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ABSTRACT

In the field of machine learning, the pursuit of accurate models is ongoing. A key
aspect of improving prediction performance lies in identifying which data points in
the training set should be excluded and which high-quality, potentially unlabeled
data points outside the training set should be incorporated to improve the model’s
performance on unseen data. To accomplish this, an effective metric is needed
to evaluate the contribution of each data point toward enhancing overall model
performance. This paper proposes the use of an influence measure as a metric
to assess the impact of training data on test set performance. Additionally, we
introduce a data selection method to optimize the training set as well as a dynamic
active learning algorithm driven by the influence measure. The effectiveness
of these methods is demonstrated through extensive simulations and real-world
datasets.

1 INTRODUCTION

To build effective machine learning models, the significance of individual training data points cannot
be overstated. Each data point in the training set contributes uniquely to the model’s learning process,
shaping its performance, generalization, and resilience to various challenges (Blum & Langley, 1997).
Simply evaluating the model’s performance on the provided data is insufficient; understanding the
influence of individual training examples and making informed decisions about their inclusion or
exclusion is critical for developing effective and reliable models.

Recent advancements in machine learning have highlighted the importance of strategic data selection
and management during training. Techniques such as active learning (Settles, 2009) promote the
iterative selection of the most uncertain unlabeled data points for labeling and inclusion in the training
set. However, estimating uncertainty in deep neural networks (DNNs) is challenging due to their
tendency to exhibit overconfidence (Ren et al., 2021). To address this, methods like deep Bayesian
approaches (Gal et al., 2017), query-by-committee (Gorriz et al., 2017), Variational Auto-Encoders
(Sinha et al., 2019), adversarial learning (Ducoffe & Precioso, 2018; Mayer & Timofte, 2020), graph
convolutional networks (Caramalau et al., 2021), and noise stability (Li et al., 2024) have been
proposed to improve uncertainty estimates. However, these approaches assume a well-trained model
and fail to consider how model parameters might evolve when the training data is modified.

To bridge this gap, recent studies have focused on quantifying the impact of individual training
examples on model behavior, with the main challenge being the identification of an appropriate
evaluation metric. The Shapley value has emerged as a promising solution, inspiring a number of
Shapley-value-based approaches (Ghorbani & Zou, 2019; Jia et al., 2019a;b; Ghorbani et al., 2020;
Kwon & Zou, 2022; Wang & Jia, 2023). However, these methods often require multiple model
retrainings and evaluations, making them computationally expensive.

Techniques such as influence functions (Koh & Liang, 2017; Pruthi et al., 2020; Yeh et al., 2018;
Chen et al., 2021) offer insights into the effect of individual data points on model predictions, helping
to identify and mitigate harmful or overly influential examples. For instance, Chhabra et al. (2024)
apply influence functions to measure the impact of training data on a specific model, improving
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performance by pruning detrimental data points. Their method is highly efficient as it avoids the need
for model retraining. However, these algorithms may still fail in certain cases, as demonstrated in the
following simple example.

Binary Classification via Logistic Regression. We consider a logistic regression model p(x) =
(1 + e−xβ)−1, where β ∈ R represents the coefficients. For a training set Z = {(xi, yi)}ni=1 and a
validation set V , the influence function in Chhabra et al. (2024) for example is defined as

I(−xi) =
∑

(x,y)∈V

∂βL(y, x; β̂)[

n∑
i=1

∂2
βL(yi, xi; β̂)]

−1∂βL(yi, xi; β̂),

where ∂β = ∂/∂β, x ∈ R, y ∈ {0, 1} is a binary classification label, L represents the
cross-entropy loss, and β̂ = argminβ∈R n−1

∑n
i=1 L(yi, xi;β). According to Chhabra et al.

(2024), samples xi with negative influence function values negatively impact the model’s per-
formance on the validation set and should be removed. For all training samples xi, the term∑

(x,y)∈V ∂βL(y, x; β̂)[
∑n

i=1 ∂
2
βL(yi, xi; β̂)]

−1 remains constant, with only ∂βL(yi, xi; β̂) varying.

In the simple logistic regression scenario, we have ∂βL(yi, xi; β̂) = [(1+ e−xiβ̂)−1− yi]xi. Assum-
ing

∑
(x,y)∈V ∂βL(y, x; β̂)[

∑n
i=1 ∂

2
βL(yi, xi; β̂)]

−1 > 0 and xi > 0, the training sample influence
is negative if and only if yi = 1. However, it is clearly incorrect to solely remove data points from
one class, as outliers in the other class may also negatively influence the model’s performance. For
higher-dimensional xi, as shown in Section 6 using both simulated and real-world data, our method
consistently outperforms the approach proposed by Chhabra et al. (2024) and others.

Given the limitations of existing methods, we draw inspiration from local influence measures
developed in the statistical community (Zhu et al., 2007; 2011; Shu & Zhu, 2019; Sui et al., 2023) to
propose a novel metric in this article. Our approach differs from previous ones that typically evaluate
the impact of perturbations on data samples or model parameters with a fixed model assumption.
Instead, our measure directly assesses the effect of minor perturbations to training samples on
the model’s performance on a validation set, allowing the model to adapt to these changes. To
implement this, we have developed a new perturbation manifold and expanded the local influence
framework. Using this innovative approach, we introduce two key metrics: one for data trimming,
aimed at identifying and removing training set anomalies that compromise model performance on
the test set, and another for active learning, which focuses on selecting the most impactful unlabeled
data to enhance the prediction performance. Moreover, acknowledging the challenges of slow
computation and high memory usage inherent in calculating exact local influence measures, we
propose two approximation methods. Our experiments on real-world datasets demonstrate that these
approximations achieve performance comparable to exact calculations while significantly reducing
computational overhead.

We summarize our contributions as follows,

(i) Unlike existing local influence measures, we propose a new metric that evaluates the impact of
perturbations to training samples on the model’s performance on validation data.

(ii) The proposed metric is applicable to both data trimming and active learning. For data trimming,
it evaluates the effects of minor perturbations to each sample, offering deeper insights into how
individual samples impact model performance. In the context of active learning, the method
captures the relationship between training samples, unlabeled data, and parameter updates.

(iii) We propose two approximation methods to alleviate the high computational cost of calculating
local influence measures. These algorithms significantly reduce computational overhead while
maintaining better performance than other methods, as demonstrated in our experiments.

2 A NEW INFLUENCE MEASURE

In this section, we begin by presenting essential background information, including the Perturbation
Manifold, before formally defining the proposed metric.

Perturbation Manifold. Our definition of the perturbation manifold closely follows that of Shu
& Zhu (2019). Given an input sample z = (x, y) in the training set Z = {zi}ni=1 and a machine
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learning model with an estimated parameter vector θ̂, which is trained onZ , the prediction probability
for class c ∈ {1, . . . ,K} is denoted as P (c|x, θ̂). Let ω = (ω1, . . . , ωp)

⊤ be a perturbation vector
that varies within an open subset Ω ⊂ Rp. The perturbation ω is applied to x, thereby affecting
the learning of the parameter vector θ̂. We denote the parameter vector obtained by the model after
perturbing the training sample x with ω as θ̂(x+ω) with θ̂(x) = θ̂. We define P (c|x+ω, θ̂(x+ω))

as the prediction probability under the perturbation ω such that
∑K

c=1 P (c|x+ω, θ̂(x+ω)) = 1. It
is assumed that there exists a ω0 ∈ Ω such that P (c|x+ ω0, θ̂(x+ ω0)) = P (c|x, θ̂). Additionally,
we assume that {P (c|x+ ω, θ̂(x+ ω))}Kc=1 is positive and sufficiently smooth for all ω ∈ Ω.

Following the development in (Zhu et al., 2007; 2011), we defineM = {P (c|x+ ω, θ̂(x+ ω)) :
ω ∈ Ω} as a perturbation manifold. The tangent space ofM at ω is denoted by Tω , which is spanned
by {∂l(ω|c,x, θ̂(x))/∂ωi}pi=1, where l(ω|c,x, θ̂(x)) = logP (c|x+ω, θ̂(x+ω)). Let Gz(ω) =∑K

c=1 ∂
⊤
ω l(ω|c,x, θ̂(x))∂ωl(ω|c,x, θ̂(x))P (c|x+ω, θ̂(x+ω)) with ∂ω = (∂/∂ω1, . . . , ∂/∂ωp).

If Gz(ω) is positive definite, thenM is a Riemannian manifold (Shu & Zhu, 2019) with Gz(ω)
serving as the Riemannian metric tensor (Amari, 2012; Amari & Nagaoka, 2000).

Although Gz(ω) is often not positive definite in classification problems, we can still reduce the
dimensionality of the perturbations and reconstruct a Riemannian manifold (Shu & Zhu, 2019).

The Influence Measure. Let L(y′,x′;θ) denote the loss function of the model with parameter θ on
z′ = (x′, y′) /∈ Z , we can get the expression for the (first-order) influence measure:

FI(z′, z) = ∂ωL(y
′,x′; θ̂(x+ ω0))G

†
z(ω0)∂

⊤
ωL(y′,x′; θ̂(x+ ω0)), (2.1)

where G†
z(ω0) is the pseudoinverse of Gz(ω0).

We consider a linear perturbation approach where applying perturbation ω to the training sample
z transforms (x, y) into (x + ω, y). Consequently, the parameter vector updates to θ̂(x + ω) :=
n−1 argminθ∈Θ{

∑n
i=1 L(yi,xi;θ) +L(y,x+ω;θ)−L(y,x;θ)}, with ω0 = 0. Using the chain

rule, we can derive the expression for ∂ωL(y′,x′; θ̂(x+ ω0)):
∂ωL(y

′,x′; θ̂(x+ ω0)) = ∂θL(y
′,x′; θ̂(x))∂ωθ̂(x+ ω)

∣∣
ω=ω0

. (2.2)

Here, ∂ωθ̂(x+ ω)
∣∣
ω=ω0

≈ n−1H−1

θ̂
∂x∂θL(y,x; θ̂(x)), whose derivation is detailed in Appendix

A), where Hθ̂ := n−1
∑n

i=1 ∂
2
θL(yi,xi; θ̂(x)). The term ∂x∂θL(y,x; θ̂(x)) represents the gradient

of the loss function L first taken with respect to the model parameters θ and then with respect to x,
evaluated at the perturbed training sample (x, y).

For the computation of Gz(ω0), P (c|x+ω0, θ̂(x+ω0)) can be directly obtained using the learned
model parameter vector θ̂ and the unperturbed sample point x. The calculation of ∂ωl(ω0|c,x, θ̂(x))
requires the application of the chain rule:

∂ωl(ω0|c,x, θ̂(x)) =∂ω logP (c|x+ ω0, θ̂(x+ ω0)) (2.3)

=∂θ logP (c|x+ ω0, θ̂(x+ ω0)) · ∂ωθ̂(x+ ω)|ω=ω0

+ ∂x logP (c|x+ ω0, θ̂(x+ ω0)).

All differentiation operations can be easily computed using backpropagation (Goodfellow et al., 2016)
in deep learning libraries such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017).
This entire process is efficient and does not require retraining the model parameters.

Theorem 1. If φ represents a diffeomorphism of ω, then FI(z′, z) is invariant under any reparame-
terization associated with φ.

Compared to widely used measures in Euclidean spaces, such as the Jacobian norm (Novak et al.,
2018) and Cook’s local influence measure (Cook, 2018), Theorem 1 demonstrates that FI(z′, z)
remains invariant under any diffeomorphic transformation (e.g., scaling) of the perturbation vector ω.
The proof of Theorem 1 can be found in Shu & Zhu (2019).

The significance of Theorem 1 is especially pronounced when there are scale differences among the
dimensions of x. For instance, if certain dimensions have significantly larger values than others, the
contribution of perturbations to those dimensions may appear exaggerated. However, our FI(z′, z)
mitigates this scaling issue by employing the metric tensor of the perturbation manifold instead of
that of the standard Euclidean space.
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3 FI FOR DATA TRIMMING.

The primary goal of data trimming is to eliminate training samples that may compromise the model’s
performance on datasets beyond the training set. Since our proposed influence measure (FI) quantifies
the impact of each training sample on the model’s performance on validation sets, it serves as a
natural tool for data trimming.

From a model robustness perspective, if a small perturbation in a training sample leads to a significant
effect on the model’s performance on the validation set, that sample should be excluded, which aligns
with the principle of our proposed metric. Given the inherent challenge of ensuring that all samples
in the training set are entirely accurate, a sample with excessive influence could severely degrade
the model’s overall performance if it contains any contamination. Therefore, to enhance prediction
performance on an unseen data set, such samples should be removed from the training set.

Following the setup of Chhabra et al. (2024), we introduce a training set Z , a validation set V ,
and a base model F . In this context, we assess the impact of each training sample on the model’s
performance by computing the FI for each training tuple zi ∈ Z with respect to V . To achieve this,
we extend Equation equation 2.1 to encompass the entire validation set. This involves replacing
the loss function for an individual validation sample with the mean loss function across the entire
validation set, as follows:

FIutil(z) = ∂ωL(V; θ̂(x+ ω0))G
†
z(ω0)∂

⊤
ωL(V; θ̂(x+ ω0)), (3.1)

where ∂ωL(V; θ̂(x+ ω0)) :=
1
|V|

∑
(x′,y′)∈V ∂ωL(y

′,x′; θ̂(x+ ω0)).

The algorithm for computing FIutil is outlined in Algorithm 1. After computing these values, we can
sort all data points in the training set in descending order based on their FIutil values and remove
the top b points to enhance the model’s performance on the test set. For the detailed data trimming
algorithm, please refer to Algorithm 3.

Algorithm 1 Calculation of FIutil

Input: Training set Z , Validation set V , Base model F
Output: Influence measure vector FIutil ∈ R|Z|×1

1: procedure FIutil-CALCULATION(Z , V , F)
2: Train F with Z , and obtain the parameter vector θ̂
3: Generate an empty vector FIutil of size |Z| × 1

4: Calculate 1
|V|

∑
(x′,y′)∈V ∂θL(y

′,x′; θ̂) and Hθ̂

5: for every zi in Z do
6: Calculate Gzi

(ω0) and ∂x∂θL(yi,xi; θ̂)

7: ∂ωL(V; θ̂)←
[

1
|V|

∑
(x′,y′)∈V ∂θL(y

′,x′; θ̂)
]
H−1

θ̂
∂x∂θL(yi,xi; θ̂)

8: FIutil[i]← ∂ωL(V; θ̂)G†
zi
(ω0)∂

⊤
ωL(V; θ̂)

9: end for
10: return FIutil

11: end procedure

4 FI FOR ACTIVE LEARNING.

In active learning, the primary objective is to identify the most uncertain or informative samples from
an unlabeled pool for annotation, typically in sequential batches. After each round of annotation,
the newly labeled data are combined with the existing labeled set to retrain the model and improve
its performance. Li et al. (2024) argue that if a small perturbation to the model parameters leads
to significant changes in the prediction for a given sample, this indicates high uncertainty for that
sample under the current model, suggesting that it should be labeled and added to the training set.
Our approach is more fundamental: since the model parameters are derived from the training data,
we directly assess how perturbations to the training samples influence the model’s predictions for the
unlabeled samples. If slight perturbations to most training samples substantially alter the model’s
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prediction for a given sample, it likely contains missing information from the training set and should
therefore be included.

We now introduce a method for active learning using the proposed FI. For an unlabeled sample
xunlabel, we first assign it a predicted label and treat it as a validation sample. Next, we calculate
the influence measure of xunlabel with respect to each point in the training set. The overall influence
measure FIactive(xunlabel) is derived by aggregating these individual measures either by averaging or
using specific quantiles of these FI values. The FIactive(xunlabel) is defined as follows:

FIactive(xunlabel) = g({FI(zunlabel, zi)}ni=1), (4.1)
where g represents the aggregation function, zunlabel = (xunlabel, ypred), and ypred is the predicted label
assigned by the current model for xunlabel.

During each round of active learning, we begin by applying Algorithm 2 to compute FIactive. We
then sort all the samples in the unlabeled pool in descending order based on their FIactive values. The
top-ranked samples are labeled and added to the training set. In the subsequent round, the model
is retrained, FIactive is recalculated, and the process is repeated. For the detailed active learning
algorithm, please refer to Algorithm 4.

Algorithm 2 Calculation of FIactive

Input: Labeled pool of training dataL, Unlabeled pool of training data U , Base modelF , Aggregation
function g
Output: Influence measure vector FIactive ∈ R|U|×1

1: procedure FIactive-CALCULATION(L, U , F , g)
2: Train F with L, and obtain the parameter vector θ̂
3: Generate an empty vector FIactive of size |U| × 1
4: Calculate Hθ̂

5: for every xU
i in U do

6: Obtain an estimated label ŷi with F
7: Calculate ∂θL(ŷi,x

U
i ; θ̂)

8: J ← ∅
9: for every zLj in L do

10: Calculate GzL
j
(ω0) and ∂x∂θL(y

L
j ,x

L
j ; θ̂)

11: ∂ωL(ŷi,x
U
i ; θ̂)← ∂θL(ŷi,x

U
i ; θ̂)H

−1

θ̂
∂x∂θL(y

L
j ,x

L
j ; θ̂)

12: J ← J
⋃
{∂ωL(ŷi,xU

i ; θ̂)G
†
zL
j

(ω0)∂
⊤
ωL(ŷi,x

U
i ; θ̂)}

13: end for
14: FIactive[i]← g(J )
15: end for
16: return FIactive

17: end procedure

5 APPROXIMATION METHODS

The data selection processes described in the previous two sections have two main drawbacks. First,
computing FI requires substantial storage for second-order derivatives, particularly in models with
numerous parameters or high-dimensional data. To address this issue, we propose the KFSVD
approximation method, which combines the Kronecker-factored (K-FAC) approximation (Martens &
Grosse, 2015; Nickl et al., 2023) and Truncated Singular Value Decomposition (Truncated-SVD)
approximation (Golub & Reinsch, 1971) to effectively reduce storage requirements. Sencond, the
necessity to compute the FIutil for all data points in the data trimming algorithm, as well as the need to
recalculate FIactive for all unlabeled data in each round of the active learning algorithm, significantly
decreases computational efficiency. To mitigate this, we implement a subsampling approximation
that enhances overall performance. The details of these two approximation methods are as follows.

KFSVD approximation, which combines K-FAC approximation with Truncated-SVD approxima-
tion to mitigate memory consumption associated with the Hessian matrix Hθ̂ and the second-order
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partial derivatives ∂x∂θL(y,x; θ̂(x)). The K-FAC algorithm is a widely recognized technique for
approximating the Hessian matrix, which not only accelerates computations but also significantly
reduces storage requirements. Meanwhile, the Truncated-SVD approximation employs power itera-
tion and related techniques to compute the top-k eigenvalues and their corresponding eigenvectors
of ∂x∂θL(y,x; θ̂(x)), thereby providing an effective approximation of these second-order partial
derivatives. Assuming the dimensionality of the sample covariates is d and the number of model
parameters is p, the Truncated-SVD approximation enables the decomposition of the second-order
partial derivatives as ∂x∂θL(y,x; θ̂(x)) = Up×kΛk×kV

⊤
d×k, where Λk×k is a diagonal matrix

containing the top-k eigenvalues of ∂x∂θL(y,x; θ̂(x)) and Up×k and Vd×k are comprised of k
orthogonal vectors. Algorithm 5 and 7 provide the detailed procedures for calculating FIutil and
FIactive using the KFSVD approximation.

Subsampling approximation, which utilizes subsampling and random forest techniques to enhance
computational efficiency. Specifically, we extract a small subset of samples (e.g., 20%) and compute
their FI using Algorithm 5 or 7. These computed values are then used to sort the samples. The
features of each sample, along with their corresponding ranks, serve as covariates and target variables
to create a new dataset. Subsequently, we train a regression model using random forests on this
dataset and leverage the trained model to predict the ranks of other samples. Selections are based on
these predicted ranks. Since the computation of FI is the most time-consuming part of the workflow,
the overall acceleration is directly correlated with the proportion of samples for which we choose to
compute FI accurately. For instance, selecting 20% of the samples can reduce the total processing
time to 1

5 of the original duration when the dataset is sufficiently large.

In practice, we integrate both approximation methods to develop the comprehensive FIutil-based
data trimming algorithm and FIactive-based active learning algorithm. These algorithms effectively
address the storage and computational efficiency challenges inherent in calculating FI. The detailed
procedures are outlined in Algorithm 6 and 8.

To better illustrate the computational advantages of the proposed two approximation methods, we
analyze their complexity in terms of both memory usage and computational speed. This analysis is
also compared with the complexity of Influence Value (IV) as introduced by Chhabra et al. (2024).

Time Complexity. The following are the time complexities of FI and IV:

• FIutil without approximation methods: O(p3 + nd3 + ndp). Here, n is the maximum value of the
sample sizes of the training set and the validation set, d is the dimension of the covariates, and p
is the dimension of the model parameters. The term O(p3) comes from computing the inverse of
the Hessian matrix. The O(nd3) term is due to inverting G, repeated n times. The O(ndp) term
corresponds to computing ∂x∂θL for n times.

• FIutil with approximation methods: O(αndT log(αn) + αn(p+ d)ks+ αnd3 +
∑L

i=1 p
3
i ). Here,

α ∈ (0, 1] is the proportion of data for which we compute FI accurately during subsampling. T
is the number of decision trees in the random forest, k is the Truncated-SVD parameter, s is the
number of iterations for computing each eigenvalue during power iteration, and {p1, p2, . . . , pL}
represent the number of parameters in each layer of an L-layer neural network.

• FIactive without approximation methods: O(p3 + n2d3 + n2dp). Here, n is the maximum value of
the sample sizes of the labeled dataset and the unlabeled dataset.

• FIactive with approximation methods: O(αndT log(αn) + αn2(p+ d)ks+ αn2d3 +
∑L

i=1 p
3
i ).

• IV: O(p3 + np).

By employing two approximation techniques, we can significantly reduce the computational gap
between our method and compared methods like IV. When the dataset is large enough, setting αn as
a constant allows us to achieve better computational complexity than IV. For complex models (e.g.,
neural networks) where p is sufficiently large, the p3 term dominates the computational complexity
of IV. In such cases, our method’s computational costs could be lower than IV.

Memory Usage. Below is a discussion of the space complexities associated with FI and IV:

• In the computation of FI, the highest storage requirements are for the Hessian matrix and ∂x∂θL,
which together occupy a space of O(p2 + dp).
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• After using the KFSVD approximation method, the space requirement of FI is reduced to
O(

∑L
i=1 p

2
i + (p+ d)k).

• In the computation of IV, it is necessary to store sample information and the Hessian matrix,
resulting in a space complexity of O(p2 + d).

After applying approximation techniques, our algorithm achieves a space complexity similar to that
of the IV. In fact, when p is large, our method offers an advantage.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results that illustrate how our newly proposed metrics, FIutil

and FIactive, contribute to enhancing model prediction performance. We compare our algorithms with
state-of-the-art strategies in both data trimming and active learning scenarios, thereby validating the
effectiveness of our approach on both simulated and real-world datasets.

6.1 DATA TRIMMING

In this subsection, we conduct simulations using both linear and nonlinear models to demonstrate
how our algorithm enhances data trimming efficiency and evaluate the effectiveness of the proposed
FI on real-world datasets. The latest data trimming method, IV, serves as the primary baseline for
comparison in these experiments.

Table 1: Comparison of two methods on linear model. Number of
cases where FI outperforms IV across 30 random seeds, along with
performance improvements. Acc FI: the mean accuracy by FI, and
Acc IV: by IV.

# of deleted points # of better case Acc FI(%) Acc IV(%)

5 23 96.22±0.65 95.77±0.76
10 28 96.20±0.65 94.84±1.07
20 30 96.23±0.64 93.36±2.21

Validation on 2D Linear Model.
Logistic regression is utilized
for this binary classification task.
We begin by generating several
datasets by sampling from two
isotropic 2D Gaussian distribu-
tions. Each dataset comprises 150
training samples, 100 validation
samples, and 600 test samples.
The experimental settings for this
scenario are consistent with those of the study by Chhabra et al. (2024). To account for the ran-
domness inherent in the sampling process, we analyze our method on datasets generated under the
same distribution but with different random seeds. As shown in Table 1, our method consistently
enhances model performance compared to theirs in most cases, particularly when trimming 5, 10,
and 20 samples, with thirty different random seeds employed each time. Moreover, it is evident
from Figure 1.C that IV tends to trim samples from a specific class under certain conditions. In this
context, Figure 1.D clearly demonstrates that in some scenarios IV fails, while our method continues
to perform effectively.
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Figure 1: Performance under Linear Model. Different colored points represent different classes.
A shows the training set. B and C respectively denote the samples to be trimmed by FI and IV. D
denotes test set. Green line: boundary without trimming; Red line: boundary after FI trimming; and
Blue line: boundary after IV trimming.
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Validation on 2D Nonlinear Model. After demonstrating the effectiveness of our method in linear
scenarios, we now extend our examination to nonlinear cases. To achieve this, we construct a binary
classification dataset that is non-linearly separable, with each class represented by a crescent-shaped
region. A more intuitive understanding can be obtained from Figure 9. We employ a neural network
that includes an input layer, two hidden layers with ReLU activation functions, and an output layer
with a sigmoid activation function. Similar to the linear case, we conduct repeated experiments in the
nonlinear scenario. Each dataset comprises 500 training samples, 250 validation samples, and 250 test
samples. As shown in Table 2, our method achieves a higher average accuracy and outperforms the
other methods in most cases across the 20 repetitions. Figure 9 illustrates instances where utilizing IV
to remove training points can lead to a deterioration in model performance under certain conditions.

Validation on the Real-World Datasets. In this study, we assess the efficacy of our method by
utilizing four real-world datasets: two tabular datasets, Adult (Kohavi, 1996) and Bank (Moro et al.,
2014); a visual dataset, CelebA (Liu et al., 2015); and a textual dataset, Jigsaw Toxicity (Noever,
2018). Additional details regarding the datasets and experiments can be found in Appendices C & D.1.

Table 2: Comparison of two methods on nonlinear model. Number of
cases where FI outperform IV across 20 random seeds, along with
performance improvements. Acc FI: the mean accuracy by FI, and
Acc IV: by IV.

# of deleted points # of better case Acc FI(%) Acc IV(%)

5 17 89.90±2.16 87.50±2.46
10 17 90.24±2.05 88.02±2.62
20 15 90.32±1.67 87.80±2.54

Both FIutil and IV are evaluated
on the validation set, with Lo-
gistic Regression serving as the
base model. The results on the
test sets of these datasets are pre-
sented in Figure 2. Ablation
experiments are also conducted
in the Appendix E.1 to assess
the impact of perturbations on
model performance.

As illustrated in Figure 2, our findings indicate that under a limited budget b, our FIutil data trimming
method consistently outperforms two baseline models, IV and Random Trimming. Among the
four datasets examined, Random Trimming demonstrates no improvement in model performance.
Although IV exhibits a notable enhancement on Adult and Bank, it tends to remove important data
points on CelebA, resulting in decreased performance, and shows no improvement on Jigsaw Toxicity
compared to Random Trimming. This suggests that IV may fail in certain scenarios. In contrast,
our method consistently achieves the maximum improvements across all datasets, particularly on
the Bank dataset, where accuracy increases by more than 10%. Even on CelebA, where IV fails
completely, our model still enhances the test set accuracy, further demonstrating the robustness of
our approach. To ensure a more rigorous comparison between FI and IV, we also perform K-fold
cross-validation in Appendix E.5. The results demonstrate that our method consistently outperforms
IV, highlighting the robustness and stability of our approach.

The experimental results above show that our method performs better on real-world datasets than
on simulated ones. This is largely due to the simplicity of the simulated datasets, which are two-
dimensional with clear boundaries effectively separating the classes and contain no erroneous data
points. In such cases, a sufficiently large dataset allows the model to easily find the optimal boundary,
minimizing the advantages of data trimming. In contrast, real-world datasets are typically high-
dimensional and more complex, often containing errors. Here, the benefits of removing potentially
erroneous high-influence points become more evident. To support this, we introduce noise into the
real-world datasets and conduct further experiments; the details of the noise addition method are
given in Appendix D.1, and the results are shown in Figure 8. The findings clearly demonstrate that
both FI and IV outperform Random Trimming, with our method retaining significant advantages over
IV, further confirming its effectiveness.

Finally, although the Shapley-value-based method is time-consuming, we conduct a comparison with
our approach using specific datasets. And we also examine the potential impact of the masking effect.
Details of both analyses are presented in Appendix E.4.

6.2 ACTIVE LEARNING

In this section, we primarily conduct numerical experiments on three simple tabular datasets and
three complex image datasets to demonstrate the effectiveness of the proposed FI metric in active
learning. We compare our method with two state-of-the-art active learning baselines including IV
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Figure 2: Accuracy curves of three data trimming methods on test sets of Adult, Bank, CelebA and
Jigsaw Toxicity.

(Chhabra et al., 2024) and BALD (Gal et al., 2017; Kirsch et al., 2019; 2023). Random Selection is
also included as a baseline. All results are averaged over three runs to ensure a reliable evaluation.

Note that, IV, as proposed by Chhabra et al. (2024), originally calculates influence values only once
during the initial selection, which can hinder overall performance since these values are not updated
with subsequent labelings. To ensure fairness in our comparisons, we modified IV to recalculate
influence values in each round of selection, and this updated version is used in our experiments.

For our method, the aggregation function g({FI(zunlabel, zi)}ni=1) in Equation 4.1 denotes the oper-
ation of calculating the mean of the data points from the set {FI(zunlabel, zi)}ni=1 that fall between
the 10th and 90th percentiles, sorted in descending order. In other words, we compute the mean of
the middle 80% of the data after sorting. This approach effectively excludes extreme values, thereby
enhancing the robustness of our final result.

Tabular Datasets. For the tabular datasets, we employed a Logistic Regression model. The total
number of annotation rounds for each experiment, along with the settings for the unlabeled pool size
and acquisition size, are detailed in Table 4. As shown in Figure 3, our method outperforms the other
approaches on these simple tabular datasets. Random Selection performs reasonably well initially, but
as data volume increases, improvements in model performance diminish. BALD shows comparable
performance to Random Selection on tabular datasets. IV initially underperforms compared to
Random Selection, but as more data is added, its performance improves and eventually becomes
comparable to BALD. Our method starts similarly to BALD, but its focus on more challenging
samples allows it to quickly address missing information once the model achieves a certain accuracy.
As a result, in the latter stages of each graph, our method distinctly diverges from the others.
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Figure 3: Classification performance due to the different active learning methods on Adult, CelebA,
and Jigsaw Toxicity.

Image Classification. The data in the tabular datasets have been processed, resulting in high test
accuracy with logistic regression. In contrast, for the image datasets—MNIST (Lecun et al., 1998),
EMNIST (Cohen et al., 2017), and CIFAR-10 (Krizhevsky, 2012)—the input consists of raw images,
and we employ a Convolutional Neural Network (CNN) as the classifier. To simplify the computation
of FIactive, we utilize the outputs from the last layer of the neural network and focus on the parameters
of that layer. However, during each training iteration, all parameters of the neural network are updated,
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not just those of the final layer. The settings for the unlabeled pool size and acquisition size for each
image dataset are provided in Table 5 . Experimental results indicate that our method maintains
comparable time consumption to other approaches, even with complex image data (see Table 9 for
details). Our primary focus in active learning is enhancing model accuracy rather than speed. We
developed CNNs tailored for MNIST and EMNIST, with specifications in Table 6. For CIFAR-10, we
adopted a model architecture from Trockman & Kolter (2022). As shown in Figure 4, both BALD and
IV methods are suited to different scenarios, but our method consistently outperforms others across
all datasets, particularly in more complex situations. In fact, the MNIST dataset, being relatively
straightforward, does not fully showcase the advantages of our proposed method. To address this
limitation, we constructed more challenging variants of the MNIST dataset, specifically unbalanced
and redundant versions. Furthermore, we evaluated our method on two more complex datasets,
Office-31 and AG News, and experimented with fine-tuning pre-trained models. Comparative analyses
conducted on these datasets demonstrate the superior efficacy of our method, as detailed in Appendix
E.3. Additionally, Figure 5 visually represents the selection preferences of FIactive, highlighting its
tendency to identify points that are more challenging for the current model to distinguish.

To deepen our analysis, we present ablation experiments in Appendix E.1 to better understand the
trade-offs between potential performance reduction and quantified computational cost reduction, and
we also conduct a comparison with the Shapley-value-based method in Appendix E.4.
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Figure 4: Classification performance due to the different active learning methods on MNIST, EMNIST,
and CIFAR-10.
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Figure 5: Images with the highest FIactive selected in the first round of active learning for the MNIST
problem, along with their corresponding prediction probability distributions.

7 CONCLUSION

In this paper, we introduce a novel local influence metric that evaluates the impact of perturbations to
training samples on model performance concerning validation samples. This metric is applicable in
both data trimming and active learning, offering valuable insights into the contributions of individual
samples and their relationships with unlabeled data. Furthermore, we propose two approximation
methods to mitigate the computational costs associated with calculating local influence measures. Our
experimental results demonstrate that these algorithms effectively reduce costs while outperforming
other state-of-the-art methods.
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A DERIVATION OF EXPRESSION FOR ∂ωθ̂(x+ ω)
∣∣
ω=ω0

Recall that θ̂(x) minimizes the empirical risk: R(θ) := 1
n

∑n
i=1 L(yi,xi;θ). We assume that R is

twice-differentiable and strongly convex in θ, i.e., Hθ̂ := ∂2
θR(θ̂) = 1

n

∑n
i=1 ∂

2
θL(yi,xi; θ̂) exists

and is positive definite. This ensures the availability of H−1

θ̂
, which will be utilized in the subsequent

derivation. The perturbed parameter vector θ̂(x+ ω) can be written as

θ̂(x+ ω) = argmin
θ∈Θ
{R(θ) +

1

n
L(y,x+ ω;θ)− 1

n
L(y,x;θ)}. (A.1)

Define the parameter change δ(ω) = θ̂(x+ ω)− θ̂(x), and note that, since θ̂(x) does not depend
on ω, the quantity we aim to calculate can be expressed in terms of it: ∂ωθ̂(x+ ω) = ∂ωδ(ω).
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According to the definition of θ̂(x+ ω), we know

0 = ∂θR(θ̂(x+ ω)) +
1

n
∂θL(y,x+ ω; θ̂(x+ ω))− 1

n
∂θL(y,x; θ̂(x+ ω)). (A.2)

Next, since θ̂(x+ ω)→ θ̂(x) as ω → 0, we perform a Taylor expansion of the right-hand side:

0 = ∂θR(θ̂(x+ ω)) +
1

n
∂θL(y,x+ ω; θ̂(x+ ω))− 1

n
∂θL(y,x; θ̂(x+ ω)), (A.3)

≈ [∂θR(θ̂(x)) +
1

n
∂θL(y,x+ ω; θ̂(x))− 1

n
∂θL(y,x; θ̂(x))]

+ [∂2
θR(θ̂(x)) +

1

n
∂2
θL(y,x+ ω; θ̂(x))− 1

n
∂2
θL(y,x; θ̂(x))]δ(ω). (A.4)

Solving for δ(ω), we get

δ(ω) ≈− [∂2
θR(θ̂(x)) +

1

n
∂2
θL(y,x+ ω; θ̂(x))− 1

n
∂2
θL(y,x; θ̂(x))]

−1

· [∂θR(θ̂(x)) +
1

n
∂θL(y,x+ ω; θ̂(x))− 1

n
∂θL(y,x; θ̂(x))].

(A.5)

Since θ̂(x) minimizes R, we have ∂θR(θ̂) = 0. We further assume that ∂2
θL(y,x; θ̂(x)) is continu-

ous on x, then we have

δ(ω) ≈ − 1

n
[∂2

θR(θ̂(x))]−1[
1

n
∂θL(y,x+ ω; θ̂(x))− 1

n
∂θL(y,x; θ̂(x))]. (A.6)

After differentiation, the final expression can be obtained,

∂ωθ̂(x+ ω)
∣∣
ω=ω0

= ∂ωδ(ω)
∣∣
ω=ω0

≈ − 1

n
H−1

θ̂
∂x∂θL(y,x; θ̂(x)). (A.7)

B ALGORITHMS

Algorithm 3 Data Trimming
Input: Training set Z , Validation set V , Base model F , Budget b
Output: Trimmed Dataset Z ′

1: procedure DATATRIMMING(Z , V , F , b)
2: Call the algorithm FIutil-CALCULATION(Z , V , F) to obtain FIutil ∈ R|Z|×1

3: Select b samples zi ∈ Z as {Zb}, whose FIutil[i] rank in the top b
4: Z ′ ← Z \ {Zb}
5: return Z ′

6: end procedure

Algorithm 4 Active Learning
Input: Labeled pool of training data L, Unlabeled pool of training data U , Base model F , The
number of samples for annotation (per round) N , Aggregation function g
Output: Updated labeled pool L

1: procedure ACTIVELEARNING(L, U , F , N , g)
2: for j ← 1 to NUM rounds do
3: Call the algorithm FIactive-CALCULATION(L, U , F , g) to obtain FIactive ∈ R|U|×1

4: Select N samples xU
i as {XN}, whose FIactive[i] ranks in the top N

5: Take {XN} out of U , and query their labels {YN}
6: Update L ← L

⋃
{XN , YN}

7: end for
8: return L
9: end procedure
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Algorithm 5 Calculation of FIutil
approx

Input: Training set Z , Validation set V , Base model F , Truncated-SVD parameter k
Output: Influence measure vector FIutil

approx ∈ R|Z|×1

1: procedure FIutil
approx-CALCULATION(Z , V , F , k)

2: Train F with Z , and obtain the parameter vector θ̂
3: Generate an empty vector FIutil

approx of size |Z| × 1
4: Calculate Hθ̂ with K-FAC approximation
5: Calculate 1

|V|
∑

(x′,y′)∈V ∂θL(y
′,x′; θ̂)

6: for every zi in Z do
7: Calculate Gzi(ω0)
8: Calculate Λk×k, Up×k and Vd×k with power iteration
9: ∂x∂θL(yi,xi; θ̂)← Up×kΛk×kV

⊤
d×k

10: ∂ωL(V; θ̂)←
[

1
|V|

∑
(x′,y′)∈V ∂θL(y

′,x′; θ̂)
]
H−1

θ̂
∂x∂θL(yi,xi; θ̂)

11: FIutil
approx[i]← ∂ωL(V; θ̂)G†

zi
(ω0)∂

⊤
ωL(V; θ̂)

12: end for
13: return FIutil

approx
14: end procedure

Algorithm 6 Data Trimming with Approximation
Input: Training set Z , Validation set V , Base model F , Budget b, Truncated-SVD parameter k,
Subsampling rate α ∈ (0, 1]
Output: Trimmed Dataset Z ′

1: procedure DATATRIMMINGAPPROX(Z , V , F , b, k, α)
2: Subsample Zα ⊆ Z s.t. z ∈ Zα w.p. α for all z ∈ Z
3: Call the algorithm FIutil

approx-CALCULATION(Zα, V , F , k) to obtain FIutil
approx ∈ R|Zα|×1

4: for zi′ = (xi′ , yi′) ∈ Zα do
5: ri′ ← the rank of FIutil

approx[i
′] sorted in ascending order

6: end for
7: Train a random forest h with {(xi′ , ri′)}|Zα|

i′=1
8: for zi = (xi, yi) ∈ Z do
9: r̂i ← h(xi)

10: end for
11: Select b samples zi ∈ Z , whose r̂i rank in the top b
12: Z ′ ← Z \ {Zb}
13: return Z ′

14: end procedure

15



Published as a conference paper at ICLR 2025

Algorithm 7 Calculation of FIactive
approx

Input: Labeled pool of training dataL, Unlabeled pool of training data U , Base modelF , Aggregation
function g, Truncated-SVD parameter k
Output: Influence measure vector FIactive

approx ∈ R|U|×1

1: procedure FIactive
approx-CALCULATION(L, U , F , g, k)

2: Train F with L, and obtain the parameter vector θ̂
3: Generate an empty vector FIactive

approx of size |U| × 1
4: Calculate Hθ̂ with K-FAC approximation
5: for every xU

i in U do
6: Obtain an estimated label ŷi with F
7: Calculate ∂θL(ŷi,x

U
i ; θ̂)

8: J ← ∅
9: for every zLk in L do

10: Calculate GzL
k
(ω0)

11: Calculate Λk×k, Up×k and Vd×k with power iteration
12: ∂x∂θL(y

L
k ,x

L
k ; θ̂)← Up×kΛk×kV

⊤
d×k

13: ∂ωL(ŷi,x
U
i ; θ̂)← ∂θL(ŷi,x

U
i ; θ̂)H

−1

θ̂
∂x∂θL(y

L
k ,x

L
k ; θ̂)

14: J ← J
⋃
{∂ωL(ŷi,xU

i ; θ̂)G
†
zL
k

(ω0)∂
⊤
ωL(ŷi,x

U
i ; θ̂)}

15: end for
16: FIactive

approx[i]← g(J )
17: end for
18: return FIactive

approx
19: end procedure

Algorithm 8 Active Learning with Approximation
Input: Labeled pool of training data L, Unlabeled pool of training data U , Base model F , Number
of samples for annotation (per round) N , Aggregation function g, Truncated-SVD parameter k,
Subsampling rate α ∈ (0, 1]
Output: Updated labeled pool L

1: procedure ACTIVELEARNINGAPPROX(L, U , F , N , g, k, α)
2: for j ← 1 to NUM rounds do
3: Subsample Uα ⊆ U s.t. x ∈ Uα w.p. α for all x ∈ U
4: Call the algorithm FIactive

approx-CALCULATION(L, Uα, F , g, k) to obtain FIactive
approx ∈ R|Uα|×1

5: for xi′ ∈ Uα do
6: ri′ ← the rank of FIactive

approx[i
′] sorted in ascending order

7: end for
8: Train a random forest h with {(xi′ , ri′)}|Uα|

i′=1
9: for xi ∈ U do

10: r̂i ← h(xi)
11: end for
12: Select N samples xi as {XN}, whose r̂i ranks in the top N
13: Take {XN} out of U , and query their labels {YN}
14: Update L ← L

⋃
{XN , YN}

15: end for
16: return L
17: end procedure

C DATA SOURCES

Adult. The Adult dataset consists of 48,842 instances and 14 features, including categorical and
integer types. Extracted from the 1994 Census database by Barry Becker, it focuses on predicting
whether an individual’s annual income exceeds $50,000. Records were filtered based on criteria such
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as age, gross income, and work hours, making this dataset a valuable resource for classification tasks
in social science and Access Link: Adult Database

Bank. The Bank dataset pertains to direct marketing campaigns conducted by a Portuguese banking
institution, focusing on phone call outreach. The primary objective of this dataset is to classify
whether a client will subscribe to a term deposit, indicated by the binary variable (yes/no). This
dataset is derived from multiple marketing campaigns, which often required several contacts with the
same client to ascertain their interest in the product. Access Link: Bank Database

CelebA. The CelebA dataset is a large-scale facial attribute dataset containing over 200,000 celebrity
images, each annotated with 40 attribute labels. Due to its rich annotations and diversity in facial
appearances, CelebA has been widely used in various computer vision tasks, such as facial recognition,
attribute prediction, and generative modeling. Access Link: CelebA Database

Jigsaw Toxicity. The Jigsaw dataset of Wikipedia consists of comments from online platforms
that have been labeled for toxicity. It contains a large number of comments, with 28 features of
syntax, sentiment, emotion and outlier word dictionaries. The dataset is commonly used for training
and evaluating machine learning models aimed at detecting harmful or inappropriate content in
user-generated text. Access Link: Jigsaw Toxicity Database

MNIST. The MNIST database is a large collection of handwritten digits that is widely used for training
and testing in the field of machine learning. This dataset contains 70,000 images of handwritten digits
(0-9), each of which is a 28×28 pixel grayscale image. Access Link: MNIST Database

EMNIST. The Extended MNIST database consists of handwritten character digits sourced from the
NIST Special Database 19, formatted as 28×28 pixel images to align with the structure of the MNIST
dataset. There are six different splits provided in this dataset, and we use the EMNIST Letters with
145,600 characters. Access Link: EMNIST Database

CIFAR10. The CIFAR10 database, developed by the Canadian Institute for Advanced Research, is a
widely utilized collection of images for training machine learning and computer vision algorithms. It
consists of 60,000 color images, each measuring 32×32 pixels, categorized into 10 classes: airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Each class contains 6,000 images. Access
Link: CIFAR10 Database

Office-31. The Office-31 dataset is a widely used benchmark dataset for domain adaptation tasks. It
contains 4,110 images categorized into 31 classes, collected from three different domains: Amazon
(A), Webcam (W), and DSLR (D). These domains represent images from an online retailer, a web
camera, and a digital SLR camera, respectively. In our experiments, we combine all domains together,
treating the dataset as a single unified classification task. Access Link: Office-31 Dataset

AG News. The AG News dataset is a widely used text classification dataset that contains news
articles categorized into four distinct classes: World, Sports, Business, and Science/Technology. The
dataset consists of 120,000 training samples and 7,600 test samples, with each class containing an
equal number of articles. It is commonly used for benchmarking text classification models in natural
language processing (NLP). Access Link: AG News Dataset

D EXPERIMENT DETAILS

D.1 EXPERIMENT DETAILS IN 6.1

Data Construction for Real-World Datasets. In this experiment, the preprocessing methods for
all real-word datasets are consistent with those used in Chhabra et al. (2024). For CelebA, we use the
extracted features provided by the authors Liu et al. (2015), and for Jigsaw Toxicity, we obtain text
embeddings using the MiniLM transformer model (Wang et al., 2020). Further details are provided
below.

• Adult. This dataset contains 37,692 samples, with 30,162 for training and 7,530 for testing.
There are 102 features, and the target is to predict if income exceeds $50k (yes) or not (no).

• Bank. This dataset consists of 30,490 samples, divided into 18,292 training samples and
12,198 test samples. There are 50 features, and the target is to predict if the client will
subscribe a term deposit (yes/no).
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• CelebA. This dataset includes 104,163 samples, split into 62,497 training samples and
41,666 testing samples. There are 39 features, and the aim is to predict whether a person is
smiling (yes) or not (no).

• Jigsaw Toxicity. This dataset consists of 30,000 samples, split into 18,000 training samples
and 12,000 test samples. There are 385 features, and the target is to determine if a tweet is
toxic (yes) or not (no).

Given that the initial test accuracy of the model on the original datasets generally exceeds 90%, the
impact of data trimming is minimal. Accordingly, we randomly sample 5,000 instances from the
original training set to serve as the new training set, and similarly, 4,200 instances from the original
test set to serve as the new test set.

Data Construction for Noisy Real-World Datasets. Consider the additional experiments on data
trimming presented in Figure 8. For Adult, Bank, and Jigsaw Toxicity, our construction method
follows the same approach as in the Real-World Datasets experiment, with the additional step of
randomly sampling 500 instances from the training sets and adding white noise with a variance of
0.1. For CelebA, since the variables are binary (-1, 1), we introduced noise by randomly selecting six
feature columns and flipping their values (transforming -1 to 1 and 1 to -1). This approach generates
a noisy dataset for supplementary experiments.

Random Trimming. We randomly remove b (budget) data points from the training sets under five
random seeds, and evaluate the average performance on the test sets in each iteration.

Experimental Procedure and Parameter Settings. First, a model is trained on the initial dataset.
Based on this trained model, we then implement three data trimming strategies, removing b data
points. Finally, we retrain the model to evaluate the effectiveness of the different trimming strategies.
The experimental procedure is illustrated in Figure 6, highlighting the key steps involved in our study.
Additionally, the parameter settings are detailed in Table 3.

FI (ours) Remove top 
b FI points

IV Remove bottom 
b IV points

Random Remove b points
randomly

Figure 6: Flowchart of data trimming.

Table 3: Parameter Settings of Data Trim-
ming.

Adult Bank CelebA Jigsaw
Toxicity

optimizer SGD SGD Adam Adam
learning rate 1e-2 1e-2 1e-4 1e-2
weight decay 1e-2 1e-2 1e-6 1e-2

Adult
+noise

Bank
+noise

CelebA
+noise

Jigsaw
Toxicity
+noise

optimizer SGD SGD SGD Adam
learning rate 1e-2 1e-2 1e-2 1e-1
weight decay 1e-2 1e-4 1e-6 1e-4
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D.2 EXPERIMENT DETAILS IN 6.2

FI (ours) IV

BALD Random

Figure 7: Flowchart of active learning.

Data Construction for Unbalanced and Redundant MNIST. For Unbalanced MNIST, we set the
total sample size to 27,500. Categories 0 to 4 are each allocated an equal sample size, representing
1/55 of the total sample. Similarly, categories 5 to 9 are assigned equal sample sizes, with each
constituting 10/55 of the total sample. This allocation strategy ensures a deliberate imbalance among
the classes. Samples are systematically drawn based on these ratios from the original dataset to create
this new unbalanced dataset. For Redundant MNIST, the task is delineated to classify solely the
digits 1 and 7, presented in equal proportions. If the acquisition function selects an input from any
class other than 1 or 7, the labeling function designates a “neither” category. This setup leads to a
three-way classification scheme during training, categorized as 1 vs. 7 vs. neither. This design allows
us to assess the model’s effectiveness in dealing with class imbalance and partial class information,
critical aspects in real-world applications where similar conditions are often encountered.

Active Learning Experiment. Tables 4 and 5 detail the parameter settings for tabular and image
data, respectively. The tabular dataset experiments were based on the approach used in Chhabra et al.
(2024) , with parameter settings derived from their open-source code. The experimental plots in their
Appendix G guided our choices, and we adopted similar parameter scales. For image classification,
we followed the design framework proposed in Kirsch et al. (2023), aligning with the parameter
scales outlined in their Appendix E. Additionally, Table 6 describes the neural network architectures
employed for MNIST and EMNIST.

Table 4: Active Learning Experiment Configuration for Tabular Datasets

Attribute Adult CelebA Jigsaw Toxicity
Number of Classes 2 2 2

Rounds 12 11 8
Initial Pool 300 300 180

Unlabeled Pool Size 5000 3000 5000
Acquisition Size 500 150 500

E ADDITIONAL EXPERIMENTS

E.1 ABLATION EXPERIMENTS

Here, we supplement ablation experiments to evaluate the impact of perturbations on model per-
formance, taking the Bank dataset as a case study. Specifically, we introduce Gaussian noise to b
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Table 5: Active Learning Experiment Configuration for Image Datasets

Attribute MNIST EMNIST CIFAR10
Number of Classes 10 37 10

Rounds 14 10 9
Initial Pool 60 600 6000

Unlabeled Pool Size 420 2000 10000
Acquisition Size 30 100 2000

Table 6: Architecture of MNIST CNN

Layer Type Activation Output Dimensions (incl. Padding)
Conv2d ReLU (32, 14, 14), P=1
Conv2d ReLU (64, 7, 7), P=1
Dropout - -
Linear ReLU 256
Linear - num classes

samples in the training set with the highest and the lowest FI values, respectively, where b takes
values from [50, 100, 150, 200, 250, 300]. After introducing the perturbations, we evaluate the
model’s performance on the test set. The results are presented in Table 7 below. It can be observed
that samples with higher FI values are more sensitive to perturbations, as their accuracy decreases
more significantly compared to samples with lower FI values.

Table 7: Impact of Perturbations on Model Accuracy for Data Trimming.

b
Acc. after Perturbations

(Top b-FI Samples) Change in Acc. Acc. after Perturbations
(Bottom b-FI Samples) Change in Acc.

0 78.36% / 78.36% /
50 77.59% -0.77% 78.49% 0.14%
100 77.19% -1.17% 78.33% -0.03%
150 77.07% -1.29% 77.45% -0.91%
200 75.47% -2.89% 77.42% -0.93%
250 75.42% -2.93% 77.19% -1.17%
300 75.45% -2.91% 77.04% -1.31%

To address the trade-off between computational cost and performance, we add ablation experiments
on two datasets. As shown in Table 8, the approximate method is over three times faster than the exact
computation, with minimal impact on performance. It even achieves better results on the CelebA
dataset. Additionally, as the dataset size increases, the proportion of time spent on training and
prediction with the random forest decreases, making the speedup even more significant.

E.2 ADDITIONAL EXPERIMENTS FOR DATA TRIMMING

Here, we present experimental results on four real-world datasets with noise in Figure 8, and nonlinear
experimental results in Figure 9.
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Table 8: Comparison of Approximate and Exact Methods on Different Datasets

Dataset Approx. Accuracy (%) Exact Accuracy (%) Approx. Time (s) Exact Time (s)

MNIST 96.0 96.2 396 1225
CelebA 83.2 81.5 260 1054
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Figure 8: Accuracy curves of three data trimming methods on test sets of Adult, Bank, CelebA and
Jigsaw Toxicity.
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Figure 9: Performance under Nonlinear Model. Different colored points represent different classes.
A shows the training set. B and C respectively denote the samples to be trimmed by FI method and
IV method. D denotes test set. Green line: boundary without trimming. Red line: boundary after FI
trimming. Blue line: boundary after IV trimming.

E.3 ADDITIONAL EXPERIMENTS FOR ACTIVE LEARNING
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Figure 10: Classification performance due to the different active learning methods on Unbalanced
MNIST, and Redundant MNIST.
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The AG News dataset (Zhang et al., 2015) is a widely used benchmark in natural language processing
(NLP), while the Office-31 dataset (Saenko et al., 2010) presents a more complex challenge due to its
diverse domains. As shown in Figure 11, our method achieves consistently strong performance on
both the AG News and Office-31 datasets, demonstrating its effectiveness across different types of
classification tasks.
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Figure 11: Classification performance due to the different active learning methods on Office-31, and
AGNews.

Table 9: Time (seconds) for active learning algorithms over toy case on MNIST, EMNIST, and
CIFAR-10.

Methods MNIST EMNIST CIFAR-10
FI(ours) 19 45 372

IV 13 15 204
BALD 9 15 214

E.4 ADDITIONAL EXPERIMENTS FOR COMPARISON WITH MASKING EFFECT AND DATA
SHAPLEY

Masking Effect is a key concept in model diagnostics, referring to the phenomenon where the impact
of one outlier may be obscured by a nearby outlier, making detection difficult. Algorithms like FI,
which are based on single perturbations, inevitably face interference from the masking effect when
addressing model diagnostic issues. However, the primary focus of this research is on enhancing
the predictive performance of the model, suggesting that the masking effect is unlikely to have a
significant impact on the process.

To address this, an algorithm that accounts for the masking effect has been developed, referred to
as FI-paired. This approach is inspired by Huang et al. (2007), where perturbations are applied
simultaneously to two samples, and the corresponding FI values for the sample pairs are calculated.
Subsequently, all sample pairs are sorted based on their FI values, and points are removed in
descending order of FI. Given that the masking effect arises from outlier detection issues, which
differ significantly from the context of active learning, comparisons are made solely regarding the
data trimming problem, as illustrated in Figure 12.

The results indicate that, across both the Adult and Bank datasets, the performance of FI significantly
surpasses that of FI-paired. Furthermore, the requirement to compute FI for each sample pair
substantially increases computational costs. Therefore, in this context, utilizing FI directly is the
more effective choice.

Data Shapley is indeed a well-known metric for data valuation (Ghorbani & Zou, 2019) and is
applicable in this context. However, based on our experimental results, Shapley value-based methods
do not demonstrate any advantage over our approach or IV. Wang et al. (2024) share a similar
perspective on applying Data Shapley to data selection tasks, noting that its performance can be
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comparable to random selection. Additionally, their high computational cost presents a significant
drawback. Specifically:
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Figure 12: Performance comparison of different methods on Adult and Bank, including the newly
added Masking Effect and Shapley method.

• In our experiments on data trimming with Adult and Bank, we observe that there is almost no
significant difference between the performance of Data Shapley method and Random selection,
with a slight improvement on Bank and even worse on Adult (see Figure 12).

• In our experiments on active learning with MNIST, we found that Data Shapley performed the
worst, even slightly underperforming compared to Random selection (see Figure 13).

• In terms of time consumption, Data Shapley method takes approximately 860 times longer than FI.
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Figure 13: Performance comparison of different methods on MNIST, including the newly added
Shapley method.

E.5 K-FOLD CROSS-VALIDATION FOR DATA TRIMMING

Although all the datasets used in our experiments have clearly defined training and test sets, we
further conduct 10-fold cross-validation on Data Trimming to verify the robustness of our method
across different splits of the data.

In this experimental setup, the initial training set was randomly divided into 10 equally-sized subsets.
In each iteration, one subset was held out as the validation set, while the remaining 9 subsets were
used as the training set. The test set was fixed and remained the same as in the previous experiments,
ensuring consistency across all evaluations. The results of 10-fold experiments are detailed in Figure
14, where we compare the overall performance and stability of our approach FI against the IV method.
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Figure 14: K-Fold Cross-Validation for Data Trimming: Performance Comparison of FI and IV on
Adult, Bank and CelebA.
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