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Model-Agnostic Social Network Refinement with Diffusion
Models for Robust Social Recommendation

Anonymous Author(s)

Abstract
Social recommendations (SRs) aim to enhance preference model-
ing by integrating social networks. However, their effectiveness is
mainly constrained by two factors: the noisy social connections that
may not reflect shared interests, and the limited number of social
connections for most users, which hampers the system’s ability
to fully leverage social influence. Therefore, it is essential to per-
form social network refinement by removing noisy connections and
adding meaningful ones for robust SRs. Inspired by the denoising
capability of generative diffusion models, we propose a Model-
Agnostic Social Network Refinement framework with Diffusion
Models for Robust Social Recommendation (ARD-SR). Specifically,
in the forward process, we corrupt the social network by progres-
sively adding position-specific Gaussian noise calibrated to the user
preference similarity, better simulating how the social network
responds to noise perturbations. The reverse process learns to de-
noise, guided by each user’s neighborhood preferences from the
SR backbone, generating a tailored social network aligned with
each user’s preference for establishing connections. For effective
learning, we design a curriculum-based training mechanism that
progressively introduces challenging samples characterized by high
sparsity or high noise levels. Finally, ARD-SR and the SR backbone
are alternately trained, ensuring a continuous mutual enhancement
between the social network refinement and the backbone’s user rep-
resentation learning. To further enhance the quality of the refined
social network, (1) we introduce a preference-guided flip operation
during inference to improve the input quality; and (2) we modify
social connections based on the exponential weighted moving av-
erage of ARD-SR’s predictions across epochs to reduce fluctuations.
Experiments on three datasets show that ARD-SR significantly
improves SR performance across multiple SR backbones.

1 Introduction
Social recommendations (SRs) aim to model users’ social neighbor
influence to enhance preference learning, following the homophily
theory [22], i.e., socially connected users tend to share similar in-
terests. It effectively mitigates the data sparsity issue and has seen
notable achievements in improving recommendation accuracy, es-
pecially with advancements in deep learning technologies such as
graph neural networks [3, 39] and self-supervised learning [15, 47].
However, social networks are inherently noisy, as connections be-
tween users do not always indicate similar interests [13, 28]. The
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indiscriminate use of all social connections, as seen in most ex-
isting work [2, 6, 29, 46], can hinder user preference modeling.
Additionally, many users have few or no social neighbors, limiting
the potential of leveraging social influence to capture their inter-
ests. Thus, it is necessary to perform social network refinement by
removing noisy connections and adding meaningful ones, thereby
constructing a high-quality social network to facilitate robust SRs.

Social network refinement can be framed as a link prediction
task, where connection likelihoods between users are estimated
to guide the edge removal or addition. Existing approaches can be
categorized into heuristic-based and model-based methods. The
former [13, 26, 45], relies on heuristics, such as user preference sim-
ilarity, to add or remove edges. However, the absence of supervision
from social connection labels limits the alignment of preference
similarity with actual social connections. The latter, in contrast,
trains link predictionmodels with supervised [23] or self-supervised
signals [28, 41] derived from social networks. Nonetheless, the in-
herent noise in the social network may compromise the models’
robustness. Besides, they fail to add useful edges and predict connec-
tions based only on pairwise user features, overlooking the broader
dependencies among users in the entire social network.

Recently, diffusion models (DMs) have achieved state-of-the-art
performance in image generation tasks [1, 10, 27]. DMs gradually
corrupt the input with small amounts of random noise during the
forward process and then learn to recover it step by step in the
reverse process. Compared to other generative models, such as
VAEs [16] and GANs [4], DMs offer superior training stability and
are not susceptible to model collapse. DMs’ denoising characteris-
tics and generative nature align well with obtaining high-quality
social networks for robust SRs, providing several benefits. First,
DMs’ intrinsic denoising ability enables the recovery of clean social
networks from noisy ones. By decomposing the denoising process
into numerous incremental steps, DMs simplify the overall task
and improve robustness to noisy inputs. Second, DMs offer flexible
generation capabilities conditioned on specific inputs [1, 11], allow-
ing for personalized generation even when a user has sparse or no
observed social connections. Moreover, DMs can comprehensively
capture the underlying data distribution, better capturing global
dependencies in the whole social network.

However, unlike images, where individual pixels lack explicit
semantic meaning, social networks are represented as adjacency
matrices, with each entry signifying a meaningful connection be-
tween users. Furthermore, image pixels exhibit local dependencies
within a grid structure, while social connections are not confined
by spatial proximity, allowing nodes to link non-locally and form
long-range dependencies. Additionally, image pixels are continuous
values, while the binary social adjacency matrix is highly sparse,
with most entries being zero. In light of this, two main challenges
are confronted: (1) How can DMs be adapted to better capture
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the semantics and long-range dependencies inherent in social net-
works? (2) How to achieve effective network refinement, given the
predominance of zero values in the social adjacency matrix?

To address these challenges, we proposeARD-SR, amodel-agnostic
social network refinement framework based on DMs, designed to
integrate seamlessly with any SR backbone for robust SRs. Techni-
cally, ARD-SR progressively corrupts the social adjacency matrix
with position-specific noise in the forward process, assigning more
noise to users with lower preference similarity. In the reverse pro-
cess, ARD-SR learns to denoise the corrupted samples, guided by
the user’s neighbor preferences learned from the SR backbone,
providing personalized context to steer denoising. To facilitate ef-
fective learning, we devise a curriculum-based training mechanism,
initially focusing on simpler samples—those users with more neigh-
bors and less noise—and gradually introducing more complex ones.
ARD-SR is then alternately trained with the SR backbone for contin-
uousmutual enhancement: the refined social network fromARD-SR
helps calibrate user representations in the SR backbone, which in
turn better informs the position-specific noise schedule and guides
the reverse denoising process in ARD-SR. To further improve the
quality of the refined social network, we (1) introduce a preference-
guided flip operation to correct the input of the inference process,
thus alleviating the input sparsity issue and introducing useful so-
cial signals for improved generation and (2) modify edges based on
the exponential weighted moving average of ARD-SR’s predictions
over epochs to smooth out prediction fluctuations.

The main contributions of this paper are three-fold. (1)We are
the first to propose a model-agnostic social network refinement
framework, which exploits the denoising and generative capability
of DMs to enhance the robustness of any existing SR backbone.
(2) For more effective social network refinement with DMs, we
introduce a position-specific noise schedule in the forward pro-
cess and guide the reverse process with neighborhood preferences,
enabling robust and personalized social network refinement. We
further design a curriculum-based training mechanism to gradually
introduce challenging samples, for more effective learning. (3) We
integrate ARD-SR into multiple SR backbones, validating its efficacy
in enhancing SR performance across three real-world datasets.

2 Related Work
Social Recommendation (SR). SR aims to enhance preference
inference by modeling social influence within the social network.
Early SR methods are mainly matrix-factorization (MF) based. For
example, SoReg [21] and CNSR [38] align representations of so-
cially connected users by adding regularization terms to the MF
loss; TrustMF [40] and TrustSVD [6] co-factorize user-item interac-
tions and the social network via shared user embeddings. Recent
advances have introduced graph neural networks (GNNs) and self-
supervised learning (SSL) approaches, where GNNs allow SRs to
capture complex interdependencies within social networks such as
GraphRec [2], DiffNet++ [37], DMJP [29] and DSR [25], while SSL
creates auxiliary tasks that improve user representation learning,
such as MHCN [46], SEPT [44] and DSL [33].

Social Network Refinement for Robust SR. Social network
refinement seeks to improve network quality by removing noisy
edges that impede user preference modeling and adding supportive

edges to benefit users with sparse connections, thereby enhanc-
ing the robustness of SR. For example, heuristic-based methods
perform edge removal and addition based on preference similarity,
as in ESRF [43] and SHaRe [13]. However, without supervision
from social connection labels, preference similarity may not accu-
rately align with true social connections. Model-based methods like
GDMSR [23] train link prediction models to remove noisy edges;
however, noise within the social network can compromise the relia-
bility of supervision signals. Recently, self-supervised methods like
SSD-ICGA [28] and GBSR [41] use contrastive learning to identify
noisy social signals through dropout-based augmentation. How-
ever, they fail to insert new edges. Moreover, they primarily assess
edge relevance based on pairwise user relationships, potentially
overlooking broader global dependencies within the social network.

Diffusion Models (DMs) for Recommendation. DMs have be-
come a powerful tool for generative tasks, first popularized by
DDPM [10]. Subsequent advancements like sampling efficiency [27]
and conditional diffusion [1, 11] have made DMs competitive with
VAEs [16] and GANs [4], without model collapse or training in-
stability issue. Inspired by this, some efforts have been devoted
to integrating DMs into recommendation [20]. They are applied
either in the graph space, to generate user-item interactions as in
DiffRec [35] and CODIGEM [32], or in the latent space to generate
user/item embeddings such as DiffKG [14], DreamRec [42] and
DDRM [48]. Recently, RecDiff [19] uses the DM for denoising in
the latent social space but noisy edges still participate in the rep-
resentation learning, thus the effectiveness in mitigating noise is
not assured; GDSSL [18] trains a DM to directly denoise the social
network. However, the training of DM is not end-to-end with the
recommendation task, and it only drops noisy edges without adding
new ones. In contrast, we propose a model-agnostic social network
refinement approach (removing and adding connections) based on
DMs, trained end-to-end with the SR backbone, for robust SR.

3 Preliminaries
3.1 Notations and Problem Statement
Notations. We consider a set of usersU = {𝑢1, . . . , 𝑢𝑚} and items
I = {𝑖1, . . . , 𝑖𝑛}. Users exhibit two behaviors: consuming items or
connecting with other users, represented by the user-item inter-
action graph G𝑅 and the user-user social graph G𝑆 . These graphs
correspond to the binary adjacency matrices R = {𝑟𝑢𝑖 }𝑚×𝑛 and
S = {𝑠𝑢𝑣}𝑚×𝑚 , where 𝑟𝑢𝑖 = 1 indicates an interaction between user
𝑢 and item 𝑖 , and 𝑠𝑢𝑣 = 1 indicates a connection between users 𝑢
and 𝑣 . Unobserved interactions or connections are denoted as 0.

A typical SR model uses encoder functions, like GCNs [7, 31], to
learn user preference representations in both G𝑅 and G𝑆 , which are
then integrated to predict future user-item interactions. Formally,
the SR backbone follows a unified framework:

z𝑢 = 𝑔 (𝑓𝑟 (𝑢, G𝑅 ), 𝑓𝑠 (𝑢, G𝑆 ) ) ; z𝑖 = 𝑓𝑟 (𝑖, G𝑅 ) ; 𝑟𝑢𝑖 = 𝑃𝑟𝑒𝑑 (z𝑢 , z𝑖 ), (1)

where z𝑢 , z𝑖 ∈ R𝑑 represent the final embeddings of user𝑢 and item
𝑖 , respectively. The functions 𝑓𝑟 (.) and 𝑓𝑠 (.) denote the encoders for
G𝑅 and G𝑆 , while 𝑔(.) combines the user representations from both
graphs. 𝑃𝑟𝑒𝑑 (.) produces the prediction score, 𝑟𝑢𝑖 , which represents
the predicted preference score of user 𝑢 for item 𝑖 . Then, the BPR
loss [24] is used to optimize the SR task, which ensures that positive
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interactions rank higher than negative ones:
L𝑏𝑝𝑟 =

∑︁
(𝑢,𝑖+,𝑖− ) ∈O𝑟

− ln𝜎 (𝑟𝑢𝑖+ − 𝑟𝑢𝑖− ), (2)

where O𝑟 = {(𝑢, 𝑖+, 𝑖−) | (𝑢, 𝑖+) ∈ R+, (𝑢, 𝑖−) ∈ R−} is the training
set;R+ is the observed positive sample set andR− is the unobserved
negative sample set; and 𝜎 is the sigmoid function.
Problem Definition. Given G𝑅 , G𝑆 , and any SR backbone, our
goal is to refine G𝑆 by removing noisy edges and adding useful ones,
thus enhancing SR’s robustness against social noise and facilitate
more accurate user-item interaction predictions in G𝑅 . This model-
agnostic process is end-to-end with backbone training, allowing
seamless integration into any existing SR backbone.

3.2 Diffusion Model (DM)
We first introduce DM based on DDPM [10], which is a foundation
work widely used in the field of computer vision.
Forward Process. Given the input s0 ∼ 𝑞(s0), the forward process
is a tractable Markov process that incrementally adds Gaussian
noise over 𝑇 steps. Specifically, s𝑡 is derived by perturbing s𝑡−1,
which can be formulated as:

𝑞 (s𝑡 |s𝑡−1 ) = N(s𝑡 ;
√︁

1 − 𝛽𝑡 s𝑡−1, 𝛽𝑡 I), (3)

whereN is the Gaussian distribution; 𝛽𝑡 ∈ (0, 1) controls the noise
scale at time 𝑡 . Based on the additivity property of independent
Gaussian distributions, we can directly obtain s𝑡 from s0:

𝑞 (s𝑡 |s0 ) = N(s𝑡 ;
√
𝛼𝑡 s0, (1 − 𝛼𝑡 )I), (4)

where 𝛼𝑡 = 1−𝛽𝑡 and 𝛼𝑡 =
∏𝑡

𝑡 ′=1 𝛼𝑡 ′ . Using the reparameterization
trick, s𝑡 can be expressed as

√
𝛼𝑡 s0 +

√
1 − 𝛼𝑡𝝐, with 𝝐 ∼ N(0, I).

As 𝑇 →∞, s𝑇 converges to standard Gaussian noise.
Reverse Process. The reverse process seeks to recover the original
input s0 from the corrupted s𝑇 . While this process is modeled as a
Markov chain, it is infeasible to derive its distribution due to the
complexity of modeling high-dimensional distributions across time
steps. Therefore, the posterior distribution is parameterized as:

𝑝𝜃 (s𝑡−1 |s𝑡 ) = N(s𝑡 ; 𝝁𝜃 (s𝑡 , 𝑡 ), 𝚺𝜃 (s𝑡 , 𝑡 ) ), (5)

where 𝝁𝜃 (s𝑡 , 𝑡) and 𝚺𝜃 (s𝑡 , 𝑡) are learnable predictors to approxi-
mate the Gaussian distribution. Nevertheless, when conditioned on
s0, the posterior becomes tractable and can be derived as:

𝑞 (s𝑡−1 |s𝑡 , s0 ) = 𝑞 (s𝑡 |s𝑡−1, s0 )
𝑞 (s𝑡−1 |s0 )
𝑞 (s𝑡 |s0 )

∝ N(s𝑡−1; �̃� (s𝑡 , s0, 𝑡 ), 𝛽𝑡 I) (6)

where �̃� (s𝑡 , s0, 𝑡) and 𝛽𝑡 are given by:

�̃� (s𝑡 , s0, 𝑡 ) =
√
𝛼𝑡 (1 − 𝛼𝑡−1 )

1 − 𝛼𝑡
s𝑡 +
√
𝛼𝑡−1 (1 − 𝛼𝑡 )

1 − 𝛼𝑡
s0, 𝛽𝑡 =

(1 − 𝛼𝑡−1 ) (1 − 𝛼𝑡 )
1 − 𝛼𝑡

(7)
Optimization of DM. The parameters in DM are optimized by
maximizing the evidence lower bound (ELBO) of the likelihood of
s0, which is equivalent to minimizing the KL-divergence between
the posterior 𝑞(s𝑡−1 |s𝑡 , s0) in Eq. 6 and the learned approximate dis-
tribution 𝑝𝜃 (s𝑡−1 |s𝑡 ) in Eq. 5 for 𝑡 ∈ {1, . . . ,𝑇 }, commonly referred
to as the denoising matching loss:

L𝑡 = E𝑞 (s𝑡 |s0 ) [𝐷KL (𝑞 (s𝑡−1 |s𝑡 , s0 ) ∥ 𝑝𝜃 (s𝑡−1 |s𝑡 ) ) ] , (8)

where L𝑡 denotes the denoising matching loss at time 𝑡 . In DDPM,
the learning of 𝚺𝜃 (s𝑡 , 𝑡) is omitted and set as 𝛽𝑡 I for training stabil-
ity and simplification. As a result, L𝑡 can be simplified as:

L𝑡 = E𝑞 (s𝑡 |s0 )

[
1

2𝜎2 (𝑡 )
𝝁𝜃 (s𝑡 , 𝑡 ) − �̃� (s𝑡 , s0, 𝑡 )

2
2

]
. (9)

Similar to Eq. 7, we can formulate 𝝁𝜃 (s𝑡 , 𝑡) as :

𝝁𝜃 (s𝑡 , 𝑡 ) =
√
𝛼𝑡 (1 − 𝛼𝑡−1 )

1 − 𝛼𝑡
s𝑡 +
√
𝛼𝑡−1 (1 − 𝛼𝑡 )

1 − 𝛼𝑡
ŝ𝜃 (s𝑡 , 𝑡 ), (10)

where ŝ𝜃 (s𝑡 , 𝑡) is the predictor of s0, which is usually an MLP that
takes s𝑡 and the time step embedding as the input. Substituting
Eq. 7 and Eq. 10 into Eq. 9 yields the final loss:

L𝑡 = E𝑞 (s𝑡 |s0 )

[
1
2

(
𝛼𝑡−1

1 − 𝛼𝑡−1
− 𝛼𝑡

1 − 𝛼𝑡

)
∥ ŝ𝜃 (s𝑡 , 𝑡 ) − s0 ∥22

]
. (11)

To summarize, DM is parameterized by the predictor ŝ𝜃 (s𝑡 , 𝑡). Dur-
ing inference, the prediction is substituted into Eq. 10 to estimate
the distribution, from which the next state is sampled. This process
is repeated iteratively to perform the reverse denoising steps.

4 Proposed Method
Model Overview. We introduce ARD-SR, a model-agnostic social
network refinement framework, which exploits DMs’ powerful de-
noising and generative capability to eliminate noisy social connec-
tions and insert potentially valuable ones, to enhance the robustness
of existing SR backbones. In particular, we propose personalized
and robust social network generation with a position-specific noise
schedule in the forward process based on user preference similarity
and a reverse process guided by neighborhood preferences. Then,
for an effective learning process, we devise a curriculum-based
training mechanism to gradually introduce more difficult samples.
Finally, ARD-SR is jointly trained with the SR backbone, allowing
for progressive mutual enhancement of the social network and the
learned user representations, ultimately resulting in a more robust
SR. The overall framework is depicted in Figure 1.

4.1 Forward and Reverse Process of ARD-SR
We perform the forward and reverse processes in the graph space.
The forward process takes each row of the social adjacency matrix
S as the input at 𝑡 = 0, denoted as s𝑢0 , which corresponds to the
connection of user 𝑢 to other users in the original social network:

s𝑢0 = [𝑠𝑢1, . . . , 𝑠𝑢𝑣 , . . . , 𝑠𝑢𝑚 ], (12)

where 𝑠𝑢𝑣 is the ground truth value. Unlike the image domain, each
entry in the input represents a meaningful relationship between a
specific pair of users. Moreover, the inputs are sparse binary vectors
and there exists stronger long-range dependencies among users,
making it challenging for the DM to learn the noise patterns. To
account for this, we tailored both the forward and reverse processes
to enable personalized and robust social network refinement.

4.1.1 Forward Process with Position-specific Noise Sched-
ule. Starting from the initial state s𝑢0 of user 𝑢, the forward process
unfolds by incrementally adding Gaussian noise to s𝑢0 over 𝑇 steps,
as defined in Eq. 3. The variance 𝛽𝑡 is typically scheduled using a
linear approach, defined as 𝜂

[
𝛽min + 𝑡−1

𝑇−1 (𝛽max − 𝛽min)
]
, where 𝜂

is the noise scale; 𝛽min and 𝛽max are the lower and upper bound
of the noise. Note that 𝛽𝑡 is a scalar applied uniformly across s𝑢

𝑡−1.
However, unlike the image domain where the inputs lack seman-
tic meaning, each element in s𝑢

𝑡−1 corresponds to the connection
between user 𝑢 and every other single user.

To better simulate how social networks respond to noise pertur-
bations, we introduce an adaptive noise schedule informed by user
preferences. Previous study [28] has shown that social connections
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Figure 1: The framework of ARD-SR. The left part is the forward and reverse process (Section 4.1). The right shows the ARD-SR’s
curriculum-based training (Section 4.2) and its mutual enhancement with the SR backbone via joint training (Section 4.3).

with higher preference similarity contribute more to preference
modeling. Consequently, connections between users 𝑢 and 𝑣 with
higher preference similarity are less likely to be noisy and should
therefore undergo smaller perturbation during the forward process.
Thus, we scale the global noise variance 𝛽𝑡 with position-specific
factors. For a user pair (𝑢, 𝑣), it is defined as:

𝛽𝑢𝑣𝑡 = 𝛽𝑡 · 𝛾𝑢𝑣 , 𝛾𝑢𝑣 = 𝑓 (𝑠𝑖𝑚⟨z𝑢 , z𝑣 ⟩), (13)

where 𝛾𝑢𝑣 represents the adaptive scale for the corresponding po-
sition, which is a function of the cosine similarity between the
embeddings z𝑢 and z𝑣 , derived from the SR backbone as in Eq. 1.
We empirically choose 𝑓 (𝑥) = 1 − 𝑤 · 𝑒𝑥𝑝 (𝑘𝑥), where 𝑤 and 𝑘

are the hyperparameters. This ensures (1) a monotone decreasing
function such that users with higher preference similarity are sub-
jected to smaller noise perturbations; and (2) the scaling factor stays
below 1 and approaches 1 asymptotically, ensuring stability in the
forward process and converging smoothly to a standard Gaussian
distribution. The forward process is then reformulated as:

𝑞 (s𝑢𝑡 |s𝑢𝑡−1 ) = 𝑁 (s𝑢𝑡 ;
√︃
1 − 𝜷𝑢

𝑡 ⊙ s𝑢𝑡−1, 𝑑𝑖𝑎𝑔 (𝜷𝑢
𝑡 ) ), (14)

where 𝜷𝑢𝑡 = (𝛽𝑢1
𝑡 , . . . , 𝛽𝑢𝑚𝑡 ); ⊙ is the vector element-wise product

and 𝑑𝑖𝑎𝑔 represents the diagonal matrix. Similar to Eq. 4, s𝑢𝑡 is
directly obtainable from the input s𝑢0 , where the 𝑣-th element 𝑠𝑢𝑣𝑡
is reformulated as 𝑠𝑢𝑣𝑡 =

√︁
𝛼𝑢𝑣𝑡 𝑠𝑢𝑣 +

√︁
1 − 𝛼𝑢𝑣𝑡 𝜖 , with 𝜖 ∼ N(0, 1).

4.1.2 Neighbor Preference Guided Reverse Process. The re-
verse process learns to gradually restore s𝑢0 from the corrupted
sample. As derived in Eq. 10, it is parameterized by ŝ𝜃 (s𝑢𝑡 , 𝑡), which
predicts s𝑢0 based on s𝑢𝑡 and 𝑡 . However, relying solely on s𝑢𝑡 does
not guarantee high-quality recovery due to its high sparsity and
insufficient guidance for capturing long-range dependencies among
users. Moreover, it is also impractical to perform the reverse process
for users with no observed connections.

To address this, we condition the predictor on each user’s neigh-
borhood preference to guide the reverse process toward personal-
ized generation. Specifically, we design a gating mechanism based
on the user preference representation and those of their neigh-
bors, which filters the latent aspects of the users’ preferences that
are relevant for driving connections with others. The filtered user

representation is denoted as:
h𝑢 = z𝑢 ⊙ 𝜎

(
W

(
z𝑢 ⊙ GCN

(
sg⟦Zu⟧, G𝑠

)
𝑢

)
+ b

)
, (15)

where Zu ∈ R𝑚×𝑑 denotes the final user embedding matrix from
the SR backbone; GCN(.)𝑢 is a lightweight GCN similar to Light-
GCN [8], capturing both immediate and multi-hop neighbors’ pref-
erences, thereby effectively modeling long-range dependencies. The
stop-gradient operator sg⟦.⟧ prevents gradients of ARD-SR from
affecting the backbone’s parameters, ensuring stable updates for
the backbone. The predictor is thus reformulated as:

ŝ𝜃 (s𝑢𝑡 , 𝑡, h𝑢 ) = 𝑀𝐿𝑃 (s𝑢𝑡 , t, h𝑢 ) . (16)

Conditioning the predictor on h𝑢 guides the reverse process to
align with each user’s distinct preference for building connections,
facilitating personalized social network generation.

4.2 Optimization of ARD-SR
Objective Function. The optimization of the predictor structure,
ŝ𝜃 (s𝑢𝑡 , 𝑡, h𝑢 ), follows a similar approach to Eq. 11. However, the
adapted noise schedule introduces position-specific weights in the
loss function, which is reformulated as:

L𝑡 = E𝑞 (s𝑢𝑡 |s
𝑢
0 )

[
1
2

𝑚∑︁
𝑖=1

(
�̃�𝑢𝑣
𝑡−1

1 − �̃�𝑢𝑣
𝑡−1
−

�̃�𝑢𝑣
𝑡

1 − �̃�𝑢𝑣
𝑡

) ( [
ŝ𝜃 (s𝑢𝑡 , 𝑡, h𝑢 )

]
𝑣
− 𝑠𝑢𝑣

)2
]
, (17)

where 𝛼𝑢𝑣
𝑡−1 =

∏𝑡
𝑡 ′=1 𝛼

𝑢𝑣
𝑡 ′ and 𝛼𝑢𝑣𝑡 = 1 − 𝛽𝑢𝑣𝑡 .

Progressive Training with Curriculum Learning. Some rows
of the social adjacency matrix exhibit high sparsity, making it dif-
ficult for the DM to capture meaningful patterns. Moreover, even
rows with low sparsity can still pose challenges when they contain
significant noise. As such, we design a curriculum-based training
mechanism that starts training with simple samples and gradually
introduces more difficult ones. This allows the DM to strengthen
its denoising ability as training advances progressively.

Specifically, we use sparsity and noise level as the difficulty
measurer of input samples, considering rows with both low sparsity
and low noise levels to be easier samples. Sparsity is measured by
the number of zero entries in each row of S:

Sparsity(𝑢 ) =
∑︁𝑚

𝑣=1
I{𝑠𝑢𝑣=0}, (18)

where Sparsity(𝑢) denotes the sparsity level of user 𝑢 and I is the
indicator function. For noise level, we use binary cross-entropy
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Algorithm 1: The overall process of ARD-SR
Input: G𝑆 , G𝑅 , S, R, SR backbone
Output: Refined social network and optimal model parameters

1 Initialize backbone parameter Θ1 and ARD-SR parameters Θ2 ;
2 for 𝑙 = 1 to max_epoch do
3 Train SR backbone on G𝑆 and G𝑅 to optimize Θ1 w.r.t Eq. 2;
4 if 𝑙 > 10 then // Start Joint Training
5 Calculate ℎ𝑢 via Eq. 15;
6 Calculate 𝜆𝑙 by Eq. 21;
7 M← the number of users having at least one social neighbor;
8 foreach 𝑢 ∈ U do // Curriculum-based DM Training
9 Calculate Difficulty(𝑢 ) by Eq. 20 ;

10 if 𝑟𝑎𝑛𝑘 (Difficulty(𝑢 ) ) ≤ 𝜆𝑙 ∗𝑀 then
11 Sample 𝑡 ∼ U(1,𝑇 ) ;
12 Compute ŝ𝜃 (s𝑢𝑡 , 𝑡, h𝑢 ) via Eq. 16 ;
13 Take gradient descent on L𝑡 in Eq. 17 to optimize Θ2 ;

14 if 𝑙 % 5 == 0 then // Social Network Refinement
15 foreach 𝑢 ∈ U do
16 for 𝑣 = 1, . . . ,𝑚 do
17 Flip 𝑠𝑢𝑣 based on 𝑝𝑢𝑣 in Eq. 22;

18 Calculate s𝑢
𝑇
given s𝑢0 based on Eq. 14;

19 for 𝑡 = 𝑇, . . . , 1 do // Reverse Denoising
20 Compute s𝑢

𝑡−1 with ŝ𝜃 (s𝑢𝑡 , 𝑡, h𝑢 ) via Eq. 23;

21 Update EWMA matrix S̄𝑙 via Eq. 24;
22 Update S and G𝑆 based on S̄𝑙 ;

loss, which reflects uncertainty in the model’s predictions. A higher
loss typically indicates a higher noise level, as noted in previous
work [9, 34]. The noise level of user 𝑢 is calculated as:

Noise(𝑢 ) = −
∑︁𝑚

𝑣=1
I{𝑠𝑢𝑣=1} (𝑠𝑢𝑣 log(𝑠𝑢𝑣 ) + (1 − 𝑠𝑢𝑣 ) log(1 − 𝑠𝑢𝑣 ) ) (19)

where 𝑠𝑢𝑣 is the exponential weighted moving average of the pre-
dicted connection score, which will be elaborated in Eq. 24. We
selectively accumulate the cross-entropy loss over non-zero en-
tries only, thereby reducing the influence of the abundant zero
entries and emphasizing the informative non-zero entries for a
more accurate noise assessment. The final difficulty of each sample
is measured by combining the two metrics using a simple rank
aggregation method, given by,

Difficulty(𝑢 ) = rank(Sparsity(𝑢 ) ) + rank(Noise(𝑢 ) ) . (20)

Accordingly, we thus use the linear scheduler to gradually introduce
the training samples to the diffusion training, parameterized by 𝜆𝑙 :

𝜆𝑙 = min
(
1, 𝜆0 +

1 − 𝜆0
𝑙max

· 𝑙
)
, (21)

where 𝜆𝑙 denotes the proportion of easiest examples used for train-
ing in epoch 𝑙 ; 𝑙𝑚𝑎𝑥 is the epoch when 𝜆𝑙 reaches 1, after which all
samples are used for training.

4.3 Iterative Social Network Refinement
We now present how ARD-SR integrates with the SR backbone
to iteratively refine the social network throughout the training
process, thus enhancing the robustness of existing SR backbones.
The overall process is described in Algorithm 1.

4.3.1 Preference Guided Flip for Enhanced Input. We employ
ARD-SR’s reverse process to generate a row vector for each user,
which guides the social network refinement. Image generation tasks
typically start from a random standard Gaussian sample, which

compromises the personalized social network generation. A simple
solution [35] to retain personalized information is to add Gaussian
noise to the original row vector s𝑢0 and then denoise it. However,
the social adjacency matrix is highly sparse. When Gaussian noise
is added, the few non-zero entries can be easily overwhelmed by the
noise applied to the zero entries, obscuring personalized informa-
tion. Additionally, some zero entries may represent false negatives,
making it challenging for the model to accurately distinguish them
from true zeros and correctly infer hidden connections.

Hence, we apply a random flip operation to the original row vec-
tor based on user preference similarity. The probability of flipping
a user pair (𝑢, 𝑣) is defined as:

𝑝𝑢𝑣 =

{
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (−sim⟨z𝑢 , z𝑣 ⟩) if 𝑠𝑢𝑣 = 1
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (sim⟨z𝑢 , z𝑣 ⟩) if 𝑠𝑢𝑣 = 0

(22)

This prioritizes the flipping of low-similarity existing edges or high-
similarity unobserved edges, enhancing the initial input quality and
mitigating the overwhelming effect of zero entries, which leads to
a more efficient and personalized generation process. The flipped
vectors are then corrupted with Gaussian noise via Eq. 14, yielding
s𝑢
𝑇
, which is passed to the iterative reverse denoising for 𝑇 steps.

Following previous work [35], we ignore the variance and let s𝑢
𝑡−1 =

𝝁𝜃 (s𝑢𝑡 , 𝑡, h𝑢 ) for deterministic inference, where 𝝁𝜃 (s𝑢𝑡 , 𝑡, h𝑢 ) is the
predicted mean of the posterior distribution 𝑝𝜃 (s𝑢𝑡−1 |s

𝑢
𝑡 ). Similar

to Eq. 10, it is reformulated as:[
𝝁𝜃 (s𝑢𝑡 , 𝑡, h𝑢 )

]
𝑣
=

√︁
𝛼𝑢𝑣
𝑡 (1 − 𝛼𝑢𝑣

𝑡−1 )
1 − 𝛼𝑢𝑣

𝑡

s𝑢𝑣𝑡 +
√︁
𝛼𝑢𝑣
𝑡−1 (1 − 𝛼𝑢𝑣

𝑡 )
1 − 𝛼𝑢𝑣

𝑡

[
ŝ𝜃 (s𝑢𝑡 , 𝑡, h𝑢 )

]
𝑣
.

(23)

4.3.2 Progressive Mutual Enhancement with SR Backbone.
Following [13], we first warm up the SR backbone by training it
alone for 10 epochs to ensure reliable user representations that
guide both the position-specific noise schedule and the reverse pro-
cess. After the warm-up, we alternate training between ARD-SR and
the SR backbone in each epoch for progressivemutual enhancement.
The backbone’s learned user representations inform the position-
specific noise schedule and enhance the ARD-SR’s reverse process,
while ARD-SR refines the social network, which in turn helps the
backbone learn more robust user representations. This iterative
enhancement allows both components to progressively improve.
The social network is refined every 5 epochs based on the ARD-SR
inference prediction and then used for further training of both the
backbone and ARD-SR.

To smooth fluctuation and ensure consistency of the iterative
social network refinement, we exploit an exponential weighted
moving average (EWMA) [12] of the reverse process predictions,
which accounts for both current and preceding steps:

S̄𝑙 = 𝜏 Ŝ𝑙 + (1 − 𝜏 ) S̄𝑙−1, (24)

where S̄𝑙 denotes the EMA of the predicted social adjacency ma-
trix at epoch 𝑙 ; Ŝ𝑙 is the predicted matrix at epoch 𝑙 ; 𝜏 is the decay
factor. S̄𝑙 is then used to refine the social network by removing low-
scoring edges and inserting high-scoring ones. Specifically, edges
with EMA scores below a predefined threshold 𝜌 are considered
noise and removed. To maintain stability, each iteration deletes
no more than 1% of the total edges, prioritizing those with the
lowest scores. 𝜌 decays over time, and if the number of removable
edges exceeds the 1% limit, the threshold is scaled by a decay factor.
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This enables smoother convergence of the refinement process by
gradually decreasing the strictness of edge removal as the overall
network quality improves. After deletion, an equal number of unob-
served social edges with the highest prediction scores are inserted,
including those previously removed, to facilitate convergence.

4.4 Complexity Analysis
ARD-SR is a model-agnostic framework, and its additional com-
plexity over the SR backbone comes from the DM, both in train-
ing and inference. For training, the primary complexity is the
2-layer MLP predictor, while for inference, it arises from the it-
erative reverse denoising process. The complexity of the MLP is
𝑂 ((𝑚+𝑑 +𝑑𝑡 ) ×𝑑ℎ +𝑚×𝑑ℎ), where 𝑑𝑡 and 𝑑ℎ represent dimensions
of the time step embedding and hidden layer, respectively. Since
𝑑, 𝑑𝑡 , 𝑑ℎ ≪ 𝑚, the overall complexity is dominated by O(𝑚 × 𝑑ℎ),
making it linearly scalable with the number of users𝑚. One draw-
back of the DM is its slow inference, especially for large 𝑇 , due to
the iterative nature of the Markov chain in the reverse denoising
process. We address it using the DDIM approach [27], which ac-
celerates inference by relaxing the Markov chain assumption and
reparameterizing the reverse process. Specifically, it reduces the
original 𝑇 to a fraction of 𝑇 , i.e., 𝑡 = {1, 2, . . . ,𝑇 /𝜁 }, accelerating
inference by a factor of 𝜁 without compromising performance.

5 Experiments
5.1 Experiment Settings
5.1.1 Datasets. Weadopt three commonly used real-world datastes,
i.e., Ciao [30], Douban1 and FilmTrust [5], for evaluation. All datasets
are based on explicit ratings, and, following prior work [8, 36], we
remove ratings below 3 for Ciao and Douban, and below 2 for
FilmTrust. Users and items with less than two interactions are
removed. User-item interactions are sorted chronologically and
split into training, validation, and testing sets with an 8:1:1 ratio.
Detailed statistics are provided in Table 1.

5.1.2 Baselines. We compare ARD-SR with five robust SR ap-
proaches, including (1) social network refinement methods: Rule-
based, GDMSR [23], SHaRe [13] and GBSR [41]; and (2) the DM-
based method RecDiff [19]. We do not compare with GDSSL [18] due
to the absence of available code and insufficient model details in the
original paper. In particular, Rule-based removes social connec-
tions with few common co-consumed items in the user-item inter-
action networks; GDMSR trains a link prediction model to remove
noisy edges; SHaRe iteratively refines the social network based
on the user embedding similarity; GBSR utilizes self-supervised
contrastive learning with dropout-based graph augmentation to
learn the noise pattern; RecDiff trains a DM to denoise users’ so-
cial space embedding. For each selected method, we choose three
representative state-of-the-art SR models as the backbone, includ-
ing the traditional matrix factorization based TrustSVD [6], and the
GNN-based DiffNet++ [37] and MHCN [46].

5.1.3 Evaluation. Weutilize three commonly usedmetrics: HR@K,
NDCG@K, and MRR@K to assess the performance of all methods.

1https://pan.baidu.com/s/1hrJP6rq

Table 1: Statistics of experiment datasets.
Ciao Douban FilmTrust

# Users 7,291 2,668 1,336
# Items 17,876 15,940 793

# Interactions 140,628 535,210 33,363
# Social Relations 57,544 32,705 1,484
Interaction Density 0.044% 0.309% 1.473%

Social Relation Density 0.108% 0.460% 0.083%

In accordance with [8, 36], we rank all non-interacted items for
each user, ensuring an unbiased evaluation.

5.1.4 Implementation Details. All SR models are trained to op-
timize the BPR loss. We use Adam [17] as the optimizer, with a fixed
batch size of 1024, a learning rate of 0.001, and a latent embedding
dimension of 64. For a fair comparison, we first identify the optimal
parameter configuration for each SR backbone and keep them fixed.
On this basis, we integrate the selected robust SR approaches and
tune their hyperparameters. The key hyperparameters of SR back-
bones and robust SR approaches are tuned via extensive grid search
based on the validation set performance. We adopt the early stop
strategy to terminate training if the performance of the backbone
on the validation set does not improve for 50 consecutive epochs.
For ARD-SR2, we train the DM part with an independent optimizer
separate from the SR backbone, with a fixed batch size of 64 and
learning rate searched over {𝑒−2, 𝑒−3, 𝑒−4}. The dimension of the
time step embedding is fixed at 16. We empirically set 𝜆0 to 0.4, 𝑙max
to 50, 𝜁 to 10 and 𝜌 to 0.6; and the number of layers in the GCN
encoder is set to 3. For other essential parameters, we search the
total diffusion step 𝑇 over {10, 30, 50, 100, 200}; the noise scale 𝜂 is
searched in {𝑒−1, 𝑒−2, 𝑒−3, 𝑒−4}; the noise bound 𝛽min and 𝛽max are
searched in {𝑒−2, 𝑒−3, 𝑒−4} and {𝑒−1, 𝑒−2, 𝑒−3}, respectively; and 𝜏
is searched in {0.1, 0.3, 0.5, 1}.

5.2 Comparative Results and Analysis
5.2.1 Overall Performance. Table 2 presents the performance
of three backbones integrated with six robust SR methods across
three datasets, where "base" represents the vanilla backbone. Each
integration was evaluated five times, and the average results are pro-
vided to ensure reliability. We report the relative improvement of
ARD-SR (bolded) over the runner-up baselines (underlined) and per-
form t-tests, yielding statistically significant results with a 𝑝-value
< 0.001. Several major findings are noted. Firstly, all backbones
exhibit improvement after integrating robust SR methods in most
cases, implying the importance of enhancing social signals for ro-
bust SRs. Secondly, among the social network refinement methods,
the model-based GDMSR and GBSR outperform the heuristic-based
(i.e. Rule-based and SHaRe) and the performance even drops in
certain cases when Rule-based is applied, e.g., the performance on
Ciao with Rule-based + MHCN. This indicates that simple heuris-
tics do not necessarily correlate with effective refinement. Thirdly,
compared with RecDiff that denoise the latent social space with
DM, ARD-SR has better performance. This suggests the effective-
ness of directly using DM to refine the social network. Lastly,
ARD-SR demonstrates superior performance, with an average im-
provements of 4.81% in HR, 6.95% in NDCG, and 6.80% in MRR
across all datasets. This is mainly attributed to its three key designs:
2Our code is available at https://anonymous.4open.science/r/ARD-SR-4C34.
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Table 2: Overall performance of ARD-SR on three datasets (𝑝 − value < 0.001).

SR Backbone Robust SR Ciao Douban FilmTrust
HR@10 NDCG@10 MRR@10 HR@10 NDCG@10 MRR@10 HR@10 NDCG@10 MRR@10

TrustSVD

base 0.0771 0.0271 0.0279 0.4571 0.0947 0.2045 0.6175 0.3051 0.2694
Rule-based 0.0778 0.0279 0.0283 0.4727 0.0943 0.2053 0.6211 0.3094 0.2731
GDMSR 0.0806 0.0301 0.0305 0.4882 0.0985 0.2145 0.6441 0.3285 0.2834
SHaRe 0.0787 0.0285 0.0288 0.4812 0.0951 0.2087 0.6310 0.3197 0.2810
GBSR 0.0802 0.0299 0.0293 0.5026 0.1002 0.2133 0.6412 0.3228 0.2823
RecDiff 0.0794 0.0291 0.0296 0.4927 0.0977 0.2099 0.6356 0.3243 0.2809
ARD-SR 0.0845 0.0316 0.0323 0.5411 0.1125 0.2326 0.6633 0.3440 0.2956
Improve 4.84% 4.98% 5.90% 7.66% 12.27% 8.44% 2.98% 4.72% 4.30%

DiffNet++

base 0.0570 0.0186 0.0191 0.4087 0.0754 0.1626 0.6305 0.3179 0.2787
Rule-based 0.0583 0.0190 0.0195 0.4110 0.0761 0.1641 0.6244 0.3118 0.2719
GDMSR 0.0610 0.0205 0.0211 0.4421 0.0802 0.1712 0.6421 0.3329 0.2847
SHaRe 0.0591 0.0194 0.0198 0.4367 0.0791 0.1701 0.6310 0.3110 0.2755
GBSR 0.0603 0.0197 0.0207 0.4402 0.0795 0.1709 0.6447 0.3343 0.2819
RecDiff 0.0615 0.0210 0.0203 0.4563 0.0813 0.1741 0.6512 0.3337 0.2839
ARD-SR 0.0637 0.0217 0.0223 0.4793 0.0910 0.1881 0.6778 0.3492 0.3013
Improve 3.58% 3.33% 5.69% 5.04% 11.93% 8.04% 4.08% 4.46% 5.83%

MHCN

base 0.0797 0.0287 0.0297 0.4736 0.1054 0.2243 0.6628 0.3306 0.2900
Rule-based 0.0793 0.0276 0.0283 0.4817 0.1078 0.2257 0.6691 0.3302 0.2875
GDMSR 0.0825 0.0296 0.0312 0.4910 0.1126 0.2321 0.6811 0.3391 0.2968
SHaRe 0.0810 0.0289 0.0303 0.4858 0.1101 0.2298 0.6713 0.3331 0.2895
GBSR 0.0817 0.0305 0.0309 0.4878 0.1109 0.2279 0.6623 0.3401 0.3031
RecDiff 0.0815 0.0299 0.0310 0.4840 0.1115 0.2307 0.6698 0.3387 0.2947
ARD-SR 0.0879 0.0330 0.0336 0.5140 0.1187 0.2532 0.7073 0.3636 0.3219
Improve 6.55% 8.20% 7.69% 4.68% 5.42% 9.09% 3.85% 7.23% 6.20%
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Figure 2: Performance comparison across user groups with different numbers of social neighbors w.r.t NDCG@10.

(a) the position-specific noise schedule in the forward process and
the neighborhood preference-guided reverse process, which facil-
itates personalized and robust social network generation; (b) the
curriculum-based training mechanism, resulting in enhanced de-
noising capabilities as training progresses; and (c) the iterative
social network refinement, strengthened by preference-guided flip
operations and mutual enhancement with the SR backbone.

5.2.2 Performance w.r.t Different Social Sparsity Levels. The
social network exhibits significant user disparities, presenting chal-
lenges for effective refinement. For example, some users have very
few or even no neighbors; others may have many neighbors but
a significant portion of their connections could be noisy. To as-
sess whether the social network refinement by ARD-SR benefits all
users, we divide users into five groups based on their number of
neighbors in the original social network. The performance of three
SR backbones on Ciao, integrated with different robust SR methods,
is reported in Figure 2. First, we observe that having more social
neighbors does not necessarily result in better performance. For
example, users in the "50+" group exhibit the poorest results, likely
due to the increased noise in their connections, which impairs the
model’s ability to infer users’ preferences based on the social neigh-
borhood. This aligns with our training curriculum design, which
treats users with both low sparsity and low noise levels as easier

samples. Moreover, GDMSR has a limited impact on users with no
neighbors in contrast to its stronger impact on other groups, as
its refinement mechanism only considers removing noisy edges.
In contrast, the backbone integrated with ARD-SR consistently
demonstrates superiority across all groups, including the group
with no neighbors. This highlights the effectiveness of ARD-SR in
generating high-quality social networks for more robust SR.

5.2.3 A Statistical Analysis of the Refined Social Network.
We further perform a statistical analysis to investigate how the
refined social network changes with the integration of ARD-SR.
The result of integrating ARD-SR into MHCN is given in Table 3,
where preference similarity is measured by the cosine similarity
between the final user representations obtained from the MHCN
backbone. Firstly, the proportion of noisy edges removed is 27.1%,
18.3%, and 24.7% for the three datasets, respectively. An equal num-
ber of potentially useful edges are added, resulting in a substantial
increase in the proportion of users with at least one social neighbor,
especially notable on Ciao (29.6%→ 100%) and FilmTrust (34.2%→
100%). Such transformation not only eliminates noise from existing
user connections but also empowers SR backbones to uncover new
potential social influence for users who previously lack neighbors,
thereby enhancing the robustness of SR. Secondly, the refined social
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Table 3: Comparison of the social network statistics with the
integration of ARD-SR.

Dataset Refinement
Stage

Edge
Removal (%)

Users with
Neighbors (%)

Average
Preference Similarity

Ciao Before - 29.6 0.454
After 27.1 100 ↑ 0.513 ↑

Douban Before - 96.6 0.442
After 18.3 100 ↑ 0.485 ↑

FilmTrust Before - 34.2 0.694
After 24.7 100 ↑ 0.737 ↑

network exhibits an increase in the average user preference simi-
larity across all datasets, which is confirmed by the independent
t-tests with all 𝑝-values < 0.001. This well supports the design of our
position-specific noise schedule, the neighbor preference-guided
reverse process, and the preference-guided flip operation, whose
effectiveness will be verified in section 5.3.

5.3 Ablation Study
We conduct ablation studies to assess the contributions of key com-
ponents in ARD-SR. The results, which use MHCN as SR backbone,
are presented in Table 4, with several critical insights noted.
Effect of Position-specific Noise Schedule. In the forward process of
ARD-SR, we introduce a position-specific noise schedule to better
simulate how the social network reacts to noise corruption. To
assess its impact, we replace it with a conventional global linear
schedule (denoted as "𝑤/𝑜 AS"). The performance reduction in "𝑤/𝑜
AS" underscores its effectiveness in facilitating more accurate learn-
ing of the social network’s underlying structure, thereby improving
the recommendation performance.
Effect of Neighborhood Preference Guidance. In the reverse process,
we incorporate each user’s neighborhood preference into the pre-
dictor to guide the denoising process, facilitating a personalized
generation. We exclude this feature from the predictor in Eq. 16
(shortened as "𝑤/𝑜 guide") and observe a decline in the recommen-
dation accuracy, showcasing the importance of neighbor preference
in guiding the reverse denoising.
Effect of Curriculum Learning. Curriculum learning is integrated
into ARD-SR training to gradually introduce difficult samples as its
denoising capability improves. We assess its effectiveness by remov-
ing this mechanism (denoted as "𝑤/𝑜 CL"), leading to diminished
recommendation accuracy. This confirms that curriculum learning
helps ensure a smooth and effective learning process.
Effect of Preference Guided Flip. It introduces preference-guided
corrections to the input for the reverse denoising process, effectively
addressing the sparsity issue and adding useful signals. To examine
its effect, we compare it with its variant, which directly operates
on the original vector (shortened as "𝑤/𝑜 flip"). Its performance
is worse than ARD-SR, indicating the effectiveness of the flipping
operation in enhancing the refinement quality.

5.4 Parameter Sensitivity Analysis
We now examine the influence of key hyperparameters on ARD-
SR’s performance, focusing on the total diffusion steps 𝑇 , noise
scale 𝜂, and the EMA decay coefficient 𝜏 . The trends, with MHCN
as the backbone, are presented in Figure 3, showing similar patterns
across all datasets for each selected hyperparameter. Generally,

Table 4: Ablation studies of key components in ARD-SR.
Dataset Ciao Douban FilmTrust
Metric H@10 N@10 M@10 H@10 N@10 M@10 H@10 N@10 M@10

ARD-SR 0.0879 0.0330 0.0336 0.5140 0.1187 0.2532 0.7073 0.3636 0.3219
𝑤/𝑜 AS 0.0842 0.0314 0.0319 0.5002 0.1151 0.2497 0.6931 0.3584 0.3153

𝑤/𝑜 guide 0.0850 0.0319 0.0324 0.4987 0.1155 0.2505 0.6943 0.3601 0.3167
𝑤/𝑜 flip 0.0867 0.0326 0.0331 0.5094 0.1170 0.2520 0.7043 0.3628 0.3204
𝑤/𝑜 CL 0.0861 0.0322 0.0328 0.5053 0.1164 0.2512 0.7029 0.3611 0.3182

Ciao

10 30 50 100 200

0.020

0.024

0.028

0.032

𝑇

N
D
CG

@
10

Douban

10 30 50 100 200
0.08

0.10

0.12

𝑇

N
D
CG

@
10

FilmTrust

10 30 50 100 200

0.32

0.34

0.36

𝑇

N
D
CG

@
10

Ciao

0.0001 0.001 0.01 0.1

0.020

0.024

0.028

0.032

𝜂

N
D
CG

@
10

Douban

0.0001 0.001 0.01 0.1
0.08

0.10

0.12

𝜂

N
D
CG

@
10

FilmTrust

0.0001 0.001 0.01 0.1

0.34

0.36

𝜂

N
D
CG

@
10

Ciao

0.2 0.5 0.8 1

0.020

0.024

0.028

0.032

𝜏

N
D
CG

@
10

Douban

0.2 0.5 0.8 1
0.08

0.10

0.12

𝜏

N
D
CG

@
10

FilmTrust

0.2 0.5 0.8 1

0.34

0.36

𝜏

N
D
CG

@
10

MHCN DiffNet++ TrustSVD

Figure 3: Impacts of ARD-SR’s key hyper-parameters.

the performance increases as the values of these hyperparameters
rise, until a peak is reached, after which the performance starts
to decline. Specifically, we observe that the optimal value of 𝜂 is
around 0.01, while the ideal 𝑇 is either 50 or 100. For 𝜏 , values near
0.5 consistently yield the best results across different datasets. These
findings highlight the importance of carefully tuning ARD-SR’s
hyperparameters to achieve effective social network refinement
and maximize recommendation accuracy.

6 Conclusion
In this work, we propose ARD-SR, a novel model-agnostic diffusion-
based social network refinement framework for robust social rec-
ommendation. For more effective social network generation with
the diffusion model, we introduce a position-specific noise sched-
ule into the forward process, effectively simulating how social
networks respond to noise perturbations. Meanwhile, the reverse
process is conditioned on each user’s neighborhood preferences,
enabling personalized network refinement. To further improve
learning efficacy, we propose a curriculum-based training mecha-
nism to progressively introduce more challenging samples as its
denoising capability strengthens. Finally, by alternating the training
of ARD-SR and the SR backbone iteratively, we ensure continuous
enhancement of both the social network and user preference model-
ing. Experiments across three real-world datasets demonstrate that
ARD-SR consistently enhances the performance of SR backbones,
providing improved robustness and recommendation accuracy.
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