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Abstract
We give a method for proactively identifying
small, plausible shifts in distribution which lead
to large differences in model performance. To
ensure that these shifts are plausible, we param-
eterize them in terms of interpretable changes in
causal mechanisms of observed variables. This
defines a parametric robustness set of plausible
distributions and a corresponding worst-case loss.
We construct a local approximation to the loss
under shift, and show that problem of finding
worst-case shifts can be efficiently solved.

1. Introduction
Predictive models may perform poorly outside of the train-
ing distribution, a problem broadly known as dataset shift
(Quiñonero-Candela et al., 2008). In this paper, our goal
is to proactively understand the sensitivity of a predictive
model to dataset shift, using only data from the training dis-
tribution. For a model f(X) trained on data from P(X,Y ),
with loss function ℓ(f(X), Y ), we seek to understand the
loss of the model under a set of plausible future distributions
P . We seek to evaluate the worst-case loss over P ,

sup
P∈P

EP [ℓ(f(X), Y )], (1)

and provide an interpretable description of a distribution
P which maximizes this objective. To illustrate, we use a
running example inspired by Subbaswamy et al. (2021).

Example 1.1 (Shifts in laboratory testing). We seek to clas-
sify disease (Y ) based on the age (A) of a patient, whether a
lab test has been ordered (O), and test results (L) if or-
dered. The performance of a predictive model may be
sensitive to changes in testing policies, as the fact that a
test has been ordered itself is predictive of disease. Fig-
ure 1 (left) gives a plausible causal relationship between
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Figure 1. (Left) Causal graph for Example 1.1. Our approach al-
lows for simultaneous shifts in age and test ordering, parameterized
by δage, δorder. (Right) We illustrate a shift in testing rates, using
s(Y ; δorder) = δ1 · Y + δ0(1 − Y ), where δorder = (δ0, δ1). We
plot the landscape of the expected cross-entropy loss of a fixed
model over distributions parameterized by (δ0, δ1), with the train-
ing distribution given as the black star.

variables. Let P(O|A, Y ) = σ(η(A, Y )), where σ is the
sigmoid function and η(A, Y ) is the log-odds. In Fig-
ure 1 (right), we show the loss under a set of new distri-
butions parameterized by δ = (δ0, δ1), where we modify
Pδ(O|A, Y ) = σ(η(A, Y ) + s(Y ; δ)) for a shift function
s(Y ; δ) = δ1 · Y + δ0 · (1 − Y ), which modifies the log-
odds of testing for both sick and healthy patients. If δ0, δ1
are unconstrained, the worst-case occurs when all healthy
patients are tested, and no sick patients are tested.

We address two challenges in this paper1: The first chal-
lenge (Section 2) is to define a set of possible distributions
P where each P ∈ P is (i) causally interpretable and
simple to specify, without unnecessary restrictions on the
data-generating process, and (ii) realistic, which often en-
tails bounding the magnitude of shift. We construct causally
interpretable shifts by defining perturbed distributions Pδ

via changes in causal mechanisms parameterized by a finite-
dimensional parameter δ. Our main requirement is that the
shifting mechanisms follow a conditional exponential fam-
ily distribution. Constraining δ can then ensure that shifts
are realistic: The unconstrained worst-case shift in Exam-
ple 1.1 is implausible, where all healthy patients (and no
sick patients) are tested. Equation (1) becomes

sup
δ∈∆

Eδ[ℓ(f(X), Y )], (2)

where Eδ is the expectation in the shifted distribution Pδ

1This workshop paper is a short version of arXiv:2205.15947
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and ∆ is a bounded set of shifts.

The second challenge (Section 3) is evaluation of the ex-
pected loss under shift, as well as finding the worst-case
shift. Under our definition of shifts, we show that the test
distribution can always be seen as a reweighting of the train-
ing distribution, allowing for reweighting approaches, such
as importance sampling, to estimate the expected loss under
shifts. While this is practical for some distribution shifts, for
others, importance sampling can lead to extreme variance
in estimation. Further, finding the worst-case shift using
a reweighted objective involves maximization over a non-
concave objective (see Figure 1), a problem that is generally
NP-hard. We derive a second-order approximation to the
expected loss under shift, and show how it can be estimated
without the use of reweighting. For quadratic constraints ∆,
we can approximate the general non-convex optimization
problem in Equation 2 with a non-convex, quadratically
constrained quadratic program (QCQP) for which efficient
solvers exist (Conn et al., 2000, Section 7). We bound the
approximation error of this surrogate objective, and show
experimentally that it is well-behaved.

2. Defining parametric robustness sets
Notation: Let V denote all observed variables, where
(X,Y ) ⊆ V for features X and labels Y , and let P(V)
denote the training distribution. E[·] and cov(·, ·) refer to
the mean and covariance in P, and for a shifted distribution
Pδ (Definition 2.1) we use Eδ[·], covδ(·, ·). For a random
variable Z, we use Z to denote the space of realizations,
and dZ for dimension e.g., Z ∈ Z ⊆ RdZ . For a set of
random variables V = {V1, . . . , Vd}, we use Vi to denote
an individual element, and use PAG(Vi) to denote the set of
parents in a directed acyclic graph (DAG) G, omitting the
subscript when otherwise clear.

We begin with a general definition of a parameterized ro-
bustness set of distributions P .

Definition 2.1. A parameterized robustness set around
P(V) is a family of distributions P with elements Pδ(V)
indexed by δ ∈ ∆ ⊆ Rdδ , with 0 ∈ ∆, and P0(V) = P(V).

We give examples shortly that satisfy this general definition.
To construct such a robustness set, we consider distributions
Pδ that differ from P in one or more conditional distributions
(Assumption 2.3). We require that the relevant conditional
distributions can be described by an exponential family.

Definition 2.2 (Conditional exponential family (CEF) dis-
tribution). P(W |Z) is a conditional exponential family dis-
tribution if there exists a function η(Z) : RdZ → RdT such
that the conditional probability density (for continuous W )
or probability mass function (for discrete W ) is given by

P(W |Z) = g(W ) exp
(
η(Z)

⊤
T (W )− h(η(Z))

)
, (3)

where T (W ) is a vector of sufficient statistics, T (W ) ∈
RdT , g(·) specifies the density of a base measure and
h(η(Z)) is a normalizing constant.

Definition 2.2 extends to marginal distributions where Z =
∅ and η(Z) is a constant function.
Example 1.1 (Continued). Let ordering a test (O) depend
on age (A) and disease (Y ), such that P(O = 1|A, Y ) =
σ(η(A, Y )), where σ is the sigmoid, and η is an arbitrary
function. Here, Definition 2.2 is satisfied with W = O,
Z = (A, Y ), and sufficient statistic T (O) = O.

We now state our main assumption, where we distinguish
between the terms in the joint distribution of P that shift,
which we will need to model, and those that remain fixed,
which we do not.
Assumption 2.3 (Factorization into CEF distributions). Let
W = {W1, . . . ,Wm} ⊆ V be a intervention set of vari-
ables and let

P(V) =
∏

Wi∈W

P(Wi|Zi)︸ ︷︷ ︸
Conditionals that shift

∏
Vj∈V\W

P(Vj |Uj)︸ ︷︷ ︸
Conditionals that we do not model

(4)

be a factorization, where Zi, Uj , Vj ⊆ V are possibly over-
lapping sets of variables. We assume for each Wi that Zi is
known and that P(Wi|Zi) satisfies Definition 2.2.

If P(V) factorizes according to a DAG G, the factorization
in Assumption 2.3 is always satisfied by Zi = PAG(Wi).
Here, we require limited knowledge of the underlying graph,
and only need to know the parents PA(Wi) for the variables
Wi that shift. We now define parametric perturbations and
give the general form of the robustness sets that we consider,
involving simultaneous perturbations to multiple Wi.
Definition 2.4 (Parameterized shift functions and
δ-perturbations). Let s(Z; δ) : RdZ → RdT be a param-
eterized shift function with parameters δ ∈ ∆ ⊆ Rdδ

which is twice-differentiable with respect to δ and satisfy
s(Z; 0) = 0 for all Z. For P(W |Z) satisfying Equation (3),
we refer to

Pδ(W |Z) = g(W ) exp
(
ηδ(Z)⊤T (W )− h(ηδ(Z))

)
as a δ-perturbation of P(W |Z) with shift function s(Z; δ),
where ηδ(Z) := η(Z) + s(Z; δ).
Example 1.1 (Continued). A model developer may be
concerned about a uniform change in testing rates across
all types of patients. This can be modelled by choosing
s(Z; δ) = δ, for δ ∈ R, an additive intervention on the
log-odds scale. A separate change in testing rates for sick
and healthy could instead be modeled using s(Z; δ) =
δ0(1−Y )+δ1Y , using δ ∈ R2. This reasoning extends read-
ily to more complex shifts (e.g., allowing for age-specific
changes in testing rates, with a non-linear dependence on
age), as long as s(Z; δ) remains a parametric function.
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While the shift function s(Z; δ) is parametric, η(Z) is un-
constrained in Definitions 2.2 and 2.4. Note that this formu-
lation includes multiplicative shifts ηδ(Z) = (1 + δ)η(Z)
by letting s(Z; δ) = δ · η(Z).

Definition 2.5 (CEF parameterized robustness set). For a
distribution P and intervention set W = {W1, . . . ,Wm} ⊆
V satisfying Assumption 2.3, let each Pδi(Wi|Zi) be a δi-
perturbation (Definition 2.4) of P(Wi|Zi). Then

Pδ(V) =
∏

Wi∈W

Pδi(Wi|Zi)
∏

Vj∈V\W

P(Vj |Uj)

is called a δ-perturbation of P(V), and the robustness set P
consists of all Pδ for δ ∈ ∆1 × · · ·∆m.

To estimate the expected loss under Pδ, we will typically
need to estimate η(Zi) for each Wi ∈ W. However, we
make no distributional assumptions on the remaining vari-
ables V\W. This is useful in applications such as computer
vision, where we do not need to restrict the generative model
of images given attributes (e.g., background, camera type,
etc), but can still model the expected loss under changes in
the joint distribution of those attributes.
Remark 2.6 (Causal Interpretation of Shifts). If the DAG G
represents a causal graph (Pearl, 2009), then Pδ can inter-
preted as a change in causal mechanisms. We see this as an
important perspective for interpreting and specifying shifts,
but our methods do not require a causal interpretation.

3. Evaluation of the worst-case loss
For a fixed predictor and loss function, we can use
data from P(V) to estimate the expected loss Eδ[ℓ] :=
Eδ[ℓ(f(X), Y )] for a fixed δ, and estimate the worst-case
loss over all δ of bounded magnitude.
Remark 3.1. The methods here can be used with an arbitrary
predictor f and loss function ℓ := ℓ(f(X), Y ). We do
not even require access to the original predictor f . Both
methods here simply treat ℓ as a random variable in P, for
which we have samples from the training distribution.

3.1. Modelling shifted losses using reweighting

The shifts defined in Section 2 share common support, with
the following density ratio.

Proposition 3.2. For any Pδ(V),P(V) that satisfy Def-
inition 2.5, supp(P) = supp(Pδ) and the density ratio
wδ := Pδ/P is given by

wδ(V) = exp

( m∑
i=1

si(Zi; δi)
⊤Ti(Wi)

)
×

exp

(
m∑
i=1

h(ηi(Zi))− h(η(Zi) + si(Zi; δi))

)
.

Example 1.1 (Continued). Suppose we perturb the proba-
bility of ordering a test O given age A and disease Y with
shift function s(Y ; δ) = δ0(1− Y ) + δ1Y , independently
changing the conditional probability of testing for healthy
and sick patients. Here, the density ratio is given by

wδ(O,A, Y ) = exp(s(Y ; δ) ·O)
1 + eη(A,Y )

1 + eη(A,Y )+s(Y ;δ)
.

To model the loss Eδ[ℓ] using data from P, we can use an
importance sampling (IS) estimator (Horvitz & Thompson,
1952; Shimodaira, 2000), observing that Eδ[ℓ] = E[wδ(V) ·
ℓ]. This requires estimation of the density ratio wδ(V), and
(given a sample {Vj}nj=1 from P) yields the estimator

Eδ[ℓ] ≈ Êδ,IS :=
1

n

n∑
j=1

ŵδ(V
j)ℓ(Vj). (5)

In practice, Equation (5) can have high variance when den-
sity ratios are large, and maximizing this equation with
respect to δ is a general non-convex optimization problem,
which is generally NP-hard to solve.

3.2. Approximating the shifted loss for exponential
family models

We now propose an alternative approach for approximating
the loss Eδ[ℓ]. Recalling that Pδ=0 = P, we use a second-
order Taylor expansion around the training distribution

Eδ[ℓ] ≈ E[ℓ] + δ⊤ SG1 + 1
2δ

⊤ SG2 δ, (6)

where E[ℓ] denotes the loss in the training distribution and
SG1,SG2 are defined as follows.

Definition 3.3 (Shift gradient and Hessian). For a paramet-
ric shift satisfying Definition 2.1 where δ 7→ Eδ[ℓ] is twice-
differentiable, we denote the shift gradient SG1 and Hessian
SG2 as SG1 := ∇δEδ[ℓ]

∣∣
δ=0

and SG2 := ∇2
δEδ[ℓ]

∣∣
δ=0

.

Equation (6) is a local approximation of the loss, whose ap-
proximation error we bound in Theorem B.2, with smaller
approximation error for smaller shifts. For Pδ satisfying Def-
inition 2.5, SG1 and SG2 can be computed as expectations
in the training distribution, without estimation of density
ratios. Recall that the conditional covariance is given by
cov(A,B|C) := E[(A− E[A|C])(B − E[B|C])|C].

Theorem 3.4 (Simple shift in a single variable). Assume
the setup of Theorem B.1, restricted to a shift in a single
variable W , and that s(Z; δ) = δ.

SG1 = E
[
cov

(
ℓ, T (W )

∣∣Z)] and

SG2 = E
[
cov

(
ℓ, ϵT |Zϵ

⊤
T |Z
∣∣Z)] ,

where T (W ) is the sufficient statistic of W and ϵT |Z :=
T (W )− E[T (W )|Z].
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In Theorem B.1, we state a general form of Theorem 3.4,
which allows for shifts in multiple variables and for arbitrary
shift functions s(Z; δ).

Example 1.1 (Continued). Suppose that age (A), which
has no causal parents, follows a normal distribution with
mean µ and variance σ2, and that we wish to consider a
shift in the mean. We can parameterize P(A) as an exponen-
tial family with parameter η = µ/σ and sufficient statistic
T (A) = A/σ. Here, s(δ) = δ implies a shift in the mean
of δ standard deviations ηδ = η + s(δ) = (µ + σδ)/σ,
and we can write that SG1 = cov (ℓ, A) /σ and SG2 =
cov

(
ℓ, (A− E[A])2

)
/σ2.

To estimate the shift gradient and Hessian from a sample
from P, we fit models µ̂ℓ(Z) ≈ E[ℓ|Z] and µ̂W (Z) ≈
E[T (W )|Z] and compute residuals on these predictions,
which permits estimation of the gradient and Hessian as a
sample average of residuals. Using these, we can estimate
the expected loss as

Eδ[ℓ] ≈ Êδ,Taylor := Ê[ℓ] + δ⊤ŜG
1
+ 1

2δ
⊤ŜG

2
δ. (7)

Here, there are two sources of error: Finite-sample error,
due to the estimates of SG1,SG2, as well as approximation
error; in Theorem B.2 we give a bound on the latter. In ex-
change for considering a second-order approximation of the
loss, we gain two benefits: Variance reduction and tractable
optimization. First, as SG1,SG2 are not functions of δ, the
variance of Êδ,Taylor is O(∥δ∥4), while the variance of Êδ,IS
can be much larger (see Section 4). Second, maximizing
Êδ,Taylor over the set ∥δ∥ ≤ λ can be solved in polynomial
time by exploiting the quadratic structure (see Section 3.3),
while maximizing Êδ,IS over the constraints is generally
hard, and may be infeasible in high dimensions.

3.3. Identifying worst-case parametric shifts

For λ > 0, we can locally approximate the worst-case loss
over all distributions Pδ where ∥δ∥2 ≤ λ by finding the
worst-case loss in the Taylor approximation

sup
∥δ∥2≤λ

δ⊤ SG1 + 1
2δ

⊤ SG2 δ. (8)

Since SG2 is generally not negative definite, the maximiza-
tion objective is non-concave. However, this particular prob-
lem is an instance of the well-studied ‘trust region problem’
(Conn et al., 2000), which can be solved in polynomial time
(Pólik & Terlaky, 2007, Section 8.1).

4. Experiments
Synthetic Example: Lab Tests: To compare the bias and
variance of the Taylor and the importance sampling esti-
mates of the shifted loss, we simulate synthetic data from
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Figure 2. Estimates of the shifted loss in Section 4 using either the
importance sampling or the Taylor estimate. For each shift δ we
plot the median, and the 0.05 and 0.95 quantiles for each approach.
The dashed line indicates simulated ground truth (indistinguishable
from the importance sampling in the left plot).

Example 1.1. We consider either a shift in the logits of order-
ing lab tests (Figure 2 left) or a mean shift in the Gaussian
distribution of age (Figure 2 right). We compute estimates
Êδ,IS and Êδ,Taylor of the loss under a shift of size δ, and com-
pare this to ground truth data simulated from Pδ . Additional
details are given in Appendix C.

For shifts in binary test ordering, both estimates capture the
loss well for small shifts, but as δ gets larger, the quadratic
approximation increasingly deviates from the true mean. For
the Gaussian mean shift, the importance sampling weights
quickly become ill-behaved, and the variance dramatically
increases as δ grows. This supports the intuition, that while
importance sampling tends to work well for binary variables,
the variance can be large in continuous distributions, such
as the Gaussian distribution.

Finding worst-case shifts in computer vision, given im-
age attributes: In Appendix A we demonstrate the ap-
plication of the approach outlined in Section 3.3, to find
bounded worst-case shifts in a gender classification task
using a synthetic variant of the CelebA dataset. Here, we
uncover (and validate) sensitivity to interpretable changes
in distribution, such as reduced rates of wearing lipstick
among young women.

5. Conclusion
We argue for considering parametric shifts in distribution,
to evaluate model performance under a set of changes that
are interpretable and controllable. For parametric shifts in
conditional exponential family distributions, we derive a
local second-order approximation to the loss under shift.
This approximation enables the use of efficient optimization
algorithms (to find the worst-case shift), and empirically
provides realistic estimates of the resulting loss.
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A. Experiment: Detecting sensitivity to
spurious correlations

A predictive model may pick up on various problematic
dependencies in the data that may not remain stable under
dataset shift. To understand the impact of these dependen-
cies, a model user may wish to understand which changes
in distribution pose the greatest threats to model perfor-
mance, and to measure the impact of these changes. To
illustrate this use-case, we make use of the CelebA dataset
(Liu et al., 2015), containing images of faces along and
binary attributes (e.g., glasses, beard, etc.) encoding sev-
eral non-causal features whose correlations may be unstable
(e.g., the relation between gender and wearing lipstick). We
consider the task of predicting gender (Y ) from images of
faces (X), and assess sensitivity to a shift in the distributions
of attributes (W).

Setup: To obtain ground-truth shifts in distribution, we
generate synthetic datasets of faces using CausalGAN (Ko-
caoglu et al., 2018), trained on the CelebA data. We simulate
attributes following the causal graph in Figure 3, and then
simulate images from the GAN conditioned on those at-
tributes. We draw a training sample from this distribution P,
and fit a gender classifier f(X) using the image data alone,
by finetuning a pretrained ResNet50 classifier (Hu et al.,
2018), with a test accuracy of 0.919. Each attribute Wi is
binary, so we consider shifts in the log-odds ηi(Zi) of each
attribute Wi given parents Zi. Here, we use a maximally
flexible shift function si(Zi; δi) =

∑
z∈Zi

δi,z1 {Zi = z},
such that for Zi ∈ {0, 1}k there are 2k parameters. Across
all intervened variables, δ ∈ R31. Per Section 3.3, we iden-
tify the shift δ causing the largest drop in accuracy, and
compute Êδ,Taylor and Êδ,IS to estimate accuracy under that
shift. Due to the synthetic nature of our setup, we can simu-
late from Pδ(X,W, Y ) to estimate the ground-truth impact
of this shift, by simulating from the shifted attribute distribu-
tion, and then simulating images from the GAN conditional
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Table 1. (Left) Largest components of worst-case shift δ, where
P and Pδ denote conditional probabilities. (Right) Taylor and IS
estimates of the loss Eδ[ℓ] at the worst-case shift δ.

Conditional δi P Pδ

Wearing Lipstick — Male, Young 0.998 0.08 0.182
Wearing Lipstick — Female, Young -0.992 0.92 0.819

Bald — Female, Old 0.986 0.12 0.266
Wearing Lipstick — Male, Old 0.499 0.12 0.182

Bald — Male, Young -0.471 0.12 0.078

Ground truth shift acc. (Eδ[ℓγ ]) Original acc. (E[ℓγ ])

0.887 0.919

Taylor estimate (Êδ,Taylor) IS estimate (Êδ,IS)

0.878 0.792

on those attributes.

Finding and validating a single, high impact shift: Using
a validation sample from P, we estimate the shift gradient
and Hessian (Theorem B.1). Solving the quadratic optimiza-
tion problem in Section 3.3, we find the worst-case shift δ
such that ∥δ∥ ≤ λ = 2. We display the largest components
of δ in Table 1 (top). Among others, this shift entails a 10%
increase in the probability of a young man wearing lipstick,
and a similar decrease for young women. This suggests that
the learned classifier f relies on this non-causal association
in the images for prediction. We validate that this shift leads
to a measurable decrease in accuracy, from 92% to 89%,
using simulated data from Pδ. To validate that this shift is
indeed a worst-case shift, we simulate K = 400 random
shifts δk and evaluate the model accuracy in Pδk (Figure 4,
top). As expected, our chosen shift δ (red line) is in the
left tail of the distribution. We compare the ground-truth
accuracy under this shift (89%) to the original estimates
Êδ,Taylor = 0.878 and Êδ,IS = 0.792 (Table 1), and observe
that both correctly predict a drop in accuracy, although Êδ,IS
overestimates the size of the drop.

Comparing importance sampling and Taylor across mul-
tiple simulations: We simulate K = 400 validation sets
from P, in each estimating the worst-case shifts δTaylor and
δIS, where the latter corresponds to maximizing Êδ,IS us-
ing a standard non-convex solver from the scipy library
(Virtanen et al., 2020). We simulate ground truth data from
PδIS and PδTaylor , and in Figure 4 (bottom) we plot the differ-
ences EδTaylor [ℓ]− EδIS [ℓ], showing that in 73% of cases, the
Taylor method finds a more impactful shift. Moreover, the
average run-time for the Taylor approach is 0.02s while that
of the importance sampling approach is 2.52s. Finally, the
optimal value of the Êδ,Taylor objective tends to a reasonably
accurate estimate of the shifted accuracy, while the optimal

88.0% 90.0% 92.0% 94.0% 96.0%

Shift distribution acc.

Acc. at δworst-case
Training acc.

Random shift acc.
Higher than Eδ[ℓ]

Lower than Eδ[ℓ]

−3.0% −2.0% −1.0% 0.0% 1.0% 2.0%

Acc. difference at worst shift found

Found worst shift
Taylor
Importance sampling

Figure 4. (Top) Model accuracy at randomly drawn shifts. (Bot-
tom) Difference in accuracy in the worst-case shifts identified by
Taylor and importance sampling approaches. The Taylor method
identifies a more adversarial shift than importance sampling in
73% of simulations (green).

value of the Êδ,IS objective (both on the validation set) is
a poor predictor, with a mean absolute prediction error (in
predicting Eδ[ℓ]) of 0.176 for Êδ,IS and 0.014 for Êδ,Taylor.

B. Additional theorems
Theorem B.1 (Shift gradients and Hessians as covari-
ances). Assume that Pδ,P satisfy Definition 2.5, with inter-
vened variables W = {W1, . . . ,Wm} and shift functions
si(Zi; δi), where δ = (δ1, . . . , δm). Then the shift gradient
is given by SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ where

SG1
i = E

[
D⊤

i,1 cov

(
ℓ, Ti(Wi)

∣∣∣∣Zi

)]
,

and the shift Hessian is a matrix of size (dδ × dδ), where
the (i, i)th diagonal block of size dδi × dδi equals

E
[
D⊤

i,1 cov
(
ℓ, ϵTi|Zi

ϵ⊤Ti|Zi
|Zi

)
Di,1

]
− E

[
ℓ ·D⊤

i,2ϵT |Z
]

and the (i, j)th off-diagonal block of size dδi × dδj equals

cov(ℓ, D⊤
i,1ϵTi|Zi

ϵ⊤Tj |Zj
Dj,1)

where Di,k := ∇k
δi
si(Zi; δi)|δ=0, is the gradient of the

shift function for k = 1, and the Hessian for k = 2. Here,
Ti(Wi) is the sufficient statistic of P(Wi|Zi) and ϵTi|Zi

:=
Ti(Wi)− E[T (Wi)|Zi].

Theorem B.2. Assume that Pδ,P satisfy the conditions
of Theorem B.1, with a shift in a single variable W , where
s(Z; δ) = δ. Let Eδ,Taylor be the population Taylor estimate
(Equation (6)) and let σ(M) denote the largest absolute
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value of the eigenvalues of a matrix M . Then∣∣∣∣Eδ[ℓ]− Eδ,Taylor

∣∣∣∣ ≤
1
2 sup
t∈[0,1]

σ

(
covt·δ(ℓ, ϵt·δ,T |W ϵ⊤t·δ,T |W )−

cov(ℓ, ϵ0,T |W ϵ⊤0,T |W )

)
· ∥δ∥2,

where T (W ) is the sufficient statistic of W |Z and
ϵt·δ,T |W = T (W |Z)− Et·δ[T (W |Z)].

C. Simulation details for Section 4
The data in Section 4 (and also the loss land-scape in Fig-
ure 1 (right)), was simulated using the following generative
model

Age ∼ N (0, 0.52)

P(Disease = 1|Age) = σ(0.5 · Age − 1)

P(Order = 1|Disease, Age) = σ(2 · Disease + 0.5 · Age − 1)

Result|Order = 1,Disease ∼ N (−0.5 + Disease, 1),

where σ denotes the sigmoid function and if Order = 0, the
test result is a placeholder value of zero.

For the lab test ordering, we consider the shift ηδ(Z) =
η(Z)+ δ (i.e. a linear shift in the logits of test ordering) and
for age, we consider a shift in the marginal mean ηδ = δ. To
construct the plot, we simulate data n = 1,000 times, and
for each dataset and each δ in a grid, we compute estimates
Êδ,IS and Êδ,Taylor. We then plot the mean and point-wise
90% prediction intervals for Êδ,IS and Êδ,Taylor.

D. Proofs
D.1. Proof of Proposition 3.2

Proposition 3.2. For any Pδ(V),P(V) that satisfy Def-
inition 2.5, supp(P) = supp(Pδ) and the density ratio
wδ := Pδ/P is given by

wδ(V) = exp

( m∑
i=1

si(Zi; δi)
⊤Ti(Wi)

)
×

exp

(
m∑
i=1

h(ηi(Zi))− h(η(Zi) + si(Zi; δi))

)
.

Proof. By Definition 2.5 and Assumption 2.3, we have that

Pδ(V) =

m∏
i=1

Pδi(Wi|Zi)
∏

Vj∈V\W

P(Vj |Uj)

P(V) =

m∏
i=1

P(Wi|Zi)
∏

Vj∈V\W

P(Vj |Uj).

It follows that the supports of Pδ and P are the same: Since
the exponential family density is given by the base mea-
sure gi(Wi) times a exponential term (which is always
strictly positive), and since the terms

∏
Vj∈V\W P(Vj |Uj)

are shared between Pδ and P, their supports agree.

To get the density ratio, we take the ratio of Pδ(V) and
P(V), and the terms Vj ∈ V \W cancel:

wδ(V) =
Pδ(V)

P(V)

=

m∏
i=1

Pδi(Wi|Zi)

P(Wi|Zi)
.

By Definition 2.5 and Assumption 2.3, each Pδi(Wi|Zi) is
a δi-perturbation around the CEF distribuition P(Wi|Zi), so
plugging in the exponential family densities, we get

wδ(V)

=

m∏
i=1

g(Wi)e
{ηi(Zi)+si(Zi;δi)}⊤Ti(Wi)−hi(ηi(Zi)+si(Zi;δi))

g(Wi)eηi(Zi)⊤Ti(Wi)−hi(ηi(Zi))

=

m∏
i=1

exp

(
si(Zi; δi)Ti(Wi)

− hi(ηi(Zi) + si(Zi; δi)) + hi(ηi(Zi))

)
= exp

( m∑
i=1

si(Zi; δi)Ti(Wi)

)

exp

( m∑
i=1

hi(ηi(Zi))− hi(ηi(Zi) + si(Zi; δi))

)
.

D.2. Proof of Theorem B.1

Theorem B.1 (Shift gradients and Hessians as covari-
ances). Assume that Pδ,P satisfy Definition 2.5, with inter-
vened variables W = {W1, . . . ,Wm} and shift functions
si(Zi; δi), where δ = (δ1, . . . , δm). Then the shift gradient
is given by SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ where

SG1
i = E

[
D⊤

i,1 cov

(
ℓ, Ti(Wi)

∣∣∣∣Zi

)]
,

and the shift Hessian is a matrix of size (dδ × dδ), where
the (i, i)th diagonal block of size dδi × dδi equals

E
[
D⊤

i,1 cov
(
ℓ, ϵTi|Zi

ϵ⊤Ti|Zi
|Zi

)
Di,1

]
− E

[
ℓ ·D⊤

i,2ϵT |Z
]

and the (i, j)th off-diagonal block of size dδi × dδj equals

cov(ℓ, D⊤
i,1ϵTi|Zi

ϵ⊤Tj |Zj
Dj,1)

where Di,k := ∇k
δi
si(Zi; δi)|δ=0, is the gradient of the

shift function for k = 1, and the Hessian for k = 2. Here,
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Ti(Wi) is the sufficient statistic of P(Wi|Zi) and ϵTi|Zi
:=

Ti(Wi)− E[T (Wi)|Zi].

Proof. For simplicity throughout, we use h
(1)
i to denote the

gradient of the log-partition function ∇hi(·) with respect
to the arguments, which is a column vector of length dTi ,
and we use h

(2)
i to denote the Hessian ∇2hi(·), which is a

matrix of size dTi
× dTi

. We also use ηδi(zi) as short-hand
for ηi(zi) + si(zi; δi).

Shift Gradient: By Definition 2.5, the probability den-
sity / mass function Pδ factorizes as follows, where δ =
(δ1, . . . , δm)

Pδ(V) =

( ∏
Wi∈W

Pδi(Wi|Zi)

) ∏
Vi∈V\W

P(Vi|PA(Vi))

 ,

(9)
and the gradient with respect to shift parameters δi is given
by

∇δipδ(v) = pδ(v)∇δi log pδ(v) = pδ(v)∇δi log pδi(wi|zi)

where the last equality follows from additivity of the log-
likelihood in the conditionals, the factorization above, and
the fact that δi only enters into the given conditional distri-
bution. Given the assumed form of log pδi(wi|zi) given in
Definition 2.4, we can observe that

∇δi log pδi(wi|zi)

= ∇δi

[
(ηi(zi) + si(zi; δi))

⊤
Ti(wi)

− hi(η(zi) + si(zi; δi))
]

= (∇δisi(zi; δi))
⊤
Ti(wi)

− (∇δisi(zi; δi))
⊤∇hi(η(zi) + si(zi; δi))

= (∇δisi(zi; δi))
⊤
(Ti(wi)− h

(1)
i (ηδi(zi))) (10)

where ∇δisi(zi; δi) ∈ RdTi
×dδi , and ∇hi(η(zi) +

si(zi; δi)) is the gradient of the function hi : RdTi →
R, which is a column vector of length dTi

. It follows
from known properties of the log-partition function (Wain-
wright et al., 2008, Proposition 3.1), that h(1)

i (ηδi(zi)) =
Eδ[Ti(Wi)|zi]. This gives us that

∇δiEδ[ℓ]

= Eδ

[
ℓ · (∇δisi(Zi; δi))

⊤
(Ti(Wi)− Eδ[Ti(Wi)|Zi])

]
= Eδ

[
(∇δisi(Zi; δi))

⊤Eδ[ℓ · (Ti(Wi)

− Eδ[Ti(Wi)|Zi])|Zi]

]
= Eδ

[
(∇δisi(Zi; δi))

⊤
covδ(ℓ, Ti(Wi)|Zi)

]
,

where the second equality follows from the tower property
and Zi-measurability of ∇δisi(Zi; δi), and the final equality
follows from the definition of the conditional covariance.
This expression, evaluated at δ = 0, gives us the desired
result, that

SG1
i := ∇δiEδ[ℓ]

∣∣
δ=0

= E
[
D⊤

i,1 cov(ℓ, Ti(Wi)|Zi)
]
,

where Di,1 = ∇δisi(Zi, δi)|δ=0. The result follows from
the definition that gradients are taken entry-wise, giving
SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ1

+···dδm .

Shift Hessian (Diagonal): For the shift Hessian, we first
compute the diagonal entries of ∇2

δEδ[ℓ]|δ=0, which are
blocks of size Rdδi

×dδi . We begin by computing the Hes-
sian of the likelihood.

∇2
δipδ(v)

= ∇δi

(
pδ(v)∇δi log pδi(wi|zi)

)
= pδ(v)

(
(∇δi log pδi(wi|zi))⊗2 +∇2

δi log pδi(wi|zi)
)

= pδ(v)

(
{∇δisi(zi; δi)}⊤

(
Ti(wi)− h

(1)
i (ηδi(zi))

)⊗2

{∇δisi(zi; δi)}

− {∇2
δisi(zi; δi)}

⊤(Ti(wi)− h
(1)
i (ηδi(zi)))

− {∇δisi(zi; δi)}⊤h
(2)
i (ηδi(zi))

{∇δisi(zi; δi)}
)
,

= pδ(v)

(
{∇δisi(zi; δi)}⊤((
Ti(wi)− h

(1)
i (ηδi(zi))

)⊗2 − h
(2)
i (ηδi(zi))

)
{∇δisi(zi; δi)}

− {∇2
δisi(zi; δi)}

⊤(Ti(wi)− h
(1)
i (ηδi(zi))

))

where we use the notation v⊗2 := vv⊤, and we note
that ∇2

δi
s(zi; δi) is a tensor of size dTi × dδi × dδi , and

{∇2
δi
si(zi; δi)}⊤h(1)

i (·) is a matrix of size dδi × dδi , where
the (m,n)’th entry is { ∂

∂δim
∂

∂δin
s(zi; δi)}⊤h(1)(·).

Now, using the fact that h(1)(ηδi(z)) = Eδ[Ti(Wi)|zi] and
h(2)(ηδi(zi)) = varδ[Ti(Wi)|zi] (Wainwright et al., 2008,
Proposition 3.1), and the definition ϵTi|Zi

= Ti(Wi) −
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Eδ[Ti(Wi)|Zi], we obtain

∇2
δiEδ[ℓ]

= Eδ

[
ℓ · {∇δisi(Zi; δi)}⊤

(
ϵ⊗2
T |Zi

− varδ(Ti(Wi)|Zi)

)
{∇δisi(Zi; δi)}

]
− Eδ

[
ℓ · {∇2

δisi(Zi; δi)}⊤ϵTi|Zi

]
= Eδ

[
{∇δisi(Zi; δi)}⊤ covδ

(
ℓ, ϵ⊗2

Ti|Zi

∣∣∣∣Zi

)
{∇δisi(Zi; δi)}

]
− Eδ

[
ℓ · {∇2

δisi(Zi; δi)}⊤ϵTi|Zi

]
which gives the desired result when we evaluate at δ = 0.

Shift Hessian (Off-Diagonal) For i ̸= j, we have that

∇δi∇δjpδ(v)

= ∇δi(pδ(v)∇δj log pδj (wj |zj))
= ∇δi(pδ(v)∇δj log pδj (wj |zj))

= pδ(v)∇δi log pδi(wi|zi)
(
∇δj log pδj (wj |zj)

)⊤
= pδ(v)

(
{∇δisi(zi; δi)}

⊤
(Ti(wi)− h

(1)
i (ηδi(zi)))

)
(
{∇δjsj(zj ; δj)}

⊤
(Tj(wj)− h

(1)
j (ηδj (zj)))

)⊤

where the third line follows from the fact that
∇δi(∇δj log pδj (wj |zj)) = 0, and the last line follows from
the derivation of the gradient of the log-likelihood in Equa-
tion (10). We can again use the fact that h(1)

i (ηδi(Zi)) =
Eδ[Ti(Wi)|Zi] and the shorthand ϵTi|Zi

:= Ti(Wi) −
Eδ[Ti(Wi)|Zi] to write that

∇δi∇δjEδ[ℓ]

= Eδ

[
ℓ · {∇δisi(zi; δi)}

⊤
(
(Ti(wi)− h

(1)
i (ηδi(zi)))

)
(
(Tj(wj)− h

(1)
j (ηδj (zj)))

)⊤

{∇δjsj(zj ; δj)}
]

and when we evaluate this expression at δ = 0, we obtain

∇δi∇δjEδ[ℓ]
∣∣
δ=0

= E
[
ℓ ·D⊤

i,1ϵTi|Zi
(ϵTj |Zj

)⊤Dj,1

]
= cov(ℓ,D⊤

i,1ϵTi|Zi
ϵ⊤Tj |Zj

Dj,1).

Where the last equality follows because
E[D⊤

i,1ϵTi|Zi
ϵ⊤Tj |Zj

Dj,i] = 0. To see this, note that
one of Wi,Wj must be a non-descendant of the other, and
we will assume without loss of generality that Wj is a
non-descendant of Wi in the causal graph consistent with

the factorization given in Equation (9), which implies that
Zj (the parents of Wj in the underlying graph) are also
non-descendants of Wi.Thus, Wi ⊥⊥ (Wj , Zj)|Zi, because
(Wj , Zj) are both non-descendants of Wi. Then, observe
that Di,1 is a function of Zi, and ϵTi|Zi

is a variable with
zero-mean conditioned on Zi. Thus, E[D⊤

i,1ϵTi|Zi
|Zi] = 0,

for all Zi. Moreover, given Zi, we have that D⊤
i,1ϵTi|Zi

is
independent of D⊤

j,1ϵTj |Zj
. As a result, we can write that

E[D⊤
i,1ϵTi|Zi

ϵ⊤Tj |Zj
Dj,1]

= E[E[D⊤
i,1ϵTi|Zi

ϵ⊤Tj |Zj
Dj,1|Zi]]

= E[E[D⊤
i,1ϵTi|Zi

|Zi]E[ϵ⊤Tj |Zj
Dj,1|Zi]]

= E[0 · E[ϵ⊤Tj |Zj
Dj,1|Zi]]

= 0

D.3. Proof of Theorem 3.4

Theorem 3.4 (Simple shift in a single variable). Assume
the setup of Theorem B.1, restricted to a shift in a single
variable W , and that s(Z; δ) = δ.

SG1 = E
[
cov

(
ℓ, T (W )

∣∣Z)] and

SG2 = E
[
cov

(
ℓ, ϵT |Zϵ

⊤
T |Z
∣∣Z)] ,

where T (W ) is the sufficient statistic of W and ϵT |Z :=
T (W )− E[T (W )|Z].

Proof. We have ∇δs(Z; δ) = ∇δδ = 1 and ∇2
δs(Z; δ) =

∇2
δδ = 0. The result now follows from Theorem B.1.

D.4. Proof of Theorem B.2

Theorem B.2. Assume that Pδ,P satisfy the conditions
of Theorem B.1, with a shift in a single variable W , where
s(Z; δ) = δ. Let Eδ,Taylor be the population Taylor estimate
(Equation (6)) and let σ(M) denote the largest absolute
value of the eigenvalues of a matrix M . Then∣∣∣∣Eδ[ℓ]− Eδ,Taylor

∣∣∣∣ ≤
1
2 sup
t∈[0,1]

σ

(
covt·δ(ℓ, ϵt·δ,T |W ϵ⊤t·δ,T |W )−

cov(ℓ, ϵ0,T |W ϵ⊤0,T |W )

)
· ∥δ∥2,

where T (W ) is the sufficient statistic of W |Z and
ϵt·δ,T |W = T (W |Z)− Et·δ[T (W |Z)].

Proof. The expectation is continuous and twice-
differentiable with respect to δ, because of the smoothness
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of the exponential family in the parameter, the fact that the
shift function s is twice-differentiable, and because the
support does not change. Thus, applying Taylors remainder
theorem to the function t 7→ Et·δ[ℓ], it follows that there
exist a t0 ∈ [0, 1] such that

E1·δ[ℓ]−E0·δ[ℓ]−
(

d
dtEt·δ[ℓ]

)∣∣∣∣
t=0

=

(
1
2

d2

d2tEt·δ[ℓ]

)∣∣∣∣
t=t0

.

(11)

We have
(

d
dtEt·δ[ℓ]

)∣∣∣∣
t=0

= SG1 and by the same ar-

guments (see the proof of Theorem B.1), it follows that(
1
2

d2

d2tEt·δ[ℓ]

)∣∣∣∣
t=t0

= δ⊤ covt0·δ(ℓ, ϵ
⊗2
t0·δ,T |W )δ. Plugging

this in, and subtracting 1
2δ

⊤ SG2 δ on both sides of Equa-
tion (11) yields∣∣∣∣Eδ[ℓ]− κ(δ)

∣∣∣∣
= 1

2

∣∣∣∣δ⊤( covt0·δ(ℓ, ϵ
⊗2
t0·δ,T |W )− cov(ℓ, ϵ⊗2

0,T |W )

)
δ

∣∣∣∣
≤ 1

2 sup
t∈[0,1]

∣∣∣∣δ⊤( covt·δ(ℓ, ϵ
⊗2
t·δ,T |W )− cov(ℓ, ϵ⊗2

0,T |W )

)
δ

∣∣∣∣.
Let K :=

(
covt·δ(ℓ, ϵ

⊗2
t·δ,T |W ) − cov(ℓ, ϵ⊗2

0,T |W )

)
. Since

K is symmetric and real valued, it is diagonalizeable, K =
U⊤ΛU for an orthonormal matrix U and diagonal matrix
Λ = diag(α1, . . . , αd). We then have

|δ⊤Kδ| = |δ⊤U⊤ΛUδ|
= |(Λ1/2Uδ)⊤(Λ1/2Uδ)|
= ∥Λ1/2Uδ∥22
≤ ∥Λ1/2∥22∥Uδ∥22
= σ(K)∥δ∥22,

where Λ1/2 = diag(
√
α1, . . . ,

√
αd), ∥ · ∥2 denotes the

supremum-norm when applied to matrices and the 2-norm
when applied to vectors and ∥Uδ∥2 = ∥δ∥2 because
∥Uδ∥22 = δ⊤U⊤Uδ = δ⊤δ = ∥δ∥22, using orthonormal-
ity of U . Plugging in this inequality, we get that∣∣∣∣Eδ[ℓ]− κ(δ)

∣∣∣∣
≤ 1

2 sup
t∈[0,1]

σ

(
covt·δ(ℓ, ϵ

⊗2
t·δ,T |W )− cov(ℓ, ϵ⊗2

0,T |W )

)
∥δ∥22,

which concludes the proof.


