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Abstract001

Large Language Models (LLMs) have sig-002
nificantly advanced natural language under-003
standing, yet they often struggle with com-004
plex, multi-step reasoning due to limitations005
in fixed-context knowledge access. Retrieval-006
Augmented Generation (RAG) frameworks ad-007
dress this by incorporating external knowledge,008
but conventional methods typically retrieve flat,009
chunk-level text without respecting the logical010
structure of reasoning, leading to fragmented011
and noisy contexts. We introduce PathCoRAG,012
a novel RAG framework that explicitly aligns013
multi-step reasoning with path-aware retrieval014
and context construction. Unlike prior meth-015
ods, PathCoRAG performs step-wise query ex-016
pansion and retrieves nodes and paths corre-017
sponding to each reasoning step. This produces018
a logic-preserving, sequential context struc-019
ture that guides the LLM through a structured020
chain of thought during generation. Our ap-021
proach consists of four tightly integrated com-022
ponents: (1) Chain-of-Thought-based Query023
Expansion, (2) Hierarchical Node Extraction024
per reasoning step, (3) Semantic Path Explo-025
ration and Scoring, and (4) Structured Context026
Prompting aligned with logical reasoning paths.027
Experimental results across diverse domains028
show that PathCoRAG consistently outper-029
forms strong baselines. https://anonymous.030
4open.science/r/PathCoRAG-A1BB031

1 Introduction032

Large Language Models (LLMs) excel at natural033

language understanding and generation but strug-034

gle with complex, domain-specific queries that re-035

quire real-time information retrieval and multi-step036

reasoning (Wei et al., 2022; Yao et al., 2023). To ad-037

dress this, Retrieval-Augmented Generation (RAG)038

systems have been developed (Lewis et al., 2020;039

Gao et al., 2023b; Peng et al., 2024), enabling040

LLMs to retrieve relevant information from large041

external document collections, improving factual042

Figure 1: Comparison of information retrieval mech-
anisms in GraphRAG, LightRAG, and PathCoRAG.
GraphRAG groups related entities into hierarchical sub-
graphs, LightRAG separates local and global contexts
for more efficient retrieval, while PathCoRAG intro-
duces path-aware multi-step reasoning to capture deeper
semantic connections and reduce redundancy.

accuracy and domain adaptability. However, con- 043

ventional RAG approaches often rely on flat data 044

structures, making it challenging to capture com- 045

plex entity relationships (Izacard and Grave, 2021), 046

which often results in responses where related evi- 047

dence appears disjointed and lacks a coherent flow. 048

To address these challenges, graph-based RAG 049

methods have been proposed (Edge et al., 2024; 050

Liu et al., 2025), which explicitly model relation- 051

ships between entities to enable more structured 052

multi-step reasoning. As illustrated in Figure 1, 053

GraphRAG (Edge et al., 2024) uses hierarchical 054

subgraphs to group related entities.(Figure 1(a)) 055

improving context aggregation but sometimes dilut- 056

ing critical relationships due to loosely connected 057

nodes. LightRAG (Guo et al., 2024) further im- 058

proves retrieval efficiency by separating local and 059

global contexts.(Figure 1(b)) but it still relies on 060

keyword-based retrieval, which can miss deeper 061

semantic connections (Wei et al., 2022). 062

To overcome these limitations, we propose Path- 063
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CoRAG, a novel graph-based RAG framework064

that explicitly integrates multi-step reasoning with065

path-aware retrieval and context construction (Fig-066

ure 1(c)). PathCoRAG systematically decomposes067

complex queries into structured reasoning steps us-068

ing Chain-of-Thought (CoT) prompting. For each069

step, it performs targeted node retrieval through070

hierarchical matching, capturing semantically rele-071

vant nodes while avoiding spurious aggregation. It072

then explores possible logical paths between these073

nodes and selects those that reflect coherent, step-074

aligned reasoning.075

Unlike prior methods that retrieve and aggregate076

nodes in a flat or unstructured fashion, PathCoRAG077

transforms selected nodes and edges into structured078

context sequences such as: [Node A (desc)] →079

[Edge (desc)] → [Node B (desc)], thereby reducing080

redundancy and preserving the logical reasoning081

flow. This context structure is directly passed to the082

LLM, guiding it through a step-wise, semantically083

connected chain-of-thought for answer generation.084

We evaluated PathCoRAG on diverse domains085

including Agriculture, Computer Science, Legal,086

and a mixed set, comparing it against strong087

baselines such as NaiveRAG (Gao et al., 2023b),088

HyDE (Gao et al., 2023a), LightRAG (Guo089

et al., 2024), GraphRAG (Edge et al., 2024), and090

PathRAG (Chen et al., 2025). Across multiple091

human evaluation metrics such as Comprehensive-092

ness, Diversity, and Empowerment (Edge et al.,093

2024; Guo et al., 2024), PathCoRAG consistently094

achieved superior performance.095

• Step-wise Reasoning and Retrieval Integra-096

tion. PathCoRAG tightly couples CoT-based097

query decomposition with step-specific node098

and path retrieval, enabling logical precision099

and reducing context fragmentation.100
• Path-Aware Structured Context Prompt-101

ing. Retrieved paths are serialized into struc-102

tured, logic-aligned text representations that103

maintain semantic flow while removing redun-104

dancy.105
• Superior Performance on Multi-Step Rea-106

soning Tasks. PathCoRAG consistently out-107

performs prior RAG systems across domains108

and metrics, demonstrating its strength in han-109

dling complex, reasoning-intensive queries.110

2 Related Work111

2.1 Traditional RAG112

Traditional RAG approaches, such as those in-113

troduced by Lewis et al. (2020), typically lever-114

age dense retrieval (e.g., DPR) (Karpukhin et al., 115

2020) and sparse retrieval (e.g., BM25) (Robert- 116

son and Zaragoza, 2009) to access relevant doc- 117

uments from large external corpora. While they 118

improve factual grounding and domain adaptation 119

(Gao et al., 2023b), these methods generally rely 120

on flat structures that struggle to capture complex 121

entity relationships (Tang and Yang, 2024), often 122

resulting in fragmented or inconsistent responses. 123

Additionally, they lack mechanisms to filter redun- 124

dant or noisy information, which can impair con- 125

textual consistency and increase latency at scale. 126

These limitations have motivated the development 127

of more structured approaches like graph-based 128

RAG systems. 129

2.2 Graph-Based RAG 130

Graph-based RAG frameworks model entities and 131

their relations as graphs to enable structured reason- 132

ing and improved contextual coherence (Peng et al., 133

2024). GraphRAG (Edge et al., 2024) aggregates 134

entities into subgraphs using community detection, 135

while LightRAG (Guo et al., 2024) improves re- 136

trieval efficiency through a dual-level local-global 137

strategy. However, both methods face a common 138

limitation: they either include loosely related nodes 139

that dilute logical connections or rely on keyword- 140

based retrieval that fails to capture deeper semantic 141

and reasoning structures. 142

2.3 Reasoning Path-Based RAG 143

Recent efforts aim to improve reasoning in RAG by 144

incorporating multi-step query structures (Trivedi 145

et al., 2023). HopRAG (Liu et al., 2025) extends 146

retrieval through multi-hop traversal using LLM- 147

generated pseudo-queries, and PathRAG (Chen 148

et al., 2025) transforms retrieved paths into struc- 149

tured representations to highlight semantic links. 150

While these methods emphasize reasoning-aware 151

retrieval, they often lack explicit alignment be- 152

tween reasoning steps and retrieved content, result- 153

ing in disconnected or overly abstract context struc- 154

tures that can hinder faithful answer generation. 155

These limitations highlight a gap between multi- 156

step reasoning structures and the retrieval strategies 157

used in prior RAG systems. PathCoRAG addresses 158

this gap by explicitly aligning each reasoning step 159

with semantically relevant nodes and their connect- 160

ing paths, constructing a logic-preserving context 161

that guides the LLM through a coherent, step-by- 162

step chain of thought. 163
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Figure 2: An illustration of the PathCoRAG methodology, including query decomposition into reasoning steps, node
retrieval, reasoning path construction, and prompt assembly. This approach systematically expands complex queries
into structured reasoning steps, extracts relevant nodes from the knowledge graph, identifies optimal reasoning paths
using path scoring, and formats the final context for response generation.

3 Background164

Graph-based RAG enhances LLM reasoning by165

modeling entity relationships in structured knowl-166

edge graphs, supporting complex multi-step inter-167

actions (Li et al., 2025). This section reviews the168

architecture and components of graph-based RAG,169

including graph construction, knowledge represen-170

tation, and retrieval.171

3.1 Graph-Based RAG Architecture172

Graph-based RAG systems convert unstructured173

text into knowledge graphs, representing entities174

as nodes and relationships as edges (Chen et al.,175

2025). These structures are encoded into dense176

vectors to enable semantic search (Huang et al.,177

2025). Given a query, relevant nodes and paths are178

retrieved and scored to construct coherent contexts179

(Zhou et al., 2023).180

3.2 Graph Construction181

Graphs are constructed by extracting entities and182

their relationships from text (Edge et al., 2024).183

Each node v ∈ V includes descriptive text tv, and184

each edge e ∈ E captures semantic connections. 185

The graph is represented as G = (V,E, T ), where 186

T contains textual descriptions (Li et al., 2024). 187

3.3 Knowledge Representation and Indexing 188

Nodes and edges are embedded using an embed- 189

ding model and indexed in a vector database for 190

fast semantic retrieval (Huang et al., 2025). 191

3.4 Graph-Based Retrieval 192

Relevant nodes and multi-hop paths are selected 193

based on semantic similarity, forming coherent and 194

compact contexts that reduce noise and improve 195

response accuracy. 196

4 PathCoRAG 197

This section introduces PathCoRAG, a novel graph- 198

based RAG framework designed to align retrieval 199

with multi-step reasoning. Unlike prior systems 200

that retrieve flat, chunk-level content, PathCoRAG 201

performs step-wise reasoning-aware retrieval and 202

constructs structured context based on explicit rea- 203

soning paths. As shown in Figure 2, PathCoRAG 204
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consists of four core components: (1) Chain-of-205

Thought-based Query Expansion, (2) Step-aligned206

Node Retrieval, (3) Semantic Path Search and Scor-207

ing, and (4) Path-structured Answer Generation.208

4.1 Query Expansion209

To support deep and interpretable reasoning, Path-210

CoRAG decomposes the initial query into three211

explicit reasoning steps (RS1, RS2, RS3), each re-212

flecting a sub-goal in the overall inferential process.213

This structured breakdown encourages the model214

to focus on discrete aspects of the reasoning tra-215

jectory, reducing cognitive overload and ambiguity.216

For each step, the model generates three seman-217

tically diverse sub-queries using LLM prompting218

and few-shot demonstrations, resulting in a total of219

nine sub-queries per input query:220

Q = {RS1, RS2, RS3} (1)221

222
RSi = {qi1, qi2, qi3} (2)223

This CoT-style expansion enforces logical decom-224

position and semantic coverage, allowing later com-225

ponents to retrieve targeted evidence aligned with226

specific reasoning needs. Prompting examples are227

provided in Appendix A.228

4.2 Node Retrieval229

For each sub-query qij , we retrieve the top-N230

semantically relevant nodes from the knowledge231

graph using cosine similarity between embeddings:232

sim(qij , v) =
qij · v

∥qij∥∥v∥
(3)233

To ensure step-aligned context, retrieved nodes are234

deduplicated across sub-queries and assigned to the235

reasoning step where they are most relevant:236

step(v) = argmaxi(sim(qij , v))
for i ∈ {1, 2, 3} (4)237

This step-aware allocation reduces noise and en-238

sures that the retrieved context is both semantically239

focused and structurally aligned, which is essential240

for capturing complex logical dependencies across241

steps.242

4.3 Reasoning Path Search243

To connect the selected nodes across reasoning244

steps, PathCoRAG searches for top-k multi-hop245

reasoning paths (RS1→RS2, RS2→RS3) using246

Datasets Mix CS Agriculture Legal

# of documents 61 10 12 94
# of tokens 619K 2.3M 2M 5M
# of nodes in KG 10K 20K 22K 20K
# of edges in KG 4.8K 13K 14K 24K

Table 1: Dataset Statistics for Mix, CS, Agriculture,
and Legal Domains. KG denotes the indexed knowledge
graph.

Yen’s algorithm (Yen, 1971). This path search ex- 247

plicitly encodes logical continuity between reason- 248

ing steps and filters out disconnected or semanti- 249

cally weak paths. Each candidate path is scored by 250

its semantic alignment to the original query: 251

S(P ) = 1
|P |

∑
e∈P sim(Q, te) (5) 252

where te is the edge description. This scoring mech- 253

anism selects paths that are not only connected but 254

also semantically meaningful in the context of the 255

original question, enabling high-quality reasoning 256

flow. Details are in Appendix B. 257

4.4 Answer Generation 258

Finally, PathCoRAG transforms the selected rea- 259

soning paths into a structured prompt, integrating 260

node descriptions and edge semantics into a coher- 261

ent chain of thought. This prompt is designed to re- 262

flect the underlying logic of the reasoning trajectory 263

(RS1 → RS2 → RS3), guiding the LLM to gener- 264

ate answers that are not only factually grounded but 265

also logically traceable and interpretable. The con- 266

text formatting process is detailed in Appendix C. 267

Overall, these design choices address key limita- 268

tions in prior work by bridging the gap between rea- 269

soning intent and retrieval behavior. PathCoRAG 270

produces logically structured, semantically rich 271

contexts that mitigate redundancy, prevent dis- 272

jointed reasoning, and enable more faithful, multi- 273

step answer generation. 274

5 Experiments 275

To evaluate the performance of PathCoRAG, we 276

conducted extensive experiments to assess its ef- 277

fectiveness across various domains (Section 5.2), 278

the impact of hyperparameter settings (Section 5.3), 279

and the influence of reasoning structure on response 280

quality (Section 5.4). 281

5.1 Experimental Settings 282

5.1.1 Datasets 283

We evaluate PathCoRAG using the UltraDomain 284

benchmark (Qian et al., 2025), which consists of 285
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Mix CS Agriculture Legal

NaiveRAG PathCoRAG NaiveRAG PathCoRAG NaiveRAG PathCoRAG NaiveRAG PathCoRAG

Comprehensive 39.20% 60.80% 28.80% 71.20% 36.00% 64.00% 29.60% 70.40%
Diversity 24.00% 76.00% 23.20% 76.80% 27.20% 72.80% 11.20% 88.80%
Empowerment 36.00% 64.00% 22.40% 77.60% 29.60% 70.40% 24.00% 76.00%
Overall 36.80% 63.20% 21.60% 78.40% 31.20% 68.80% 25.60% 74.40%

HyDE PathCoRAG HyDE PathCoRAG HyDE PathCoRAG HyDE PathCoRAG

Comprehensive 37.60% 62.40% 39.20% 60.80% 43.20% 56.80% 35.20% 64.80%
Diversity 32.80% 67.20% 23.20% 76.80% 44.00% 56.00% 26.40% 73.60%
Empowerment 36.80% 63.20% 34.40% 65.60% 42.40% 57.60% 30.40% 69.60%
Overall 38.40% 61.60% 35.20% 64.80% 42.40% 57.60% 31.20% 68.80%

GraphRAG PathCoRAG GraphRAG PathCoRAG GraphRAG PathCoRAG GraphRAG PathCoRAG

Comprehensive 39.20% 60.80% 35.20% 64.80% 35.20% 64.80% 32.80% 67.20%
Diversity 45.60% 54.40% 34.40% 65.60% 28.00% 72.00% 40.00% 60.00%
Empowerment 42.40% 57.60% 36.80% 63.20% 32.00% 68.00% 31.20% 68.80%
Overall 40.80% 59.20% 37.60% 62.40% 33.60% 66.40% 32.80% 67.20%

LightRAG PathCoRAG LightRAG PathCoRAG LightRAG PathCoRAG LightRAG PathCoRAG

Comprehensive 35.20% 64.80% 37.60% 62.40% 38.40% 61.60% 31.20% 68.80%
Diversity 25.60% 74.40% 24.00% 76.00% 24.80% 75.20% 20.80% 79.20%
Empowerment 32.00% 68.00% 32.80% 67.20% 36.00% 64.00% 29.60% 70.40%
Overall 33.60% 66.40% 33.60% 66.40% 36.80% 63.20% 29.60% 70.40%

PathRAG PathCoRAG PathRAG PathCoRAG PathRAG PathCoRAG PathRAG PathCoRAG

Comprehensive 19.20% 80.80% 24.80% 75.20% 32.00% 68.00% 23.60% 76.40%
Diversity 14.40% 85.60% 9.60% 90.40% 9.60% 90.40% 17.60% 82.40%
Empowerment 16.80% 83.20% 20.80% 79.20% 26.40% 73.60% 22.80% 77.20%
Overall 16.00% 84.00% 21.60% 78.40% 27.20% 72.80% 22.80% 77.20%

Table 2: Main Results for PathCoRAG and Baseline Models

four diverse domains: Agriculture, Computer Sci-286

ence (CS), Legal, and Mixed. These datasets pro-287

vide a broad and rigorous environment for assess-288

ing retrieval-augmented generation across domains.289

Table 1 presents the total token count, as well as290

the number of nodes and edges for each domain-291

specific graph. Further dataset statistics are avail-292

able in Appendix D.293

5.1.2 Metrics294

We evaluated the quality of generated responses us-295

ing a win-rate metric based on LLM pairwise com-296

parisons (Zheng et al., 2023), with GPT-4o-mini as297

the evaluator. This metric assesses which model’s298

output is preferred more often when compared di-299

rectly. Following Guo et al. (2024), we evaluated300

responses across four dimensions: Comprehensive-301

ness (coverage of essential query aspects), Diver-302

sity (range of perspectives), Empowerment (sup-303

port for user understanding and decision-making),304

and Overall Quality (holistic evaluation of the other305

three). Further details on the evaluation criteria can306

be found in AppendixE.307

5.1.3 Implementation Details308

All LLM modules are implemented using GPT-309

4o-mini. For graph construction, we follow Guo310

et al. (2024) by chunking documents and extracting 311

entities and relations. Through hyperparameter 312

tuning, we set the number of top retrieved nodes to 313

50, number of k-shortest paths to 4, and the final 314

selected reasoning paths to 15. For each query, we 315

generate 3 reasoning steps, each with 3 sub-queries, 316

forming the basis for step-wise node retrieval and 317

reasoning path construction. 318

5.1.4 Baselines 319

For comparison, we evaluated PathCoRAG against 320

several strong baselines, including NaiveRAG 321

(Gao et al., 2023b), GraphRAG (Edge et al., 322

2024), LightRAG (Guo et al., 2024), HyDE (Gao 323

et al., 2023a), and PathRAG (Chen et al., 2025). 324

NaiveRAG adopts a basic RAG framework by 325

retrieving text chunks based on vector similar- 326

ity. GraphRAG constructs a knowledge graph 327

and leverages community-based clustering for im- 328

proved context selection. LightRAG integrates 329

entity-level retrieval with lightweight community 330

summarization for efficient response generation. 331

HyDE generates hypothetical documents from the 332

query to build a richer intermediate context be- 333

fore answer generation. PathRAG introduces path- 334

centric retrieval by selecting top-k reasoning paths 335

from a knowledge graph, aiming to improve multi- 336
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Figure 3: Effect of Top-N node selection, k-shortest path selection, and Final-K filtering on comprehensiveness,
diversity, empowerment, and overall performance.

Figure 4: Effect of reasoning step depth (left) and number of query expansions per step (right) on PathCoRAG
performance.

hop reasoning. Further details on these baselines337

are provided in Appendix F.338

5.2 Main Results339

Table 2 shows that PathCoRAG consistently outper-340

forms all baseline models across four domains. The341

improvements are especially notable in Computer342

Science (78.4% overall win-rate) and Legal (77.2%343

overall win-rate), where deep multi-step reasoning344

is critical. These gains stem from step-wise query345

expansion, hierarchical node retrieval, and seman-346

tic path scoring, which allow PathCoRAG to isolate347

key concepts and maintain logical flow across rea-348

soning steps. In contrast to flat or keyword-based349

retrieval, our method constructs more coherent and350

relevant context. A key challenge in multi-step351

frameworks is error propagation—where an inaccu-352

rate or irrelevant node retrieved in an early reason-353

ing step can mislead subsequent path construction 354

and context assembly, ultimately degrading answer 355

quality. PathCoRAG mitigates this through redun- 356

dant sub-queries and robust path scoring, ensuring 357

stability even under noisy inputs. Additionally, 358

PathCoRAG excels in Diversity and Empowerment 359

metrics, reflecting its ability to retrieve nuanced 360

and multi-faceted information. Overall, its inte- 361

grated design effectively addresses core limitations 362

of prior RAG systems—producing answers that are 363

faithful, coherent, and interpretable. 364

5.3 Hyperparameter and Model Analysis 365

To investigate the contribution of key design 366

choices in PathCoRAG, we conduct detailed ab- 367

lation and sensitivity studies on the Mix domain, 368

a heterogeneous dataset spanning various topics. 369

Our analysis focuses on five components: top-N 370
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Mix CS Agriculture Legal

w/o reasoning reasoning path w/o reasoning reasoning path w/o reasoning reasoning path w/o reasoning reasoning path

comprehensive 44.80% 55.20% 48.00% 52.00% 47.20% 52.80% 47.20% 52.80%
Diversity 42.40% 57.60% 54.40% 45.60% 49.60% 50.40% 52.00% 48.00%
Empowerment 45.60% 54.40% 46.40% 53.60% 48.00% 52.00% 48.00% 52.00%
Overall 44.00% 56.00% 48.00% 52.00% 48.80% 51.20% 48.80% 51.20%

Table 3: Impact of Reasoning Path on Model Performance

node selection, k-shortest path selection, final path371

filtering, reasoning step depth, and the number of372

sub-queries per step.373

5.3.1 Top-N Node Selection374

We analyze the impact of varying the number375

of nodes retrieved per reasoning sub-query. As376

N increases from 10 to 50, we observe consis-377

tent improvements across all evaluation dimen-378

sions—Comprehensiveness, Diversity, Empower-379

ment, and Overall—as illustrated in Figure 3 (left).380

This uniform gain is due to the expanded node pool381

providing a richer set of semantically relevant can-382

didates, which enhances context without introduc-383

ing significant redundancy. Unlike path selection,384

which may involve overlapping or semantically385

repetitive routes, increasing Top-N node selection386

uniformly enriches the retrieval base, leading to387

more stable and balanced improvements. Beyond388

N = 50, the gains plateau, suggesting diminishing389

returns. We adopt N = 50 as the optimal configu-390

ration balancing informativeness and precision.391

5.3.2 k-Shortest Path Selection392

We explore the impact of varying the number of393

reasoning paths (k) retrieved between node stages.394

As k increases, Comprehensiveness and Empow-395

erment generally improve due to the inclusion of396

more reasoning routes. However, beyond k = 4,397

Diversity tends to decrease slightly, as additional398

paths often overlap or exhibit less semantic varia-399

tion. This reflects a natural trade-off between preci-400

sion and diversity: while more paths enrich logical401

connectivity, they may also introduce redundancy.402

As shown in Figure 3 (middle), k = 4 provides the403

best trade-off, capturing diverse yet semantically404

meaningful paths without overwhelming the con-405

text. Compared to node retrieval, where expansion406

consistently improves all metrics, path selection407

must be more carefully calibrated to balance infor-408

mativeness with diversity.409

5.3.3 Final Path Filtering (Final-K)410

To filter and select the most informative reason-411

ing paths for context construction, we experiment412

with varying the number of final paths (Final-K) 413

included in the prompt. As shown in Figure 3 414

(right), performance across all metrics follows 415

a bell-shaped curve.When Final-K is too small 416

(e.g., 5), win-rates are low across all metrics due 417

to insufficient context coverage. As Final-K in- 418

creases to 15, all metrics—Comprehensiveness, 419

Diversity, Empowerment, and Overall—improve 420

significantly, reaching peak values. This suggests 421

that moderate inclusion provides rich yet focused 422

semantic cues for reasoning. However, further in- 423

creasing Final-K beyond 15 leads to slight drops in 424

some metrics, particularly Diversity and Empower- 425

ment. This indicates that excessive path inclusion 426

introduces redundant or less relevant information, 427

which can distract the model from the core reason- 428

ing flow. Therefore, we adopt Final-K=15 as the 429

optimal configuration, balancing informativeness 430

and focus. 431

5.3.4 Reasoning Step Depth 432

To explore the impact of logical decomposition 433

depth, we varied the number of reasoning steps 434

from 2 to 4. As illustrated in Figure 4 (left), moving 435

from 2 to 3 steps results in significant gains across 436

all evaluation metrics—particularly in Comprehen- 437

siveness and Overall performance. This suggests 438

that a three-step decomposition provides a good 439

balance between logical granularity and semantic 440

coherence in the retrieved context. However, ex- 441

tending the chain to 4 steps leads to a slight decline 442

in performance, likely due to over-fragmentation 443

and increased noise. While Empowerment remains 444

stable, other metrics show reduced effectiveness, 445

indicating that deeper decomposition may compli- 446

cate reasoning clarity. 447

5.3.5 Query Expansion per Reasoning Step 448

We investigate the impact of varying the number of 449

expanded queries per reasoning step, ranging from 450

1 to 4. As shown in Figure 4 (right), performance 451

steadily improves as the number increases, with 452

three queries per step achieving the best overall 453

balance across all four evaluation metrics (Com- 454

prehensiveness: 0.632, Diversity: 0.664, Empower- 455
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ment: 0.592, Overall: 0.616). This configuration456

provides sufficient semantic coverage without over-457

loading the retrieval module. While a fourth query458

yields a marginal improvement in Overall score, the459

gains are limited and come with increased risk of460

introducing noise and unnecessary computational461

overhead. These observations highlight that mod-462

erate expansion—specifically, three queries per463

step—offers a favorable trade-off between retrieval464

diversity, response quality, and efficiency.465

5.4 Impact of Reasoning Path Information466

To measure the value of path-aware prompting, we467

compare models with and without reasoning path468

structures included in the final prompt. As shown469

in Table 3, incorporating reasoning paths consis-470

tently improves performance across all four do-471

mains. Notably, in the Mix domain, we observe472

large gains in Comprehensiveness (+10.4%p), Di-473

versity (+15.2%p), and Empowerment (+8.8%p).474

This indicates that modeling explicit reasoning475

paths helps the model better understand logical476

flow and retrieve more contextually relevant knowl-477

edge, leading to improved multi-hop generation.478

5.5 Token Cost Analysis479

We compare PathCoRAG with LightRAG, known480

for its efficiency in retrieval and token usage (Guo481

et al., 2024).482

Metric PathCoRAG LightRAG

Keyword/Expansion Time 760.58 tokens / 5.43 s 410.58 tokens / 1.48 s
Path Search/Retrieval Time 7.06 s 0.83 s
In-Context Tokens 8,830.52 tokens 21,073.82 tokens

Table 4: Cost comparison: PathCoRAG vs. LightRAG.

As shown in Table 4, although PathCoRAG in-483

curs 4–5 seconds more per query due to path search484

and expansion, it significantly reduces in-context485

tokens by over 50%. This compact context con-486

struction highlights PathCoRAG’s practicality in487

resource-constrained scenarios while maintaining488

superior performance.489

6 Further Discussion490

6.1 Evaluation on Objective Benchmarks491

We conducted additional evaluations using estab-492

lished QA benchmarks that provide ground-truth493

answers. These datasets allow for more objective494

comparisons based on standard evaluation metrics495

and help verify the effectiveness of PathCoRAG496

in diverse reasoning settings beyond our origi-497

nal test environment. Appendix G reports exper-498

imental settings and detailed results on the Nov- 499

elQA(Wang et al., 2024), InfiniteQA(Zhang et al., 500

2024) and InfiniteChoice(Zhang et al., 2024) bench- 501

mark datasets. 502

PathCoRAG demonstrates strong performance 503

across diverse benchmarks. On NovelQA, it excels 504

in structured multi-hop reasoning with long-form 505

answers. In InfiniteChoice, it performs compet- 506

itively on contextual comparison tasks. Even in 507

InfiniteQA, which favors concise factoid responses 508

less suited to its design, PathCoRAG maintains 509

solid performance. These results highlight its ro- 510

bustness and versatility in handling a range of rea- 511

soning challenges. 512

6.2 Evaluation on Multihop QA 513

To strengthen the empirical validation of Path- 514

CoRAG’s reasoning capabilities, we include ad- 515

ditional experiments on the widely-used Hot- 516

potQA(Yang et al., 2018) dataset. As HotpotQA 517

is a standard benchmark for multi-hop question 518

answering with diverse reasoning challenges, this 519

evaluation allows us to assess the generalizabil- 520

ity of our model beyond domain-specific settings 521

and directly compare it with recent competitive 522

baselines such as HippoRAG and HopRAG. Exper- 523

imental settings and detailed results can be found 524

in Appendix H. 525

PathCoRAG performs competitively on Hot- 526

potQA, despite not being tailored for short, extrac- 527

tive answers. Its strength in global reasoning and 528

structured context construction proves effective for 529

multi-hop inference, outperforming PathRAG and 530

rivaling HippoRAG in real-world QA settings. 531

7 Conclusion 532

We presented PathCoRAG, a retrieval-augmented 533

generation framework that explicitly aligns multi- 534

step reasoning with structured retrieval through 535

path-aware query expansion and graph-based con- 536

text construction. By decomposing complex 537

queries into step-wise reasoning units and retriev- 538

ing semantically connected nodes and paths, Path- 539

CoRAG generates coherent, logically grounded an- 540

swers while significantly reducing irrelevant con- 541

text. Our experiments demonstrate consistent gains 542

across diverse domains, validating the effective- 543

ness of reasoning-aligned retrieval and structured 544

context over traditional flat retrieval approaches. 545
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Limitation546

PathCoRAG adopts a fixed 3-step, 3-query-per-step547

expansion strategy to balance performance and ef-548

ficiency. However, this uniform structure may not549

adapt well to queries of varying complexity, po-550

tentially leading to under- or over-decomposition.551

Future work will explore dynamic reasoning step552

selection and adaptive query expansion based on553

query semantics and reasoning depth.554
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A Query Expansion Prompt 692

PathCoRAG decomposes complex queries into structured reasoning steps to enable more precise retrieval. 693

Each query is divided into three reasoning steps, with each step generating multiple sub-queries to capture 694

information from diverse perspectives. This hierarchical expansion separates intermediate concepts and 695

strengthens semantic connections, allowing for more refined and contextually accurate retrieval. Please 696

refer to Figure 5 for a detailed illustration. 697

B Yen’s Algorithm for PathCoRAG 698

Yen’s algorithm is an efficient method for finding the k-shortest paths from a single source node s to a 699

single destination node t. It operates by first identifying the initial shortest path P1 and then iteratively 700

generating alternative paths P2, P3, . . . , Pk until the desired number of k paths are obtained. 701

B.1 Initial Shortest Path 702

The first shortest path, P1, is typically computed using algorithms like Dijkstra or A*, defined as: 703

P1 = argminP
(∑

(u,v)∈P w(u, v)
)

(6) 704

where w(u, v) represents the weight of each edge in the path. This initial path serves as the baseline for 705

generating subsequent alternative paths. 706

B.2 Generating Alternative Paths 707

For each subsequent path Pi (where i > 1), Yen’s algorithm selects a spur node from the previously 708

identified shortest path and constructs a new path using this spur. This is defined as: 709

Pi = Rs + spur(ns) (7) 710

where Rs is the sub-path leading up to the spur node, and spur(ns) is the remaining path from the spur 711

node to the destination. To ensure path diversity, the algorithm partially blocks or removes overlapping 712

segments from previously selected paths, allowing for the creation of unique alternative paths. 713

B.3 Path Selection 714

This process is repeated until a total of k shortest paths have been identified. Yen’s algorithm is particularly 715

well-suited for multi-step reasoning frameworks like PathCoRAG, as it efficiently explores a wide range 716

of plausible reasoning paths while preserving critical relationships between nodes. 717

C Answer Generation Prompt 718

The answer generation prompt in PathCoRAG is designed to efficiently structure node and edge informa- 719

tion associated with each reasoning path, minimizing redundancy and enhancing coherence. As illustrated 720

in Figure 6, this approach integrates individual paths into a single, interconnected network, eliminating 721

unnecessary node and edge repetitions. This unified representation allows the LLM to interpret complex, 722

multi-step relationships more effectively, resulting in contextually consistent and accurate responses. 723

D UltraDomain Dataset Description 724

The UltraDomain benchmark is a comprehensive dataset constructed from 428 university textbooks, 725

covering specialized domain documents across science, technology, and professional fields. It provides a 726

diverse range of topics suitable for evaluating graph-based RAG systems. The UltraDomain dataset is 727

licensed under the Apache License 2.0. 728
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Mix729

The Mix dataset contains diverse documents from various disciplines, including literature, history, phi-730

losophy, and social sciences. It is designed to test the generalization ability of models across a wide731

range of knowledge domains. This dataset presents a challenging environment for multi-hop reasoning,732

with complex narratives, abstract concepts, and interdisciplinary references. Key topics include literature,733

philosophy, history, sociology, political science, and anthropology.734

Computer Science (CS)735

The Computer Science dataset includes materials on algorithms, data structures, software engineering,736

machine learning, and artificial intelligence. It captures both theoretical concepts and practical applications,737

reflecting the rapid advancements in computer science. It also covers cutting-edge topics like quantum738

computing, distributed systems, and big data analytics. Key topics include algorithms, data structures,739

machine learning, artificial neural networks, distributed computing, software engineering, big data, and740

artificial intelligence.741

Agriculture742

The Agriculture dataset contains documents related to agricultural practices, crop management, livestock743

care, and agricultural technology. It covers technical topics such as soil management, irrigation techniques,744

pest control, sustainable farming, and agricultural economics, reflecting the complex, interconnected745

nature of agricultural knowledge. This makes it well-suited for multi-hop reasoning and graph-based746

retrieval tasks. Key topics include crop science, pest management, soil conservation, irrigation systems,747

agricultural economics, sustainable agriculture, and precision farming.748

Legal749

The Legal dataset consists of documents related to corporate law, intellectual property, contract law,750

regulatory compliance, and legal ethics. This domain is characterized by precise terminology and751

structured argumentation, making it suitable for evaluating search systems that need to capture subtle752

legal nuances. Key topics include corporate law, intellectual property, contracts, regulations, ethics, legal753

reasoning, and dispute resolution.754

E Evaluation Metrics755

E.1 Win-Rate Evaluation Framework756

This section describes the evaluation metrics used to assess model performance. In this study, we adopt757

a win-rate-based evaluation framework, similar to those used in recent graph-based RAG studies like758

LightRAG and PathRAG. win-rate-based evaluation presents the win-rate results showing how often759

PathCoRAG’s responses are preferred over those of baseline models across various domains. These scores760

are based on pairwise comparisons using an LLM evaluator (GPT-4o-mini), where each entry reflects761

the percentage of times PathCoRAG outperformed a specific baseline. Since win-rates are computed762

separately for each baseline, the same dataset and metric may yield different values depending on the763

comparison target (e.g., NaiveRAG vs. LightRAG). This explains the variation in PathCoRAG’s reported764

scores within a single domain. We emphasize that these are not absolute performance scores, but relative765

win-rates from independent evaluation rounds.766

E.2 Metric Definitions767

Comprehensiveness768

Measures how completely the response addresses all aspects of the input query, reflecting the model’s769

ability to provide detailed and thorough answers.770

Diversity771

Evaluates the extent to which the response covers a wide range of perspectives and information, indicating772

the breadth of the response.773
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Empowerment 774

Assesses the degree to which the response helps the reader gain a deeper understanding of the topic and 775

make informed decisions based on the provided information. 776

Overall Quality 777

Combines comprehensiveness, diversity, and empowerment (Edge et al., 2024) to provide an overall 778

assessment of response quality. 779

E.3 Win-Rate Calculation 780

The evaluation follows a win-rate approach, where each response comparison is recorded as a win for the 781

more preferred response. The final win-rate is calculated as the proportion of wins over the total number 782

of comparisons. To reduce bias, the order in which responses are presented is randomized, and the final 783

results are reported as the average of multiple experimental runs. For a detailed description of the prompt 784

structures used in this evaluation, please refer to Figure 7 in this paper. 785

F Baseline Descriptions 786

NaiveRAG 787

NaiveRAG (Gao et al., 2023b) is the most basic form of RAG, where the text corpus is divided into 788

fixed-size chunks and stored in a vector database. The chunks with the highest similarity to the input 789

query are retrieved. While this approach is simple and efficient, it lacks the structured context provided by 790

graph-based systems, potentially missing deeper relational information. 791

HyDE 792

HyDE (Liu et al., 2022) generates synthetic documents using an LLM based on the input query, and 793

then retrieves relevant text chunks from the external database using these generated documents. While 794

this method can capture more contextual information, it may introduce noise if the generated document 795

does not accurately reflect the original query intent. For the HyDE baseline, the exact license details are 796

not available. While the specific license for HyDE is not provided, its source code can be accessed at 797

URL:https://github.com/texttron/hyde. 798

GraphRAG 799

GraphRAG (Edge et al., 2024) constructs an index graph by extracting entities as nodes and their 800

relationships as edges from the text corpus. The graph structure enables multi-step reasoning by grouping 801

texts into several interconnected communities, capturing complex dependencies between entities. However, 802

this approach can be computationally expensive due to the graph construction and path search processes. 803

GraphRAG is licensed under the MIT-License. 804

LightRAG 805

LightRAG (Guo et al., 2024) local and global keyword extraction for more efficient retrieval. It focuses 806

on the immediate neighbors of relevant nodes, reducing computational costs while maintaining a balance 807

between precision and recall. This dual-level search framework provides a more efficient yet context-rich 808

retrieval mechanism. LightRAG is licensed under the MIT-License. 809

PathRAG 810

PathRAG (Chen et al., 2025) enhances graph-based RAG by explicitly constructing reasoning paths from 811

source documents. It segments documents into structured graphs and performs step-by-step path traversal 812

to simulate multi-hop reasoning. The framework focuses on aligning query intent with coherent paths 813

of entities and relations, improving factual consistency in the generated responses. However, PathRAG 814

heavily relies on the quality of the pre-constructed graph and reasoning path search, which may lead to 815

incomplete or biased paths if the initial structure is sparse or fragmented. For the PathRAG baseline, the 816

exact license details are not available. While the specific license for PathRAG is not provided, its source 817

code can be accessed at URL:https://https://github.com/BUPT-GAMMA/PathRAG. 818
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G Additional Evaluation on Objective Benchmarks819

Datasets820

We evaluated PathCoRAG and baselines on the following datasets:821

• NovelQA: A QA benchmark designed for evaluating long-context understanding, with multi-hop822

reasoning and golden answers. For this study, we used a sampled subset of 22 queries with golden823

answers available.824

• InfiniteQA: A benchmark that includes factoid-style open-ended questions. We sampled 125 queries825

for evaluation.826

• InfiniteChoice: A multiple-choice benchmark containing diverse, multi-step reasoning questions.827

We sampled 100 queries and provided answer options for each.828

Metrics829

InfiniteChoice and InfiniteQA were evaluated as multiple-choice tasks, where the model selects the most830

likely answer from provided candidates.831

• Accuracy: Used for NovelQA and InfiniteChoice, defined as the percentage of queries for which the832

selected or generated answer exactly matches the correct answer.833

• Rouge-L F1: Applied to InfiniteQA. Measures the longest common subsequence between the834

generated and reference answers, focusing on factual overlap.835

Method NovelQA (Accuracy) InfiniteQA (Rouge-L F1) InfiniteChoice (Accuracy)

NaiveRAG 52.38 19.83 26.00
HyDE 59.09 27.17 40.00
GraphRAG 63.63 11.03 16.00
LightRAG 47.62 24.78 19.00
PathRAG 50.00 20.10 47.00
PathCoRAG 66.67 25.07 43.00

Table 5: Results on NovelQA, InfiniteQA, and InfiniteChoice

Results and Analysis836

As shown in Table 5, PathCoRAG consistently demonstrates strong performance across diverse bench-837

marks aimed at evaluating multi-step reasoning capabilities. On NovelQA, which features long-form838

ground-truth answers and necessitates structured multi-hop inference, PathCoRAG achieves the highest839

accuracy (66.67), surpassing all other baselines. In the case of InfiniteChoice, a multiple-choice dataset840

requiring contextual judgment and comparison, PathCoRAG records 43.00 accuracy—closely trailing841

the best-performing method (PathRAG, 47.00) and showcasing highly competitive performance. On842

InfiniteQA, which emphasizes concise factoid-style answers and is less aligned with our model’s design843

focus on step-wise reasoning, PathCoRAG achieves a Rouge-L F1 of 25.07. While this is slightly lower844

than HyDE’s 27.17, it remains within a comparable range and highlights that PathCoRAG can still deliver845

high-quality outputs even in scenarios where its structured reasoning mechanism is underutilized. These846

results collectively validate the robustness and generalizability of PathCoRAG, particularly when applied847

to tasks demanding deep reasoning and structured information synthesis.848
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H Additional Comparison with PathRAG and HopRAG 849

Dataset 850

• HotpotQA: HotpotQA is a challenging question answering dataset designed to assess multi-hop 851

reasoning across multiple documents. It contains Wikipedia-based questions that require combining 852

evidence from different passages to answer a given question. For our evaluation, we randomly 853

sampled 1,000 questions from the HotpotQA development set to conduct a comparative analysis 854

across models. 855

Metrics 856

We report results using two standard evaluation metrics for HotpotQA: 857

• Exact Match (EM): Measures whether the generated answer exactly matches the ground-truth 858

answer. 859

• F1 Score: Computes the overlap between the predicted and ground-truth answers at the token level, 860

considering both precision and recall. 861

Baseline 862

• HopRAG (Liu et al., 2025): is a retrieval-augmented generation framework that explicitly models 863

the retrieval of reasoning steps using structured document graphs, optimizing path traversal and 864

relevance scoring. 865

• HippoRAG (Jimenez Gutierrez et al., 2024): proposes a hybrid hierarchical retrieval architec- 866

ture that combines short-term document context with long-term memory to improve long-context 867

comprehension and answer recall. 868
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HotpotQA

Method EM F1

PathRAG 41.40 55.10
HippoRAG 59.90 74.20
HopRAG 61.30 78.30
PathCoRAG 60.10 74.91

Table 6: Performance comparison on HotpotQA

Results and Analysis869

As shown in Table 6, PathCoRAG demonstrates strong performance on the HotpotQA dataset, achieving870

results comparable to HopRAG despite not being explicitly optimized for short, extractive answers. While871

HopRAG slightly outperforms PathCoRAG in EM and F1 scores, PathCoRAG is designed for global872

reasoning and structured context construction, which aligns with tasks requiring multi-hop inference873

across distributed evidence. Additionally, PathCoRAG outperforms PathRAG and is competitive with874

HippoRAG, further validating its effectiveness in multi-step reasoning tasks under real-world QA settings.875
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I Case Study 876

Query "How do the indemnification clauses vary among different contracts, and what risks
do they present?"

GraphRAG Variation of Indemnification Clauses Among Contracts
Indemnification clauses are tailored to the specifics of each contract... Limited Partners
may indemnify the General Partner... Borrowers may indemnify Lenders... Terms can
vary widely, covering direct damages or broader liabilities... Some contracts provide
comprehensive coverage, others impose strict limitations...
Risks Associated with Indemnification Clauses
The risks can be substantial, particularly if overly broad or ambiguous... Clauses
may expose parties to unexpected liabilities... Disputes over what constitutes an
indemnifiable event... Financial health of the indemnifying party is critical...

PathCoRAG Variations in Indemnification Clauses
Indemnification clauses can vary significantly... Scope of Coverage may include
breach of contract, negligence, or third-party claims... For example, Section 10.04(b)
covers Indemnitees, while Clause (C) provides exceptions...
Types of Indemnified Parties can differ... including directors, officers, agents, or
specific entities...
Limitations and Exclusions are often included... such as Section 16.01(K)(II), which
restricts coverage for certain breaches...
Indemnified Amounts can vary... reflecting different compensation obligations...
Risks Presented by Indemnification Clauses
Indemnification clauses can also introduce risks... Unforeseen Liabilities - Broad
definitions may expose a party to unexpected obligations... Legal Complexity -
Disputes may arise over valid claims or covered losses... Financial Burden - Substantial
costs for legal defenses and settlements... Dependence on Contractual Clarity - Vague
terms can lead to enforcement issues...

LLM Decision Comprehensiveness
PathCoRAG (Answer 1) provides a comprehensive breakdown of various aspects of
indemnification clauses... It covers scope of coverage, types of indemnified parties,
limitations and exclusions, and methods for determining indemnified amounts...
Diversity
GraphRAG (Answer 2) highlights a more diverse perspective by addressing different
contexts in which indemnification clauses might vary, such as partnerships and finan-
cial agreements...
Empowerment
PathCoRAG (Answer 1) empowers the reader by clearly outlining the variations and
risks associated with indemnification clauses... It presents specific examples and
scenarios that help the reader understand how different terms can affect the involved
parties, supporting more informed decision-making...
Overall Winner
PathCoRAG (Answer 1) excels in both Comprehensiveness and Empowerment... It
offers a richer and more informative response, effectively capturing the complexities
and critical aspects of indemnification clauses...

Table 7: Comparison of GraphRAG and PathCoRAG responses to the indemnification clause query.
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Figure 5: Query expansion process in PathCoRAG, illustrating the hierarchical decomposition of complex queries
into structured reasoning steps and sub-queries for more precise and contextually accurate retrieval.
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Figure 6: Structured representation of nodes and edges for efficient answer generation, reducing redundancy and
enhancing coherence by integrating individual paths into a unified network.
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Figure 7: Evaluation prompt structure for assessing Comprehensiveness, Diversity, Empowerment, and Overall
Quality
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