(s)|+
∣∣∣∣∑s∈S v(s)

S

∣∣∣∣ (112)

≤ 2∥v∥∞ = 2 (113)

2. The operator norm of Pπ is bounded as below:

∥Pπ∥ = max
∥v∥∞≤1

∥Pπv∥∞ (114)

≤ max
∥v∥∞≤1

∥v∥∞ (115)

≤ 1. (116)

Equality is attained by the vector v = 1.
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3. κr is bounded as below:

κr = max
π∈Π

∥Φrπ∥∞ (117)

= max
π∈Π

∥∥∥∥rπ −
∑

s∈S rπ(s)

|S|
1

∥∥∥∥
∞

(118)

≤ max
π∈Π

∥rπ∥∞ +

∥∥∥∥∑s∈S rπ(s)

|S|
1

∥∥∥∥
∞

(119)

≤ 2 (120)

κr, in some sense, captures the variance of the single step reward function across the class
of policies. Greater the variation of the r across different actions, greater the value of κr.

4. Cm is the maximum of the operator norm of the matrix (I − ΦPπ)
−1 across all policies

π ∈ Π. It is determined as follows:

(I − ΦPπ)−1 =

∞∑
k=0

(ΦPπ)k =

∞∑
k=0

Φ (Pπ)
k
, (from Lemma 12), (121)

(a)
=

∞∑
k=0

Φ((Pπ)
k − 1 (dπ)

⊤
), (as Φ1 (dπ)⊤ = 0) (122)

Let v ∈ R|S| such that ||v||∞ ≤ 1. Then,

=⇒ ∥(I − ΦPπ)−1v∥∞ ≤
∞∑
k=0

∥Φ((Pπ)
k − 1 (dπ)

⊤
)v∥∞ (123)

≤
∞∑
k=0

∥Φ∥∞∥((Pπ)
k − 1 (dπ)

⊤
)v∥∞ (124)

≤
∞∑
k=0

∥Φ∥∞|S|∥((Pπ)
k − 1 (dπ)

⊤
)∥∞∥v∥∞ (125)

(b)
≤

∞∑
k=0

2|S|Ceλ
k∥v∥∞, (126)

=
2Ce|S|
1− λ

(127)

where dπ represents the stationary measure associated with the transition kernel Pπ, (a)
follows from the fact that the projection matrix Φ projects vectors onto a subspace orthogonal
to the subspace spanned by the all ones vector 1 and (b) is a consequence of the irreducibility
and aperiodicity assumption of the Markov chain induced under all policies. More precisely,
for any irreducible and aperiodic stochastic matrix A, it is true that:

∥An − 1d⊤∥∞ ≤ Ceλ
n, (128)

for some constants λ ∈ [0, 1), Ce < ∞, where d is stationary distribution of A. λ is the
coefficient of mixing and captures the rate of geometric mixing of the Markov Chain. Hence,
higher the value of λ, lower the rate of mixing.
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5. Cp represents the diameter of the transition kernel as a function of the policy class and can
be bound as below.

Cp := max
u= π′−π

∥π′−π∥2
,π′,π∈Π

max
∥v∥∞≤1

∥Puv∥∞, (129)

= max
π′,π∈Π,∥v∥∞≤1

∥(P(π′−π)v∥∞
∥π′ − π∥2

, (130)

= max
π′,π∈Π,∥v∥∞≤1

max
s∈S

|(Pπ′
v)(s)− (Pπv)(s)|
∥π′ − π∥2

(131)

≤ max
π′,π∈Π,∥v∥∞≤1

max
s∈S

|(Pπ′
v)(s)− (Pπv)(s)|
∥π′

s − πs∥2
, (since ∥π′

s − πs∥2 ≤ ∥π′ − π∥2),

(132)

= max
π′,π∈Π,∥v∥∞=1

max
s∈S

|(π′
s)

⊤Psv − (πs)
⊤Psv|

∥π′
s − πs∥2

, (where Ps(a, s
′) = P (s′|s, a), πs(a) := π(s, a)),

(133)

= max
π′,π∈Π,∥v∥∞≤1

max
s∈S

|(π′
s − πs)

⊤Psv|
∥π′

s − πs∥2
, (134)

≤ max
π′,π∈Π,∥v∥∞≤1

max
s∈S

∥π′
s − πs∥1∥Psv∥∞
∥π′

s − πs∥2
, (from Holder’s inequality) (135)

= max
π′,π∈Π

max
s∈S

∥π′
s − πs∥1

∥π′
s − πs∥2

, (136)

≤
√
| A |. (137)

6. Cr represents the diameter of the single step reward function as a function of the policy
class and can be bound as below.

Cr := max
u= π′−π

∥π′−π∥2
,π′,π∈Π

∥ru∥∞ (138)

= max
π′,π∈Π

∥rπ′ − rπ∥∞
∥π′ − π∥2

(139)

= max
π′,π∈Π

max
s∈S

|rπ′
(s)− rπ(s)|
∥π′ − π∥2

(140)

≤ max
π′,π∈Π

max
s∈S

|rπ′
(s)− rπ(s)|

∥π′
s − πs∥2

, (as ∥π′
s − πs∥2 ≤ ∥π′ − π∥2), (141)

= max
π′,π∈Π

max
s∈S

|(π′
s)

⊤rs − (πs)
⊤rs|

∥π′
s − πs∥2

, (where rs(a) = r(s, a), πs(a) = π(s, a)),

(142)

Cr = max
π′,π∈Π

max
s∈S

|(π′
s − πs)

⊤rs|
∥π′

s − πs∥2
, (143)

≤ max
π′,π∈Π

max
s∈S

∥π′
s − πs∥1∥rs∥∞
∥π′

s − πs∥2
, (from Holder’s inequality) (144)

= max
π′,π∈Π

max
s∈S

∥π′
s − πs∥1

∥π′
s − πs∥2

, (145)

≤
√

| A |. (146)

Since the directional derivatives considered are all within the policy class, the analysis gives rise to
constants such as Cp and Cr, which are functions of the underlying policy class. These constants
capture the MDP complexity by the virtue of their definition and are an artifact of this proof
technique.
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B CONVERGENCE OF AVERAGE REWARD PROJECTED POLICY GRADIENT

Lemma 19. For any convex set X ⊆ Rd, any point a ∈ X , and any update direction u ∈ Rd, let
b = ProjX (a+ u) be the projection of a+ u onto X . It is true that

1. ⟨u, b− a⟩ ≥ ∥b− a∥22.

2. ⟨c− b, u− (b− a)⟩ ≤ 0, ∀c ∈ X .

Proof. The formal proof can be found in Beck (2014).

However, the proof follows trivially from the geometrical representation of projection (see Figure
3,Kumar et al. (2023)), and the fact that the hyperplane separates a convex set from a point not in the
set.

Figure 3: Convex Projection

Intuitively, the proof of the lemma can be interpreted as below.

1. Since the angle between vectors (a− b) and ((a+ u)− b) is greater than 90 degrees, it is
true that ⟨a− b, (a+ u)− b⟩ ≤ 0, which then directly implies ∥b− a∥22 ≤ ⟨u, b− a⟩.

2. The angle between vectors (c − b) and ((a + u) − b) is greater than 90 degrees ∀c ∈ X ,
therefore ⟨c− b, u− (b− a)⟩ ≤ 0.

B.1 PROOF OF LEMMA 5

Lemma 20. The average reward iterates ρπk generated from projected policy gradient satisfy the
following,

ρπk+1 − ρπk ≥ LΠ
2

2
∥πk+1 − πk∥2, ∀k ≥ 0.

where LΠ
2 is the restricted smoothness constant associated with average reward ρπ.

Proof. From the restricted smoothness of the average cost, we have

ρπk+1 ≥ ρπk +

〈
dρπ

dπ

∣∣∣∣∣
π=πk

, πk+1 − πk

〉
− LΠ

2

2
∥πk+1 − πk∥2,

= ρπk + LΠ
2

〈
1

LΠ
2

dρπ

dπ

∣∣∣∣∣
π=πk

, πk+1 − πk

〉
− LΠ

2

2
∥πk+1 − πk∥2,

≥ ρπk + LΠ
2 ∥πk+1 − πk∥2 −

LΠ
2

2
∥πk+1 − πk∥2.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The last inequality follows from the projected gradient ascent policy update rule and item 1 of Lemma
19. Note that the proof only relies on the convexity of the projection set Π and the smoothness of the
objective function.

B.2 PROOF OF LEMMA 7

Lemma 21. The suboptimality of a policy π can be bounded from above as:

ρ∗ − ρπ ≤ CPL max
π′∈Π

〈
π′ − π,

∂ρπ

∂π

〉
, ∀π ∈ Π, (147)

where CPL = maxπ,s
∂π∗

(s)
∂π(s) and ρ∗ is the optimal average reward.

Proof. Average Reward Performance Difference Lemma states that

ρ∗ − ρπ =
∑
s∈S

dπ
∗
(s)Qπ(s, a)[π∗(a|s)− π(a|s)] (148)

≤max
π′

∑
s∈S

dπ
∗
(s)Qπ(s, a)[π′(a|s)− π(a|s)] (149)

=
∑
s∈S

dπ
∗
(s)

dπ(s)
dπ(s)max

π′
s

Qπ(s, a)[π′(a|s)− π(a|s)] (150)

=
∑
s∈S

dπ
∗
(s)

dπ(s)
dπ(s)max

π′
s

Qπ(s, a)[π′(a|s)− π(a|s)]︸ ︷︷ ︸
≥0, (= 0 when π′

s = πs)

(151)

≤
∑
s∈S

(
max
π,s

dπ
∗
(s)

dπ(s)

)
dπ(s)max

π′
s

Qπ(s, a)[π′(a|s)− π(a|s)] (152)

=CPL max
π′

∑
s∈S

dπ(s)Qπ(s, a)[π′(a|s)− π(a|s)] (153)

(a)
=CPL max

π′
⟨dρ

π

dπ
, π′ − π⟩, (154)

where (a) follows from the average reward policy gradient theorem.

B.3 PROOF OF LEMMA 8

Lemma 22. Let πk+1 represent the policy iterates obtained through projected policy gradient. For
any policy π′ ∈ Π, it is true that,〈∂ρπk+1

∂πk+1
, π′ − πk+1

〉
≤ 4
√

|S|LΠ
2 ∥πk+1 − πk∥2, (155)

Proof. For all x, y ∈ C, we have:〈
∂ρπk+1

∂πk+1
, π′ − πk+1

〉
=

〈
∂ρπk+1

∂πk+1
− ∂ρπk

∂πk
+

∂ρπk

∂πk
, π′ − πk+1

〉
(156)

=

〈
∂ρπk+1

∂πk+1
− ∂ρπk

∂πk
, π′ − πk+1

〉
+

〈
∂ρπk

∂πk
, π′ − πk+1

〉
(157)

≤
∥∥∥∥∂ρπk+1

∂πk+1
− ∂ρπk

∂πk

∥∥∥∥ ∥π′ − πk+1∥+
〈
∂ρπk

∂πk
, π′ − πk+1

〉
(158)

(a)
≤ LΠ

2 ∥πk+1 − πk∥∥π′ − πk+1∥+
〈
∂ρπk

∂πk
, π′ − πk+1

〉
, (159)
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where (a) uses smoothness of average reward. Thus, we may continue the chain of inequalities as

equation 159= LΠ
2 ∥πk+1 − πk∥∥π′ − πk+1∥+

〈
∂ρπk

∂πk
−LΠ

2 (πk+1 − πk), π
′ − πk+1

〉
+LΠ

2 ⟨πk+1 − πk, π
′ − πk+1⟩

≤ 2LΠ
2 ∥πk+1 − πk∥∥π′ − πk+1∥+

〈
∂ρπk

∂πk
− LΠ

2 (πk+1 − πk), π
′ − πk+1

〉
≤ 2LΠ

2 ∥πk+1 − πk∥∥π′ − πk+1∥+ LΠ
2

〈
1

LΠ
2

∂ρπk

∂πk
− (πk+1 − πk), π

′ − πk+1

〉
︸ ︷︷ ︸

≤0, (From item 2 of Lemma 19)

≤ 2LΠ
2 ∥πk+1 − πk∥∥π′ − πk+1∥

≤ 2LΠ
2 ∥πk+1 − πk∥diam(Π).

The diameter of the policy class Π, can be upper bounded as

diam(Π)2 = max
π,π

∑
s

∥π′
s − πs∥22 ≤ max

π′,π

∑
s

∥π′
s − πs∥21 ≤ 4S. (160)

This yields the result.

Lemma 23. The scaled sub-optimality ak := ρ∗ − ρk follows the recursion
ca2k+1 + ak+1 − ak ≤ 0, (161)

where c = 1
32LΠ

2 |S|C2
PL

.

Proof. From Lemma 21, we know that,

ρ∗ − ρπk+1 ≤ CPL

〈
π′ − πk+1,

∂ρπk+1

∂πk+1

〉
, ∀π′ ∈ Π, (162)

From Lemma 22, we know that,〈∂ρπk+1

∂πk+1
, π′ − πk+1

〉
≤ 4
√

|S|LΠ
2 ∥πk+1 − πk∥2. (163)

From Lemma 20, we know that,

∥πk+1 − πk∥2 ≤

√
2 (ρπk+1 − ρπk)

LΠ
2

, ∀k ≥ 0. (164)

Combining the above equations yields,

ρ∗ − ρπk+1 ≤
√

32C2
PLL

Π
2 |S| (ρπk+1 − ρπk) (165)

This thus yields,
(ρ∗ − ρπk+1)2

32C2
PLL

Π
2 |S|

+ (ρ∗ − ρπk+1)− (ρ∗ − ρπk) ≤ 0. (166)

A more detailed interpretation of this Lemma can be found in Kumar et al. (2023).

B.4 RECURSION BOUND

In this subsection, we consider the sequence defined as
ak − ak+1 ≥ a2k,

where p ≥ 0 and 0 ≤ a0 ≤ 1. Let f be linear interpolation of the sequence {ak}k≥0, formally
defined as

f(x) := (1− α)ak + αak+1, where k = ⌊x⌋ and α = x− ⌊x⌋.
Let g(0) := a0 and

dg(x)

dx
= −g(x)2, and τk := g−1(ak).

Observe that g is a strictly decreasing function.
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Proposition 1. If τk ≥ k then

g(x) ≥ f(x), ∀x ∈ [k, k + 1].

Proof. We have f(k) = g(τk) = ak and for α ∈ (0, 1)

dg(τk + α)

dx
= −g(τk + α)2, (by definition) (167)

≥ −g(τk)
2, (g is a decreasing function) (168)

= −f(k)2, (as f(k) = g(τk)) (169)

= −a2k (by definition of f ) (170)
≥ ak+1 − ak, (by definition of ak+1) (171)

=
df(k + α)

dx
, (by definition of f ). (172)

Above together with continuity of f and g, for all α ∈ [0, 1], we have

f(k + α) ≤ g(τk + α), (173)
≤ g(k + α), (as τk ≥ k and g is a decreasing function). (174)

Hence claim is proved.

Proposition 2. For all k ≥ 0, we have
τk ≥ k.

Proof. Note that τ0 = 0 by definition g(0) = a0. Now let τk ≥ k, then from Proposition 1, we have

g(x) ≥ f(x), ∀x ∈ [k, k + 1] (175)
=⇒ g(k + 1) ≥ f(k + 1) (176)

= ak+1 (177)
=⇒ τk+1 ≥ k + 1, (as g is a decreasing function). (178)

Hence, by induction the claim is established.

Lemma 24. [Recursion Upper Bound] For p ≥ 2, and 0 ≤ a0 ≤ 1, sequence {ak}k≥0 satisfying
the recursion ak − ak+1 ≥ a2k, follows

ak ≤ 1
1
a0

+ k
, ∀k ≥ 1.

Proof. From Proposition 2, we get τk ≥ k. Combining it with Proposition 1, we get

g(x) ≥ f(x), ∀x ≥ 0.

Now, we solve the o.d.e. to get

dg(x)

dx
= −g(x)2 (179)

=⇒ dx
∣∣∣x=k

x=0
=

∫ k

x=0

−dg(x)

g2(x)
(180)

=⇒ k =
1

g(k)
− 1

g(0)
(181)

=⇒ g(k) =
g(0)

1 + g(0)k
(182)

=⇒ f(k) ≤ a0
1 + a0k

, (as f(x) ≤ g(x)) (183)

=⇒ ak ≤ 1
1
a0

+ k
. (184)

This proves the claim.
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Lemma 25. If ak − ak+1 ≥ ca2k then

ak ≤ 1
1
a0

+ ck
.

Proof. We have

ak − ak+1 ≥ ca2k (185)

=⇒ cak − cak+1 ≥ (cak)
2 (186)

=⇒ cak ≤ 1
1

ca0
+ k

, (from Lemma 24) (187)

=⇒ ak ≤ 1
1
a0

+ ck
. (188)

This subsection (proving the recursion upper bound) is inspired by a technique from Kumar et al.
(2024). However, while their result is similar, it is not applicable to our case. Their result assumes
that c is upper bounded by a constant, which does not hold in our setting. In our case, the smoothness
constant (or hardness coefficient) can approach zero, causing the constant c to diverge to infinity. Our
result is more general, and the proof technique we use is distinct.

Lemma 26. Given ak − ak+1 ≥ ca2k+1, we have

ak ≤ 1
1
a0

+ ck
,

where ν = c(1 + 8c
1−γ )

− 3
2 and c = 1

32C2
PL|S|LΠ

2
.

Proof. We have

ca2k+1 + ak+1 − ak ≤ 0

=⇒ ak+1 ≤ −1 +
√
1 + 4cak
2c

,

=
−1 + f(0) + f ′(0)4cak + f ′′(b) (4cak)

2

2

2c
, (where f(x) =

√
1 + x, b ∈ [0, 4cak])

=
2cak − 2c2a2k(1 + b)−

3
2

2c
, (putting f(0) = 1, f ′(0) =

1

2
, f ′′(a) =

(1 + b)−
3
2

4
)

=
2cak − 2c2a2k(1 + 4cak)

− 3
2

2c
, (as b ≤ 4cak and −(1 + y)−

3
2 is a increasing function )

≤ ak − ca2k
(1 + 4cak)

3
2

, (basic algebra)

≤ ak − νa2k, (as ak ≤ 1 and ν := c(1 + 4c)−
3
2 ).

We get the desired result from Lemma 25.

Lemma 27. If 1
c = 32C2

PL|S|LΠ
2 < 1 that is MDP is very easy (i.e. LΠ

2 << 1) then the policy
gradient converges exponentially fast, that is

ak ≤
( 1

c

) k
2 a−2k

0 .
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Proof. From the above discussion, we have

ca2k+1 ≤ ak − ak+1 (189)
≤ ak, (as ak+1 ≥ 0 by definition) (190)

=⇒ ak+1 ≤
√

ak
c

(191)

≤
( 1

c

) k+1
2 a

1

2k+1

0 (192)

B.5 PROOF OF THEOREM 1

We restate the theorem for the sake of convenience.

Theorem 2. Let ρπk be the average reward corresponding to the policy iterates πk, obtained
through the policy gradient update equation 6. Let ρ∗ represent the optimal average reward, that is,
ρ∗ = maxπ∈Π ρπ . There exist constants LΠ

2 and CPL which are determined by the underlying MDP
such that:

• For all MDPs it is true that,

ρ∗ − ρπk ≤ 1
1

ρ∗−ρπ0
+ νk

, ∀k ≥ 0. (193)

where ν :=
(

1
32C2

PL|S|LΠ
2

)(
1 + 4

(
1

32C2
PL|S|LΠ

2

))− 3
2

• For simple MDPs (i.e. LΠ
2 << 1) we obtain exponential convergence, that is

ρ∗ − ρπk ≤ c−
k
2

(
ρ∗ − ρπ0

) 1

2k , ∀k ≥ 0 (194)

where 1
c = 32|S|LΠ

2 C
2
PL < 1.

Proof. Using Gradient Domination Lemma and Sufficient Increase Lemma as shown in Lemma 23,
we get the following recursion

ak − ak+1 ≥ ca2k+1, (195)

where ak = J∗ − Jπk and c = 1
32C2

PL|S|LΠ
2

is a small constant. Then we get the desired result by
solving the above recursion in Lemma 26 and Lemma 27 for complex MDPs and simple MDPs
respectively.

C SIMULATION DETAILS

C.1 CONVERGENCE WITH DIFFERENT ACTION AND STATE SPACE SIZE

In the first experiment, we compare the convergence of PG for a tabular MDP with (S,A) ∈
{(3, 3), (9, 9), (81, 81)}. We set the reward kernel to be with maximal variance as described above.
For the transition kernel, we use the following matrix:

P (· | s, ·) = 1

2

(
1S×A +

1

S

)
so P (i|s, i) = 1+ 1

S

2 and P (i | s, j) = 1
2S for i ̸= j. For the reward kernel we set the rewards of half

the actions to 1 and the rest to −1, for every state.
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C.2 CONVERGENCE WITH DIFFERENT REWARD FUNCTIONS

In the second experiment, we compare the convergence of PG for a tabular MDP with S = 16 and
A = 16. We set r(s, a) = 0 for any s and a except for one state which we denote by s0. We use the
same randomly generated transition kernel and use the following procedure to generate the reward
function:

• No variance: We assign each (s0, a) pair a reward of 1.
• Low variance: We assign 1

8 of the actions for s0 a reward of −1, and 1 otherwise.

• High variance: We assign 1
4 of the actions for s0 a reward of −1, and 1 otherwise.

• Max variance: We assign 1
2 of the actions for s0 a reward of −1, and 1 otherwise.

C.3 CONVERGENCE WITH DIFFERENT TRANSITION KERNELS

In the third experiment, we compare the convergence of PG for a tabular MDP with S = 16 and
A = 16. We create three different MDPs with the same (S,A) values and the same reward function
that is generated according to the process described above for high variance reward function. We
then generate three different transition kernels:

• Uniform: We assign for all values of s, a, s′, P (s′ | s, a) = 1
S .

• Non-uniform: We assign P (i | s, i) = 1
2S + 1

2 and P (i | s, j) = 1
2S for i ̸= j.

• Deterministic: We look at P (· | s, ·) as an S×A matrix, and assign it a random permutation
of the identity matrix. In this way the result MDP is deterministic but not trivial (so every
state leads to a different one).

D ADDITIONAL DISCUSSION AND FUTURE WORK

Extension to Discounted Reward Setting. In the discounted reward setting, the return ρπ , and the
value function vπ is defined as

ρπ = µT (I − γPπ)Rπ, vπ = (I − γPπ)Rπ, (196)

where γ ∈ [0, 1) is the discount factor Sutton & Barto (2018). The return ρπ is proven to be 8
(1−γ)3 -

smooth (Agarwal et al., 2020). Note that it is an MDP-agnostic bound. We can achieve an MDP
instance-dependent bound with a very minor change in the smoothness analysis of the average-reward
case.

Let us define,

Mπα := (I − γPπα)
−1

. (197)

Observe that Lemma 13 holds for A(α) = γPπα , which yields us

∂2M(α)

∂α2
=

∂M(α)

∂α

∂A(α)

∂α
M(α) +M(α)

∂2A(α)

∂α2
M(α) +M(α)

∂A(α)

∂α

∂M(α)

∂α
, (198)

where M(α) is shorthand for Mπα .

Table 3: Constants capturing the MDP Complexity for Discounted reward
Definition Range Remark

Cm maxπ∈Π∥(I − γPπ)−1∥ 1
1−γ

Cp γmaxπ,π′∈Π
∥Pπ′

−Pπ∥
∥π′−π∥2

[0, γ
√
A] Diameter of transition kernel

Cr maxπ,π′
∥rπ

′
−rπ∥∞

∥π′−π∥2
[0,

√
A] Diameter of reward function

κr maxπ∥rπ∥∞ [0, 1] Variance of reward function
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Lemma 28. The value function vπϕ is 8(C3
mC2

pκr + C2
mCpCr)-smooth in Π. That is,〈

π′−π,
∂2vπϕ(s)

∂π
(π′−π)

〉
≤ 8

(
C3

mC2
pκr + C2

mCpCr

)
∥π′−π∥22 ∀π′, π ∈ Π, s ∈ S (199)

Proof.

∂2vπα

∂α2
=MπαγPuMπαγPuMπαrπα +MπαγPuMπαγPuMπαrπα

+MπαγPuMπαru +MπαγPuMπαru, (from equation 69 and equation 73).

Considering the L∞ norm,∥∥∥∂2vπα

∂α2

∥∥∥
∞

= 2∥MπαγPuMπαγPuMπαrπα +MπαγPuMπαru∥∞

≤ 2∥MπαγPuMπαγPuMπαrπα∥∞ + ∥MπαγPuMπαru∥∞
≤ 8(C3

mC2
pκr + C2

mCpCr).

Hence, we obtain,

〈
π′−π,

∂2vπ(s)

∂π
(π′−π)

〉
≤ 8

(
C3

mC2
pκr + C2

mCpCr

)
∥π′−π∥22 ∀π′, π ∈ Π, s ∈ S (200)

The above result implies the return ρπ is LΠ
2 = 8(C3

mC2
pκr + C2

mCpCr)-smooth. This establishes
the convergence of the projected policy gradient algorithm with an iteration complexity similar to
that stated in Theorem 1 for the average reward case.

Follow up/concurrent work in discounted reward case: The work Liu et al. (2024) improved
the iteration complexity of the policy gradient (discounted reward case) method to O(Aϵ ) from the
previous state-of-the-art iteration complexity of O(SA

ϵ ) Xiao (2022a); Mei et al. (2022). Liu et al.
(2024) does not use smoothness of the return to establish sufficient increase lemma, instead leverages
the performance difference lemma in a novel way.

• Our instance-dependent bound for the MDP stems from the smoothness of the return. As a
result, it is unclear how the two approaches can be effectively combined to achieve tighter
bounds, leaving this as an avenue for future research.

• However, the bound in Liu et al. (2024) can be asymptotically improved by a factor of
1

1−γ , and more meaningful bounds for initial iterates can be obtained using the enhanced
recursion-solving techniques presented in Kumar et al. (2024).

Our work can provide improved, alternative, or suboptimal results (depending on the parameters)
for the discounted reward case. However, it remains the first to establish the global convergence of
policy gradient methods for the average reward setting.

All existing works (Agarwal et al., 2020; Bhandari & Russo, 2024; Mei et al., 2022; Xiao, 2022a) on
the discounted reward case have an iteration complexity that scales with the cardinalities of the state
space S and the action space A, with the exception of the recent work by Liu et al. (2024), which
depends only on A. This dependence on the size of the action space poses significant challenges
when attempting to generalize to infinite state-action spaces.

Infinite Action Space. Our work (for both average and discounted reward case) has the MDP
instance bounded bound of SLΠ

2

ϵ , where LΠ
2 is the smoothness constant that encodes the hardness of

the MDP. This hardness coefficients that makes up LΠ
2 , may be small/finite for even large/infinite

action-space MDPs. However, it requires more careful study to determine the conditions for this to
happen, which we leave for the future work.
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Infinite State Space For the discounted reward setting, Liu et al. (2024) provides a state-
independent bound of O(Aϵ ). The approach taken in their work is fundamentally different from ours,
and extending this technique to the average reward case presents an intriguing direction for future
research.

In our work, which continues the line of research from Agarwal et al. (2020); Bhandari & Russo
(2024); Mei et al. (2022); Xiao (2022a), the bound exhibits state dependence. This dependence arises
from the diameter of the policy class, defined as diam(Π)2 =

∑
π,π′ ∥π − π′∥22 ≤ S. While this

quantity is inherently tied to the state space, it can potentially be bounded for infinite state spaces
under certain structures, such as low-rank policy classes. Exploring this direction in greater detail is
an intriguing avenue for future research. Another challenge is to circumvent the dependence on CPL

constant which captures the suboptimality of a policy. CPL can be ∞ when the state space is infinite,
necessitating a different approach to characterizing the suboptimality of a policy.

D.1 PARAMETRIZED POLICY CLASS LOWER BOUNDS

Parametrized policy class. Our work can also be extended to parameterized policy classes, such
as softmax policies. For parameterized policy classes, the smoothness coefficient can be derived
by augmenting our analysis with the chain and product rules, which is a straightforward extension.
However, this may result in different hardness coefficients, making it an interesting direction for
further exploration. We leave this investigation for future work.

Lower Bounds for policy gradient for average reward case. For the discounted reward setting,
Mei et al. (2022) establishes a lower bound of O(ϵ−1) for policy gradient methods. Specifically,
Theorem 9 of Mei et al. (2022) derives this lower bound using a bandit problem as a counterexample.
Since a bandit is a special case of an MDP with a single state, it serves as an example for both
discounted reward and average reward MDPs. Consequently, the same lower bound of O(ϵ−1) also
applies to average reward MDPs, as implied by Theorem 9 of Mei et al. (2022).

Linear Rates of Policy Gradient with aggressively increasing step sizes. Policy gradient can
be interpreted as a form of soft policy iteration, assuming all states are visited or updated by the
policy. Specifically, as the learning rate increases, policy gradient behavior increasingly resembles
policy iteration. Since policy iteration is known to converge linearly, which is significantly faster than
the typical convergence rates of policy gradient methods, it is natural to expect linear convergence
bounds for policy gradient with aggressively increasing learning rates. This has been established in
several works, including Xiao (2022a); Johnson et al. (2023); Liu et al. (2024).

In most cases, the model is not known, and the exact gradient cannot be computed, requiring the
use of stochastic gradient descent. In such noisy settings, using aggressive step sizes can lead to
instability in the algorithm.

However, in Theorem 1, we demonstrated linear convergence rates for simple MDPs with constant
step sizes. It may also be possible to achieve similar rates for the average reward case by employing
aggressively increasing step sizes, which we leave as an interesting direction for future work.
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