
Neuro-symbolic Learning of Lifted Action Models from Visual Traces

Primary Keywords: (2) Learning;

Abstract

Model-based planners rely on action models to describe
available actions in terms of their preconditions and effects.
Nonetheless, manually encoding such models is challeng-
ing, especially in complex domains. Numerous methods have
been proposed to learn action models from examples of plan5

execution traces. However, high-level information, such as
state labels within traces, is often unavailable and needs to
be inferred indirectly from raw observations. In this paper,
we aim to learn lifted action models from visual traces — se-
quences of image-action pairs depicting discrete successive10

trace steps. We present ROSAME, a differentiable neuRO-
Symbolic Action Model lEarner that infers action models
from traces consisting of probabilistic state predictions and
actions. By combining ROSAME with a deep learning com-
puter vision model, we create an end-to-end framework that15

jointly learns state predictions from images and infers sym-
bolic action models. Experimental results demonstrate that
our method succeeds in both tasks, using different visual state
representations, with the learned action models often match-
ing or even surpassing those created by humans.20

1 Introduction
AI planning seeks to automatically identify an optimal
course of action for an agent to achieve a goal within its
environment. Planning algorithms typically rely on a plan-
ning domain model as input. The most critical component25

in a planning domain model is the action model, which
describes the preconditions and effects of each action, en-
abling planners to reason about available actions and in-
fer their outcomes. However, obtaining such action models
can be challenging. Traditionally, they are often handcrafted30

by human experts, making it expensive, time-consuming,
and error-prone. Acquiring action models from observa-
tional data would be much more cost-effective and reli-
able. Many proposals for this task assume fully observable
states and actions (Pasula, Zettlemoyer, and Kaelbling 2007;35

Jiménez, Fernández, and Borrajo 2008; Rodrigues et al.
2012; Lamanna et al. 2021). The problem is that state and ac-
tion labels may not always be available. Labelling numerous
propositions in each state is particularly costly, leading to
many other attempts at reducing reliance on state observabil-40

ity (McCluskey, Richardson, and Simpson 2002; Yang, Wu,
and Jiang 2007; McCluskey et al. 2010; Zhuo et al. 2010;
Zhuo, Muñoz-Avila, and Yang 2011; Cresswell and Gre-
gory 2011; Cresswell, McCluskey, and West 2013; Zhuo and

Kambhampati 2013; Aineto, Jiménez Celorrio, and Onain- 45

dia 2019). However, such reduction often comes at the ex-
pense of other aspects, including but not limited to complete-
ness, quality, and readability of the learned models. Recent
advancements in deep learning allow predicting states and
actions from raw observations using neural networks, poten- 50

tially striking a better balance between data collection cost
and learning outcome quality. Nevertheless, learning action
models typically involve symbolic logical inference, which
is generally non-differentiable. How to effectively combine
such symbolic inference with deep learning remains an open 55

problem.
Encouraged by the emergence of neuro-symbolic tech-

niques (Wang et al. 2019; Pogancic et al. 2020; Ahmed et al.
2022), we aim to meet this challenge with a neuro-symbolic
model. An ideal scenario would be to learn action models di- 60

rectly from video demonstrations of executed plans without
annotated supervision. In this paper, we take the first step
toward this goal by addressing the simpler problem of learn-
ing action models from visual traces, where we only observe
images depicting the states, and not the states labels directly, 65

as shown in Fig. 1. By introducing a differentiable relaxation
of the rules governing action models, we can integrate such a
neuro-symbolic model with a deep learning computer vision
model applied to visual observations, thereby formulating an
end-to-end method to jointly learn human-readable, lifted 70

action models and state predictors from image sequences.
We conduct experiments in several planning domains using
two different types of visual state representations. The ac-
tion models learned by our method closely resemble, and
sometimes improve on, those written by humans. 75

2 Related Work
One of the barriers to learning action models is acquir-
ing a sufficient amount of supervised data. Obtaining fully-
observed state (proposition) labels is exceptionally expen-
sive. Some earlier works, such as LOCM (Cresswell, Mc- 80

Cluskey, and West 2009; Cresswell and Gregory 2011;
Cresswell, McCluskey, and West 2013) and Opmaker (Mc-
Cluskey, Richardson, and Simpson 2002; McCluskey et al.
2010), operate under the assumption that there is no direct
observation of states; they only take action sequences as in- 85

put. These methods infer states and predicates using heuris-
tic rules but provide no guarantee of completeness, sound-
ness, or the quality of the learned models.

A few more recent works have tackled, in a principled
way, the problems of simultaneously creating the symbols90

required to represent the domain and learning action mod-
els based on the created symbols (Konidaris, Kaelbling, and
Lozano-Pérez 2014, 2018; Bonet and Geffner 2020; Ro-
driguez et al. 2021). In comparison, while we assume that
the symbols are given, our task is to jointly learn the action95

models and ground the symbols from observed state images.
Additionally, while these methods bypass the cost of state
labelling, they require structured environment descriptions
(such as state-space graphs or a semi-Markov decision pro-
cess) as input, which demands a significant amount of tech-100

nical expertise to construct. In contrast, our methods rely
solely on observing demonstrations of planning tasks.

Another approach to reducing reliance on state labelling
is to provide alternative information that is easier to ac-
cess, such as state images. A significant contribution in this105

area is Latplan (Asai and Fukunaga 2018; Asai and Kajino
2019; Asai and Muise 2020; Asai et al. 2022), an unsu-
pervised neuro-symbolic model, based on an auto-encoder
framework that exclusively utilizes state images to recover
action models. While both Latplan and our approach apply110

neuro-symbolic methods to state images, there are signif-
icant distinctions between the two works, leading to com-
plementary strengths and weaknesses. As an unsupervised
framework, Latplan requires no ground truth labelling and
operates within a latent space, which grants it the flexi-115

bility to handle domains that are otherwise challenging to
express. However, the lack of interpretability of the latent
model poses challenges in model verification and evaluation.
Translating actions from the latent space into actions that
can be physically executed in the real world is also challeng-120

ing. In contrast, we aim to learn human-readable models, at
the cost of providing minimal additional information, in the
form of the signature of the predicates and action symbols of
the model sought. Moreover, we produce first-order models,
whereas the models learned by Latplan are propositional. An125

extension of Latplan was able to learn first-order representa-
tions for states (Asai 2019), but this has yet to be generalized
to action models. Liberman, Bonet, and Geffner (2022) pre-
sented a formulation to learn first-order representations from
parsed images. However, they did not discuss integrating the130

deep learning image parsing model with their formulation to
create an end-to-end method.

3 Preliminaries
Here we define the planning models we consider and intro-
duce our notations. We assume that the reader is familiar135

with first-order logic, including with the concept of substi-
tution. We write ϕ[σ] for the application of substition σ to a
first-order logic expression (or tuple/set of expressions) ϕ.

A typed planning domainD = 〈T, P,A,M〉 consists of:

• a set T of types;140

• a set P of predicate symbols;
• a set A of action symbols;
• an action model M specifying the predicates in the pre-

conditions, add and delete effects of each action schema.

The types in T are organized into a tree (or hierarchy). 145

We say that a type t′ subsumes type t iff t′ is either t or an
ancestor of t in the tree. Each predicate symbol p ∈ P (resp.
action symbol a ∈ A) has a signature sig(p) (resp. sig(a)),
that is a vector ~t of types such that |~t| is the arity of p (resp.
of a). Given a set X of variables used as arguments of the 150

predicates and action schemas, a predicate takes the form
p(~x) where p is a predicate symbol and ~x ∈ Xarity(p). Sim-
ilarly each action schema takes the form a(~x) where a is
an action symbol, and ~x ∈ Xarity(a), with ~xi 6= ~xj ∀i 6= j.
We say that predicate p(~y) is relevant to action schema a(~x) 155

iff each variable in ~y matches a variable in ~x with an appro-
priate type: ∀i ∈ {1, . . . , arity(p)} ∃j ∈ {1, . . . , arity(a)}
such that ~yi = ~xj and sig(p)i subsumes sig(a)j . We write
R(a(~x)) for the set of predicates that are relevant to a(~x).

Given the predicate and action symbols and their re- 160

spective signatures, we want to learn an action model M
mapping each action schema a(~x), to a triple M(a(~x)) =
〈Pre(a(~x)),Add(a(~x)),Del(a(~x))〉 of sets of predicates
representing its preconditions, add effects and delete effects.
Action model M must satisfy the following: 165

• the predicates in Pre(a(~x)), Add(a(~x)), and Del(a(~x))
must be relevant to a(~x);

• add effects and preconditions cannot intersect, i.e.,
Add(a(~x)) ∩ Pre(a(~x)) = ∅;

• only preconditions can be deleted, i.e., Del(a(~x)) ⊆ 170

Pre(a(~x)). We borrow from SAS+ terminology and
call preconditions that are not deleted prevail condi-
tions (Bäckström and Nebel 1995).

Given P andA, we writeM(P,A) for the set of action mod-
els that satisfy those constraints. 175

A planning instance I = 〈O,D〉 consists of a set of ob-
jects O and a planning domain D. Each object o ∈ O is
associated with a leaf type type(o) ∈ T of the type hierar-
chy. A proposition p(~o) with p ∈ P , ~o ∈ Oarity(p), and such
that sig(p)i subsumes type(~oi) for all i ∈ {1, . . . , arity(p)}, 180

is a ground instance of a predicate p(~x) for some substitu-
tion σ such that p(~x)[σ] = p(~o). Similarly, an action a(~o)
with a ∈ A, ~o ∈ Oarity(a), and such that sig(a)i subsumes
type(~oi) for all i ∈ {1, . . . , arity(a)}, is a ground instance
of an action schema a(~x) for some substitution σ such that 185

a(~x)[σ] = a(~o), and its action model is M(a(~x))[σ]. We
write PI for the set of propositions,AI for the set of actions,
and S = 2PI for the set of states of the planning instance.

Let I be a planning instance, s ∈ S be a state, a ∈ AI
be an action such that M(a) = 〈Pre(a),Add(a),Del(a)〉. 190

We say that a is applicable in s iff Pre(a) ⊆ s. The result
of applying a in s is the successor state res(s, a) = (s \
Del(a))∪Add(a). An execution trace for planning instance
I is a sequence alternating between states and actions: e =
s1 → a1 → . . . → s|e| → a|e| → s|e|+1. We refer to s1 195

as the initial state and s|e|+1 as the final state of the trace.
Trace e is consistent with an action model M if and only
if, according to M , for all i ∈ 1, . . . , |e|, ai is applicable in
si and res(si, ai) = si+1. In the following, we write EkM
for the set of execution traces of length k that are consistent 200

with action model M .

Figure 1: Observations in a visual trace obse compared to the
ground truth trace e. Symbol s denotes states, f is the final
state, and z denotes images. Shaded nodes are observed.

4 Problem Formulation
We now formalize the problem of learning action models
from visual traces that we aim to solve. For an execution
trace e, we only observe a visual trace, which is a sequence205

alternating images and actions: obse = z1 → a1 → . . . →
z|e| → a|e| → f where the ai represent fully observable
actions and f is the observed final state. Fig. 1 illustrates our
observations in a 6-step visual trace compared to the ground
truth execution trace. Note that for a given ground truth trace210

e there can be multiple obse.
Given a planning instance I , a probabilistic state vector

ps ∈ [0, 1]|PI | for a state s is a vector listing all propositions
of the planning instance and their probabilities of being true
in s. Such a vector can be estimated from a state image using
a neural network. A probabilistic prediction of an execution
trace e from its visual trace observation obse is a sequence
alternating between probabilistic state vectors and actions:
predobse = ps1 → a1 → . . . → ps|e| → a|e| → f , where
the predictions are made by a neural network with parame-
ters θ. The probability of state si, assuming independence of
propositions, is

Pr(si | zi; θ) =
∏
pj∈si

psij
∏
pj 6∈si

(1− psij). (1)

The probability of trace e given visual observation obse is
then

Pr(e | obse; θ) =
|e|∏
i=1

 ∏
pj∈si

psij
∏
pj 6∈si

(1− psij)

. (2)

In this work, we assume that we are given a set {obsj}nj=1

of visual traces for a planning instance IM = 〈O,DM 〉
with DM = 〈T, P,A,M〉 for some unknown action model
M ∈M(P,A). Ideally, we wish to jointly choose an action
model M and neural network parameters θ that maximizes
the log-likelihood of the visual traces being the observations
of traces that are consistent with the action model,

`(M, θ) =

n∑
j=1

log

 ∑
e∈E

|obsj |
M

Pr(e | obsj ; θ)

. (3)

The requirement of having fully observable final states is
to ensure that the learned results (both the state predictions
and the action model) are human readable. It also ensures
that we avoid degenerate solutions, e.g., empty sets for Pre,215

Add and Del of all actions. However, we do not include im-
ages for final states because having both the image and label
for the same state would effectively make learning to predict
states fully supervised.

5 Probabilistic Action Model Network 220

Directly maximizing `(M, θ) is hard because it is intractable
to compute the sum over all e ∈ E |obsj |M . Instead we relax the
problem by modifying the successor state operator res to
be probabilistic and compute the expected next probabilistic
state vector at each time step as p̂st+1 = res(pst, at). We
then solve for,

argmin
θ,M∈M(P,A)

n∑
j=1

|obsj |∑
t=1

‖p̂sj,t+1 − psj,t+1‖22 + L(at,psj,t)

where the final probabilistic state psj,|obsj |+1 is determined
from f and all other psj,t are estimated from zt. Here we
have added an additional term L(at,psj,t) to ensure that
the observed action at is applicable in the probabilistic state
psj,t at step t. We provide further details in Section 6. 225

The above relaxation requires a way to compute proba-
bilistic preconditions and effects of actions. However, since
action models are defined symbolically, the above optimiza-
tion problem is difficult to solve. Therefore, we relax the ac-
tion model M to a probabilistic action model with outputs 230

interpreted as probabilities, so that our objective becomes
fully differentiable with respect to θ andM and amenable to
standard back-propagation techniques.

Definition 1 A Probabilistic Action Model (PAM) is defined
as a tuple of three functions 〈pre, add , del〉, where for an 235

action schema a(~x) and a predicate p(~y) relevant to a(~x),
pre(a(~x), p(~y)), add(a(~x), p(~y)), and del(a(~x), p(~y)) are
probabilities of p(~y) being a precondition, an add effect, or
a delete effect of a(~x).

PAM Cases 240

As discussed in the preliminaries, we assume that for any
action model, add effects and preconditions cannot intersect,
and only preconditions can be deleted. Consequently, we can
enumerate all the possible relationships between a predicate
p(~y) and an action schema a(~x) and determine whether they 245

satisfy the above constraints. For any pair (a(~x), p(~y)) such
that p(~y) ∈ R(a(~x)), there are four mutually exclusive cases
that an action model can define:

• Case 1: p(~y) is not involved in the description of a(~x).
• Case 2: p(~y) is only an add effect of a(~x). 250

• Case 3: p(~y) is only a precondition of a(~x).
• Case 4: p(~y) is both a precondition and a delete effect,

but not an add effect of a(~x).

Therefore, we can consider the task of learning action
models as that of classifying the four cases for each pair
of relevant action schema and predicate. A PAM gives a
4-vector −→pra(~x),p(~y) for each pair of a(~x) and p(~y), where
p(~y) ∈ R(a(~x)), which represents a probability distribution

... ...
... So

ftm
ax

 ...

...

...

...

...

...

Probability
Distribution over
Four PAM Cases

d-dimensional
Latent Vectors

Figure 2: PAM network structure for an action symbol. The
number of input neurons is d and the PAM network is ap-
plied to each relevant predicate, where the output dimen-
sion is four. There is a batch of |R(A)| d-dimensional la-
tent vectors for each action symbol. The latent vectors are
randomly drawn from a stand normal distribution and fixed
during training.

over the four discrete cases. These probability distributions
can be directly decoded into the functions pre, add and del :

pre(a(~x), p(~y)) = −→pra(~x),p(~y) · (0, 0, 1, 1) (4)

add(a(~x), p(~y)) = −→pra(~x),p(~y) · (0, 1, 0, 0) (5)

del(a(~x), p(~y)) = −→pra(~x),p(~y) · (0, 0, 0, 1) (6)

These expressions can be interpreted as summing the
probabilities over the respective compatible cases. For in-255

stance, the probability of p(~y) being a precondition of a(~x)
is the sum of the probabilities of cases 3 and 4.

PAM Network
Directly learning the probability distributions for a PAM
is highly non-convex and, therefore, very challenging. One260

method to mitigate this issue is overparameterization, which
is often used to make optimisation problems smoother and
to help the model converge to the global minimum (Du et al.
2019). Since our goal is to learn a discrete probability distri-
bution, we also leverage the fact that, through a sufficiently265

complex function such as a neural network, any arbitrary
distribution can be generated from a set of samples drawn
from a Gaussian distribution (Doersch 2021). Combining
these two ideas, for each action schema, we overparameter-
ize its PAM into a PAM Network, with the inputs being a270

set of latent vectors drawn from a standard Gaussian — one
for each of its relevant predicates. Subsequently, we create
a multi-layer perceptron (MLP) with an output size of four,
followed by a softmax layer to map from latent vectors to
distributions over the four PAM cases. The dimensionality d275

of the latent vectors is an empirically determined hyperpa-
rameter. The PAM network architecture is depicted in Fig. 2.

There are potentially infinitely many action schemas with
different variable arguments for each action symbol. How-
ever, these schemas all share the same action model up to280

variable substitutions. Hence we only need the cardinality
of the set of relevant predicates R(a(~x)) to initialize the
PAM network for a(~x). This cardinality can be efficiently
computed using action and predicate symbol signatures as
explained below. As a result, we can confidently base our285

reasoning on a finite number of symbols without needing
to enumerate an infinite number of predicates and action

schemas. We only need to construct one PAM network for
each action symbol a ∈ A.

Given a predicate symbol p ∈ P and its signature sig(p),
we can easily count how many variables of each type t ∈ T
it requires. Let this be count(t, sig(p)). Similarly, given an
action symbol a ∈ A and its signature sig(a), we can count
how many variables of a type subsumed by t it provides. Let
this be subcount(t, sig(a)). For each pair of symbols a and
p, if there exists a type t such that count(t, sig(p)) 6= 0 and
subcount(t, sig(a)) = 0, then we can infer that predicates
with symbol p are irrelevant to action schemas with symbol
a. Otherwise, we can compute the desired cardinality as:

|R(a)| =
∑
p∈P

∏
t∈T

subcount(t, sig(a))count(t,sig(p)) (7)

Note that the construction of PAM networks is not based 290

on objects. Therefore, PAM networks are decoupled from
planning instances and are transferable within a domain.

We decode PAM network outputs using Eq. 4–6 to obtain
PAMs for action symbols. For an action symbol a, the de-
coding results in three vectors prea, adda, and dela, each 295

of length |R(a)|, representing the lifted preconditions, add
effects, and delete effects for a. These values are mapped
to the corresponding positions of |PI |-length vectors for
generating propositional precondition and effect vectors for
grounded actions, as will be discussed next. 300

6 ROSAME
Based on PAM networks, we create a neuro-symbolic
model, named ROSAME, in order to compute the proba-
bilistic preconditions and effects of actions. Fig. 3 shows
the architecture of ROSAME, along with its inference on 305

an action at at the t-th step within a trace for a planning
instance I . We compute three vectors preat , addat , and
delat ∈ [0, 1]|PI |, where the j-th value represents the proba-
bility of proposition pj being the precondition, add or delete
effect of action at, respectively. If a proposition is relevant1 310

to at, these probabilities are determined by the correspond-
ing PAM for a. Otherwise, the action cannot affect or be
affected by the proposition, and all three values are set to
zero.

We maintain an ordering on all the propositions in the 315

planning instance. After grounding, we record the indices
of relevant propositions within the ordered list of all propo-
sitions for each action, as well as the mapping from each
action to its action symbol. Therefore, given an action at,
we can lift the action to its symbol a and utilize the corre- 320

sponding PAM Network to compute the lifted preconditions
and effects prea, adda, dela for a. Subsequently, we map
values in these vectors, each of length |R(a)|, to the rele-
vant indices in the full |PI |-length vectors preat , addat ,
and delat for the propositional preconditions and effects of 325

the grounded action at.
After training, we create one action schema a(~x) for each

action symbol a and extract its action model M(a(~x)). This
1The notion of relevance straightforwardly transfers from ac-

tion schemas and predicates to actions and propositions obtained
by applying the same substitution to the variables.

Grounding
Map

PAM
Network

0

0

0

0

0

0

0

0

0

Randomly
Initialised
Gaussian

Propositional

Lifted

Relevant Indices

Figure 3: ROSAME architecture. The projection operation
π maps the output of the PAM network to relevant indices in
vectors of length |PI |. Indices not mapped take value zero.

is done by computing an ordered list of relevant predicates
for a(~x). Here we map each output vector from the PAM330

Network for a to the relevant predicates in order. Then,
based on the classification results over PAM cases, we add
the predicates to the sets in the action model M(a(~x)).

ROSAME is independent of planning instances. The
learnable parameters relating to the action model are fully335

contained within the PAM network, structured solely based
on domain knowledge. The only difference between two
planning instances in the same domain is the set of relevant
proposition indices for each grounded action. A new plan-
ning instance only requires rerunning the grounding pro-340

cess on a new list of objects without any changes to the
PAM network. As a result of learning a lifted action model,
ROSAME is able to transfer to other problem instances.
Specifically, we can efficiently train ROSAME on a small
instance and then apply it to a much larger instance within345

the same domain without retraining.

Training Loss
We now detail the loss function used to train ROSAME.
Given an action model M and an execution trace e that is
consistent with it, by the definitions of consistency and of
the successor state operator res, ∀p ∈ PI ,∀t ∈ {1, . . . , |e|}:

p ∈ st+1 ⇐⇒ (p ∈ st ∧ ¬(p ∈ Del(at)))∨
(¬(p ∈ st) ∧ p ∈ Add(at)),

p ∈ Pre(at) =⇒ p ∈ st
(8)

The first formula states that a proposition p holds in state
st+1 if and only if either p holds in state st and is not deleted
by action at, or p does not hold in state st but is added by ac-350

tion at. Note that the first condition includes the case where
p both holds in state st and is an add effect of at, because
being an add effect implies not being a delete effect, as per
our assumptions in Section 3. The second formula in Eq. 8
states that if a proposition p is in the precondition of an ac-355

tion at, and we have observed that at was applied at step t,
then p must hold in state st before action at is executed.

For any step t in 1, . . . , |obs|, we can use ROSAME to
infer the next state p̂st+1 by applying the the product logic

rules (Hájek, Godo, and Esteva 1996) to the first formula in
Eq. 8. For all p ∈ PI , Pr(p ∈ st+1) = Pr(p ∈ st) × (1 −
Pr(p ∈ Del(at))) + (1− Pr(p ∈ st))× Pr(p ∈ Add(at)),
hence we have:

p̂st+1 = pst × (1− delat) + (1− pst)× addat (9)
Note that here, we can translate the logical disjunction into
the summation of two probabilities because these two cases
are mutually exclusive. A PAM that is consistent with a 360

probabilistic prediction of a trace pred should infer next-
step states close to pred. Hence, we compute the mean
square error (MSE) between p̂st+1 and pst+1 at each step
t in the trace, where ps|pred|+1 is determined by the fully
observable final state. 365

To calculate the probability of at being applicable in state
st, we rephrase the second formula in Eq. 8 as a combination
of negation and conjunction: ¬(p ∈ Pre(at) ∧ ¬(p ∈ st)).
This probability can be computed as 1−preat × (1−pst).
There should be a high probability of each action being ap- 370

plicable at each step. We use an MSE between the computed
probability and an all-ones vector 1 to reflect this fact.

Prevail conditions A prevail condition of an action is a
precondition that is not deleted by the action (Bäckström and
Nebel 1995). Prevail conditions correspond to PAM case 3. 375

In an execution trace, the prevail condition holds both before
and after the execution of the action. However, this informa-
tion alone is not sufficient to distinguish PAM case 3 from
PAM cases 1 and 2, where the proposition is not involved
in the description of the action or it serves as an add effect. 380

Such confusion causes indistinguishability among models.
We introduce an additional prior bias to address the indis-

tinguishability problem. We assume that a relevant predicate
is a precondition of an action schema unless evidence from
data contradicts this assumption. Therefore, we give prefer- 385

ence to the model with the prevail condition. This prior bias
not only increases the likelihood of recovering prevail con-
ditions but also results in a more conservative action model,
which can be valuable in safety-critical situations. In prac-
tice, we introduce this prior bias using a loss term for each 390

action, computed as the MSE between preat and an all-ones
vector 1 at each step.

Given a set {predj}nj=1 of predictions for traces, the loss
used to train ROSAME is

`(θ,M) =

n∑
j=1

|predj |∑
t=1

Losspred︷ ︸︸ ︷
MSE(p̂st+1,pst+1) +

MSE(preat × (1− pst),0)︸ ︷︷ ︸
Lossapp

+λ ·MSE(preat ,1)︸ ︷︷ ︸
Lossbias

where λ < 1 is an empirically determined value that reflects
the influence scale of the prior bias.

ROSAME-I 395

We propose ROSAME-I (ROSAME from Images), an end-
to-end framework that combines ROSAME with a deep
learning computer vision (CV) model to learn action mod-
els from visual traces. Fig. 4 illustrates ROSAME-I’s learn-
ing process from a single visual trace. At the t-th step, the 400

CV model

ROSAME ROSAME

...

...
Visual
Trace

ROSAME

Current State
Prediction

CV model CV model

Next State
Inference

Figure 4: Learning action model on a visual trace with ROSAME-I.

CV model predicts pst from the observed state image. Sub-
sequently, ROSAME uses the CV model’s prediction pst
and the action at to infer the next state p̂st+1 and calcu-
lates the action’s applicability loss Lossapp and the prior
bias Lossbias. After that, we compare ROSAME’s infer-405

ence p̂st+1 with the CV model’s prediction for the next step,
pst+1, resulting in the prediction loss Losspred.

We assume that we have access to the ground truth la-
bels for the final state as supervision. To emphasize our fo-
cus on prediction consistency with the supervision, we in-410

troduce a hyperparameter γ ≥ 1 to scale the prediction loss
at the last step. Intuitively, this hyperparameter controls the
balance between ROSAME-I correctly predicting the final
state and making coherent predictions for the previous states
while adhering to the logical constraints of action models.415

7 Experiments
Data and Environment
We create two visual representations to evaluate ROSAME-
I. First, we create state images using digit and letter fig-
ures from the MNIST (Deng 2012) and EMNIST (Cohen420

et al. 2017) datasets to represent objects and backgrounds,
arranging them in grids. We refer to this as the grid world
representation. With this representation, we can efficiently
construct images for states and automatically generate vi-
sual traces from simulations, allowing us to develop and test425

the end-to-end nature of our method in a controlled setting.
Fig. 5 (left) provides examples of the grid world representa-
tions for the three domains we consider, Blocksworld, Grip-
per, and Logistics, along with the state they represent. Note
that changing the order and positions of block towers in the430

Blockworld domain, the positions of balls within the same
room in the Gripper domain, or the object locations within
each 3× 3 grid in the Logistics domain does not change the
underlying state that the image represents.

For the Blockworld domain, we use an off-the-shelf ran-435

dom problem generator (Slaney and Thiébaux 2001) to cre-
ate the initial states. Traces are generated from these ini-
tial states by selecting random applicable actions at each
step. For the Gripper and Logistics domains, we utilize the
trace generation component from the MACQ framework440

(Callanan et al. 2022) to create long random traces, which
are subsequently divided into shorter traces as required.
Specifically, for each trace generated in all three domains,

we randomly select digit and letter figures. These figures re-
main consistent within an individual trace but are re-selected 445

randomly for each new trace giving diverse representations.
Next, we create a synthesized representation for the

Blockworld, Tower of Hanoi, and 8-puzzle domains. We uti-
lize the PDDLGym framework (Silver and Chitnis 2020) to
construct reinforcement learning environments in which we 450

generate long traces through random exploration and then
cut them into traces of the required length. This synthesized
representation is more holistic and natural for humans to
recognize. Example images for this representation are dis-
played on the right of Fig. 5. 455

ROSAME-I is implemented using PyTorch. The code will
be publicly released upon publication of the paper. We train
and test ROSAME-I on the Google Colab Platform, with
83.5 GB RAM and a single A100 40GB GPU.

ROSAME Performance 460

In addition to visual traces, we collect fully observable traces
to assess ROSAME as a stand-alone tool. We sample traces
from the same domains and problem instances used for cre-
ating the grid world representations. We train ROSAME on
the dataset in a fully supervised manner. We set the PAM 465

Network latent dimension z to be 128 and the prior bias
scale λ to be 0.2. We train the models for 100 epochs us-
ing the Adam optimiser with a learning rate of 0.001.

Traces # Steps # States Error
Blockworld 10 10 100 0
Gripper 10 10 100 0
Logistics 10 10 100 0

Table 1: Data and performance of ROSAME.

As we treat the action model learning task as classifying
the four PAM cases for relevant action schemas and predi- 470

cates, we establish the Error metric for the learned models as
the count of misclassifications compared to the ground truth
models written by human. Results in Tab. 1 demonstrate that
ROSAME perfectly recovers the ground truth models for
the three domains with a limited amount of training data. 475

The training process completes in less than a minute without
GPU acceleration, highlighting the efficiency of our model.

5
2
3

1

4

Room 1

Room 2
2 4
3

1 5 6

Figure 5: Domains and visual representations. Left: Grid world representations (top) and corresponding hand-drawn states
(bottom) for Blockworld, Gripper, and Logistics domains. Digits 0 represent backgrounds, while other digits represent objects,
including blocks, balls, and packages. In the Gripper domain, flipped colors represent the two grippers. In the Logistics domain,
letters ‘A’ represent airplanes, and letters ‘T’ represent trucks; the same color indicates a package is carried by a vehicle. Right:
Synthesized representations for Blockworld, Tower of Hanoi, and 8-puzzle domains.

Grid Classes |PI | # Traces # Steps #States #Epochs Learning Rate Error Acc
Blockworld
(grid world) 6 36 800 6 4800 200 Grid CNN: 10−5

MLP: 10−3

ROSAME: 10−3

0 97.51%

Gripper 14 28 1000 5 5000 100 0 90.54%
Logistics 35 72 2500 10 25000 150 0 96.41%
Blockworld
(synthesised) N/A 36 100 10 1000 50

10−3
0 95.26%

Tower of Hanoi N/A 91 70 5 350 70 1 99.64%
8-puzzles N/A 330 300 5 1500 100 4 99.67%

Table 2: Evaluation result for ROSAME-I.

ROSAME-I Performance
We combine ROSAME with a customized CV model for
the grid world representation. The CV model first applies480

to each grid image a CNN classifier whose architecture is
adopted from LeNet (LeCun et al. 1998). The CNN out-
puts for each grid are concatenated and processed through
a multi-layer perceptron (MLP) to predict the truth values of
state propositions. For the synthesized images, we utilize a485

ResNet-18 (He et al. 2016) and again replace the last fully-
connected layer with an MLP to predict state propositions.
We set the PAM Network latent dimension z to be 128, the
prior bias scale λ to be 0.2 (except for the 8-puzzle domain,
where we use a λ of 0.4), and the supervision bias γ to be490

10. We use an Adam optimizer with β = (0.9, 0.999).
We evaluate the quality of the learned action model with

the Error metric defined above. For the CV model, we com-
pute the proposition prediction accuracy with a threshold of
0.5. Tab. 2 presents the evaluation results for ROSAME-I.495

Our method recovers almost perfect action models across
different domains and with various visual representations.
Simultaneously, the CV models within ROSAME-I learn to
predict states from images accurately without incurring ad-
ditional labelling or training costs.500

We reserve 10% of the traces collected as test traces for
the grid world representation. For the synthesized represen-
tation, we create and reserve another dataset with 100 traces
for testing. Note that we create our datasets by generating
random traces. Although we reserve the test traces from505

training, some test state images and traces may still appear in

the training set due to the possibility of duplications within
our entire dataset. However, we consider this less of a prob-
lem for evaluating the CV models because we never provide
direct supervision for any state images. For ROSAME-I to 510

learn to predict states, it must progressively transfer super-
vision from back to front through ROSAME. Therefore, the
high accuracy of CV model predictions demonstrates that
ROSAME can effectively reason with the supervision signal
and convey it to the CV model for learning. 515

Errors in Tower of Hanoi and 8-puzzles
Upon closer examination of the errors appearing in Tab. 2,
we discover that the discrepancies are due to additional
prevail conditions. Tab. 3 shows the model learned by
ROSAME-I for the Tower of Hanoi domain. The learned 520

model has an additional prevail condition that requires a disc
to be placed on top of a larger disc (or peg) before it can be
moved. It is worth noting that this condition trivially holds
for any valid states in the Tower of Hanoi domain. Therefore,
the learned model is actually correct despite being differ- 525

ent from the ground truth. In fact, one might argue that the
learned model is better than the human-crafted one, as the
additional precondition can serve as a safety check, result-
ing in safer behaviour for some invalid problem instances.

It is not surprising that ROSAME-I learns this additional 530

prevail condition. The model is only trained on valid traces,
where the condition consistently holds before the execu-
tion of move actions. With the prior bias we introduced,
ROSAME-I is encouraged to include this condition as a pre-

Learned Model for Tower of Hanoi
move(?disc ?from ?to)
precondition:

(smaller ?from ?disc) (smaller ?to ?disc)
(on ?disc ?from) (clear ?disc) (clear ?to)

add effect:
(clear ?from) (on ?disc ?to)

delete effect:
(on ?disc ?from) (clear ?to)

Table 3: The action model learned by
ROSAME-I for Tower of Hanoi. The pred-
icate in bold does not appear in the ground
truth model written by human.

(a) (b) (c)

Figure 6: Data efficiency of the CV model in ROSAME-I (a,b) and scalability
with respect to problem size (c).

condition unless there is sufficient counter-evidence in the535

data. This mechanism also aids ROSAME-I to recover the
other three prevail conditions in the Tower of Hanoi domain.

In the preconditions of the move actions for the 8-puzzle
domain, the learned model additionally recovers relation-
ships between the target position and the original posi-540

tion that are symmetrically reversed compared to their re-
lationships in the ground truth model, e.g., including both
dec(?by, ?py) and inc(?py, ?by) as preconditions of move-
up, resulting in correct but redundant prevail conditions.

Data Efficiency545

We hypothesize that the presence of ROSAME enhances
the data efficiency of the CV model within ROSAME-I be-
cause ROSAME can infer with the evolving action model
and propagate a single supervision to multiple state images
for the CV model to learn from. To test this hypothesis, we550

assess the performance of the CV model extracted from two
ROSAME-I models trained in the Blockworld domain with
the synthesized representation, using traces of 5-step and 10-
step lengths, respectively. In each case, there is one supervi-
sion in each trace. In contrast, we train a separate CV model555

with the same architecture using state images with fully su-
pervised proposition labels. We then compare the prediction
accuracy among the models. As shown in Fig. 6a, it is evi-
dent that with the same amount of supervision, the CV mod-
els extracted from ROSAME-I consistently outperform the560

CV model trained in isolation. This result confirms that data
efficiency increases with the assistance of ROSAME.

In contrast, Fig. 6b displays the model’s performance with
respect to the number of state images observed by the model.
It is clear that models extracted from ROSAME-I, trained on565

traces where multiple images share a single goal state super-
vision, suffer performance loss because the level of supervi-
sion decreases. The longer the trace, the fewer supervisions
are available for the same number of states, leading to a de-
cline in model performance.570

Scalability with respect to Problem Size
Using the Logistics domain, we examine the scalability of
our method with respect to problem size. We generate prob-
lem instances that consist of two trucks, one plane, and two
cities, each with two locations, and use the grid world rep-575

resentation. We vary the number of packages and determine

the problem’s size by counting the total number of objects
(comprising only trucks, planes, and packages since cities
and locations are static).

For each problem with a different size, we increase the 580

number of traces for training until ROSAME-I recovers the
ground truth model, resulting in the green line in Fig. 6c.
The figure also shows number of propositions (in red), and
the number of different states (in blue), which grow linearly
and exponentially, respectively, as a function of the prob- 585

lem size. As is evident from the figure, the amount of data
required for training ROSAME-I aligns with the proposition
space, avoiding the combinatorial nature and the exponential
growth of the problem state space. This result demonstrates
the satisfying scalability of our method. 590

Ablation Studies and Shortcuts
We conducted ablation studies to examine the effects of
introducing prior bias and overparameterizing PAMs with
neural networks, as opposed to directly learning the proba-
bility distributions over PAM cases. We also analyzed rea- 595

soning shortcuts, a specific problem associated with neuro-
symbolic methods we encountered in our research. We have
included these sections in the supplementary materials.

8 Conclusion and Future Work
This paper presents ROSAME-I, an end-to-end neuro- 600

symbolic model that learns lifted action models from visual
traces. This learning process is guided by the given types,
predicates, action symbols, their signatures, and the ob-
jects within the planning instance. We evaluated ROSAME-
I across various domains employing different visual repre- 605

sentations and achieved high-quality action models. While
in this paper, we perform one-step inferences on successive
states using ROSAME, replacing it with multi-step infer-
ence on future states could offer stronger regularization and
enhance the learning task. As we progress towards our ulti- 610

mate goal of learning action models from plan demonstra-
tion videos with minimal supervision, an intermediate step
could involve reducing the need for action labelling in visual
traces through a deep learning action classifier. To enable
fully automated learning from videos, we will also need to 615

develop methods for segmenting continuous video streams
into discrete states and actions.

References
Ahmed, K.; Teso, S.; Chang, K.; den Broeck, G. V.; and
Vergari, A. 2022. Semantic Probabilistic Layers for Neuro-620

Symbolic Learning. In Proc. NeurIPS.
Aineto, D.; Jiménez Celorrio, S.; and Onaindia, E. 2019.
Learning action models with minimal observability. Arti-
ficial Intelligence, 275: 104–137.
Asai, M. 2019. Unsupervised Grounding of Plannable First-625

Order Logic Representation from Images. In Proc. ICAPS.
Asai, M.; and Fukunaga, A. 2018. Classical Planning in
Deep Latent Space: Bridging the Subsymbolic-Symbolic
Boundary. In Proc. AAAI, 6094–6101.
Asai, M.; and Kajino, H. 2019. Towards Stable Symbol630

Grounding with Zero-Suppressed State AutoEncoder. In
Proc. ICAPS, 592–600.
Asai, M.; Kajino, H.; Fukunaga, A.; and Muise, C. 2022.
Classical Planning in Deep Latent Space. JAIR, 74: 1599–
1686.635

Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic
Descriptive Planning Models via Cube-Space Priors: The
Voyage Home (to STRIPS). In Proc. IJCAI, 2676–2682.
Bäckström, C.; and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence, 11(4): 625–640

655.
Bonet, B.; and Geffner, H. 2020. Learning First-Order Sym-
bolic Representations for Planning from the Structure of the
State Space. In Proc. ECAI, 2322–2329.
Callanan, E.; Venezia, R. D.; Armstrong, V.; Paredes, A.;645

Chakraborti, T.; and Muise, C. 2022. MACQ: A Holistic
View of Model Acquisition Techniques. In ICAPS Workshop
on Knowledge Engineering for Planning & Scheduling.
Cohen, G.; Afshar, S.; Tapson, J.; and Van Schaik, A. 2017.
EMNIST: Extending MNIST to handwritten letters. In Proc.650

IJCNN, 2921–2926.
Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In Proc. ICAPS.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009. Ac-
quisition of Object-Centred Domain Models from Planning655

Examples. In Proc. ICAPS.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review, 28(2): 195–213.
Deng, L. 2012. The MNIST Database of Handwritten Digit660

Images for Machine Learning Research. IEEE Signal Pro-
cessing Magazine, 29(6): 141–142.
Doersch, C. 2021. Tutorial on Variational Autoencoders.
arXiv:1606.05908.
Du, S. S.; Zhai, X.; Poczos, B.; and Singh, A. 2019. Gradi-665

ent Descent Provably Optimizes Over-parameterized Neural
Networks. In Proc. ICLR.
Hájek, P.; Godo, L.; and Esteva, F. 1996. A complete many-
valued logic with product-conjunction. Archive for mathe-
matical logic, 35: 191–208.670

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proc. CVPR, 770–778.

Jiménez, S.; Fernández, F.; and Borrajo, D. 2008. The PELA
architecture: integrating planning and learning to improve
execution. In Proc. AAAI. 675

Konidaris, G. D.; Kaelbling, L. P.; and Lozano-Pérez, T.
2014. Constructing Symbolic Representations for High-
Level Planning. In Proc. AAAI, 1932–1938.
Konidaris, G. D.; Kaelbling, L. P.; and Lozano-Pérez, T.
2018. From Skills to Symbols: Learning Symbolic Rep- 680

resentations for Abstract High-Level Planning. JAIR, 61:
215–289.
Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and
Traverso, P. 2021. Online Learning of Action Models for
PDDL Planning. In Proc. IJCAI, 4112–4118. 685

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11): 2278–2324.
Liberman, A. O.; Bonet, B.; and Geffner, H. 2022. Learning
First-Order Symbolic Planning Representations That Are 690

Grounded. CoRR, abs/2204.11902.
McCluskey, T. L.; Cresswell, S.; Richardson, N. E.; and
West, M. M. 2010. Action knowledge acquisition with op-
maker2. In Proc. ICAART, 137–150.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M. 695

2002. An Interactive Method for Inducing Operator Descrip-
tions. In Proc. AIPS, 121–130.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning symbolic models of stochastic domains. JAIR, 29:
309–352. 700

Pogancic, M. V.; Paulus, A.; Musil, V.; Martius, G.; and
Rolı́nek, M. 2020. Differentiation of Blackbox Combina-
torial Solvers. In Proc. ICLR.
Rodrigues, C.; Gérard, P.; Rouveirol, C.; and Soldano, H.
2012. Active learning of relational action models. In Proc. 705

ILP, 302–316.
Rodriguez, I. D.; Bonet, B.; Romero, J.; and Geffner, H.
2021. Learning First-Order Representations for Planning
from Black Box States: New Results. In Proc. KR, 539–548.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ- 710

ments from PDDL Problems. In ICAPS PRL Workshop.
Slaney, J.; and Thiébaux, S. 2001. Blocks World revisited.
Artificial Intelligence, 125(1): 119–153.
Wang, P.; Donti, P. L.; Wilder, B.; and Kolter, J. Z. 2019.
SATNet: Bridging deep learning and logical reasoning using 715

a differentiable satisfiability solver. In Proc. ICML.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-model ac- 720

quisition from noisy plan traces. In Proc. IJCAI.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2011. Learning
action models for multi-agent planning. In Proc. AAMAS,
217–224.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning 725

complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540–1569.

