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Abstract

Large Language Models (LLMs) have sig-
nificantly advanced natural language under-
standing, yet they often struggle with com-
plex, multi-step reasoning due to limitations
in fixed-context knowledge access. Retrieval-
Augmented Generation (RAG) frameworks ad-
dress this by incorporating external knowledge,
but conventional methods typically retrieve flat,
chunk-level text without respecting the logical
structure of reasoning, leading to fragmented
and noisy contexts. We introduce PathCoRAG,
anovel RAG framework that explicitly aligns
multi-step reasoning with path-aware retrieval
and context construction. Unlike prior meth-
ods, PathCoRAG performs step-wise query ex-
pansion and retrieves nodes and paths corre-
sponding to each reasoning step. This produces
a logic-preserving, sequential context struc-
ture that guides the LLM through a structured
chain of thought during generation. Our ap-
proach consists of four tightly integrated com-
ponents: (1) Chain-of-Thought-based Query
Expansion, (2) Hierarchical Node Extraction
per reasoning step, (3) Semantic Path Explo-
ration and Scoring, and (4) Structured Context
Prompting aligned with logical reasoning paths.
Experimental results across diverse domains
show that PathCoRAG consistently outper-
forms strong baselines. https://anonymous.
4open.science/r/PathCoRAG-A1BB

1 Introduction

Large Language Models (LLMs) excel at natural
language understanding and generation but strug-
gle with complex, domain-specific queries that re-
quire real-time information retrieval and multi-step
reasoning (Wei et al., 2022; Yao et al., 2023). To ad-
dress this, Retrieval-Augmented Generation (RAG)
systems have been developed (Lewis et al., 2020;
Gao et al., 2023b; Peng et al., 2024), enabling
LLMs to retrieve relevant information from large
external document collections, improving factual
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Figure 1: Comparison of information retrieval mech-
anisms in GraphRAG, LightRAG, and PathCoRAG.
GraphRAG groups related entities into hierarchical sub-
graphs, LightRAG separates local and global contexts
for more efficient retrieval, while PathCoRAG intro-
duces path-aware multi-step reasoning to capture deeper
semantic connections and reduce redundancy.

accuracy and domain adaptability. However, con-
ventional RAG approaches often rely on flat data
structures, making it challenging to capture com-
plex entity relationships (Izacard and Grave, 2021),
which often results in responses where related evi-
dence appears disjointed and lacks a coherent flow.

To address these challenges, graph-based RAG
methods have been proposed (Edge et al., 2024;
Liu et al., 2025), which explicitly model relation-
ships between entities to enable more structured
multi-step reasoning. As illustrated in Figure 1,
GraphRAG (Edge et al., 2024) uses hierarchical
subgraphs to group related entities.(Figure 1(a))
improving context aggregation but sometimes dilut-
ing critical relationships due to loosely connected
nodes. LightRAG (Guo et al., 2024) further im-
proves retrieval efficiency by separating local and
global contexts.(Figure 1(b)) but it still relies on
keyword-based retrieval, which can miss deeper
semantic connections (Wei et al., 2022).

To overcome these limitations, we propose Path-
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CoRAG, a novel graph-based RAG framework
that explicitly integrates multi-step reasoning with
path-aware retrieval and context construction (Fig-
ure 1(c)). PathCoRAG systematically decomposes
complex queries into structured reasoning steps us-
ing Chain-of-Thought (CoT) prompting. For each
step, it performs targeted node retrieval through
hierarchical matching, capturing semantically rele-
vant nodes while avoiding spurious aggregation. It
then explores possible logical paths between these
nodes and selects those that reflect coherent, step-
aligned reasoning.

Unlike prior methods that retrieve and aggregate
nodes in a flat or unstructured fashion, PathCoRAG
transforms selected nodes and edges into structured
context sequences such as: [Node A (desc)] —
[Edge (desc)] — [Node B (desc)], thereby reducing
redundancy and preserving the logical reasoning
flow. This context structure is directly passed to the
LLM, guiding it through a step-wise, semantically
connected chain-of-thought for answer generation.

We evaluated PathCoRAG on diverse domains
including Agriculture, Computer Science, Legal,
and a mixed set, comparing it against strong
baselines such as NaiveRAG (Gao et al., 2023b),
HyDE (Gao et al., 2023a), LightRAG (Guo
et al., 2024), GraphRAG (Edge et al., 2024), and
PathRAG (Chen et al., 2025). Across multiple
human evaluation metrics such as Comprehensive-
ness, Diversity, and Empowerment (Edge et al.,
2024; Guo et al., 2024), PathCoRAG consistently
achieved superior performance.

* Step-wise Reasoning and Retrieval Integra-
tion. PathCoRAG tightly couples CoT-based
query decomposition with step-specific node
and path retrieval, enabling logical precision

and reducing context fragmentation.
¢ Path-Aware Structured Context Prompt-

ing. Retrieved paths are serialized into struc-
tured, logic-aligned text representations that
maintain semantic flow while removing redun-

dancy.
* Superior Performance on Multi-Step Rea-

soning Tasks. PathCoRAG consistently out-
performs prior RAG systems across domains
and metrics, demonstrating its strength in han-
dling complex, reasoning-intensive queries.

2 Related Work
2.1 Traditional RAG

Traditional RAG approaches, such as those in-
troduced by Lewis et al. (2020), typically lever-

age dense retrieval (e.g., DPR) (Karpukhin et al.,
2020) and sparse retrieval (e.g., BM25) (Robert-
son and Zaragoza, 2009) to access relevant doc-
uments from large external corpora. While they
improve factual grounding and domain adaptation
(Gao et al., 2023b), these methods generally rely
on flat structures that struggle to capture complex
entity relationships (Tang and Yang, 2024), often
resulting in fragmented or inconsistent responses.
Additionally, they lack mechanisms to filter redun-
dant or noisy information, which can impair con-
textual consistency and increase latency at scale.
These limitations have motivated the development
of more structured approaches like graph-based
RAG systems.

2.2 Graph-Based RAG

Graph-based RAG frameworks model entities and
their relations as graphs to enable structured reason-
ing and improved contextual coherence (Peng et al.,
2024). GraphRAG (Edge et al., 2024) aggregates
entities into subgraphs using community detection,
while LightRAG (Guo et al., 2024) improves re-
trieval efficiency through a dual-level local-global
strategy. However, both methods face a common
limitation: they either include loosely related nodes
that dilute logical connections or rely on keyword-
based retrieval that fails to capture deeper semantic
and reasoning structures.

2.3 Reasoning Path-Based RAG

Recent efforts aim to improve reasoning in RAG by
incorporating multi-step query structures (Trivedi
et al., 2023). HopRAG (Liu et al., 2025) extends
retrieval through multi-hop traversal using LLM-
generated pseudo-queries, and PathRAG (Chen
et al., 2025) transforms retrieved paths into struc-
tured representations to highlight semantic links.
While these methods emphasize reasoning-aware
retrieval, they often lack explicit alignment be-
tween reasoning steps and retrieved content, result-
ing in disconnected or overly abstract context struc-
tures that can hinder faithful answer generation.
These limitations highlight a gap between multi-
step reasoning structures and the retrieval strategies
used in prior RAG systems. PathCoRAG addresses
this gap by explicitly aligning each reasoning step
with semantically relevant nodes and their connect-
ing paths, constructing a logic-preserving context
that guides the LLM through a coherent, step-by-
step chain of thought.
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Figure 2: An illustration of the PathCoRAG methodology, including query decomposition into reasoning steps, node
retrieval, reasoning path construction, and prompt assembly. This approach systematically expands complex queries
into structured reasoning steps, extracts relevant nodes from the knowledge graph, identifies optimal reasoning paths
using path scoring, and formats the final context for response generation.

3 Background

Graph-based RAG enhances LLM reasoning by
modeling entity relationships in structured knowl-
edge graphs, supporting complex multi-step inter-
actions (Li et al., 2025). This section reviews the
architecture and components of graph-based RAG,
including graph construction, knowledge represen-
tation, and retrieval.

3.1 Graph-Based RAG Architecture

Graph-based RAG systems convert unstructured
text into knowledge graphs, representing entities
as nodes and relationships as edges (Chen et al.,
2025). These structures are encoded into dense
vectors to enable semantic search (Huang et al.,
2025). Given a query, relevant nodes and paths are
retrieved and scored to construct coherent contexts
(Zhou et al., 2023).

3.2 Graph Construction

Graphs are constructed by extracting entities and
their relationships from text (Edge et al., 2024).
Each node v € V includes descriptive text ¢,,, and

each edge e € I captures semantic connections.
The graph is represented as G = (V, E, T'), where
T contains textual descriptions (Li et al., 2024).

3.3 Knowledge Representation and Indexing

Nodes and edges are embedded using an embed-
ding model and indexed in a vector database for
fast semantic retrieval (Huang et al., 2025).

3.4 Graph-Based Retrieval

Relevant nodes and multi-hop paths are selected
based on semantic similarity, forming coherent and
compact contexts that reduce noise and improve
response accuracy.

4 PathCoRAG

This section introduces PathCoRAG, a novel graph-
based RAG framework designed to align retrieval
with multi-step reasoning. Unlike prior systems
that retrieve flat, chunk-level content, PathCoRAG
performs step-wise reasoning-aware retrieval and
constructs structured context based on explicit rea-
soning paths. As shown in Figure 2, PathCoRAG



consists of four core components: (1) Chain-of-
Thought-based Query Expansion, (2) Step-aligned
Node Retrieval, (3) Semantic Path Search and Scor-
ing, and (4) Path-structured Answer Generation.

4.1 Query Expansion

To support deep and interpretable reasoning, Path-
CoRAG decomposes the initial query into three
explicit reasoning steps (RS1, RS2, RS3), each re-
flecting a sub-goal in the overall inferential process.
This structured breakdown encourages the model
to focus on discrete aspects of the reasoning tra-
jectory, reducing cognitive overload and ambiguity.
For each step, the model generates three seman-
tically diverse sub-queries using LLM prompting
and few-shot demonstrations, resulting in a total of
nine sub-queries per input query:

Q = {RS1, RS2, RS3} (1)

RS; = {41, ¢i2, g3 } ()

This CoT-style expansion enforces logical decom-
position and semantic coverage, allowing later com-
ponents to retrieve targeted evidence aligned with
specific reasoning needs. Prompting examples are
provided in Appendix A.

4.2 Node Retrieval

For each sub-query g¢;;, we retrieve the top-N
semantically relevant nodes from the knowledge
graph using cosine similarity between embeddings:
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To ensure step-aligned context, retrieved nodes are
deduplicated across sub-queries and assigned to the
reasoning step where they are most relevant:

step(v) = argmax, (sim(g;j,v))

: “)

fori e {1,2,3}

This step-aware allocation reduces noise and en-

sures that the retrieved context is both semantically

focused and structurally aligned, which is essential

for capturing complex logical dependencies across
steps.

4.3 Reasoning Path Search

To connect the selected nodes across reasoning
steps, PathCoRAG searches for top-£ multi-hop
reasoning paths (RS1—RS2, RS2—RS3) using

Datasets \ Mix CS Agriculture  Legal
# of documents 61 10 12 94
# of tokens 619K  2.3M 2M M
# of nodes in KG 10K 20K 22K 20K
# of edges in KG 4.8K 13K 14K 24K

Table 1: Dataset Statistics for Mix, CS, Agriculture,
and Legal Domains. KG denotes the indexed knowledge
graph.

Yen’s algorithm (Yen, 1971). This path search ex-
plicitly encodes logical continuity between reason-
ing steps and filters out disconnected or semanti-
cally weak paths. Each candidate path is scored by
its semantic alignment to the original query:

S(P) = b Seepsim(@.te)  (5)

where t. is the edge description. This scoring mech-
anism selects paths that are not only connected but
also semantically meaningful in the context of the
original question, enabling high-quality reasoning
flow. Details are in Appendix B.

4.4 Answer Generation

Finally, PathCoRAG transforms the selected rea-
soning paths into a structured prompt, integrating
node descriptions and edge semantics into a coher-
ent chain of thought. This prompt is designed to re-
flect the underlying logic of the reasoning trajectory
(RST — RS2 — RS3), guiding the LLM to gener-
ate answers that are not only factually grounded but
also logically traceable and interpretable. The con-
text formatting process is detailed in Appendix C.

Overall, these design choices address key limita-
tions in prior work by bridging the gap between rea-
soning intent and retrieval behavior. PathCoRAG
produces logically structured, semantically rich
contexts that mitigate redundancy, prevent dis-
jointed reasoning, and enable more faithful, multi-
step answer generation.

S Experiments

To evaluate the performance of PathCoRAG, we
conducted extensive experiments to assess its ef-
fectiveness across various domains (Section 5.2),
the impact of hyperparameter settings (Section 5.3),
and the influence of reasoning structure on response
quality (Section 5.4).

5.1 Experimental Settings

5.1.1 Datasets

We evaluate PathCoRAG using the UltraDomain
benchmark (Qian et al., 2025), which consists of



Mix CS Agriculture Legal
NaiveRAG PathCoRAG NaiveRAG PathCoRAG NaiveRAG PathCoRAG NaiveRAG PathCoRAG
Comprehensive 39.20% 60.80% 28.80% 71.20% 36.00% 64.00 % 29.60% 70.40 %
Diversity 24.00% 76.00 % 23.20% 76.80 % 27.20% 72.80% 11.20% 88.80%
Empowerment 36.00% 64.00 % 22.40% 77.60 % 29.60% 70.40 % 24.00% 76.00 %
Overall 36.80% 63.20% 21.60% 78.40 % 31.20% 68.80 % 25.60% 74.40 %
HyDE PathCoRAG HyDE PathCoRAG HyDE PathCoRAG HyDE PathCoRAG
Comprehensive 37.60% 62.40 % 39.20% 60.80 % 43.20% 56.80% 35.20% 64.80%
Diversity 32.80% 67.20% 23.20% 76.80% 44.00% 56.00 % 26.40% 73.60 %
Empowerment 36.80% 63.20% 34.40% 65.60 % 42.40% 57.60 % 30.40% 69.60 %
Overall 38.40% 61.60% 35.20% 64.80 % 42.40% 57.60% 31.20% 68.80%
GraphRAG PathCoRAG GraphRAG PathCoRAG GraphRAG PathCoRAG GraphRAG PathCoRAG
Comprehensive 39.20% 60.80% 35.20% 64.80% 35.20% 64.80% 32.80% 67.20%
Diversity 45.60% 54.40% 34.40% 65.60 % 28.00% 72.00% 40.00% 60.00 %
Empowerment 42.40% 57.60% 36.80% 63.20% 32.00% 68.00 % 31.20% 68.80 %
Overall 40.80% 59.20% 37.60% 62.40% 33.60% 66.40 % 32.80% 67.20%
LightRAG PathCoRAG LightRAG PathCoRAG LightRAG PathCoRAG LightRAG PathCoRAG
Comprehensive 35.20% 64.80 % 37.60% 62.40% 38.40% 61.60% 31.20% 68.80%
Diversity 25.60% 74.40% 24.00% 76.00 % 24.80% 75.20% 20.80% 79.20%
Empowerment 32.00% 68.00 % 32.80% 67.20% 36.00% 64.00% 29.60% 70.40 %
Overall 33.60% 66.40 % 33.60% 66.40 % 36.80% 63.20% 29.60% 70.40 %
PathRAG PathCoRAG PathRAG PathCoRAG PathRAG PathCoRAG PathRAG PathCoRAG
Comprehensive 19.20% 80.80% 24.80% 75.20% 32.00% 68.00% 23.60% 76.40 %
Diversity 14.40% 85.60% 9.60% 90.40 % 9.60% 90.40 % 17.60% 82.40%
Empowerment 16.80% 83.20% 20.80% 79.20% 26.40% 73.60 % 22.80% 77.20%
Overall 16.00% 84.00 % 21.60% 78.40 % 27.20% 72.80% 22.80% 77.20%

Table 2: Main Results for PathCoRAG and Baseline Models

four diverse domains: Agriculture, Computer Sci-
ence (CS), Legal, and Mixed. These datasets pro-
vide a broad and rigorous environment for assess-
ing retrieval-augmented generation across domains.
Table 1 presents the total token count, as well as
the number of nodes and edges for each domain-
specific graph. Further dataset statistics are avail-
able in Appendix D.

5.1.2 Maetrics

We evaluated the quality of generated responses us-
ing a win-rate metric based on LLM pairwise com-
parisons (Zheng et al., 2023), with GPT-40-mini as
the evaluator. This metric assesses which model’s
output is preferred more often when compared di-
rectly. Following Guo et al. (2024), we evaluated
responses across four dimensions: Comprehensive-
ness (coverage of essential query aspects), Diver-
sity (range of perspectives), Empowerment (sup-
port for user understanding and decision-making),
and Overall Quality (holistic evaluation of the other
three). Further details on the evaluation criteria can
be found in AppendixE.

5.1.3 Implementation Details

All LLM modules are implemented using GPT-
40-mini. For graph construction, we follow Guo

et al. (2024) by chunking documents and extracting
entities and relations. Through hyperparameter
tuning, we set the number of top retrieved nodes to
50, number of k-shortest paths to 4, and the final
selected reasoning paths to 15. For each query, we
generate 3 reasoning steps, each with 3 sub-queries,
forming the basis for step-wise node retrieval and
reasoning path construction.

5.1.4 Baselines

For comparison, we evaluated PathCoRAG against
several strong baselines, including NaiveRAG
(Gao et al.,, 2023b), GraphRAG (Edge et al.,
2024), LightRAG (Guo et al., 2024), HyDE (Gao
et al., 2023a), and PathRAG (Chen et al., 2025).
NaiveRAG adopts a basic RAG framework by
retrieving text chunks based on vector similar-
ity. GraphRAG constructs a knowledge graph
and leverages community-based clustering for im-
proved context selection. LightRAG integrates
entity-level retrieval with lightweight community
summarization for efficient response generation.
HyDE generates hypothetical documents from the
query to build a richer intermediate context be-
fore answer generation. PathRAG introduces path-
centric retrieval by selecting top-k reasoning paths
from a knowledge graph, aiming to improve multi-
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Figure 3: Effect of Top-N node selection, k-shortest path selection, and Final-K filtering on comprehensiveness,
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performance.

hop reasoning. Further details on these baselines
are provided in Appendix F.

5.2 Main Results

Table 2 shows that PathCoRAG consistently outper-
forms all baseline models across four domains. The
improvements are especially notable in Computer
Science (78.4% overall win-rate) and Legal (77.2%
overall win-rate), where deep multi-step reasoning
is critical. These gains stem from step-wise query
expansion, hierarchical node retrieval, and seman-
tic path scoring, which allow PathCoRAG to isolate
key concepts and maintain logical flow across rea-
soning steps. In contrast to flat or keyword-based
retrieval, our method constructs more coherent and
relevant context. A key challenge in multi-step
frameworks is error propagation—where an inaccu-
rate or irrelevant node retrieved in an early reason-

ing step can mislead subsequent path construction
and context assembly, ultimately degrading answer
quality. PathCoRAG mitigates this through redun-
dant sub-queries and robust path scoring, ensuring
stability even under noisy inputs. Additionally,
PathCoRAG excels in Diversity and Empowerment
metrics, reflecting its ability to retrieve nuanced
and multi-faceted information. Overall, its inte-
grated design effectively addresses core limitations
of prior RAG systems—producing answers that are
faithful, coherent, and interpretable.

5.3 Hyperparameter and Model Analysis

To investigate the contribution of key design
choices in PathCoRAG, we conduct detailed ab-
lation and sensitivity studies on the Mix domain,
a heterogeneous dataset spanning various topics.
Our analysis focuses on five components: top-N



Mix CS

Agriculture Legal

w/o reasoning reasoning path  w/o reasoning

reasoning path  w/o reasoning

reasoning path  w/o reasoning reasoning path

comprehensive 44.80% 55.20% 48.00% 52.00% 47.20% 52.80% 47.20% 52.80%
Diversity 42.40% 57.60% 54.40% 45.60% 49.60% 50.40 % 52.00% 48.00%
Empowerment 45.60% 54.40% 46.40% 53.60 % 48.00% 52.00% 48.00% 52.00%
Overall 44.00% 56.00 % 48.00% 52.00% 48.80% 51.20% 48.80% 51.20%

Table 3: Impact of Reasoning Path on Model Performance

node selection, k-shortest path selection, final path
filtering, reasoning step depth, and the number of
sub-queries per step.

5.3.1 Top-N Node Selection

We analyze the impact of varying the number
of nodes retrieved per reasoning sub-query. As
N increases from 10 to 50, we observe consis-
tent improvements across all evaluation dimen-
sions—Comprehensiveness, Diversity, Empower-
ment, and Overall—as illustrated in Figure 3 (left).
This uniform gain is due to the expanded node pool
providing a richer set of semantically relevant can-
didates, which enhances context without introduc-
ing significant redundancy. Unlike path selection,
which may involve overlapping or semantically
repetitive routes, increasing Top-N node selection
uniformly enriches the retrieval base, leading to
more stable and balanced improvements. Beyond
N = 50, the gains plateau, suggesting diminishing
returns. We adopt /N = 50 as the optimal configu-
ration balancing informativeness and precision.

5.3.2 Kk-Shortest Path Selection

We explore the impact of varying the number of
reasoning paths (k) retrieved between node stages.
As k increases, Comprehensiveness and Empow-
erment generally improve due to the inclusion of
more reasoning routes. However, beyond k£ = 4,
Diversity tends to decrease slightly, as additional
paths often overlap or exhibit less semantic varia-
tion. This reflects a natural trade-off between preci-
sion and diversity: while more paths enrich logical
connectivity, they may also introduce redundancy.
As shown in Figure 3 (middle), k& = 4 provides the
best trade-off, capturing diverse yet semantically
meaningful paths without overwhelming the con-
text. Compared to node retrieval, where expansion
consistently improves all metrics, path selection
must be more carefully calibrated to balance infor-
mativeness with diversity.

5.3.3 Final Path Filtering (Final-K)

To filter and select the most informative reason-
ing paths for context construction, we experiment

with varying the number of final paths (Final-K)
included in the prompt. As shown in Figure 3
(right), performance across all metrics follows
a bell-shaped curve.When Final-K is too small
(e.g., 5), win-rates are low across all metrics due
to insufficient context coverage. As Final-K in-
creases to 15, all metrics—Comprehensiveness,
Diversity, Empowerment, and Overall—improve
significantly, reaching peak values. This suggests
that moderate inclusion provides rich yet focused
semantic cues for reasoning. However, further in-
creasing Final-K beyond 15 leads to slight drops in
some metrics, particularly Diversity and Empower-
ment. This indicates that excessive path inclusion
introduces redundant or less relevant information,
which can distract the model from the core reason-
ing flow. Therefore, we adopt Final-K=15 as the
optimal configuration, balancing informativeness
and focus.

5.3.4 Reasoning Step Depth

To explore the impact of logical decomposition
depth, we varied the number of reasoning steps
from 2 to 4. As illustrated in Figure 4 (left), moving
from 2 to 3 steps results in significant gains across
all evaluation metrics—particularly in Comprehen-
siveness and Overall performance. This suggests
that a three-step decomposition provides a good
balance between logical granularity and semantic
coherence in the retrieved context. However, ex-
tending the chain to 4 steps leads to a slight decline
in performance, likely due to over-fragmentation
and increased noise. While Empowerment remains
stable, other metrics show reduced effectiveness,
indicating that deeper decomposition may compli-
cate reasoning clarity.

5.3.5 Query Expansion per Reasoning Step

We investigate the impact of varying the number of
expanded queries per reasoning step, ranging from
1 to 4. As shown in Figure 4 (right), performance
steadily improves as the number increases, with
three queries per step achieving the best overall
balance across all four evaluation metrics (Com-
prehensiveness: 0.632, Diversity: 0.664, Empower-



ment: 0.592, Overall: 0.616). This configuration
provides sufficient semantic coverage without over-
loading the retrieval module. While a fourth query
yields a marginal improvement in Overall score, the
gains are limited and come with increased risk of
introducing noise and unnecessary computational
overhead. These observations highlight that mod-
erate expansion—specifically, three queries per
step—offers a favorable trade-off between retrieval
diversity, response quality, and efficiency.

5.4 Impact of Reasoning Path Information

To measure the value of path-aware prompting, we
compare models with and without reasoning path
structures included in the final prompt. As shown
in Table 3, incorporating reasoning paths consis-
tently improves performance across all four do-
mains. Notably, in the Mix domain, we observe
large gains in Comprehensiveness (+10.4%p), Di-
versity (+15.2%p), and Empowerment (+8.8%p).
This indicates that modeling explicit reasoning
paths helps the model better understand logical
flow and retrieve more contextually relevant knowl-
edge, leading to improved multi-hop generation.

5.5 Token Cost Analysis

We compare PathCoRAG with LightRAG, known
for its efficiency in retrieval and token usage (Guo
et al., 2024).

Metric PathCoRAG LightRAG
Keyword/Expansion Time ~ 760.58 tokens / 5.43 s 410.58 tokens / 1.48 s
Path Search/Retrieval Time 7.06s 0.83s

In-Context Tokens 8,830.52 tokens 21,073.82 tokens

Table 4: Cost comparison: PathCoRAG vs. LightRAG.

As shown in Table 4, although PathCoRAG in-
curs 4-5 seconds more per query due to path search
and expansion, it significantly reduces in-context
tokens by over 50%. This compact context con-
struction highlights PathCoRAG’s practicality in
resource-constrained scenarios while maintaining
superior performance.

6 Further Discussion

6.1 Evaluation on Objective Benchmarks

We conducted additional evaluations using estab-
lished QA benchmarks that provide ground-truth
answers. These datasets allow for more objective
comparisons based on standard evaluation metrics
and help verify the effectiveness of PathCoRAG
in diverse reasoning settings beyond our origi-
nal test environment. Appendix G reports exper-

imental settings and detailed results on the Nov-
elQA(Wang et al., 2024), InfiniteQA(Zhang et al.,
2024) and InfiniteChoice(Zhang et al., 2024) bench-
mark datasets.

PathCoRAG demonstrates strong performance
across diverse benchmarks. On NovelQA, it excels
in structured multi-hop reasoning with long-form
answers. In InfiniteChoice, it performs compet-
itively on contextual comparison tasks. Even in
InfiniteQA, which favors concise factoid responses
less suited to its design, PathCoRAG maintains
solid performance. These results highlight its ro-
bustness and versatility in handling a range of rea-
soning challenges.

6.2 Evaluation on Multihop QA

To strengthen the empirical validation of Path-
CoRAG’s reasoning capabilities, we include ad-
ditional experiments on the widely-used Hot-
potQA(Yang et al., 2018) dataset. As HotpotQA
is a standard benchmark for multi-hop question
answering with diverse reasoning challenges, this
evaluation allows us to assess the generalizabil-
ity of our model beyond domain-specific settings
and directly compare it with recent competitive
baselines such as HippoRAG and HopRAG. Exper-
imental settings and detailed results can be found
in Appendix H.

PathCoRAG performs competitively on Hot-
potQA, despite not being tailored for short, extrac-
tive answers. Its strength in global reasoning and
structured context construction proves effective for
multi-hop inference, outperforming PathRAG and
rivaling HippoRAG in real-world QA settings.

7 Conclusion

We presented PathCoRAG, a retrieval-augmented
generation framework that explicitly aligns multi-
step reasoning with structured retrieval through
path-aware query expansion and graph-based con-
text construction. By decomposing complex
queries into step-wise reasoning units and retriev-
ing semantically connected nodes and paths, Path-
CoRAG generates coherent, logically grounded an-
swers while significantly reducing irrelevant con-
text. Our experiments demonstrate consistent gains
across diverse domains, validating the effective-
ness of reasoning-aligned retrieval and structured
context over traditional flat retrieval approaches.



Limitation

PathCoRAG adopts a fixed 3-step, 3-query-per-step
expansion strategy to balance performance and ef-
ficiency. However, this uniform structure may not
adapt well to queries of varying complexity, po-
tentially leading to under- or over-decomposition.
Future work will explore dynamic reasoning step
selection and adaptive query expansion based on
query semantics and reasoning depth.
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A Query Expansion Prompt

PathCoRAG decomposes complex queries into structured reasoning steps to enable more precise retrieval.
Each query is divided into three reasoning steps, with each step generating multiple sub-queries to capture
information from diverse perspectives. This hierarchical expansion separates intermediate concepts and
strengthens semantic connections, allowing for more refined and contextually accurate retrieval. Please
refer to Figure 5 for a detailed illustration.

B Yen’s Algorithm for PathCoRAG

Yen’s algorithm is an efficient method for finding the k-shortest paths from a single source node s to a
single destination node ¢. It operates by first identifying the initial shortest path P; and then iteratively
generating alternative paths Ps, Ps, . .., Py until the desired number of & paths are obtained.

B.1 Initial Shortest Path

The first shortest path, Py, is typically computed using algorithms like Dijkstra or A*, defined as:

Py = argminp (Z(u,v)eP w(u, v)) (6)

where w(u, v) represents the weight of each edge in the path. This initial path serves as the baseline for
generating subsequent alternative paths.

B.2 Generating Alternative Paths

For each subsequent path P; (where ¢ > 1), Yen’s algorithm selects a spur node from the previously
identified shortest path and constructs a new path using this spur. This is defined as:

P; = R, + spur(ny) (7

where Ry is the sub-path leading up to the spur node, and spur(n;) is the remaining path from the spur
node to the destination. To ensure path diversity, the algorithm partially blocks or removes overlapping
segments from previously selected paths, allowing for the creation of unique alternative paths.

B.3 Path Selection

This process is repeated until a total of k shortest paths have been identified. Yen’s algorithm is particularly
well-suited for multi-step reasoning frameworks like PathCoRAG, as it efficiently explores a wide range
of plausible reasoning paths while preserving critical relationships between nodes.

C Answer Generation Prompt

The answer generation prompt in PathCoRAG is designed to efficiently structure node and edge informa-
tion associated with each reasoning path, minimizing redundancy and enhancing coherence. As illustrated
in Figure 6, this approach integrates individual paths into a single, interconnected network, eliminating
unnecessary node and edge repetitions. This unified representation allows the LLM to interpret complex,
multi-step relationships more effectively, resulting in contextually consistent and accurate responses.

D UltraDomain Dataset Description

The UltraDomain benchmark is a comprehensive dataset constructed from 428 university textbooks,
covering specialized domain documents across science, technology, and professional fields. It provides a
diverse range of topics suitable for evaluating graph-based RAG systems. The UltraDomain dataset is
licensed under the Apache License 2.0.
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Mix

The Mix dataset contains diverse documents from various disciplines, including literature, history, phi-
losophy, and social sciences. It is designed to test the generalization ability of models across a wide
range of knowledge domains. This dataset presents a challenging environment for multi-hop reasoning,
with complex narratives, abstract concepts, and interdisciplinary references. Key topics include literature,
philosophy, history, sociology, political science, and anthropology.

Computer Science (CS)

The Computer Science dataset includes materials on algorithms, data structures, software engineering,
machine learning, and artificial intelligence. It captures both theoretical concepts and practical applications,
reflecting the rapid advancements in computer science. It also covers cutting-edge topics like quantum
computing, distributed systems, and big data analytics. Key topics include algorithms, data structures,
machine learning, artificial neural networks, distributed computing, software engineering, big data, and
artificial intelligence.

Agriculture

The Agriculture dataset contains documents related to agricultural practices, crop management, livestock
care, and agricultural technology. It covers technical topics such as soil management, irrigation techniques,
pest control, sustainable farming, and agricultural economics, reflecting the complex, interconnected
nature of agricultural knowledge. This makes it well-suited for multi-hop reasoning and graph-based
retrieval tasks. Key topics include crop science, pest management, soil conservation, irrigation systems,
agricultural economics, sustainable agriculture, and precision farming.

Legal

The Legal dataset consists of documents related to corporate law, intellectual property, contract law,
regulatory compliance, and legal ethics. This domain is characterized by precise terminology and
structured argumentation, making it suitable for evaluating search systems that need to capture subtle
legal nuances. Key topics include corporate law, intellectual property, contracts, regulations, ethics, legal
reasoning, and dispute resolution.

E Evaluation Metrics

E.1 Win-Rate Evaluation Framework

This section describes the evaluation metrics used to assess model performance. In this study, we adopt
a win-rate-based evaluation framework, similar to those used in recent graph-based RAG studies like
LightRAG and PathRAG. win-rate-based evaluation presents the win-rate results showing how often
PathCoRAG’s responses are preferred over those of baseline models across various domains. These scores
are based on pairwise comparisons using an LLM evaluator (GPT-40-mini), where each entry reflects
the percentage of times PathCoRAG outperformed a specific baseline. Since win-rates are computed
separately for each baseline, the same dataset and metric may yield different values depending on the
comparison target (e.g., NaiveRAG vs. LightRAG). This explains the variation in PathCoRAG’s reported
scores within a single domain. We emphasize that these are not absolute performance scores, but relative
win-rates from independent evaluation rounds.

E.2 Maetric Definitions

Comprehensiveness

Measures how completely the response addresses all aspects of the input query, reflecting the model’s
ability to provide detailed and thorough answers.

Diversity

Evaluates the extent to which the response covers a wide range of perspectives and information, indicating
the breadth of the response.
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Empowerment

Assesses the degree to which the response helps the reader gain a deeper understanding of the topic and
make informed decisions based on the provided information.

Overall Quality

Combines comprehensiveness, diversity, and empowerment (Edge et al., 2024) to provide an overall
assessment of response quality.

E.3 Win-Rate Calculation

The evaluation follows a win-rate approach, where each response comparison is recorded as a win for the
more preferred response. The final win-rate is calculated as the proportion of wins over the total number
of comparisons. To reduce bias, the order in which responses are presented is randomized, and the final
results are reported as the average of multiple experimental runs. For a detailed description of the prompt
structures used in this evaluation, please refer to Figure 7 in this paper.

F Baseline Descriptions

NaiveRAG

NaiveRAG (Gao et al., 2023b) is the most basic form of RAG, where the text corpus is divided into
fixed-size chunks and stored in a vector database. The chunks with the highest similarity to the input
query are retrieved. While this approach is simple and efficient, it lacks the structured context provided by
graph-based systems, potentially missing deeper relational information.

HyDE

HyDE (Liu et al., 2022) generates synthetic documents using an LLLM based on the input query, and
then retrieves relevant text chunks from the external database using these generated documents. While
this method can capture more contextual information, it may introduce noise if the generated document
does not accurately reflect the original query intent. For the HyDE baseline, the exact license details are
not available. While the specific license for HyDE is not provided, its source code can be accessed at
URL:https://github.com/texttron/hyde.

GraphRAG

GraphRAG (Edge et al., 2024) constructs an index graph by extracting entities as nodes and their
relationships as edges from the text corpus. The graph structure enables multi-step reasoning by grouping
texts into several interconnected communities, capturing complex dependencies between entities. However,
this approach can be computationally expensive due to the graph construction and path search processes.
GraphRAG is licensed under the MIT-License.

LightRAG

LightRAG (Guo et al., 2024) local and global keyword extraction for more efficient retrieval. It focuses
on the immediate neighbors of relevant nodes, reducing computational costs while maintaining a balance
between precision and recall. This dual-level search framework provides a more efficient yet context-rich
retrieval mechanism. LightRAG is licensed under the MIT-License.

PathRAG

PathRAG (Chen et al., 2025) enhances graph-based RAG by explicitly constructing reasoning paths from
source documents. It segments documents into structured graphs and performs step-by-step path traversal
to simulate multi-hop reasoning. The framework focuses on aligning query intent with coherent paths
of entities and relations, improving factual consistency in the generated responses. However, PathRAG
heavily relies on the quality of the pre-constructed graph and reasoning path search, which may lead to
incomplete or biased paths if the initial structure is sparse or fragmented. For the PathRAG baseline, the
exact license details are not available. While the specific license for PathRAG is not provided, its source
code can be accessed at URL:https://https://github.com/BUPT-GAMMA/PathRAG.
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G Additional Evaluation on Objective Benchmarks

Datasets
We evaluated PathCoRAG and baselines on the following datasets:
* NovelQA: A QA benchmark designed for evaluating long-context understanding, with multi-hop

reasoning and golden answers. For this study, we used a sampled subset of 22 queries with golden
answers available.

* InfiniteQA: A benchmark that includes factoid-style open-ended questions. We sampled 125 queries
for evaluation.

* InfiniteChoice: A multiple-choice benchmark containing diverse, multi-step reasoning questions.
We sampled 100 queries and provided answer options for each.

Metrics

InfiniteChoice and InfiniteQA were evaluated as multiple-choice tasks, where the model selects the most
likely answer from provided candidates.

* Accuracy: Used for NovelQA and InfiniteChoice, defined as the percentage of queries for which the
selected or generated answer exactly matches the correct answer.

* Rouge-L F1: Applied to InfiniteQA. Measures the longest common subsequence between the
generated and reference answers, focusing on factual overlap.

Method NovelQA (Accuracy) InfiniteQA (Rouge-L F1) InfiniteChoice (Accuracy)
NaiveRAG 52.38 19.83 26.00
HyDE 59.09 27.17 40.00
GraphRAG 63.63 11.03 16.00
LightRAG 47.62 24.78 19.00
PathRAG 50.00 20.10 47.00
PathCoRAG 66.67 25.07 43.00

Table 5: Results on NovelQA, InfiniteQA, and InfiniteChoice

Results and Analysis

As shown in Table 5, PathCoRAG consistently demonstrates strong performance across diverse bench-
marks aimed at evaluating multi-step reasoning capabilities. On NovelQA, which features long-form
ground-truth answers and necessitates structured multi-hop inference, PathCoRAG achieves the highest
accuracy (66.67), surpassing all other baselines. In the case of InfiniteChoice, a multiple-choice dataset
requiring contextual judgment and comparison, PathCoRAG records 43.00 accuracy—closely trailing
the best-performing method (PathRAG, 47.00) and showcasing highly competitive performance. On
InfiniteQA, which emphasizes concise factoid-style answers and is less aligned with our model’s design
focus on step-wise reasoning, PathCoRAG achieves a Rouge-L F1 of 25.07. While this is slightly lower
than HyDE’s 27.17, it remains within a comparable range and highlights that PathCoRAG can still deliver
high-quality outputs even in scenarios where its structured reasoning mechanism is underutilized. These
results collectively validate the robustness and generalizability of PathCoRAG, particularly when applied
to tasks demanding deep reasoning and structured information synthesis.
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H Additional Comparison with PathRAG and HopRAG

Dataset

* HotpotQA: HotpotQA is a challenging question answering dataset designed to assess multi-hop
reasoning across multiple documents. It contains Wikipedia-based questions that require combining
evidence from different passages to answer a given question. For our evaluation, we randomly
sampled 1,000 questions from the HotpotQA development set to conduct a comparative analysis
across models.

Metrics
We report results using two standard evaluation metrics for HotpotQA:

* Exact Match (EM): Measures whether the generated answer exactly matches the ground-truth
answer.

* F1 Score: Computes the overlap between the predicted and ground-truth answers at the token level,
considering both precision and recall.

Baseline

* HopRAG (Liu et al., 2025): is a retrieval-augmented generation framework that explicitly models
the retrieval of reasoning steps using structured document graphs, optimizing path traversal and
relevance scoring.

* HippoRAG (Jimenez Gutierrez et al., 2024): proposes a hybrid hierarchical retrieval architec-
ture that combines short-term document context with long-term memory to improve long-context
comprehension and answer recall.
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HotpotQA
Method EM F1
PathRAG 41.40 55.10
HippoRAG 59.90 74.20

HopRAG 61.30 78.30
PathCoRAG 60.10 74.91

Table 6: Performance comparison on HotpotQA

Results and Analysis

As shown in Table 6, PathCoRAG demonstrates strong performance on the HotpotQA dataset, achieving
results comparable to HopRAG despite not being explicitly optimized for short, extractive answers. While
HopRAG slightly outperforms PathCoRAG in EM and F1 scores, PathCoRAG is designed for global
reasoning and structured context construction, which aligns with tasks requiring multi-hop inference
across distributed evidence. Additionally, PathCoRAG outperforms PathRAG and is competitive with
HippoRAG, further validating its effectiveness in multi-step reasoning tasks under real-world QA settings.

16



I Case Study

Query

"How do the indemnification clauses vary among different contracts, and what risks
do they present?"

GraphRAG

Variation of Indemnification Clauses Among Contracts

Indemnification clauses are tailored to the specifics of each contract... Limited Partners
may indemnify the General Partner... Borrowers may indemnify Lenders... Terms can
vary widely, covering direct damages or broader liabilities... Some contracts provide
comprehensive coverage, others impose strict limitations...

Risks Associated with Indemnification Clauses

The risks can be substantial, particularly if overly broad or ambiguous... Clauses
may expose parties to unexpected liabilities... Disputes over what constitutes an
indemnifiable event... Financial health of the indemnifying party is critical...

PathCoRAG

Variations in Indemnification Clauses

Indemnification clauses can vary significantly... Scope of Coverage may include
breach of contract, negligence, or third-party claims... For example, Section 10.04(b)
covers Indemnitees, while Clause (C) provides exceptions...

Types of Indemnified Parties can differ... including directors, officers, agents, or
specific entities...

Limitations and Exclusions are often included... such as Section 16.01(K)(II), which
restricts coverage for certain breaches...

Indemnified Amounts can vary... reflecting different compensation obligations...
Risks Presented by Indemnification Clauses

Indemnification clauses can also introduce risks... Unforeseen Liabilities - Broad
definitions may expose a party to unexpected obligations... Legal Complexity -
Disputes may arise over valid claims or covered losses... Financial Burden - Substantial
costs for legal defenses and settlements... Dependence on Contractual Clarity - Vague
terms can lead to enforcement issues...

LLM Decision

Comprehensiveness

PathCoRAG (Answer 1) provides a comprehensive breakdown of various aspects of
indemnification clauses... It covers scope of coverage, types of indemnified parties,
limitations and exclusions, and methods for determining indemnified amounts...
Diversity

GraphRAG (Answer 2) highlights a more diverse perspective by addressing different
contexts in which indemnification clauses might vary, such as partnerships and finan-
cial agreements...

Empowerment

PathCoRAG (Answer 1) empowers the reader by clearly outlining the variations and
risks associated with indemnification clauses... It presents specific examples and
scenarios that help the reader understand how different terms can affect the involved
parties, supporting more informed decision-making...

Overall Winner

PathCoRAG (Answer 1) excels in both Comprehensiveness and Empowerment... It
offers a richer and more informative response, effectively capturing the complexities
and critical aspects of indemnification clauses...

Table 7: Comparison of GraphRAG and PathCoRAG responses to the indemnification clause query.
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---Role---

You are a helpful assistant tasked with expanding a given query using a Chain of Thought reasoning approach.
Your goal is to break down the query into exactly three logical reasoning steps and generate exactly three extended queries at each step to improve document retrieval.

---Goal-—

Given the query, define a step-by-step reasoning process (with 3 steps) to reach an answer.
For each of the 3 steps, generate 3 extended queries that help retrieve relevant information.

---Instructions---

- Analyze the query and break it down into 3 logical reasoning steps.

- Output the reasoning process and queries in JSON format.
- The JSON should have the following structure:

- reasoning_steps: A list of 3 reasoning steps required to answer the query.

- extended_queries: A dictionary where each key is one of the reasoning steps and its value is a list of exactly 3 extended queries.
- All output must be in plain text, not unicode characters.

- Use the same language as the input "Query". Query Expansion Instruction Prompt

N

---Example---

Query: What are the most useful evaluation metrics for a movie recommendation system?
Output:

reasoning_steps:

What are the main types of recommendation systems?,

What are the differences between collaborative filtering and content-based filtering?,
How does a hybrid recommendation system work?
Identify evaluation metrics for recommendation systems.:

What are the key evaluation metrics for recommendation systems?,

Compare evaluation metrics based on their characteristics.:
Which is more important for recommendation systems: Precision or Recall?, Query Expansion Example Prompt

-

Figure 5: Query expansion process in PathCoRAG, illustrating the hierarchical decomposition of complex queries
into structured reasoning steps and sub-queries for more precise and contextually accurate retrieval.
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---Role---
You are a helpful assistant responding to the user query based on the structured knowledge and reasoning information provided below.
---Goal-—-

Generate a concise and accurate response to the user's query by leveraging the reasoning paths and related knowledge presented in the context.

Do not use external knowledge.
Focus only on the information provided in the context.

---Knowledge Base---
{context data}
---Response Rules--—-

- Target format and length: {response type}

- Use markdown formatting with appropriate section headings if applicable.
- Respond in the same language as the user's question.

- Ensure the response maintains continuity with the conversation history.

- Do not include any information that is not present in the Knowledge Base.
- Prioritize the structure and reasoning captured in the provided context.

---Knowledge Base---

\ {query}

Response Prompt

---Reasoning Paths--—-

[S1:1] "LADY-WITCH" — "VISION"

[S1:2] "THE BOAT" — "THE IMAGE"

[S1:3] "THE WITCH OF ATLAS" = "MARY" — "SONG OF SOLOMON"

[S2:1] "SONG OF SOLOMON" = "MARY" — "THE WITCH OF ATLAS" — "PERCY BYSSHE SHELLEY"
[S2:2] "GARISH SUMMER DAYS" — "THE WITCH OF ATLAS" — "MARY"
[S2:3] "GARISH SUMMER DAYS" — "THE WITCH OF ATLAS" — "PERCY BYSSHE SHELLEY" — "MARY"

---Entities---
"id","entity","type","description"
0, LADY-WITCH, PERSON, The lady-witch is the central figure in the poem, embodying beauty and mystical power, and enchanting all creatures around her.

1, VISION, CONCEPT, Vision is illustrated as an ethereal presence or inspiration that engages with the lady-witch, symbolizing creativity and artistic expression.

2, THE BOAT, CATEGORY,The Boat serves as a symbolic vessel in the text, representing a transformative journey and the interplay of love and creativity, evolving

from car to the lightest boat.

---Relationships---

Uid","entity","type","description"

0, LADY-WITCH, PERSON, The lady-witch is the central figure in the poem, embodying beauty and mystical power, and enchanting all creatures around her.

1, VISION, CONCEPT, Vision is illustrated as an ethereal presence or inspiration that engages with the lady-witch, symbolizing creativity and artistic expression.

Response Context Data Prompt

- J

Figure 6: Structured representation of nodes and edges for efficient answer generation, reducing redundancy and
enhancing coherence by integrating individual paths into a unified network.
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(---Role——- \

You are an expert tasked with evaluating two answers to the same question based on three criteria: Comprehensiveness, Diversity, and Empowerment.

---Goal---

You will evaluate two answers to the same question based on three criteria: Comprehensiveness, Diversity, and Empowerment.
- Comprehensiveness: How much detail does the answer provide to cover all aspects and details of the question?
- Diversity: How varied and rich is the answer in providing different perspectives and insights on the question?
- Empowerment: How well does the answer help the reader understand and make informed judgments about the topic?

For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories,
L Evaluation Instruction Prompt

4 )

Here is the question: {query}

Here are the two answers:
Answer 1: {answerl}

Answer 2:{answer2}

Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.

Output your evaluation in the following JSON format:
Comprehensiveness: {Winner: [Answer 1 or Answer 2], Explanation: [Provide explanation here]},
Diversity: {Winner: [Answer 1 or Answer 2], Explanation: [Provide explanation here]},
Empowerment: {Winner: [Answer 1 or Answer 2], Explanation: [Provide explanation here]},
Overall Winner: {Winner: [Answer 1 or Answer 2], Explanation: [Summarize why this answer is the overall winner based on the three criteria]}

Evaluation Example Prompt

N

Figure 7: Evaluation prompt structure for assessing Comprehensiveness, Diversity, Empowerment, and Overall
Quality
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