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Abstract

Black-box optimization (BBO) aims to optimize an objective function by iteratively
querying a black-box oracle in a sample-efficient way. While prior studies focus
on forward approaches to learn surrogates for the unknown objective function,
they struggle with steering clear of out-of-distribution and invalid inputs. Recently,
inverse modeling approaches that map objective space to the design space with
conditional diffusion models have demonstrated impressive capability in learning
the data manifold. They have shown promising performance in offline BBO tasks.
However, these approaches require a pre-collected dataset. How to design the
acquisition function for inverse modeling to actively query new data remains an
open question. In this work, we propose diffusion-based inverse modeling for black-
box optimization (Diff-BBO), an inverse approach leveraging diffusion models
for online BBO problem. Instead of proposing candidates in the design space,
Diff-BBO employs a novel acquisition function Uncertainty-aware Exploration
(UaE) to propose objective function values. Subsequently, we employ a conditional
diffusion model to generate samples based on these proposed values within the
design space. We demonstrate that using UaE results in optimal optimization
outcomes, supported by both theoretical and empirical evidence.

1 Introduction
Practical problems in science and engineering often involve optimizing a black-box objective function
that is expensive to evaluate, such as robotics (Tesch et al., 2013) and molecular design (Sanchez-
Lengeling and Aspuru-Guzik, 2018). How to achieve a near-optimal solution while minimizing
function evaluations is thus a major challenge in black-box optimization (BBO). Prior works in
BBO have largely focused on the online setting where a model can iteratively query the function
during training (Turner et al., 2021; Zhang et al., 2021; Hebbal et al., 2019; Mockus, 1974). Most
existing algorithms belong to forward methods, including Bayesian optimization (BO) (Kushner,
1964; Mockus, 1974; Wu et al., 2023; Frazier, 2018), bandit algorithms (Agrawal and Goyal, 2012;
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Figure 1: Forward modeling vs inverse modeling for black-box optimization. (Top) Forward modeling approach
using certain surrogate models (e.g., GPs) for forward modeling and acquisition functions (e.g., UCB, PI, and
EI) to select x. (Bottom) Our inverse modeling approach using generative model (e.g., diffusion model) for
inverse modeling and acquisition function (e.g., UaE) to select y.

Karbasi et al., 2023), and conditional sampling approaches (Brookes et al., 2019; Gruver et al., 2024;
Stanton et al., 2022). They build a surrogate model to approximate the black-box function and
optimize sequentially.

However, these approaches may face difficulties in scenarios where valid inputs represent a small
subspace, such as valid protein sequences or molecular structures. Such optimization problems
become exceptionally challenging, as the optimizer must navigate and avoid out-of-distribution
and invalid inputs (Kumar and Levine, 2020). Recently, a novel set of methods, termed inverse
approaches, have been proposed to address this issue. These methods (Kumar and Levine, 2020;
Krishnamoorthy et al., 2023; Kim et al., 2023; Fu and Levine, 2021) break the traditional paradigm
by learning an inverse mapping from objective space back to the input (design) space. Leveraging the
state-of-the-art generative models, such as diffusion models (Sohl-Dickstein et al., 2015; Song et al.,
2020), these approaches effectively capture data distributions in high-dimensional input space and
facilitate optimization within the data manifold (Kong et al., 2024; Li et al., 2024). They achieve
high performance in offline optimization settings (Kumar and Levine, 2020; Lu et al., 2023; Wang
et al., 2018), assuming access to a fixed pre-collected dataset.

Despite these advancements, the online setting of inverse modeling, particularly how to capture
the uncertainty of the inverse model and design an acquisition function for data-efficient querying,
remains an open question. In this paper, we propose Diff-BBO, an inverse approach for online
black-box optimization. Our approach consists of a novel acquisition function design through the
uncertainty quantification (UQ) of conditional diffusion model, which proposes the desired objective
function values to strategically sample the design space and query the oracle function efficiently. We
summarize our main contributions as follows:

• We present Diff-BBO, an inverse modeling approach for efficient online black-box optimiza-
tion (BBO) leveraging uncertainty of conditional diffusion models.

• We design a novel acquisition function for BBO based on the uncertainty of conditional
diffusion models. Theoretically, we prove that the balance between targeting higher objective
values and minimizing epistemic uncertainty lead to optimal optimization outcomes.

• We demonstrate that Diff-BBO achieves state-of-the-art performance with superior sample
efficiency on Design-Bench and molecular discovery task in the online BBO setting.

2 Methodology

Let f : X → R denote the unknown ground-truth black-box function that evaluates the quality
of any data point x, with X ⊆ Rd. Our goal is to find the optimal point x∗ that maximizes f ,
x∗ ∈ argmaxx∈X f(x). In the batch online BBO setting, we iteratively query f with batch size N
and a fixed query iteration K and update the model based on observed outputs. At each iteration,
the acquisition function guides the data selection of new query points by balancing exploration and
exploitation. In Diff-BBO, we model the conditional distribution of p(x|y,D) with training data D.
The function value y to condition on is proposed by an acquisition function, which quantifies the
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quality of the generated x. The objective of the above optimization becomes:

max
yk∈R

∑K

k=1
f(xk), xk ∼ pθ(· | yk,D), θ ∈ Θ. (1)

To solve this optimization problem, we introduce Diff-BBO algorithm in Algorithm 1. At each
iteration k, we train a conditional diffusion model and compute the optimal y∗k with the designed
acquisition function. In practice, y is selected from a constructed candidate set Y based on the
acquisition function scores α(y). The range of Y is determined by w ·ϕk, where w is a positive scalar
and ϕk is the maximum function values being queried in the current training dataset D. Conditioning
on y∗k, we generate N samples {xj}Nj=1, where xj ∼ pθ(x|y∗k,D). By querying the oracle to evaluate
xj , we obtain the best possible reconstructed value ϕk for the current iteration, and append all queried
data pairs {xj , f(xj)}Nj=1 to the training dataset D. Figure 1 summarizes the difference between the
prior forward BBO methods and our proposed inverse modeling approach.

2.1 Acquisition Function Design
In this section, we analyze the uncertainty of Diff-BBO, decomposing its uncertainty into aleatoric and
epistemic uncertainty. Then we propose an acquisition function called Uncertainty-aware Exploration
(UaE) based on it. We prove that by achieving a balance between high objective values and low
epistemic uncertainty, UaE provides a near-optimal solution to the online BBO problem.

Uncertainty Decomposition. We resort to the tools of Bayesian inference to solve the optimization
problem defined in Equation (1). Given an observed value y of a sample x, the objective of Bayesian
inference is to estimate the predictive distribution:

p(x | y,D) = Eθ[pθ(x | y)] =
∫
θ

pθ(x | y)p(θ | D)dθ. (2)

By Equation (2), we recognize that the uncertainty arises from two sources: uncertainty in deciding
parameter θ from its posterior p(θ|D) and uncertainty in generating sample x from a fixed diffusion
model pθ(x | y) after θ is chosen. We further provide a decomposition in terms of the aleatoric
uncertainty and its epistemic counterpart.

To estimate the aleatoric uncertainty, we can Monte Carlo (MC) sample x for N times from a
learned likelihood function pθ(x | y) for fixed y, θ. To estimate the epistemic uncertainty, we use
ensemble techniques. During the inference time, by initializing the trained ensemble models with
different random seeds, we first sample M model parameters {θi}Mi=1 to simulate M conditional
diffusion models. Then we generate N samples {xj}Nj=1 for each diffusion model with corresponding
parameter θi, ∀i ∈ [M ]. Combining the above gives a practical way to decompose and estimate the
two types of uncertainty, whish is formally described in Proposition 1.

Proposition 1 (Uncertainty Decomposition). At each iteration k ∈ [K], the overall uncertainty in
inverse modeling can be split into aleatoric and epistemic components, measured empirically as:

∆aleatoric (y,D) = Eθi∼p(·|D)

[
Varxi,j∼pθi

(·|y) (∥xi,j∥)
]
, ∀i ∈ [M ], j ∈ [N ];

∆epistemic (y,D) = Varθi∼p(·|D)

(
Exi,j∼pθi

(·|y) [∥xi,j∥]
)
, ∀i ∈ [M ], j ∈ [N ].

(3)

Uncertainty-aware Exploration. At each iteration k ∈ [K] of Dif-BBO algorithm, the acquisition
function proposes an optimal scalar value y∗k as follows: y∗k = argmaxy α(y,D), which is used to
generate x in the design space using conditional difussion model.

Note that to design an effective acquisition function for inverse modeling, we need to achieve a
balance between high objective values y and low epistemic uncertainty. On the one hand, it is
advantageous to focus on the regions in X whose corresponding y is of high values. As function
evaluations are expensive to perform, we prefer to generate samples x conditioned on higher y, and
only query the oracle for such promising samples to solve the black-box optimization task. On the
other hand, we employ the epistemic uncertainty to gauge the error in the trained diffusion model.
Specifically, it helps reduce the approximation error between y∗k and the reconstructed function value
maxj∈[N ] f(xj), where f(·) is the black-box oracle, and xj ∼ pθ(·|y∗k,D),∀j ∈ [N ].

3



We introduce the Uncertainty-aware Exploration (UaE) as our designed acquisition function:
α(y,D) = y −∆epistemic(y,D), (4)

which utilizes the uncertainty estimation on conditional diffusion model as in Proposition 1. By bal-
ancing the exploration-exploitation trade-off, UaE effectively solve the online BBO problem.

Performance Analyses of UaE. We prove in Theorem 1 that by adopting UaE for inverse modeling
to guide the selection of generated samples for solving BBO problems, we can obtain a near-optimal
solution for the optimization problem defined in Equation (1). Detailed discussions and proofs can be
found in Appendix C, Appendix D, and Appendix E.

Theorem 1. Let Y be the constructed candidate set at each iteration k ∈ [K] in Algorithm 1. By
adopting UaE as the acquisition function to guide the sample generation process in conditional
diffusion model, Diff-BBO (Algorithm 1) achieves a near-optimal solution for the online BBO problem
defined in Equation (1):

max
yk∈R

K∑
k=1

f(xk), xk ∼ pθ(· | yk,D), θ ∈ Θ ⇒ max
yk∈Y

K∑
k=1

α(yk,D).

As a result, equipped with the novel design of UaE, Diff-BBO is a theoretically sound approach
utilizing inverse modeling to effectievely solve the online BBO problem.

3 Experiments
To validate the efficacy of Diff-BBO, we conduct experiments on six real-world online black-box
optimization tasks for both continuous and discrete optimization tasks.

Dataset. We restructured 5 real-world tasks from Design-Bench including 3 continuous and 2
discrete tasks. In D’Kitty and Ant Morphology, the goal is to optimize for the morphology of
robots. In Superconductor, the aim is to optimize superconducting material with a high critical
temperature. TFBind8 and TFBind10 are discrete tasks to find a DNA sequence with maximum
affinity to bind with a specified transcription factor. We also include a Molecular Discovery task to
optimize compound’s activity against a biological target with therapeutic value. For each task, we
arrange the offline dataset from Krishnamoorthy et al. (2023) in ascending order based on objective
values and select data from the 25th to the 50th percentile as the initial training dataset. We prioritize
data with lower objective scores to better observe performance differences across each baseline. Each
optimization iteration is allocated 100 queries to the oracle function (batch size N = 100), with a
total of 16 iterations conducted. More details of the dataset are provided in Appendix F.1.

Baselines. We compare Diff-BBO with 10 baselines, including Bayesian optimization (BO), trust
region BO (TuRBO) (Eriksson et al., 2019), local latent space Bayesian optimization (LOL-BO)
(Maus et al., 2022), likelihood-free BO (LFBO) (Song et al., 2022), evolutionary algorithms (Brindle,
1980; Real et al., 2019), conditioning by adaptive sampling (CbAS) (Brookes et al., 2019), and
random sampling. For BO approaches, we include Gaussian Processes (GP) with Monte Carlo
(MC)-based batch expected improvement (EI), MC-based batch upper confidence bound (UCB)
(Wilson et al., 2017), and joint entropy search (JES (Hvarfner et al., 2022) as the acquisition functions.
For LFBO, we use EI and probability of improvement (PI) as the acquisition functions.

Results. Figure 2 illustrates the performance across six datasets for all baselines and our proposed
algorithm. Notably, Diff-BBO consistently outperforms other baselines in both discrete and continu-
ous settings. Specifically, in the Ant and Dkitty tasks, Diff-BBO demonstrates a significant lead over
all baseline methods, starting from the very first iteration of the online optimization process. This
remarkable performance can be attributed to Diff-BBO’s diffusion model-based inverse modeling
approach, which effectively learns the data manifold in the design space from the initial dataset, even
when the initial dataset lacks data with high objective function values.

4 Conclusion
In this paper, we introduced Diff-BBO, an inverse modeling approach for online black-box optimiza-
tion that leverages the uncertainty of conditional diffusion models. By utilizing the novel acquisition
function UaE, Diff-BBO strategically proposes objective function values to improve sample efficiency.
We did extensive empirical evaluations to show the superior performance of Diff-BBO. Theoretically,
we prove that using UaE leads to optimal optimization solutions.
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Figure 2: Comparison of Diff-BBO with baselines for online black-box optimization. We plot the mean and
standard deviation across three random seeds.
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Appendices
A Diff-BBO algorithm

Algorithm 1: Diff-BBO
Input: Initial dataset D = {x, y}, total number of iterations K, candidate feasible range C,

oracle function f(·), batch size N
1 Initialization: Conditional diffusion model pθ(x|y)
2 for k = 1, 2, · · ·K do
3 Train the conditional diffusion model with D
4 Construct a candidate set Y = {y : 0 ≤ y ≤ C}
5 y∗k = argmaxy∈Y α(y,D)
6 Generate {xj}Nj=1 where xj ∼ pθ(x | y∗k,D)
7 Query the oracle function f(·) with generated samples {xj}Nj=1

8 D ← D ∪ {xj , f(xj)}Nj=1

9 ϕk ← max (f(x)) s.t. x ∈ D
Output: Reconstructed {ϕk}Kk=1

B Conditional Diffusion Model Training
Diffusion Models (Sohl-Dickstein et al., 2015; Song et al., 2020) are probabilistic generative models
that learn distributions through an iterative denoising process. These models consist of three compo-
nents: a forward diffusion process that produces a series of noisy samples by adding Gaussian noise,
a reverse process to reconstruct the original data samples from the noise, and a sampling procedure to
generate new data samples from the learned distribution. Let the original sample be x0 and t be the
diffusion step. For conditional diffusion models, a conditional variable y is added to both the forward
process as q (xt|xt−1, y) and reverse process as pθ (xt−1 | xt, y) , ∀t ∈ [T ].

The reverse process begins with the standard Gaussian distribution p(xT ) = N (0, I), and denoises
xt to recover x0 through the following Markov chain with reverse transitions:

pθ (x0:T |y) = p(xT )
∏T

t=1
pθ (xt−1 | xt, y) , xT ∼ N (0, I),

pθ (xt−1 | xt, y) = N (xt−1;µθ(xt, t, y),Σθ(xt, t, y)) .

During training, Σθ is empirically fixed, and µθ is reparametrized by a trainable denoise function
ϵθ (xt, t, y), which is used to estimate the noise vector ϵ that was added to input xt, and is trained by
minimizing a reweighted version of the evidence lower bound (ELBO):

Ldif = Ex0∼q(x),y,ϵ∼N (0,I),t∼U(0,T ),xt∼q(xt|x0,y)

[
w (t) ∥ϵ− ϵθ (xt, t, y)∥22

]
. (5)

Note that the loss in Equation (5) (Ho et al., 2020) for ϵθ is denoising score matching for all
time step t, which estimates the gradient of the log probability density of the noisy data (a.k.a.
score function): ϵθ (xt, t, y) ≈ −σt∇x log p(x | y). We further denote the score function as
sθ(xt, y, t) := −ϵθ (xt, t, y) /σt.

Instead of learning a fixed deterministic θ from a deterministic neural network, we are interested
in learning its Bayesian posterior to further understand and improve the model’s performance
as well as its reliability with uncertainty quantification. In Bayesian settings, we consider the
model parameters θ ∈ Θ, where Θ is the parameter space, and maintain its posterior distribu-
tion p(θ|D), which is learned from training data D. By choosing θ from its posterior, essen-
tially we sample a score function s̃θ(xt, y, t) from the probability distribution p(sθ | xt, y, t,D) =
N (sθ(xt, y, t),Σsθ(xt, y, t)), whose expected value is sθ(xt, y, t), and variance is a diagonal co-
variance matrix Σsθ (xt, y, t).

Specifically, we adopt classifier-free guidance as in (Ho and Salimans, 2022) to eliminate the
requirement of training a separate classifier model. We jointly train an unconditional diffusion model
pθ(x) parameterized by ϵθ(x, t, ∅) and a conditional diffusion model pθ(x|y) parameterized by
ϵθ(x, t, y) by minimizing the following loss function:

Lcdif = Ex0,y,ϵ,t,xt,λ

[
w (t) ∥ϵ− ϵθ (xt, t, (1− λ)y + λ∅)∥22

]
, (6)
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Figure 3: Black-box optimization framework using the conditional diffusion model as the inverse model. The
overall framework includes 4 stages. 1. Train the conditional diffusion model given the current training dataset.
2. Compute the acquisition function and select the optimal y∗ to condition on. 3. Generate samples {x0}
conditioned on y∗. 4. Query the oracle given generated samples {x0} and update the training dataset.

where x0 ∼ q(x), ϵ ∼ N (0, I), t ∼ U(0, T ),xt ∼ q(xt | x0), λ ∼ Bernoulli(puncond), and
puncond is the probability of setting y to the unconditional information ∅. The overall Diff-BBO
framework with the conditional diffusion model included in shown in Figure 3.

C Uncertainty Quantification on Conditional Diffusion Model
Here, let us first consider the problem of how to capture the uncertainty for a fixed diffusion model.
In fact, the uncertainty in generating x can be explicitly traced through the denoising process. More
specifically, Theorem 2 provides analytical solutions to compute the uncertainty on a single denoising
process of general score-based conditional diffusional models. It provides theoretical insights of
how uncertainty is being propagated through the reverse denoising process both in discrete time and
continuous time, which is characterized through the lens of stochastic differential equations (SDEs)
of the Ornstein–Uhlenbeck (OU) process.

Theorem 2. (Uncertainty propagation) Let t ∈ [T ] be the diffusion step, sθ(x, y, t) be the score
function of the corresponding diffusion model pθ(x | y). For a single conditional diffusional
model pθ(x | y), the uncertainty in generating a sample x can be analytically traced through the
discrete-time reverse denoising process as follows:

Var(xt−1) =
1
4Var(xt) + Var(sθ(x, y, t)) +

1
2 (E [xt ◦ sθ(xt, y, t)]− E[xt] ◦ E[sθ(xt, y, t)]) + I,

E(xt−1) =
1

2
E(xt) + E(sθ(x, y, t)),

where ◦ is the Hadamard product, and I is the identity matrix. Similarly, in continuous-time process,
the uncertainty can be captured as follows:

Var(x0) = (T + 1)I +Var

(∫ T

t=0

(
1

2
xt + sθ(x, y, t)

)
dt

)
. (7)

Nevertheless, performing exact Bayesian inference for uncertainty quantification when training
diffusion models requires non-trivial efforts and can be computationally demanding. Hence, we
introduce a practically-efficient uncertainty decomposition based on Equation (2).

C.1 Conditional Diffusion SDE
It can be shown that the conditional diffusion model can be represented by the Ornstein–Uhlenbeck
(OU) process, which is a time-homogeneous continuous-time Markov process:

dxt = −γxt dt+ σ dwt, (8)

9



where γ is the relaxation rate, σ is the strength of fluctuation, and wt is the standard Wiener process
(a.k.a., Brownian motion). Both γ and σ are time-invariant. In particular, setting γ = 1 and σ =

√
2,

we are able to establish that Denoising Diffusion Probabilistic Model (DDPM) is equivalent to OU
process observed at discrete times. In the remaining text, we consider SDEs for general score-based
diffusion models. The SDE of the forward process in conditional diffusion model can then be written
as:

dxt = −
1

2
g(t)xt dt+

√
g(t) dwt, x0 ∼ q(x|y) (9)

where g(t) is a nondecreasing weighting function that controls the speed of diffusion in the forward
process and g(t) > 0. For simplicity of analysis, we fix g(t) = 1 for all t ∈ [T ].

The generation process of a conditional score-based diffusion model can be viewed as a particular
discretization of the following reverse-time SDE:

dxt =

(
1

2
xt −∇xt log p(xt|y)

)
dt+ dwt, x0 ∼ p(xT |y). (10)

In practice, the unknown ground truth conditional score∇xt
log p(xt|y) needs to be estimated with

score networks. Let such estimator denoted by sθ(x, y, t), then the conditional sample generation is
to simulate the following backward SDE:

dxt =

(
1

2
xt − sθ(x, y, t)

)
dt+ dwt, x0 ∼ N (0, I). (11)

In Bayesian settings, we sample a score function s̃θ(xt, y, t) from the probability distribution
p(sθ|xt, y, t,D) = N (sθ(xt, y, t),Σθ(xt, y, t)) with expected value sθ(xt, y, t), and diagonal co-
variance Σθ(xt, y, t).

C.2 Estimation of Uncertainty
In this section, we quantify the uncertainty of a single conditional diffusion model in both discrete-
time and continuous-time reverse process for Theorem 2.

C.2.1 Uncertainty in Discrete-time Reverse Process
We first proof the first statement of Theorem 2. We consider the Euler discretization of Equation (11),
which leads to:

xt−1 =
1

2
xt + sθ(x, y, t) + ϵ, ϵ ∼ N (0, I). (12)

We thus have,

Var(xt−1) =
1

4
Var(xt) + Var(sθ(x, y, t)) +

1

2
Cov (xt, sθ(x, y, t)) + I. (13)

E(xt−1) =
1

2
E(xt) + E(sθ(x, y, t)). (14)

Here Cov (xt, sθ(x, y, t)) is the element-vise covariance between xt and sθ(x, y, t). Note that we
only need to consider the correlation between xt and sθ(x, y, t) at the same time step. As a result, to
estimate Cov (xt, sθ(x, y, t)), we have,

Cov (xt, sθ(x, y, t)) = E
[
(xt − E[xt]) (sθ(x, y, t)− E[sθ(x, y, t)])T

]
= E [xt ◦ sθ(x, y, t)]− E[xt] ◦ E[sθ(x, y, t)]
= Ext [xt ◦ sθ(x, y, t)]− E[xt] ◦ Ext [sθ(xt, y, t)] (15)

where ◦ is the Hadamard product and the third equality is by tower’s rule. Substituting Equation (15)
back to Equation (13) completes the proof of the first part of Theorem 2.

C.2.2 Uncertainty in Continuous-time Reverse Process
We now proof the second statement of Theorem 2. To perform the uncertainty quantification for the
continuous-time reverse process, we posit the following assumption.

Assumption 1. For valid t ∈ [0, T ], the generating process xt in Equation (10) is integrable and has
finite second-order moments.

10



With Assumption 1, integrating Equation (10) with respect to t yields:

x0 = xT −
∫ T

t=0

(
1

2
xt +∇xt

log p(xt|y)
)
dt+

∫ T

t=0

dwt. (16)

Applying the variance operator to both sides of

Var(x0) = Var(xT ) + Var

(∫ T

t=0

(
1

2
xt +∇xt log p(xt|y)

)
dt

)
+Var

(∫ T

t=0

dwt

)

= I +Var

(∫ T

t=0

(
1

2
xt +∇xt

log p(xt|y)
)
dt

)
+ E

(∫ T

t=0

dwt

)2
−(E[∫ T

t=0

dwt

])2

= (T + 1)I +Var

(∫ T

t=0

(
1

2
xt +∇xt

log p(xt|y)
)
dt

)
︸ ︷︷ ︸

V1

, (17)

where the last equality follows the properties of Itô Integral and rules of stochastic calculus such
that (dw)2 = dt, E[

∫ T

t=0
dwt] = 0. Hence, to provide an uncertainty estimate for x0, it remains

to estimate the term V1. Recall that the true score function ∇xt log p(xt|y) is approximated by
sθ((xt, y, t) = −ϵθ(xt, t, y)/σt. For ease of notation, let sθ,t = sθ(xt, y, t) and s̃θ,t = s̃θ(xt, y, t),
which gives

V1 =

∫ T

t=0

∫ T

s=0

(
1

4
Cov(xs,xt)−

1

2
Cov(xs, sθ,t)−

1

2
Cov(xt, sθ,s) + Cov(sθ,t, sθ,s)

)
dsdt.

When s ≠ t, score functions sθ,t and sθ,s are independent, and similarly, xt and sθ,s are also
independent. As a result, the above equation can be further simplified as

V1 =

T∫
t=0

T∫
s=0

(
1

4
Cov(xs,xt)−

1

2
Cov(xs, sθ,t)

)
dsdt−

T∫
t=0

(Cov(xt, sθ,t) + Cov(sθ,t, sθ,t)) dt.

Combining all the above results together completes the proof of the second statement of Theo-
rem 2.

D Performance Analysis of UaE
To quantify the quality of generated samples, we theoretically analyze the sub-optimality performance
gap between y∗k and reconstructed value at each iteration. In particular, Theorem 3 and Theorem 4
demonstrate that such sub-optimality gap can be effectively handled in inverse modeling, with proofs
deferred to Appendix D.1. We first show that by using conditional diffusion model, the expected
error of the sub-optimality performance gap is zero.

Theorem 3. At each iteration k ∈ [K], define the sub-optimality performance gap as

∆(pθ, y
∗
k) =

∣∣∣∣y∗k − max
j∈[N ]

f(xj)

∣∣∣∣ , where xj ∼ pθ(·|y∗k,D), ∀j ∈ [N ]. (18)

Assume that there exists some θ∗ ∼ p(θ|D) that produces a predictive distribution pθ∗(· | D) such that
it is able to generate a sample x∗ that perfectly reconstructs y∗k. Suppose function f is L-Lipschitz
and each sample is σ-subGaussian, it can be shown that

E [∆(pθ, y
∗
k)] ≤ c1L

√
dσ,

where c1 is some universal constant and the empirical estimator Ê [∆(pθ, y
∗
k)] is unbiased.

Theorem 3 suggests that in expectation, the reconstructed function value maxj∈[N ] f(xj) is able to
accurately recover the provided conditional information y∗k. Hence, in order to obtain a reasonable
estimator for the optimization problem, the remaining concern goes to the variance of the gap defined
in Equation (18), which is further evaluated in Theorem 4.
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Theorem 4. (Sub-optimality bound) At each iteration k ∈ [K], suppose M model parameters
{θi}Mi=1 are generated from the ensemble model for some fixed dataset D. Suppose function f is
L-Lipschitz, it can be shown that the variance of the sub-optimality performance gap of each model
is bounded by the epidemic uncertainty:

Var (∆(pθi , y
∗
k)) ≤ c2L

2dσ2 + c2L
2∆epistemic(y

∗
k,D), ∀i ∈M, (19)

where c2 is some universal positive constant.

Theorem 4 shows that the variance of the sub-optimality performance gap can be upper bounded by
the epistemic uncertainty of diffusion model. Therefore, our proposed acquisition function achieves
the balance between high objective value and low epistemic uncertainty.

D.1 Analysis of Sub-optimality
In this section, we study the behavior of the sub-optimality gap of our algorithm by proving Theorem 3
and Theorem 4. We first introduce the notation that is used throughout this section and the next
section. Then we present the main lemmas along with their proofs. Finally, we combine the lemmas
to prove our main results.

At each iteration k ∈ [K], let y∗k be the target function value on which the diffusion model conditions,
and pθ be the model learned by the conditional diffusion model. We define the performance metric
for online BBO problem, which measures the sub-optimal performance gap between the function
value achieved by sample x ∼ pθ(·|y∗k,D) and the target function value y∗k. Its formal definition is
described as follows:

∆(pθ, y
∗
k) =

∣∣∣∣y∗k − max
j∈[N ]

f(xj)

∣∣∣∣ , where xj ∼ pθ(·|y∗k,D), ∀j ∈ [N ]. (20)

For simplicity of analysis, we consider N = 1, and let the generated sample at the k-th iteration be
xk in the remaining text. We remark that all proofs go through smoothly for general N with more
nuanced notations, and do not affect the conclusions being drawn. To proceed with the proofs in this
section, we first state the formal assumptions for the black-box function f(·) and sample x.

Assumption 2. The scalar black-box function f is L-Lipschitz in x:

|f(x′)− f(x)| ≤ L∥x′ − x∥, ∀x′,x ∈ Rd.

Assumption 3. Each generated sample x ∈ Rd is σ-subGaussian. That is, there exists σ ∈ R such
that for any v ∈ Rd with ∥v∥ = 1, vT(x − E[x]) is σ-subGaussian, and its moment generating
function is bounded by:

E[exp
(
λvT(x− E[x])

)
] ≤ exp

(
σ2λ2

2

)
, ∀λ ∈ R, v ∈ Sd−1,

where S := {v ∈ Rd : ∥v∥ = 1} is the (d− 1) unit sphere.

Before proceeding with the proofs of main theorems, we present our main lemmas.

Lemma D.1. At each iteration k ∈ [K], under fixed parameters θ and θ∗, for xk ∼ pθ(·|y∗k,D),
x∗ ∼ pθ∗(·|y∗k,D), we have

Exk∼pθ(·|y∗
k,D),x∗∼pθ∗ (·|y∗

k,D) [∥x∗ − xk∥] ≤ 8
√
dσ + ∥Ex∗ [x∗]− Exk

[xk]∥ , (21)

Exk∼pθ(·|y∗
k,D),x∗∼pθ∗ (·|y∗

k,D) [∥x∗ − xk∥] ≥ ∥Ex∗ [x∗]− Exk
[xk]∥ . (22)

Proof of Lemma D.1. To bound E [∥x∗ − xk∥], by triangle inequality,
Exk,x∗ [∥x∗ − xk∥] = E [∥x∗ − E[x∗] + E[xk]− xk + E[x∗]− E[xk]∥]

≤ E [∥x∗ − E[x∗]∥] + E [∥xk − E[xk]∥] + E [∥E[x∗]− E[xk]∥] .
Under assumption 3, by Lemma D.3, we have,

Exk,x∗ [∥x∗ − xk∥] ≤ 8
√
dσ + ∥E[x∗]− E[xk]∥ .

Applying triangle inequality completes the step. In addition, it can be easily seen that
Exk,x∗ [∥x∗ − xk∥] ≥ ∥E[x∗]− E[xk]∥ .
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Lemma D.2. At each iteration k ∈ [K], under fixed parameters θ and θ∗, for xk ∼ pθ(·|y∗k,D),
x∗ ∼ pθ∗(·|y∗k,D), we have

Varxk∼pθ(·|y∗
k,D),x∗∼pθ∗ (·|y∗

k,D)(∥x∗ − xk∥) ≤ c3dσ
2. (23)

Proof of Lemma D.2. By definition of variance,

Varxk,x∗(∥x∗ − xk∥) = E[∥x∗ − xk∥2]− (E[∥x∗ − xk∥])2. (24)

Expanding the first term leads to

E[∥x∗ − xk∥2] = E[(x∗ − xk)
T(x∗ − xk)]

= E[∥x∗∥2] + E[∥xk∥2]− 2E[(xk)
Tx∗]

= E[∥x∗∥2] + E[∥xk∥2]− 2E[(xk)]
TE[x∗], (25)

where the last equality is due to the independece between x∗ and xk.

Under Assumption 3 and by Lemma D.4, we have

E[∥x∗∥2] = E[∥x∗ − E[x∗] + E[x∗]∥2]
= E[(x∗ − E[x∗])T(x∗ − E[x∗])] + ∥E[x∗]∥2

= tr(E[(x∗ − E[x∗])(x∗ − E[x∗])]T) + ∥E[x∗]∥2

≤ Cdσ2 + ∥E[x∗]∥2 .
Here, the second equality holds as the cross terms vanish due to the fact that E[x∗ − E[x∗]] = 0.
Similarly,

E[∥xk∥2] ≤ Cdσ2 + ∥E[xk]∥2 .
Substituting the above two results back to Equation (25),

E[∥x∗ − xk∥2] ≤ 2Cdσ2 + ∥E[xk]∥2 + ∥E[x∗]∥2 − 2E[(xk)
Tx∗]

≤ 2Cdσ2 + ∥E[xk]− E[x∗]∥2 . (26)

Substituting Equation (26) back to Equation (24) and applying Lemma D.1 leads to

Varxk,x∗(∥x∗ − xk∥) ≤ 2Cdσ2 + ∥E[xk]− E[x∗]∥2 − (8
√
dσ + ∥E[x∗]− E[xk]∥)2 ≤ c3dσ

2.

With the above results, we are ready to prove Theorem 3 and Theorem 4.

Theorem 3. At each iteration k ∈ [K], define the sub-optimality performance gap as

∆(pθ, y
∗
k) =

∣∣∣∣y∗k − max
j∈[N ]

f(xj)

∣∣∣∣ , where xj ∼ pθ(·|y∗k,D), ∀j ∈ [N ]. (18)

Assume that there exists some θ∗ ∼ p(θ|D) that produces a predictive distribution pθ∗(· | D) such that
it is able to generate a sample x∗ that perfectly reconstructs y∗k. Suppose function f is L-Lipschitz
and each sample is σ-subGaussian, it can be shown that

E [∆(pθ, y
∗
k)] ≤ c1L

√
dσ,

where c1 is some universal constant and the empirical estimator Ê [∆(pθ, y
∗
k)] is unbiased.

Proof of Theorem 3. Recall that we consider the case where N = 1, and denote xk the generated
sample in the k-th iteration, i.e. xk ∼ pθ(·|y∗k,D), where θ ∼ p(θ | D). In each iteration k, with
the existence of θ∗ ∼ p(θ | D), we have y∗k = f(x∗), where x∗ ∼ pθ∗(·|y∗k,D). Hence, under
Assumption 2,

E [∆(pθ, y
∗
k)] = E [|f(x∗)− f(xk)|] ≤ LE [∥x∗ − xk∥] .

By Lemma D.1, we have

E [∆(pθ, y
∗
k)] ≤ 8L

√
dσ + Eθ,θ∗ [∥E[x∗]− E[xk]∥] .

13



Theorem 4. (Sub-optimality bound) At each iteration k ∈ [K], suppose M model parameters
{θi}Mi=1 are generated from the ensemble model for some fixed dataset D. Suppose function f is
L-Lipschitz, it can be shown that the variance of the sub-optimality performance gap of each model
is bounded by the epidemic uncertainty:

Var (∆(pθi , y
∗
k)) ≤ c2L

2dσ2 + c2L
2∆epistemic(y

∗
k,D), ∀i ∈M, (19)

where c2 is some universal positive constant.

Proof of Theorem 4. At every iteration k ∈ [K], let the target function value on which the conditional
diffusion model conditions be y∗k. The statement needs to hold for each conditional diffusion model
in the ensemble, and thus for simplicity of notation, the subscript i of θi is dropped in the remaining
proof. With the existence of θ∗ ∼ p(θ | D), we have y∗k = f(x∗), where x∗ ∼ pθ∗(·|y∗k,D). Recall
that f(xk) is achieved by xk ∼ pθ(·|y∗k,D), where θ ∼ p(θ | D), and N = 1.

Thus, by Eve’s law, the overall variance of ∆(pθ, y
∗
k) can be decomposed as:

Var (∆(pθ, y
∗
k)) = Var (|y∗k − f(xk)|)

= Var (|f(x∗)− f(xk)|)
= Eθ,θ∗ [Varxk,x∗(|f(x∗)− f(xk)| | θ, θ∗)]︸ ︷︷ ︸

T1

+Varθ,θ∗(Exk,x∗ [|f(x∗)− f(xk)| | θ, θ∗])︸ ︷︷ ︸
T2

.

In particular, the first term T1 corresponds to the aleatoric component and the second term T2

corresponds to the episdemic component. We then proceed to bound the above two terms separately.

Step 1: bound T1. Under Assumption 2,

Varxk,x∗(|f(x∗)− f(xk)| | θ, θ∗) ≤ L2Varxk,x∗(∥x∗ − xk∥ | | θ, θ∗).

Under Assumption 3 and by Lemma D.2,

T1 ≤ L2Eθ,θ∗ [Varxk,x∗(∥x∗ − xk∥ | | θ, θ∗)] ≤ c3L
2dσ2. (27)

Step 2: bound T2. Under Assumption 2,

T2 ≤ L2Varθ,θ∗(Exk,x∗ [∥x∗ − xk∥ | | θ, θ∗]))

By Lemma D.1,

Varθ,θ∗(Exk,x∗ [|f(x∗)− f(xk)| | θ, θ∗]) ≤ Varθ,θ∗

(
Eθ,θ∗

[
8
√
dσ + ∥Ex∗ [x∗]− Exk

[xk]∥
])

≤ Varθ,θ∗ (∥Ex∗ [x∗]− Exk
[xk]∥) .

Then by property of variance, we have

Varθ,θ∗ (∥Ex∗ [x∗]− Exk
[xk]∥) = Eθ,θ∗

[
∥Ex∗ [x∗]− Exk

[xk]∥2
]
−
(
Eθ,θ∗

[
∥Ex∗ [x∗]− Exk

[xk]∥
])2

.

From the proof of Lemma D.2, we have

Eθ,θ∗

[
∥Ex∗ [x∗|θ∗]− Exk

[xk|θ]∥2
]

= Eθ∗ [Ex∗ [∥x∗∥2 |θ∗]] + Eθ[Exk
[∥xk∥2 |θ]]− 2Eθ,θ∗ [Exk

[(xk|θ)]TEx∗ [x∗|θ∗]]
= 2(Eθ[Exk

[∥xk∥2 |θ]]− Eθ,θ∗ [Exk
[(xk|θ)]TEx∗ [x∗|θ∗]])

Combining the above results, we have

T2 ≤ L2Varθ,θ∗ (∥Ex∗ [x∗]− Exk
[xk]∥) ≤ 2L2Varθ(Exk

[xk]). (28)

Combining Equation (27) and Equation (28) completes the proof:

Var (∆(pθ, y
∗
k)) ≤ c3L

2dσ2 + 2L2Varθ(Ex[∥xk∥]).
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D.2 Supporting Lemmas

Lemma D.3. Let x ∈ Rd be a σ-subGaussian ramdom vector, then

E[∥x− E[x]∥] ≤ 4σ
√
d. (29)

Lemma D.4. Let x ∈ Rd be a σ-subGaussian ramdom vector, then its variance satisfies:

Var[x] ≤ Cdσ2, (30)

where C is some positive constant.

Proof of lemma D.4. By definition of sub-Gaussian vector, for any direction u ∈ Rd with ∥u∥ = 1,

E
[
exp(λuT(x− E[x]))

]
≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

This implies that the second moment in any direction u satisfies:

E
[
uT((x− E[x])(x− E[x])T)

]
≤ σ2.

Therefore, the maximum eigenvalue of the covariance matrix is upper-bounded by Cσ2, where C is
some positive constant.

Var[x] = tr
(
E
[
(x− E[x])(x− E[x])T

])
≤ Cdσ2.

Lemma D.5. In each iteration k ∈ [K], let D be the collected dataset, θ and θ∗ are parameters
independently drawn from posterior p(θ|D), xk ∼ pθ(·|y∗k,D) and x∗ ∼ pθ∗(·|y∗k,D). For any
measurable function f , and σ(D)-measurable random variable xk,

E [f(xk)] = E [f(x∗)] .

Proof of Lemma D.5. Since the black-box function f is measurable, and by the nature of Algorithm 1,
in each iteration k, the generated sample xk, the target function value y∗k, the predictive distribution
pθ(·|y∗k,D), the posterior distribution p(θ | D) are σ(D)-measurable at iteration k, the only random-
ness in f(x) comes from the random sampling in the algorithm. Thus, condition on the training data
D and target value y∗k, by tower rule,

E [f(xk)] = E [E [f(xk)|θ]] =
∫
θ

∫
xk

f(xk)pθ(xk|y∗k,D)p(θ|D) dxk dθ

=

∫
θ

∫
xk

f(xk)pθ(xk|y∗k,D) dxk p(θ|D) dθ.

Note that both the true parameter θ∗ and the chosen parameter θ are drawn from the same posterior
distribution p(θ | D), we have∫

θ

∫
x

f(x)pθ(x|y∗k,D) dx p(θ|D) dθ =

∫
θ∗

∫
x

f(x)pθ∗(x|y∗k,D) dx p(θ∗|D) dθ∗.

As a result, we have

E [f(xk)] =

∫
θ∗

∫
x∗

f(x∗)pθ∗(x∗|y∗k,D) dx∗p(θ∗|D) dθ∗ = E [E [f(x∗)|θ∗]] = E [f(x∗)] .

Corollary 1. In each iteration k ∈ [K], let D be the collected dataset, θ and θ∗ are parameters
independently drawn from posterior p(θ|D), xk ∼ pθ(·|y∗k,D) and x∗ ∼ pθ∗(·|y∗k,D). For any
measurable function f , and σ(D)-measurable random variable xk,

E [∥xk∥] = E [∥x∗∥] .

Proof of Corollary 1. Since the norm function is deterministic and σ(D)-measurable, the proof
directly follows that of Lemma D.5.

15



E Optimality of Proposed Acquisition Function
Theorem 1. Let Y be the constructed candidate set at each iteration k ∈ [K] in Algorithm 1. By
adopting UaE as the acquisition function to guide the sample generation process in conditional
diffusion model, Diff-BBO (Algorithm 1) achieves a near-optimal solution for the online BBO problem
defined in Equation (1):

max
yk∈R

K∑
k=1

f(xk), xk ∼ pθ(· | yk,D), θ ∈ Θ ⇒ max
yk∈Y

K∑
k=1

α(yk,D).

Proof of Theorem 1. Following Theorem 4, we can express the function evaluation as follows,

f(xk) = yk − (yk − f(xk)),∀k ∈ [K].

The overall objective of the optimization problem defined in Equation (1) can then be further
decomposed as

max
yk∈R

K∑
k=1

f(xk), xk ∼ pθ(· | yk), θ ∈ Θ

⇔ max
yk∈R

K∑
k=1

yk − (yk − f(xk)), xk ∼ pθ(· | yk), θ ∈ Θ

⇒ max
yk∈R

K∑
k=1

yk −∆(pθ, yk).

By Theorem 4, which shows ∆(pθ, y
∗
k) can be effectively upper bounded the epidemic uncertainty,

we therefore have

max
yk∈R

K∑
k=1

f(xk), xk ∼ pθ(· | yk), θ ∈ Θ⇒ max
yk∈Y

K∑
k=1

yk −∆episdemic(yk,D)

Essentially, our chosen acquisition function allows Diff-BBO to maximize the lower bound of the
original optimization problem.

F Experiment Details
F.1 Dataset Details.
DesignBench (Trabucco et al., 2022) is a benchmark for real-world black-box optimization
tasks. For continuouse tasks, we use Superconductor, D’Kitty Morphology and Ant Morphology
benchmarks. For discrete tasks, we utilize TFBind8 and TFBind10 benchmarks. We exclude Hopper
due to the domain is known to be buggy, as explained in Appendix C in (Krishnamoorthy et al., 2023).
We also exclude NAS due to the significant computational resource requirement. Additionally, we
exclude the ChEMBL task because the oracle model exhibits non-trivial discrepancies when queried
with the same design.

• Superconductor (materials optimization). This task involves searching for materials with
high critical temperatures. The dataset comprises 17,014 vectors, each with 86 components
that represent the number of atoms of each chemical element in the formula. The provided
oracle function is a pre-trained random forest regression model.

• D’Kitty Morphology (robot morphology optimization). This task focuses on optimizing
the parameters of a D’Kitty robot, including the size, orientation, and location of the limbs,
to make it suitable for a specific navigation task. The dataset consists of 10,004 entries with
a parameter dimension of 56. It utilizes MuJoCO (Todorov et al., 2012), a robot simulator,
as the oracle function.

• Ant Morphology (robot morphology optimization). Similar to D’Kitty, this task aims to
optimize the parameters of a quadruped robot to maximize its speed. It includes 10,004 data
points with a parameter dimension of 60. It also uses MuJoCO as the oracle function.
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• TFBind8 (DNA sequence optimization). This task seeks to identify the DNA sequence of
length eight with the highest binding affinity to the transcription factor SIX6 REF R1. The
design space comprises sequences of nucleotides represented as categorical variables. The
dataset size is 32,898, with a dimension of 8. The ground truth is used as a direct oracle
since the affinity for the entire design space is available.

• TFBind10 (DNA sequence optimization). Similar to TFBind8, this task aims to find the
DNA sequence of length ten that exhibits the highest binding affinity with transcription
factor SIX6 REF R1. The design space consists of all possible nucleotide sequences. The
dataset size is 10,000, with a dimension of 10. The ground truth is used as a direct oracle
since the affinity for the entire design space is available.

Molecular Discovery. A key problem in drug discovery is the optimization of a compound’s
activity against a biological target with therapeutic value. Similar to other papers (Eckmann et al.,
2022; Jeon and Kim, 2020; Lee et al., 2023; Noh et al., 2022), we attempt to optimize the score from
AutoDock4 (Morris et al., 2009), which is a physics-based estimator of binding affinity. The oracle is
a feed-forward model as a surrogate to AutoDock4. The surrogate model is trained until convergence
on 10,000 compounds randomly sampled from the latent space (using N (0, 1)) and their computed
objective values with AutoDock4. We construct our continuous design space by fixing a random
protein embedding and randomly sampling 10,000 molecular embedding of dimension 32.

For each task, we arrange the offline dataset from Krishnamoorthy et al. (2023) in ascending order
based on objective values and select data from the 25th to the 50th percentile as the initial training
dataset. We prioritize data with lower objective scores to better observe performance differences
across each baseline. The overview of all the task statistics is provided in Table 1.

Task Size Dimensions Task Max
TFBind8 32,898 8 1.0
TFBind10 10,000 10 2.128
D’Kitty 10,004 56 340.0
Ant 10,004 60 590.0
Superconductor 17,014 86 185.0
Molecular Discovery 10,000 32 1.0

Table 1: Data Statistics

F.2 Implementation Details.
We train our model on NVIDIA A100 GPU and report the average performance over 3 random
runs along with standard deviation for each task. For discrete tasks, we follow the procedure in
Krishnamoorthy et al. (2023) where we convert the d-dimensional vector to a d× c one hot vector
regarding c classes. We then approximate logits by interpolating between a uniform distribution and
the one hot distribution using a mixing factor of 0.6. We jointly train a conditional and unconditional
model with the same model by randomly set the conditioning value to 0 with dropout probability of
0.15.

For each task, we fix the learning rate at 0.001 with batch size of 256. We use 5 ensemble models to
estimate the uncertainty for our acquisition function. We set hidden dimensions to 1024 and gamma
to 2. We use 10% of the available data at each iteration as validation set during training.

F.3 Ablation study
In this section, we conduct ablation studies to investigate the impact of our designed acquisition
function, UaE. We compare Diff-BBO with the fixed condition approach. Instead of using UaE
to dynamically determine which y to condition on, the fixed condition approach always generates
new samples conditioned on w · ϕk (Line 9 of Algorithm 1) with a fixed weight w. As shown in
Figure 4, Diff-BBO consistently outperforms the fixed condition approach. This demonstrates that
our acquisition function is effective in identifying the optimal y for conditioning.
Furthermore, we evaluate the effect of batch size, aka the number of queries per iteration on Diff-BBO
on the Superconductor task. As shown in Figure 5, we compare the objective function score over
number of function evaluations. We can see the performance of our approach remains similar when
the batch size becomes small, suggesting remarkable robustness across different batch sizes. Hence,
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Figure 4: Impact of acquisition function design for
black-box optimization on the TFBIND10 task. Com-
parison of Diff-BBO with five fixed-condition ap-
proaches, each with different conditioning weights.
Results averaged across three random runs.

0 200 400 600 800 1000 1200 1400 1600

60

70

80

90

100

110
Superconductor

Batch Size = 25
Batch Size = 50
Batch Size = 100
Batch Size = 200

Number of Evaluations

O
bj

ec
ti

ve
 S

co
re

Figure 5: Ablation study to evaluate the effect of batch
size on the superconductor task. The mean and stan-
dard deviation across three random seeds are plotted.
Diff-BBO shows robust performances across different
batch size given the same total number of evaluations.

Diff-BBO is a highly-scalable inverse modeling approach that can efficiently leverage parallelism to
handle larger computational loads without compromising performance.

G Impact Statement
Optimization techniques can address various real-world problems, including drug and material
design. Our method enhances sample-efficient online black-box optimization, potentially accelerating
solutions in these areas. However, caution is needed to prevent misuse, such as optimizing drugs to
enhance harmful side effects.
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