
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING PREDICTION PERFORMANCE THROUGH
INFLUENCE MEASURE

Anonymous authors
Paper under double-blind review

ABSTRACT

In the field of machine learning, the pursuit of accurate models is ongoing. A key
aspect of improving prediction performance lies in identifying which data points in
the training set should be excluded and which high-quality, potentially unlabeled
data points outside the training set should be incorporated to improve the model’s
performance on unseen data. To accomplish this, an effective metric is needed
to evaluate the contribution of each data point toward enhancing overall model
performance. This paper proposes the use of an influence measure as a metric
to assess the impact of training data on test set performance. Additionally, we
introduce a data selection method to optimize the training set as well as a dynamic
active learning algorithm driven by the influence measure. The effectiveness
of these methods is demonstrated through extensive simulations and real-world
datasets.

1 INTRODUCTION

To build effective machine learning models, the significance of individual training data points cannot
be overstated. Each data point in the training set contributes uniquely to the model’s learning process,
shaping its performance, generalization, and resilience to various challenges (Blum & Langley, 1997).
Simply evaluating the model’s performance on the provided data is insufficient; understanding the
influence of individual training examples and making informed decisions about their inclusion or
exclusion is critical for developing effective and reliable models.

Recent advancements in machine learning have highlighted the importance of strategic data selection
and management during training. Techniques such as active learning (Settles, 2009) promote the
iterative selection of the most uncertain unlabeled data points for labeling and inclusion in the training
set. However, estimating uncertainty in deep neural networks (DNNs) is challenging due to their
tendency to exhibit overconfidence (Ren et al., 2021). To address this, methods like deep Bayesian
approaches (Gal et al., 2017), query-by-committee (Gorriz et al., 2017), Variational Auto-Encoders
(Sinha et al., 2019), adversarial learning (Ducoffe & Precioso, 2018; Mayer & Timofte, 2020), graph
convolutional networks (Caramalau et al., 2021), and noise stability (Li et al., 2024) have been
proposed to improve uncertainty estimates. However, these approaches assume a well-trained model
and fail to consider how model parameters might evolve when the training data is modified.

To bridge this gap, recent studies have focused on quantifying the impact of individual training
examples on model behavior, with the main challenge being the identification of an appropriate
evaluation metric. The Shapley value has emerged as a promising solution, inspiring a number of
Shapley-value-based approaches (Ghorbani & Zou, 2019; Jia et al., 2019b;a; Ghorbani et al., 2020;
Kwon & Zou, 2022; Wang & Jia, 2023). However, these methods often require multiple model
retrainings and evaluations, making them computationally expensive.

Techniques such as influence functions (Koh & Liang, 2017; Pruthi et al., 2020; Yeh et al., 2018;
Chen et al., 2021) offer insights into the effect of individual data points on model predictions, helping
to identify and mitigate harmful or overly influential examples. For instance, Chhabra et al. (2024)
apply influence functions to measure the impact of training data on a specific model, improving
performance by pruning detrimental data points. Their method is highly efficient as it avoids the need
for model retraining. However, these algorithms may still fail in certain cases, as demonstrated in the
following simple example.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Binary Classification via Logistic Regression. We consider a logistic regression model p(x) =
(1 + e−xβ)−1, where β ∈ R represents the coefficients. For a training set Z = {(xi, yi)}ni=1 and a
validation set V , the influence function in Chhabra et al. (2024) for example is defined as

I(−xi) =
∑

(x,y)∈V

∂βL(y, x; β̂)[

n∑
i=1

∂2
βL(yi, xi; β̂)]

−1∂βL(yi, xi; β̂),

where ∂β = ∂/∂β, x ∈ R, y ∈ {0, 1} is a binary classification label, L represents the
cross-entropy loss, and β̂ = argminβ∈R n−1

∑n
i=1 L(yi, xi;β). According to Chhabra et al.

(2024), samples xi with negative influence function values negatively impact the model’s per-
formance on the validation set and should be removed. For all training samples xi, the term∑

(x,y)∈V ∂βL(y, x; β̂)[
∑n

i=1 ∂
2
βL(yi, xi; β̂)]

−1 remains constant, with only ∂βL(yi, xi; β̂) varying.

In the simple logistic regression scenario, we have ∂βL(yi, xi; β̂) = [(1+ e−xiβ̂)−1− yi]xi. Assum-
ing

∑
(x,y)∈V ∂βL(y, x; β̂)[

∑n
i=1 ∂

2
βL(yi, xi; β̂)]

−1 > 0 and xi > 0, the training sample influence
is negative if and only if yi = 1. However, it is clearly incorrect to solely remove data points from
one class, as outliers in the other class may also negatively influence the model’s performance. For
higher-dimensional xi, as shown in Section 6 using both simulated and real-world data, our method
consistently outperforms the approach proposed by Chhabra et al. (2024) and others.

Given the limitations of existing methods, we draw inspiration from local influence measures
developed in the statistical community (Zhu et al., 2007; 2011; Shu & Zhu, 2019; Sui et al., 2023) to
propose a novel metric in this article. Our approach differs from previous ones that typically evaluate
the impact of perturbations on data samples or model parameters with a fixed model assumption.
Instead, our measure directly assesses the effect of minor perturbations to training samples on the
model’s performance on a validation set, allowing the model to adapt to these changes. To implement
this, we have developed a new perturbation manifold and expanded the local influence framework.
Using this innovative approach, we introduce two key metrics: one for data trimming, aimed at
identifying and removing training set anomalies that compromise model stability on the test set, and
another for active learning, which focuses on selecting the most impactful unlabeled data to enhance
the prediction performance. Moreover, acknowledging the challenges of slow computation and high
memory usage inherent in calculating exact local influence measures, we propose two approximation
methods. Our experiments on real-world datasets demonstrate that these approximations achieve
performance comparable to exact calculations while significantly reducing computational overhead.

We summarize our contributions as follows,

(i) Unlike existing local influence measures, we propose a new metric that evaluates the impact of
perturbations to training samples on the model’s performance on validation data.

(ii) The proposed metric is applicable to both data trimming and active learning. For data trimming,
it evaluates the effects of minor perturbations to each sample, offering deeper insights into how
individual samples impact model performance. In the context of active learning, the method
captures the relationship between training samples, unlabeled data, and parameter updates.

(iii) We propose two approximation methods to alleviate the high computational cost of calculating
local influence measures. These algorithms significantly reduce computational overhead while
maintaining better performance than other methods, as demonstrated in our experiments.

2 A NEW INFLUENCE MEASURE

In this section, we begin by presenting essential background information, including the Perturbation
Manifold, before formally defining the proposed metric.

Perturbation Manifold. Our definition of the perturbation manifold closely follows that of Shu
& Zhu (2019). Given an input sample z = (x, y) in the training set Z = {zi}ni=1 and a machine
learning model with an estimated parameter vector θ̂, which is trained onZ , the prediction probability
for class c ∈ {1, . . . ,K} is denoted as P (c|x, θ̂). Let ω = (ω1, . . . , ωp)

⊤ be a perturbation vector
that varies within an open subset Ω ⊂ Rp. The perturbation ω is applied to x, thereby affecting
the learning of the parameter vector θ̂. We denote the parameter vector obtained by the model after

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

perturbing the training sample x with ω as θ̂(x+ω) with θ̂(x) = θ̂. We define P (c|x+ω, θ̂(x+ω))

as the prediction probability under the perturbation ω such that
∑K

c=1 P (c|x+ω, θ̂(x+ω)) = 1. It
is assumed that there exists a ω0 ∈ Ω such that P (c|x+ ω0, θ̂(x+ ω0)) = P (c|x, θ̂). Additionally,
we assume that {P (c|x+ ω, θ̂(x+ ω))}Kc=1 is positive and sufficiently smooth for all ω ∈ Ω.

Following the development in (Zhu et al., 2007; 2011), we defineM = {P (c|x+ ω, θ̂(x+ ω)) :
ω ∈ Ω} as a perturbation manifold. The tangent space ofM at ω is denoted by Tω , which is spanned
by {∂l(ω|c,x, θ̂(x))/∂ωi}pi=1, where l(ω|c,x, θ̂(x)) = logP (c|x+ω, θ̂(x+ω)). Let Gz(ω) =∑K

c=1 ∂
⊤
ω l(ω|c,x, θ̂(x))∂ωl(ω|c,x, θ̂(x))P (c|x+ω, θ̂(x+ω)) with ∂ω = (∂/∂ω1, . . . , ∂/∂ωp).

If Gz(ω) is positive definite, thenM is a Riemannian manifold (Shu & Zhu, 2019) with Gz(ω)
serving as the Riemannian metric tensor (Amari, 2012; Amari & Nagaoka, 2000).

Although Gz(ω) is often not positive definite in classification problems, we can still reduce the
dimensionality of the perturbations and reconstruct a Riemannian manifold (Shu & Zhu, 2019).

The Influence Measure. Let L(y′,x′;θ) denote the loss function of the model with parameter θ on
z′ = (x′, y′) /∈ Z , we can get the expression for the (first-order) influence measure:

FI(z′, z) = ∂ωL(y
′,x′; θ̂(x+ ω0))G

†
z(ω0)∂

⊤
ωL(y′,x′; θ̂(x+ ω0)), (2.1)

where G†
z(ω0) is the pseudoinverse of Gz(ω0).

We consider a linear perturbation approach where applying perturbation ω to the training sample
z transforms (x, y) into (x + ω, y). Consequently, the parameter vector updates to θ̂(x + ω) :=
n−1 argminθ∈Θ{

∑n
i=1 L(yi,xi;θ) +L(y,x+ω;θ)−L(y,x;θ)}, with ω0 = 0. Using the chain

rule, we can derive the expression for ∂ωL(y′,x′; θ̂(x+ ω0)):

∂ωL(y
′,x′; θ̂(x+ ω0)) = ∂θL(y

′,x′; θ̂(x))∂ωθ̂(x+ ω)
∣∣
ω=ω0

. (2.2)

Here, ∂ωθ̂(x+ ω)
∣∣
ω=ω0

≈ n−1H−1

θ̂
∂x∂θL(y,x; θ̂(x)), whose derivation is detailed in Appendix

A), where Hθ̂ := n−1
∑n

i=1 ∂
2
θL(yi,xi; θ̂(x)). The term ∂x∂θL(y,x; θ̂(x)) represents the gradient

of the loss function L first taken with respect to the model parameters θ and then with respect to x,
evaluated at the perturbed training sample (x, y).

For the computation of Gz(ω0), P (c|x+ω0, θ̂(x+ω0)) can be directly obtained using the learned
model parameter vector θ̂ and the unperturbed sample point x. The calculation of ∂ωl(ω0|c,x, θ̂(x))
requires the application of the chain rule:

∂ωl(ω0|c,x, θ̂(x)) =∂ω logP (c|x+ ω0, θ̂(x+ ω0)) (2.3)

=∂θ logP (c|x+ ω0, θ̂(x+ ω0)) · ∂ωθ̂(x+ ω)|ω=ω0

+ ∂x logP (c|x+ ω0, θ̂(x+ ω0)).

All differentiation operations can be easily computed using backpropagation (Goodfellow et al., 2016)
in deep learning libraries such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017).
This entire process is efficient and does not require retraining the model parameters.

Theorem 1. If φ represents a diffeomorphism of ω, then FI(z′, z) is invariant under any reparame-
terization associated with φ.

Compared to widely used measures in Euclidean spaces, such as the Jacobian norm (Novak et al.,
2018) and Cook’s local influence measure (Cook, 1986), Theorem 1 demonstrates that FI(z′, z)
remains invariant under any diffeomorphic transformation (e.g., scaling) of the perturbation vector ω.
The proof of Theorem 1 can be found in Shu & Zhu (2019).

The significance of Theorem 1 is especially pronounced when there are scale differences among the
dimensions of x. For instance, if certain dimensions have significantly larger values than others, the
contribution of perturbations to those dimensions may appear exaggerated. However, our FI(z′, z)
mitigates this scaling issue by employing the metric tensor of the perturbation manifold instead of
that of the standard Euclidean space.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 FI FOR DATA TRIMMING.

The primary goal of data trimming is to eliminate training samples that may compromise the model’s
performance on datasets beyond the training set. Since our proposed influence measure (FI) quantifies
the impact of each training sample on the model’s performance on validation sets, it serves as a
natural tool for data trimming.

From a model robustness perspective, if a small perturbation in a training sample leads to a significant
effect on the model’s performance on the validation set, that sample should be excluded, which aligns
with the principle of our proposed metric. Given the inherent challenge of ensuring that all samples
in the training set are entirely accurate, a sample with excessive influence could severely degrade
the model’s overall performance if it contains any contamination. Therefore, to enhance prediction
performance on an unseen data set, such samples should be removed from the training set.

Following the setup of Chhabra et al. (2024), we introduce a training set Z , a validation set V ,
and a base model F . In this context, we assess the impact of each training sample on the model’s
performance by computing the FI for each training tuple zi ∈ Z with respect to V . To achieve
this, we extend Equation 2.1 to encompass the entire validation set. This involves replacing the loss
function for an individual validation sample with the mean loss function across the entire validation
set, as follows:

FIutil(z) = ∂ωL(V; θ̂(x+ ω0))G
†
z(ω0)∂

⊤
ωL(V; θ̂(x+ ω0)), (3.1)

where ∂ωL(V; θ̂(x+ ω0)) :=
1
|V|

∑
(x′,y′)∈V ∂ωL(y

′,x′; θ̂(x+ ω0)).

The algorithm for computing FIutil is outlined in Algorithm 1. After computing these values, we can
sort all data points in the training set in descending order based on their FIutil values and remove
the top b points to enhance the model’s performance on the test set. For the detailed data trimming
algorithm, please refer to Algorithm 3.

Algorithm 1 Calculation of FIutil

Input: Training set Z , Validation set V , Base model F
Output: Influence measure vector FIutil ∈ R|Z|×1

1: procedure FIutil-CALCULATION(Z , V , F)
2: Train F with Z , and obtain the parameter vector θ̂
3: Generate an empty vector FIutil of size |Z| × 1

4: Calculate 1
|V|

∑
(x′,y′)∈V ∂θL(y

′,x′; θ̂) and Hθ̂

5: for every zi in Z do
6: Calculate Gzi

(ω0) and ∂x∂θL(yi,xi; θ̂)

7: ∂ωL(V; θ̂)← 1
|V|

∑
(x′,y′)∈V ∂θL(y

′,x′; θ̂)H−1

θ̂
∂x∂θL(yi,xi; θ̂)

8: FIutil[i]← ∂ωL(V; θ̂G†
zi
(ω0)∂

⊤
ωL(V; θ̂)

9: end for
10: return FIutil

11: end procedure

4 FI FOR ACTIVE LEARNING.

In active learning, the primary objective is to identify the most uncertain or informative samples from
an unlabeled pool for annotation, typically in sequential batches. After each round of annotation,
the newly labeled data are combined with the existing labeled set to retrain the model and improve
its performance. Li et al. (2024) argue that if a small perturbation to the model parameters leads
to significant changes in the prediction for a given sample, this indicates high uncertainty for that
sample under the current model, suggesting that it should be labeled and added to the training set.
Our approach is more fundamental: since the model parameters are derived from the training data,
we directly assess how perturbations to the training samples influence the model’s predictions for the
unlabeled samples. If slight perturbations to most training samples substantially alter the model’s

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

prediction for a given sample, it likely contains missing information from the training set and should
therefore be included.

We now introduce a method for active learning using the proposed FI. For an unlabeled sample
xunlabel, we first assign it a predicted label and treat it as a validation sample. Next, we calculate
the influence measure of xunlabel with respect to each point in the training set. The overall influence
measure FIactive(xunlabel) is derived by aggregating these individual measures either by averaging or
using specific quantiles of these FI values. The FIactive(xunlabel) is defined as follows:

FIactive(xunlabel) = g({FI(zunlabel, zi)}ni=1), (4.1)

where g represents the aggregation function, zunlabel = (xunlabel, ypred), and ypred is the predicted label
assigned by the current model for xunlabel.

During each round of active learning, we begin by applying Algorithm 2 to compute FIactive. We
then sort all the samples in the unlabeled pool in descending order based on their FIactive values. The
top-ranked samples are labeled and added to the training set. In the subsequent round, the model
is retrained, FIactive is recalculated, and the process is repeated. For the detailed active learning
algorithm, please refer to Algorithm 4.

Algorithm 2 Calculation of FIactive

Input: Labeled pool of training dataL, Unlabeled pool of training data U , Base modelF , Aggregation
function g
Output: Influence measure vector FIactive ∈ R|U|×1

1: procedure FIactive-CALCULATION(L, U , F , g)
2: Train F with L, and obtain the parameter vector θ̂
3: Generate an empty vector FIactive of size |U| × 1
4: Calculate Hθ̂

5: for every xU
i in U do

6: Obtain an estimated label ŷi with F
7: Calculate ∂θL(ŷi,x

U
i ; θ̂)

8: J ← ∅
9: for every zLj in L do

10: Calculate GzL
j
(ω0) and ∂x∂θL(y

L
j ,x

L
j ; θ̂)

11: ∂ωL(ŷi,x
U
i ; θ̂)← ∂θL(ŷi,x

U
i ; θ̂)H

−1

θ̂
∂x∂θL(y

L
j ,x

L
j ; θ̂)

12: J ← J
⋃
{∂ωL(ŷi,xU

i ; θ̂)G
†
zL
j

(ω0)∂
⊤
ωL(ŷi,x

U
i ; θ̂)}

13: end for
14: FIactive[i]← g(J)
15: end for
16: return FIactive

17: end procedure

5 APPROXIMATION METHODS

The data selection processes described in the previous two sections have two main drawbacks. First,
computing FI requires substantial storage for second-order derivatives, particularly in models with
numerous parameters or high-dimensional data. To address this issue, we propose the KFSVD
approximation method, which combines K-FAC and Truncated-SVD to effectively reduce storage
requirements. Sencond, the necessity to compute the FIutil for all data points in the data trimming
algorithm, as well as the need to recalculate FIactive for all unlabeled data in each round of the
active learning algorithm, significantly decreases computational efficiency. To mitigate this, we
implement a subsampling approximation that enhances overall performance. The details of these two
approximation methods are as follows.

KFSVD approximation, which combines the Kronecker-factored (K-FAC) approximation (Martens
& Grosse, 2020; Nickl et al., 2023) with Truncated Singular Value Decomposition (Truncated-SVD)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

approximation (Golub & Reinsch, 1971) to mitigate memory consumption associated with the Hessian
matrix Hθ̂ and the second-order partial derivatives ∂x∂θL(y,x; θ̂(x)). The K-FAC algorithm is
a widely recognized technique for approximating the Hessian matrix, which not only accelerates
computations but also significantly reduces storage requirements. Meanwhile, the Truncated-SVD
approximation employs power iteration and related techniques to compute the top-k eigenvalues and
their corresponding eigenvectors of ∂x∂θL(y,x; θ̂(x)), thereby providing an effective approximation
of these second-order partial derivatives. Assuming the dimensionality of the sample covariates
is d and the number of model parameters is p, the Truncated-SVD approximation enables the
decomposition of the second-order partial derivatives as ∂x∂θL(y,x; θ̂(x)) = Up×kΛk×kV

⊤
d×k,

where Λk×k is a diagonal matrix containing the top-k eigenvalues of ∂x∂θL(y,x; θ̂(x)) and Up×k

and Vd×k are comprised of k orthogonal vectors. Algorithm 5 and 7 provide the detailed procedures
for calculating FIutil and FIactive using the KFSVD approximation.

Subsampling approximation, which utilizes subsampling and random forest techniques to enhance
computational efficiency. Specifically, we extract a small subset of samples (e.g., 20%) and compute
their FI using Algorithm 5 or 7. These computed values are then used to sort the samples. The
features of each sample, along with their corresponding ranks, serve as covariates and target variables
to create a new dataset. Subsequently, we train a regression model using random forests on this
dataset and leverage the trained model to predict the ranks of other samples. Selections are based on
these predicted ranks. Since the computation of FI is the most time-consuming part of the workflow,
the overall acceleration is directly correlated with the proportion of samples for which we choose to
compute FI accurately. For instance, selecting 20% of the samples can reduce the total processing
time to 1

5 of the original duration when the dataset is sufficiently large.

In practice, we integrate both approximation methods to develop the comprehensive FIutil-based
data trimming algorithm and FIactive-based active learning algorithm. These algorithms effectively
address the storage and computational efficiency challenges inherent in calculating FI. The detailed
procedures are outlined in Algorithm 6 and 8.

To better illustrate the computational advantages of the proposed two approximation methods, we
analyze their complexity in terms of both memory usage and computational speed. This analysis is
also compared with the complexity of Influence Value (IV) as introduced by Chhabra et al. (2024).

Time Complexity. The following are the time complexities of FI and IV:

• FIutil without approximation methods: O(p3 + nd3 + ndp). Here, n is the maximum value of the
sample sizes of the training set and the validation set, d is the dimension of the covariates, and p
is the dimension of the model parameters. The term O(p3) comes from computing the inverse of
the Hessian matrix. The O(nd3) term is due to inverting G, repeated n times. The O(ndp) term
corresponds to computing ∂x∂θL for n times.

• FIutil with approximation methods: O(αndT log(αn) + αn(p+ d)ks+ αnd3 +
∑L

i=1 p
3
i). Here,

α ∈ (0, 1] is the proportion of data for which we compute FI accurately during subsampling. T
is the number of decision trees in the random forest, k is the Truncated-SVD parameter, s is the
number of iterations for computing each eigenvalue during power iteration, and {p1, p2, . . . , pL}
represent the number of parameters in each layer of an L-layer neural network.

• FIactive without approximation methods: O(p3 + n2d3 + n2dp). Here, n is the maximum value of
the sample sizes of the labeled dataset and the unlabeled dataset.

• FIactive with approximation methods: O(αndT log(αn) + αn2(p+ d)ks+ αn2d3 +
∑L

i=1 p
3
i).

• IV: O(p3 + np).

By employing two approximation techniques, we can significantly reduce the computational gap
between our method and the compared methods such as IV. When the dataset is large enough, setting
αn as a constant allows us to achieve better computational complexity than the IV method. For
complex models (e.g., neural networks) where p is sufficiently large, the p3 term dominates the
computational complexity of IV. In such scenarios, the computational costs of our method could be
lower than IV.

Memory Usage. Below is a discussion of the space complexities associated with FI and IV:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• In the computation of FI, the highest storage requirements are for the Hessian matrix and ∂x∂θL,
which together occupy a space of O(p2 + dp).

• After using the KFSVD approximation method, the space requirement of FI is reduced to
O(

∑L
i=1 p

2
i + (p+ d)k).

• In the computation of IV, it is necessary to store sample information and the Hessian matrix,
resulting in a space complexity of O(p2 + d).

After applying approximation techniques, our algorithm achieves a space complexity similar to that
of the IV. In fact, when p is large, our method offers an advantage.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results that illustrate how our newly proposed metrics, FIutil

and FIactive, contribute to enhancing model prediction performance. We compare our algorithms with
state-of-the-art strategies in both data trimming and active learning scenarios, thereby validating the
effectiveness of our approach on both simulated and real-world datasets.

6.1 DATA TRIMMING

In this subsection, we conduct simulations using both linear and nonlinear models to demonstrate
how our algorithm enhances data trimming efficiency and evaluate the effectiveness of the proposed
FI on real-world datasets. The latest data trimming method, IV, serves as the primary baseline for
comparison in these experiments.

Table 1: Comparison of two methods on linear model. Number of
cases where FI outperforms IV across 30 random seeds, along with
performance improvements. Acc FI: the mean accuracy by FI, and
Acc IV: by IV.

of deleted points # of better case Acc FI(%) Acc IV(%)

5 23 96.22±0.65 95.77±0.76
10 28 96.20±0.65 94.84±1.07
20 30 96.23±0.64 93.36±2.21

Validation on 2D Linear Model.
Logistic regression is utilized
for this binary classification task.
We begin by generating several
datasets by sampling from two
isotropic 2D Gaussian distribu-
tions. Each dataset comprises 150
training samples, 100 validation
samples, and 600 test samples.
The experimental settings for this
scenario are consistent with those of the study by Chhabra et al. (2024). To account for the ran-
domness inherent in the sampling process, we analyze our method on datasets generated under the
same distribution but with different random seeds. As shown in Table 1, our method consistently
enhances model performance compared to theirs in most cases, particularly when trimming 5, 10,
and 20 samples, with thirty different random seeds employed each time. Moreover, it is evident
from Figure 1.C that IV tends to trim samples from a specific class under certain conditions. In this
context, Figure 1.D clearly demonstrates that in some scenarios IV fails, while our method continues
to perform effectively.

Validation on 2D Nonlinear Model. After demonstrating the effectiveness of our method in linear
scenarios, we now extend our examination to nonlinear cases. To achieve this, we construct a binary
classification dataset that is non-linearly separable, with each class represented by a crescent-shaped
region. A more intuitive understanding can be obtained from Figure 9. We employ a neural network
that includes an input layer, two hidden layers with ReLU activation functions, and an output layer
with a sigmoid activation function. Similar to the linear case, we conduct repeated experiments in the
nonlinear scenario. Each dataset comprises 500 training samples, 250 validation samples, and 250 test
samples. As shown in Table 2, our method achieves a higher average accuracy and outperforms the
other methods in most cases across the 20 repetitions. Figure 9 illustrates instances where utilizing IV
to remove training points can lead to a deterioration in model performance under certain conditions.

Validation on the Real-World Datasets. Here, we evaluate the effectiveness of our proposed
methods using four real-world datasets: two tabular datasets, Adult (Kohavi, 1996) and Bank (Moro

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 4 6 8
Feature 1

2

4

6

8
Fe

at
ur

e
2

A

Training Set

2 4 6 8
Feature 1

2

4

6

8

Fe
at

ur
e

2

B

Trimmed Samples (Ours)

2 4 6 8
Feature 1

2

4

6

8

Fe
at

ur
e

2

C

Trimmed Samples (IV)

2 4 6 8
Feature 1

2

4

6

8

Fe
at

ur
e

2

D

Acc: 0.963
Acc: 0.970
Acc: 0.933

Test Set Performance

Figure 1: Performance under Linear Model. Different colored points represent different classes.
A shows the training set. B and C respectively denote the samples to be trimmed by FI and IV. D
denotes test set. Green line: boundary without trimming; Red line: boundary after FI trimming; and
Blue line: boundary after IV trimming.

et al., 2014); a visual dataset, CelebA (Liu et al., 2015); and a textual dataset, Jigsaw Toxicity (Noever,
2018). Additional details regarding the datasets and experiments can be found in Appendices C & D.1.

Table 2: Comparison of two methods on nonlinear model. Number of
cases where FI outperform IV across 20 random seeds, along with
performance improvements. Acc FI: the mean accuracy by FI, and
Acc IV: by IV.

of deleted points # of better case Acc FI(%) Acc IV(%)

5 17 89.90±2.16 87.50±2.46
10 17 90.24±2.05 88.02±2.62
20 15 90.32±1.67 87.80±2.54

Both FIutil and IV are evaluated
on the validation set, with Lo-
gistic Regression serving as the
base model. The results on the
test sets of these datasets are pre-
sented in Figure 2. Ablation
experiments are also conducted
in the Appendix E.1 to assess
the impact of perturbations on
model performance.

As illustrated in Figure 2, our findings indicate that under a limited budget b, our FIutil data trimming
method consistently outperforms two baseline models, IV and Random Trimming. Among the
four datasets examined, Random Trimming demonstrates no improvement in model performance.
Although IV exhibits a notable enhancement on Adult and Bank, it tends to remove important data
points on CelebA, resulting in decreased performance, and shows no improvement on Jigsaw Toxicity
compared to Random Trimming. This suggests that IV may fail in certain scenarios. In contrast, our
method consistently achieves the maximum improvements across all datasets, particularly on the Bank
dataset, where accuracy increases by more than 10%. To ensure a more rigorous comparison between
FI and IV, we perform K-fold cross-validation on the Adult and Bank datasets (Appendix E.5). The
results demonstrate that our method consistently outperforms IV, highlighting the robustness and
stability of our approach.

The experimental results above show that our method performs better on real-world datasets than
on simulated ones. This is largely due to the simplicity of the simulated datasets, which are two-
dimensional with clear boundaries effectively separating the classes and contain no erroneous data
points. In such cases, a sufficiently large dataset allows the model to easily find the optimal boundary,
minimizing the advantages of data trimming. In contrast, real-world datasets are typically high-
dimensional and more complex, often containing errors. Here, the benefits of removing potentially
erroneous high-influence points become more evident. To support this, we introduce noise into the
real-world datasets and conduct further experiments; details of the noise method are in Appendix D.1,
and results are shown in Figure 8. The findings clearly demonstrate that both FI and IV outperform
Random Trimming, with our method retaining significant advantages over IV, further confirming its
effectiveness.

6.2 ACTIVE LEARNING

In this section, we conduct numerical experiments on three simple tabular datasets and three complex
image datasets to demonstrate the effectiveness of the proposed FI metric in active learning. We
compare our method with two state-of-the-art active learning baselines including IV (Chhabra et al.,
2024) and BALD (?Kirsch et al., 2019; 2023). Random Selection is also included as a baseline. All
reported results are averaged over three runs to ensure a reliable evaluation. Besides, we present

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50 100 150 200
0.760

0.765

0.770

0.775

0.780

0.785

0.790
Adult

0 50 100 150 200

0.78

0.80

0.82

0.84

0.86

0.88

0.90
Bank

0 20 40 60 80 100

0.785

0.790

0.795

0.800

0.805

0.810

CelebA

0 20 40 60 80 100

0.884

0.886

0.888

0.890

0.892

0.894

0.896

0.898

0.900
Jigsaw Toxicity

Del num

Ac
cu

ra
cy

FI(ours) IV Random

Figure 2: Accuracy curves of three data trimming methods on test sets of Adult, Bank, CelebA and
Jigsaw Toxicity.

ablation experiments in Appendix E.1, to get more insights into the trade offs between the potential
reduction in our method’s performance vs. the quantified computational cost reduction.

Note that, IV, as proposed by Chhabra et al. (2024), originally calculates influence values only once
during the initial selection, which can hinder overall performance since these values are not updated
with subsequent labelings. To ensure fairness in our comparisons, we modified IV to recalculate
influence values in each round of selection, and this updated version is used in our experiments.

For our method, the aggregation function g({FI(zunlabel, zi)}ni=1) in Equation 4.1 denotes the oper-
ation of calculating the mean of the data points from the set {FI(zunlabel, zi)}ni=1 that fall between
the 10th and 90th percentiles, sorted in descending order. In other words, we compute the mean of
the middle 80% of the data after sorting. This approach effectively excludes extreme values, thereby
enhancing the robustness of our final result.

Tabular Datasets. For the tabular datasets, we employed a Logistic Regression model. The total
number of annotation rounds for each experiment, along with the settings for the unlabeled pool size
and acquisition size, are detailed in Table 4. As shown in Figure 3, our method outperforms the other
approaches on these simple tabular datasets. Random Selection performs reasonably well initially, but
as data volume increases, improvements in model performance diminish. BALD shows comparable
performance to Random Selection on tabular datasets. IV initially underperforms compared to
Random Selection, but as more data is added, its performance improves and eventually becomes
comparable to BALD. Our method starts similarly to BALD, but its focus on more challenging
samples allows it to quickly address missing information once the model achieves a certain accuracy.
As a result, in the latter stages of each graph, our method distinctly diverges from the others.

0 1000 2000 3000 4000 5000 6000
0.680

0.700

0.720

0.740

0.760

0.780

0.800

0.820

0.840

Te
st

 A
cc

ur
ac

y

Adult

Random
FI(ours)
IV
Bald

500 1000 1500 2000
Dataset Size

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850
CelebA

Random
FI(ours)
IV
Bald

0 1000 2000 3000 4000

0.650

0.700

0.750

0.800

0.850

0.900

Jigsaw Toxicity

Random
FI(ours)
IV
Bald

Figure 3: Classification performance due to the different active learning methods on Adult, CelebA,
and Jigsaw Toxicity.

Image Classification. The data in the tabular datasets have been processed, resulting in high test
accuracy with logistic regression. In contrast, for the image datasets—MNIST (Lecun et al., 1998),
EMNIST (Cohen et al., 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009)—the input consists of
raw images, and we employ a Convolutional Neural Network (CNN) as the classifier. To simplify
the computation of FIactive, we utilize the outputs from the last layer of the neural network and focus
on the parameters of that layer. However, during each training iteration, all parameters of the neural

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

network are updated, not just those of the final layer. The settings for the unlabeled pool size and
acquisition size for each image dataset are provided in Table 5. Experimental results indicate that our
method maintains comparable time consumption to other approaches, even with complex image data
(see Table 9 for details). Our primary focus in active learning is enhancing model accuracy rather
than speed. We developed CNNs tailored for MNIST and EMNIST, with specifications in Table 6. For
CIFAR-10, we adopted a model architecture from Trockman & Kolter (2023). As shown in Figure 4,
both BALD and IV methods are suited to different scenarios, but our method consistently outperforms
others across all datasets, particularly in more complex situations. The relatively straightforward
MNIST dataset does not fully demonstrate our method’s advantages, so we created more challenging
unbalanced and redundant MNIST datasets. Comparisons on these datasets reveal our method as the
most effective, with advantages even more pronounced than on the original MNIST, as illustrated in
Figure 10. Additionally, Figure 5 visually represents the selection preferences of FIactive, highlighting
its tendency to identify points that are more challenging for the current model to distinguish.

100 200 300 400 500

0.700

0.750

0.800

0.850

0.900

0.950

Te
st

 A
cc

ur
ac

y

MNIST

Random
FI(ours)
IV
Bald

600 800 1000 1200
Dataset Size

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

EMNIST

Random
FI(ours)
IV
Bald

10000 15000 20000

0.720

0.740

0.760

0.780

0.800

0.820

0.840

0.860

0.880
CIFAR10

Random
FI(ours)
IV
Bald

Figure 4: Classification performance due to the different active learning methods on MNIST, EMNIST,
and CIFAR-10.

Ground Truth: 5 Ground Truth: 5 Ground Truth: 4

0 1 2 3 4 5 6 7 8 9
Predicted Digit

0.0

0.5

1.0

Pr
ob

ab
ilit

y

0 1 2 3 4 5 6 7 8 9
Predicted Digit

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9
Predicted Digit

0.0

0.5

1.0

Figure 5: Images with the highest FIactive selected in the first round of active learning for the MNIST
problem, along with their corresponding prediction probability distributions.

7 CONCLUSION

In this paper, we introduce a novel local influence metric that evaluates the impact of perturbations to
training samples on model performance concerning validation samples. This metric is applicable in
both data trimming and active learning, offering valuable insights into the contributions of individual
samples and their relationships with unlabeled data.

Furthermore, we propose two approximation methods to mitigate the computational costs associated
with calculating local influence measures. Our experimental results demonstrate that these algorithms
effectively reduce costs while outperforming other state-of-the-art methods.

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265–283, 2016.

Shun-ichi Amari. Differential-geometrical methods in statistics, volume 28. Springer Science &
Business Media, 2012.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2000.

Avrim L Blum and Pat Langley. Selection of relevant features and examples in machine learning.
Artificial intelligence, 97(1-2):245–271, 1997.

Razvan Caramalau, Binod Bhattarai, and Tae-Kyun Kim. Sequential graph convolutional network
for active learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9583–9592, 2021.

Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergradient
data relevance analysis for interpreting deep neural networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 35(8):7081–7089, May 2021. doi: 10.1609/aaai.v35i8.16871. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16871.

Anshuman Chhabra, Peizhao Li, Prasant Mohapatra, and Hongfu Liu. ”what data benefits my
classifier?” enhancing model performance and interpretability through influence-based data
selection. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=HE9eUQlAvo.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp.
2921–2926. IEEE, 2017.

R Dennis Cook. Assessment of local influence. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 48(2):133–155, 1986.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1183–
1192. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/gal17a.
html.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 2242–2251. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
ghorbani19c.html.

Amirata Ghorbani, Michael Kim, and James Zou. A distributional framework for data valuation. In
Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 3535–3544. PMLR, 13–
18 Jul 2020. URL https://proceedings.mlr.press/v119/ghorbani20a.html.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
Handbook for Automatic Computation: Volume II: Linear Algebra, pp. 134–151. Springer, 1971.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Marc Gorriz, Axel Carlier, Emmanuel Faure, and Xavier Giro i Nieto. Cost-effective active learning
for melanoma segmentation, 2017. URL https://arxiv.org/abs/1711.09168.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo Li, Ce Zhang,
Costas Spanos, and Dawn Song. Efficient task-specific data valuation for nearest neighbor
algorithms. Proc. VLDB Endow., 12(11):1610–1623, July 2019a. ISSN 2150-8097. doi: 10.14778/
3342263.3342637. URL https://doi.org/10.14778/3342263.3342637.

11

https://ojs.aaai.org/index.php/AAAI/article/view/16871
https://openreview.net/forum?id=HE9eUQlAvo
https://proceedings.mlr.press/v70/gal17a.html
https://proceedings.mlr.press/v70/gal17a.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v119/ghorbani20a.html
https://arxiv.org/abs/1711.09168
https://doi.org/10.14778/3342263.3342637

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019b.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
7024–7035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
95323660ed2124450caaac2c46b5ed90-Abstract.html.

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric Branchaud-
Charron, and Yarin Gal. Stochastic batch acquisition: A simple baseline for deep active learning.
Trans. Mach. Learn. Res., 2023, 2023. URL https://openreview.net/forum?id=
vcHwQyNBjW.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1885–
1894. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/koh17a.
html.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, pp.
202–207. AAAI Press, 1996.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL https://www.cs.
toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation framework
for machine learning. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.),
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume
151 of Proceedings of Machine Learning Research, pp. 8780–8802. PMLR, 28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/kwon22a.html.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Xingjian Li, Pengkun Yang, Yangcheng Gu, Xueying Zhan, Tianyang Wang, Min Xu, and
Chengzhong Xu. Deep active learning with noise stability. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024,
Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada, pp. 13655–13663. AAAI Press, 2024. doi: 10.1609/AAAI.V38I12.29270.
URL https://doi.org/10.1609/aaai.v38i12.29270.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738, 2015. doi:
10.1109/ICCV.2015.425.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature, 2020. URL https://arxiv.org/abs/1503.05671.

Christoph Mayer and Radu Timofte. Adversarial sampling for active learning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3071–3079, 2020.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31, 2014.

12

https://proceedings.neurips.cc/paper/2019/hash/95323660ed2124450caaac2c46b5ed90-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95323660ed2124450caaac2c46b5ed90-Abstract.html
https://openreview.net/forum?id=vcHwQyNBjW
https://openreview.net/forum?id=vcHwQyNBjW
https://proceedings.mlr.press/v70/koh17a.html
https://proceedings.mlr.press/v70/koh17a.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlr.press/v151/kwon22a.html
https://doi.org/10.1609/aaai.v38i12.29270
https://arxiv.org/abs/1503.05671

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peter Nickl, Lu Xu, Dharmesh Tailor, Thomas Möllenhoff, and Mohammad Emtiyaz Khan. The
memory-perturbation equation: Understanding model's sensitivity to data. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 26923–26949. Curran Associates, Inc., 2023.

David Noever. Machine learning suites for online toxicity detection. arXiv preprint arXiv:1810.01869,
2018.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
URL https://api.semanticscholar.org/CorpusID:40027675.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 19920–19930.
Curran Associates, Inc., 2020.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen,
and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Burr Settles. Active learning literature survey. 2009.

Hai Shu and Hongtu Zhu. Sensitivity analysis of deep neural networks. In AAAI, pp. 4943–4950.
AAAI Press, 2019.

Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 5972–5981, 2019.

Yang Sui, Yukun Huang, Hongtu Zhu, and Fan Zhou. Adversarial learning of distributional rein-
forcement learning. In International Conference on Machine Learning, pp. 32783–32796. PMLR,
2023.

Asher Trockman and J. Zico Kolter. Patches are all you need? Trans. Mach. Learn. Res., 2023, 2023.
URL https://openreview.net/forum?id=rAnB7JSMXL.

Jiachen T Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for machine
learning. In International Conference on Artificial Intelligence and Statistics, pp. 6388–6421.
PMLR, 2023.

Jiachen T. Wang, Tianji Yang, James Zou, Yongchan Kwon, and Ruoxi Jia. Rethinking data shapley
for data selection tasks: Misleads and merits. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 52033–52063. PMLR, 21–27 Jul 2024.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 5776–5788. Curran Associates, Inc., 2020.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection
for explaining deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Hongtu Zhu, Joseph G. Ibrahim, Sikyum Lee, and Heping Zhang. Perturbation selection and influence
measures in local influence analysis. The Annals of Statistics, 35(6):2565–2588, 2007. ISSN
00905364. URL http://www.jstor.org/stable/25464601.

Hongtu Zhu, Joseph G Ibrahim, and Niansheng Tang. Bayesian influence analysis: a geometric
approach. Biometrika, 98(2):307–323, 2011.

13

https://api.semanticscholar.org/CorpusID:40027675
https://openreview.net/forum?id=rAnB7JSMXL
http://www.jstor.org/stable/25464601

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DERIVATION OF EXPRESSION FOR ∂ωθ̂(x+ ω)
∣∣
ω=ω0

Recall that θ̂(x) minimizes the empirical risk: R(θ) := 1
n

∑n
i=1 L(yi,xi;θ). We assume that R is

twice-differentiable and strongly convex in θ, i.e., Hθ̂ := ∂2
θR(θ̂) = 1

n

∑n
i=1 ∂

2
θL(yi,xi; θ̂) exists

and is positive definite. This ensures the availability of H−1

θ̂
, which will be utilized in the subsequent

derivation. The perturbed parameter vector θ̂(x+ ω) can be written as

θ̂(x+ ω) = argmin
θ∈Θ
{R(θ) +

1

n
L(y,x+ ω;θ)− 1

n
L(y,x;θ)}. (A.1)

Define the parameter change δ(ω) = θ̂(x+ ω)− θ̂(x), and note that, since θ̂(x) does not depend
on ω, the quantity we aim to calculate can be expressed in terms of it: ∂ωθ̂(x+ ω) = ∂ωδ(ω).

According to the definition of θ̂(x+ ω), we know

0 = ∂θR(θ̂(x+ ω)) +
1

n
∂θL(y,x+ ω; θ̂(x+ ω))− 1

n
∂θL(y,x; θ̂(x+ ω)). (A.2)

Next, since θ̂(x+ ω)→ θ̂(x) as ω → 0, we perform a Taylor expansion of the right-hand side:

0 = ∂θR(θ̂(x+ ω)) +
1

n
∂θL(y,x+ ω; θ̂(x+ ω))− 1

n
∂θL(y,x; θ̂(x+ ω)), (A.3)

≈ [∂θR(θ̂(x)) +
1

n
∂θL(y,x+ ω; θ̂(x))− 1

n
∂θL(y,x; θ̂(x))]

+ [∂2
θR(θ̂(x)) +

1

n
∂2
θL(y,x+ ω; θ̂(x))− 1

n
∂2
θL(y,x; θ̂(x))]δ(ω). (A.4)

Solving for δ(ω), we get

δ(ω) ≈− [∂2
θR(θ̂(x)) +

1

n
∂2
θL(y,x+ ω; θ̂(x))− 1

n
∂2
θL(y,x; θ̂(x))]

−1

· [∂θR(θ̂(x)) +
1

n
∂θL(y,x+ ω; θ̂(x))− 1

n
∂θL(y,x; θ̂(x))].

(A.5)

Since θ̂(x) minimizes R, we have ∂θR(θ̂) = 0. We further assume that ∂2
θL(y,x; θ̂(x)) is continu-

ous on x, then we have

δ(ω) ≈ − 1

n
[∂2

θR(θ̂(x))]−1[
1

n
∂θL(y,x+ ω; θ̂(x))− 1

n
∂θL(y,x; θ̂(x))]. (A.6)

After differentiation, the final expression can be obtained,

∂ωθ̂(x+ ω)
∣∣
ω=ω0

= ∂ωδ(ω)
∣∣
ω=ω0

≈ − 1

n
H−1

θ̂
∂x∂θL(y,x; θ̂(x)). (A.7)

B ALGORITHMS

Algorithm 3 Data Trimming
Input: Training set Z , Validation set V , Base model F , Budget b
Output: Trimmed Dataset Z ′

1: procedure DATATRIMMING(Z , V , F , b)
2: Call the algorithm FIutil-CALCULATION(Z , V , F) to obtain FIutil ∈ R|Z|×1

3: Select b samples zi ∈ Z as {Zb}, whose FIutil[i] rank in the top b
4: Z ′ ← Z \ {Zb}
5: return Z ′

6: end procedure

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 4 Active Learning
Input: Labeled pool of training data L, Unlabeled pool of training data U , Base model F , The
number of samples for annotation (per round) N , Aggregation function g
Output: Updated labeled pool L

1: procedure ACTIVELEARNING(L, U , F , N , g)
2: for j ← 1 to NUM rounds do
3: Call the algorithm FIactive-CALCULATION(L, U , F , g) to obtain FIactive ∈ R|U|×1

4: Select N samples xU
i as {XN}, whose FIactive[i] ranks in the top N

5: Take {XN} out of U , and query their labels {YN}
6: Update L ← L

⋃
{XN , YN}

7: end for
8: return L
9: end procedure

Algorithm 5 Calculation of FIutil
approx

Input: Training set Z , Validation set V , Base model F , Truncated-SVD parameter k
Output: Influence measure vector FIutil

approx ∈ R|Z|×1

1: procedure FIutil
approx-CALCULATION(Z , V , F , k)

2: Train F with Z , and obtain the parameter vector θ̂
3: Generate an empty vector FIutil

approx of size |Z| × 1
4: Calculate Hθ̂ with K-FAC approximation
5: Calculate 1

|V|
∑

(x′,y′)∈V ∂θL(y
′,x′; θ̂)

6: for every zi in Z do
7: Calculate Gzi

(ω0)
8: Calculate Λk×k, Up×k and Vd×k with power iteration
9: ∂x∂θL(yi,xi; θ̂)← Up×kΛk×kV

⊤
d×k

10: ∂ωL(V; θ̂)← 1
|V|

∑
(x′,y′)∈V ∂θL(y

′,x′; θ̂)H−1

θ̂
∂x∂θL(yi,xi; θ̂)

11: FIutil
approx[i]← ∂ωL(V; θ̂)G†

zi
(ω0)∂

⊤
ωL(V; θ̂)

12: end for
13: return FIutil

approx
14: end procedure

Algorithm 6 Data Trimming with Approximation
Input: Training set Z , Validation set V , Base model F , Budget b, Truncated-SVD parameter k,
Subsampling rate α ∈ (0, 1]
Output: Trimmed Dataset Z ′

1: procedure DATATRIMMINGAPPROX(Z , V , F , b, k, α)
2: Subsample Zα ⊆ Z s.t. z ∈ Zα w.p. α for all z ∈ Z
3: Call the algorithm FIutil

approx-CALCULATION(Zα, V , F , k) to obtain FIutil
approx ∈ R|Zα|×1

4: for zi′ = (xi′ , yi′) ∈ Zα do
5: ri′ ← the rank of FIutil

approx[i
′] sorted in ascending order

6: end for
7: Train a random forest h with {(xi′ , ri′)}|Zα|

i′=1
8: for zi = (xi, yi) ∈ Z do
9: r̂i ← h(xi)

10: end for
11: Select b samples zi ∈ Z , whose r̂i rank in the top b
12: Z ′ ← Z \ {Zb}
13: return Z ′

14: end procedure

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 7 Calculation of FIactive
approx

Input: Labeled pool of training dataL, Unlabeled pool of training data U , Base modelF , Aggregation
function g, Truncated-SVD parameter k
Output: Influence measure vector FIactive

approx ∈ R|U|×1

1: procedure FIactive
approx-CALCULATION(L, U , F , g, k)

2: Train F with L, and obtain the parameter vector θ̂
3: Generate an empty vector FIactive

approx of size |U| × 1
4: Calculate Hθ̂ with K-FAC approximation
5: for every xU

i in U do
6: Obtain an estimated label ŷi with F
7: Calculate ∂θL(ŷi,x

U
i ; θ̂)

8: J ← ∅
9: for every zLk in L do

10: Calculate GzL
k
(ω0)

11: Calculate Λk×k, Up×k and Vd×k with power iteration
12: ∂x∂θL(y

L
k ,x

L
k ; θ̂)← Up×kΛk×kV

⊤
d×k

13: ∂ωL(ŷi,x
U
i ; θ̂)← ∂θL(ŷi,x

U
i ; θ̂)H

−1

θ̂
∂x∂θL(y

L
k ,x

L
k ; θ̂)

14: J ← J
⋃
{∂ωL(ŷi,xU

i ; θ̂)G
†
zL
k

(ω0)∂
⊤
ωL(ŷi,x

U
i ; θ̂)}

15: end for
16: FIactive

approx[i]← g(J)
17: end for
18: return FIactive

approx
19: end procedure

Algorithm 8 Active Learning with Approximation
Input: Labeled pool of training data L, Unlabeled pool of training data U , Base model F , Number
of samples for annotation (per round) N , Aggregation function g, Truncated-SVD parameter k,
Subsampling rate α ∈ (0, 1]
Output: Updated labeled pool L

1: procedure ACTIVELEARNINGAPPROX(L, U , F , N , g, k, α)
2: for j ← 1 to NUM rounds do
3: Subsample Uα ⊆ U s.t. x ∈ Uα w.p. α for all x ∈ U
4: Call the algorithm FIactive

approx-CALCULATION(L, Uα, F , g, k) to obtain FIactive
approx ∈ R|Uα|×1

5: for xi′ ∈ Uα do
6: ri′ ← the rank of FIactive

approx[i
′] sorted in ascending order

7: end for
8: Train a random forest h with {(xi′ , ri′)}|Uα|

i′=1
9: for xi ∈ U do

10: r̂i ← h(xi)
11: end for
12: Select N samples xi as {XN}, whose r̂i ranks in the top N
13: Take {XN} out of U , and query their labels {YN}
14: Update L ← L

⋃
{XN , YN}

15: end for
16: return L
17: end procedure

C DATA SOURCES

Adult. The Adult dataset consists of 48,842 instances and 14 features, including categorical and
integer types. Extracted from the 1994 Census database by Barry Becker, it focuses on predicting
whether an individual’s annual income exceeds $50,000. Records were filtered based on criteria such

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

as age, gross income, and work hours, making this dataset a valuable resource for classification tasks
in social science and Access Link: Adult Database

Bank. The Bank dataset pertains to direct marketing campaigns conducted by a Portuguese banking
institution, focusing on phone call outreach. The primary objective of this dataset is to classify
whether a client will subscribe to a term deposit, indicated by the binary variable (yes/no). This
dataset is derived from multiple marketing campaigns, which often required several contacts with the
same client to ascertain their interest in the product. Access Link: Bank Database

CelebA. The CelebA dataset is a large-scale facial attribute dataset containing over 200,000 celebrity
images, each annotated with 40 attribute labels. This dataset serves as a valuable resource for tasks
such as facial recognition, attribute prediction, and generative modeling. Access Link: CelebA
Database

Jigsaw Toxicity. The Jigsaw dataset of Wikipedia consists of comments from online platforms
that have been labeled for toxicity. It contains a large number of comments, with 28 features of
syntax, sentiment, emotion and outlier word dictionaries. The dataset is commonly used for training
and evaluating machine learning models aimed at detecting harmful or inappropriate content in
user-generated text. Access Link: Jigsaw Toxicity Database

MNIST. The MNIST database is a large collection of handwritten digits that is widely used for training
and testing in the field of machine learning. This dataset contains 70,000 images of handwritten digits
(0-9), each of which is a 28×28 pixel grayscale image. Access Link: MNIST Database

EMNIST. The Extended MNIST database consists of handwritten character digits sourced from the
NIST Special Database 19, formatted as 28×28 pixel images to align with the structure of the MNIST
dataset. There are six different splits provided in this dataset, and we use the EMNIST Letters with
145,600 characters. Access Link: EMNIST Database

CIFAR10. The CIFAR10 database, developed by the Canadian Institute for Advanced Research, is a
widely utilized collection of images for training machine learning and computer vision algorithms. It
consists of 60,000 color images, each measuring 32×32 pixels, categorized into 10 classes: airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each class contains 6,000 images. Access
Link: CIFAR10 Database

D EXPERIMENT DETAILS

D.1 EXPERIMENT DETAILS IN 6.1

Data Construction for Real-World Datasets. In this experiment, the preprocessing methods for
all real-word datasets are consistent with those used in Chhabra et al. (2024). For CelebA, we use the
extracted features provided by the authors Liu et al. (2015), and for Jigsaw Toxicity, we obtain text
embeddings using the MiniLM transformer model (Wang et al., 2020). Further details are provided
below.

• Adult. This dataset contains 37,692 samples, with 30,162 for training and 7,530 for testing.
There are 102 features, and the target is to predict if income exceeds $50k (yes) or not (no).

• Bank. This dataset consists of 30,490 samples, divided into 18,292 training samples and
12,198 test samples. There are 50 features, and the target is to predict if the client will
subscribe a term deposit (yes/no).

• CelebA. This dataset includes 104,163 samples, with 62,497 for training and 41,666 for
testing. There are 39 features, and the aim is to predict whether a person is smiling (yes) or
not (no).

• Jigsaw Toxicity. This dataset consists of 30,000 samples, split into 18,000 training samples
and 12,000 test samples. There are 385 features, and the target is to determine if a tweet is
toxic (yes) or not (no).

Given that the initial test accuracy of the model on the original datasets generally exceeds 90%, the
impact of data trimming is minimal. Accordingly, we randomly sample 5,000 instances from the
original training set to serve as the new training set, and 4,200 instances from the test set to serve as
the new test set.

17

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.org/details/celeba
https://archive.org/details/celeba
https://arxiv.org/abs/1810.01869
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/datasets/crawford/emnist
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR10.html

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Data Construction for Noisy Real-World Datasets. Consider the additional experiments on data
trimming presented in Figure 8. For Adult, Bank, and Jigsaw Toxicity, our construction method
follows the same approach as in the Real-World Datasets experiment, with the additional step of
randomly sampling 500 instances from the training sets and adding white noise with a variance of
0.1. For CelebA, since the variables are binary (-1, 1), we introduced noise by randomly selecting six
feature columns and flipping their values (transforming -1 to 1 and 1 to -1). This approach generates
a noisy dataset for supplementary experiments.

Random Trimming. We randomly remove b (budget) data points from the training sets under five
random seeds, and evaluate the average performance on the test sets in each iteration.

Experimental Procedure and Parameter Settings. First, a model is trained on the initial dataset.
Based on this trained model, we then implement three data trimming strategies, removing b data
points. Finally, we retrain the model to evaluate the effectiveness of the different trimming strategies.
The experimental procedure is illustrated in Figure 6, highlighting the key steps involved in our study.
Additionally, the parameter settings are detailed in Table 3.

FI (ours) Remove top
b FI points

IV Remove bottom
b IV points

Random Remove b points
randomly

Figure 6: Flowchart of data trimming.

Table 3: Parameter Settings of Data Trim-
ming.

Adult Bank CelebA Jigsaw
Toxicity

optimizer SGD SGD Adam Adam
learning rate 1e-2 1e-2 1e-4 1e-2
weight decay 1e-2 1e-2 1e-6 1e-2

Adult
+noise

Bank
+noise

CelebA
+noise

Jigsaw
Toxicity
+noise

optimizer SGD SGD SGD Adam
learning rate 1e-2 1e-2 1e-2 1e-1
weight decay 1e-2 1e-4 1e-6 1e-4

D.2 EXPERIMENT DETAILS IN 6.2

FI (ours) IV

BALD Random

Figure 7: Flowchart of active learning.

Data Construction for Unbalanced and Redundant MNIST. For Unbalanced MNIST, we set
the total sample size to 27,500. Categories 0 to 4 are each allocated an equal sample size, representing
1/55 of the total sample. Similarly, categories 5 to 9 are assigned equal sample sizes, with each
constituting 10/55 of the total sample. This allocation strategy ensures a deliberate imbalance among

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

the classes. Samples are systematically drawn based on these ratios from the original dataset to create
this new unbalanced dataset. For Redundant MNIST, the task is delineated to classify solely the
digits 1 and 7, presented in equal proportions. If the acquisition function selects an input from any
class other than 1 or 7, the labeling function designates a “neither” category. This setup leads to
a three-way classification scheme during training, categorized as 1 vs. 7 vs. neither. This design
allows us to explore the effectiveness of the learning model in dealing with class imbalance and
partial class information, critical aspects in real-world applications where similar conditions are often
encountered.

Active Learning Experiment. Tables 4 and 5 detail the parameter settings for active learning with
tabular and image data, respectively. Table 6 describes the neural network architectures employed for
MNIST and EMNIST.

Table 4: Active Learning Experiment Configuration for Tabular Datasets

Attribute Adult CelebA Jigsaw Toxicity
Number of Classes 2 2 2

Rounds 12 11 8
Initial Pool 300 300 180

Unlabeled Pool Size 5000 3000 5000
Acquisition Size 500 150 500

Table 5: Active Learning Experiment Configuration for Image Datasets

Attribute MNIST EMNIST CIFAR10
Number of Classes 10 37 10

Rounds 14 10 9
Initial Pool 60 600 6000

Unlabeled Pool Size 420 2000 10000
Acquisition Size 30 100 2000

Table 6: Architecture of MNIST CNN

Layer Type Activation Output Dimensions (incl. Padding)
Conv2d ReLU (32, 14, 14), P=1
Conv2d ReLU (64, 7, 7), P=1
Dropout - -
Linear ReLU 256
Linear - num classes

E ADDITIONAL EXPERIMENTS

E.1 ABLATION EXPERIMENTS

Here, we supplement ablation experiments to evaluate the impact of perturbations on model per-
formance, taking the Bank dataset as a case study. Specifically, we introduce Gaussian noise to b
samples in the training set with the highest and the lowest FI values, respectively, where b takes
values from [50, 100, 150, 200, 250, 300]. After introducing the perturbations, we evaluate the
model’s performance on the test set. The results are presented in Table 7 below. It can be observed
that samples with higher FI values are more sensitive to perturbations, as their accuracy decreases
more significantly compared to samples with lower FI values.

To address the trade-off between computational cost and performance, we add ablation experiments
on two datasets . As shown in the table, the approximate method is over three times faster than

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Impact of Perturbations on Model Accuracy for Data Trimming.

b
Acc. after Perturbations

(Top b-FI Samples) Change in Acc. Acc. after Perturbations
(Bottom b-FI Samples) Change in Acc.

0 78.36% / 78.36% /
50 77.59% -0.77% 78.49% 0.14%
100 77.19% -1.17% 78.33% -0.03%
150 77.07% -1.29% 77.45% -0.91%
200 75.47% -2.89% 77.42% -0.93%
250 75.42% -2.93% 77.19% -1.17%
300 75.45% -2.91% 77.04% -1.31%

the exact computation, with minimal impact on performance. It even achieves better results on the
CelebA dataset. Additionally, as the dataset size increases, the proportion of time spent on training
and prediction with the random forest decreases, making the speedup even more significant.

Table 8: Comparison of Approximate and Exact Methods on Different Datasets

Dataset Approx. Accuracy (%) Exact Accuracy (%) Approx. Time (s) Exact Time (s)

MNIST 93.8 94.0 393 1228
CelebA 80.9 78.1 269 1058

E.2 ADDITIONAL EXPERIMENTS FOR DATA TRIMMING

Here, we present experimental results on four real-world datasets with noise in Figure 8, and nonlinear
experimental results in Figure 9.

0 50 100 150 200
0.760

0.765

0.770

0.775

0.780

0.785
Adult

0 20 40 60 80 100

0.78

0.80

0.82

0.84

0.86

0.88

0.90
Bank

0 20 40 60 80 100
0.72

0.74

0.76

0.78

0.80

0.82

0.84
CelebA

0 50 100 150 200 250 300 350

0.894

0.896

0.898

0.900

0.902

0.904
Jigsaw Toxicity

Del num

Ac
cu

ra
cy

FI(ours) IV Random

Figure 8: Accuracy curves of three data trimming methods on test sets of Adult, Bank, CelebA and
Jigsaw Toxicity.

0 1 2 3 4 5
Feature 1

0

1

2

3

4

Fe
at

ur
e

2

A

Training Set

0 1 2 3 4 5
Feature 1

0

1

2

3

4

Fe
at

ur
e

2

B

Trimmed Samples(Ours)

0 1 2 3 4 5
Feature 1

0

1

2

3

4

Fe
at

ur
e

2

C

Trimmed Samples(IV)

0 1 2 3 4 5
Feature 1

0

1

2

3

4

Fe
at

ur
e

2

D

Acc: 0.904
Acc: 0.908
Acc: 0.880

Test Set Performance

Figure 9: Performance under Nonlinear Model. Different colored points represent different classes.
A shows the training set. B and C respectively denote the samples to be trimmed by FI method and
IV method. D denotes test set. Green line: boundary without trimming. Red line: boundary after FI
trimming. Blue line: boundary after IV trimming.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.3 ADDITIONAL EXPERIMENTS FOR ACTIVE LEARNING

100 200 300 400 500
Dataset Size

0.750

0.800

0.850

0.900

0.950

Te
st

 A
cc

ur
ac

y

Unbalanced MNIST

Random
FI(ours)
IV
Bald

100 200 300 400 500
Dataset Size

0.900

0.920

0.940

0.960

0.980

Redundant MNIST

Random
FI(ours)
IV
Bald

Figure 10: Classification performance due to the different active learning methods on Unbalanced
MNIST, and Redundant MNIST.

Table 9: Time (seconds) for active learning algorithms over toy case on MNIST, EMNIST, and
CIFAR-10.

Methods MNIST EMNIST CIFAR-10
FI(ours) 19 45 372

IV 13 15 204
BALD 9 15 214

E.4 ADDITIONAL EXPERIMENTS FOR COMPARISON WITH DATA SHAPLEY

Data Shapley is indeed a well-known metric for data valuation (Ghorbani & Zou, 2019) and is
applicable in this context. However, based on our experimental results, Shapley value-based methods
do not demonstrate any advantage over our approach or IV. Wang et al. (2024) share a similar
perspective on applying Data Shapley to data selection tasks, noting that its performance can be
comparable to random selection. Additionally, their high computational cost presents a significant
drawback. Specifically:

0 25 50 75 100 125 150 175 200
Del num

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Ac
cu

ra
cy

Bank
FI(ours)
IV
Shapley Value
Random

Figure 11: Performance comparison of different methods on Bank, including the newly added
Shapley method.

• In our experiments on data trimming with Bank, we observed that the Data Shapley method led
to only a slight improvement in model performance, with results showing marginal differences
compared to Random selection (see Figure 11).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• In our experiments on active learning with MNIST, we found that Data Shapley performed the
worst, even slightly underperforming compared to Random selection (see Figure 12).

• In terms of time consumption, the Data Shapley method takes approximately 860 times longer than
FI.

100 200 300 400 500 600

0.700

0.750

0.800

0.850

0.900

0.950

MNIST

Random
FI(ours)
IV
Bald
Shapley

Figure 12: Performance comparison of different methods on MNIST, including the newly added
Shapley method.

E.5 K-FOLD CROSS-VALIDATION FOR DATA TRIMMING

Although all the datasets used in our experiments have clearly defined training and test sets, we
further conduct 10-fold cross-validation on Data Trimming to verify the robustness of our method
across different splits of the data.

In this experimental setup, the initial training set was randomly divided into 10 equally-sized subsets.
In each iteration, one subset was held out as the validation set, while the remaining 9 subsets were
used as the training set. The test set was fixed and remained the same as in the previous experiments,
ensuring consistency across all evaluations. The results of 10-fold experiments are detailed in Figure
13, where we compare the overall performance and stability of our approach FI against the IV method.

0 25 50 75 100 125 150 175 200

0.76

0.77

0.78

0.79

0.80

Adult

0 25 50 75 100 125 150 175 200

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Bank

Del num

Ac
cu

ra
cy

FI(ours) IV

Figure 13: K-Fold Cross-Validation for Data Trimming: Performance Comparison of FI and IV on
Adult and Bank.

22

	Introduction
	A New Influence Measure
	FI for Data Trimming.
	FI for Active Learning.
	Approximation Methods
	Experimental Results
	Data Trimming
	Active Learning

	Conclusion
	Derivation of Expression for Lg
	Algorithms
	Data Sources
	Experiment Details
	Experiment Details in 6.1
	Experiment Details in 6.2

	Additional Experiments
	Ablation Experiments
	Additional Experiments for Data Trimming
	Additional Experiments for Active Learning
	Additional Experiments for Comparison with Data Shapley
	K-Fold Cross-Validation for Data Trimming

