

000 RISKPO: RISK-BASED POLICY OPTIMIZATION VIA 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 RISKPO: RISK-BASED POLICY OPTIMIZATION VIA VERIFIABLE REWARD FOR LLM POST-TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable reward has recently emerged as a central paradigm for post-training large language models (LLMs); however, prevailing mean-based methods, such as Group Relative Policy Optimization (GRPO), suffer from entropy collapse and limited reasoning gains. We argue that these issues stem from overemphasizing high-probability output sequences while neglecting rare but informative reasoning paths. To address these challenges, we propose Risk-based Policy Optimization (RiskPO), which substitutes classical mean-based objectives with principled risk measures. Specifically, we introduce a Mixed Value-at-Risk objective that integrates weighted attention over multiple regions of the reward distribution, thereby amplifying gradient signals on challenging instances and preventing overconfident convergence. We further design a bundling scheme that aggregates multiple questions into bundles, thus enriching the feedback signal and yielding more stable and informative training dynamics. Theoretically, we prove that the risk-averse update alleviates entropy collapse and promotes exploration. Numerically, RiskPO achieves consistent and significant improvements in mathematical reasoning, multi-modal reasoning, and code generation benchmarks, surpassing GRPO and its variants on both Pass@1 and Pass@k metrics. Our results demonstrate that risk-based optimization provides a rigorous and effective paradigm for enhancing LLM reasoning capabilities.

1 INTRODUCTION

Since reinforcement learning (RL) provides a unified framework that flexibly accommodates diverse training targets and feedback, it has become a key technique for the post-training of large language models (LLMs). Based on such a foundation, RL with verifiable reward (RLVR) has recently been recognized as an effective paradigm for enhancing the reasoning ability of LLMs. Unlike traditional RL from human feedback, it leverages objective and binary reward signals, providing clear optimization feedback. Maximizing the expected average reward is anticipated to improve task performance of LLMs. Within this framework, a series of efficiency-oriented extensions have been developed from the classical policy-based RL method. Among them, Group Relative Policy Optimization (Shao et al., 2024; Guo et al., 2025, GRPO) achieves substantial efficiency gains by discarding redundant structures originally designed for standard RL tasks, and has become the de facto baseline in this area. Since then, several GRPO variants have been proposed; see Section 2 for details.

However, RLVR methods that maximize average performance suffer from the fundamental issue of entropy collapse. Prior work shows that models trained via RLVR often experience rapid entropy collapse in the early stages of training, leading to premature convergence and a plateau in performance with little subsequent improvement (Cui et al., 2025; Gao et al., 2025). Entropy, as emphasized by several studies, serves as a key indicator of exploration capacity in RL (Wang et al.,

Figure 1: Pass@32 and Avg@32 learning curves of DeepSeek-R1-Distill-Qwen-1.5B trained by RiskPO on AIME2024.

054 2025b; Cheng et al., 2025; Hou et al., 2025). Once entropy collapses, the model becomes over-
 055 confident, reduces exploration prematurely, and fails to acquire new knowledge effectively. This
 056 constrained exploration ultimately limits its reasoning capabilities and overall performance. As a
 057 consequence, LLMs do not truly expand their intrinsic reasoning capacity or boundary; the ob-
 058 served improvements often reflect a more efficient sampling of known answers rather than genuinely
 059 stronger reasoning skills (Yue et al., 2025a; Xiong et al., 2025; Chen et al., 2025; Gao et al., 2025).
 060 This boundary effect implies that GRPO may only enhance short-horizon performance metrics (e.g.,
 061 Pass@1) without significantly lifting the capability of the base model.

062 We argue that a key reason behind these chal-
 063 lenges is that GRPO employs the mean as its
 064 objective, which is inherently misaligned with
 065 the goal of improving reasoning ability. A
 066 mean-based objective disproportionately empha-
 067 sizes common, high-probability generation paths
 068 while neglecting rare yet informative reasoning
 069 trajectories, leading to premature convergence
 070 and limited exploration. Even worse, if the model
 071 consistently generates either all wrong answers
 072 for a question, the estimated GRPO’s advantage
 073 collapses to zero, leaving the model without any
 074 learning signal on its weakest areas. This overex-
 075 ploitation of gradients on easier questions yields
 076 marginal performance gains, as optimization pre-
 077 dominantly reinforces knowledge the model al-
 078 ready possesses rather than guiding it toward solv-
 079 ing more challenging problems. In contrast, risk-
 080 averse optimization objectives, such as Condi-
 081 tional Value-at-Risk (CVaR) or Range Value-at-
 082 Risk (RVaR), can encourage the model to explore
 083 difficult problems and enhance reasoning abili-
 084 ties. By amplifying gradient signals from low-reward answers, these objectives naturally encourage
 085 the policy to reduce overconfidence, diversify its search, and promote novel reasoning strategies.
 086 Consequently, Risk-based objectives provide an effective handle for better mitigating entropy col-
 087 lapsed, preventing overfitting to easy problems, and driving genuine improvements of the reasoning
 088 boundary.

089 We propose Risk-based Policy Optimization (RiskPO), which employs a novel risk-sensitive objec-
 090 tive termed Mixed Value-at-Risk (MVaR). Compared with mean-based post-training methods, our
 091 risk-based approach demonstrates superior performance in encouraging exploration and fostering
 092 stronger reasoning capabilities. The overall framework of RiskPO is illustrated in Figure 2. We
 093 summarize our contributions as follows:

- 094 1. To the best of our knowledge, we are the first to incorporate risk measures into the training
 095 objective. Since the reward for a single question is binary, we propose grouping multiple ques-
 096 tions into a bundle to enrich the feedback signal. It is shown to avoid the zero advantage issue
 097 and strengthen gradient signals for hard problems, thereby facilitating exploration.
- 098 2. We provide theoretical results that explain the superiority of the proposed MVaR objective.
 099 By analyzing the entropy mechanism, we demonstrate that the risk-averse configuration can
 100 effectively mitigate entropy collapse.
- 101 3. We conduct extensive numerical experiments to evaluate the performance of our algorithm.
 102 RiskPO consistently outperforms GRPO and other baselines on multiple mathematical reason-
 103 ing tasks. On Pass@k metrics, RiskPO even achieves better performance, indicating its strong
 104 capacity for exploration and acquisition of new reasoning skills.

2 RELATED WORKS

105 **RL for LLM Post-training.** RL has played a critical role in the post-training phase of LLM (Shao
 106 et al., 2024; Christiano et al., 2017; Lambert et al., 2022). Through verifiable reward, the LLM

Figure 2: The framework of RiskPO.

learn complicated reasoning skills across solving math problems and coding (Zhao et al., 2025a; Chen et al., 2024; Huang et al., 2025). Originating from the PPO, much literature has proposed new methods to cater to the requirements of RLVR. ReMax (Li et al., 2024) proposes to use the deterministic output of the LLM as the baseline to reduce variance. DAPO (Yu et al., 2025) incorporates four engineering tricks to improve GRPO. VAPO shows that the value-based RL method can also perform well in RLVR (Yue et al., 2025b). GPG (Chu et al., 2025) investigates the normalizing factor in GRPO. Several literatures (Wang et al., 2025b; Cui et al., 2025; Cheng et al., 2025; Wang et al., 2025a) investigate the entropy mechanism in RLVR, pointing out the significance of exploration in RLVR. GSPO (Zheng et al., 2025) and GMPO (Zhao et al., 2025b) focus on stabilizing the RL training. GSPO uses sequence-wise importance sampling, which has good performance on Mixture-of-Expert models. GMPO uses the geometric mean in the gradient estimation, which decreases the importance. ProRL (Liu et al., 2025a) shows that with stabilized training, the performance gain would have a log-scale relationship with the training time. The above methods mainly rely on engineering tricks rather than investigating fundamental dynamics.

Risk-sensitive RL. Risk-sensitive RL (see, e.g., Ren et al., 2024; Petersen et al., 2019) seeks to shape the entire reward distribution rather than merely optimizing its mean. Chow et al. (2015) investigates the Markov Decision Process (MDP) under CVaR objective and proposes a dynamic-programming based solution. La & Ghavamzadeh (2013) and Prashanth et al. (2016) use finite difference to optimize risk measure under the MDP setting. Dabney et al. (2018b;a) introduces state-action value distribution approximation techniques to improve the effectiveness, which is referred to as distributional RL. CVaRPG (Tamar et al., 2015) and QPO (Jiang et al., 2022) design policy gradient style algorithm to optimize CVaR and quantile, respectively. Jiang et al. (2024) considers a more general case, optimizing the distortion risk measure in a policy gradient manner. There is also literature considering risk level as a constraint. Bertsekas (1997) use a Lagrangian approach to solve RL problems. Borkar & Jain (2014) use CVaR as a constraint, and Chow et al. (2018) develop actor-critic algorithms under quantile and CVaR constraint.

3 RETHINKING RLVR FROM A DISTRIBUTIONAL PERSPECTIVE

We formalize the post-training problem of RLVR as follows. Given an input problem x sampled from a dataset \mathcal{D} , an LLM parameterized as π_θ generates a response $y \sim \pi_\theta(\cdot|x)$. A rule-based verifier $R(\cdot)$ then evaluates the correctness of the response, returning one if y is correct and zero otherwise. Notably, no intermediate process-level feedback is provided. The standard objective in this setting is to maximize the expected reward: $\mathcal{J}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot|x)}[R(y)]$. With a score-function method, its gradient is given by $\nabla_\theta \mathcal{J}(\theta) = \mathbb{E}[R(y) \nabla_\theta \ln \pi_\theta(y|x)]$, resulting in a standard RL framework, where a baseline or so-called value model is used for variance reduction.

As a widely adopted baseline for RLVR, GRPO (Shao et al., 2024) replaces the value model with sequence-level standardized rewards computed within a group of responses. We denote by $y_{<t}$ the partial response consisting of the first t tokens, i.e., $\pi_\theta(y|x) = \prod_t \tilde{\pi}_\theta(y_t|x, y_{<t})$. Specifically, given a query x and a group of G responses $\{y_i\}_{i=1}^G$ sampled from a reference model $\pi_{\theta'}(\cdot|x)$, the GRPO objective is defined as

$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{\substack{x \sim \mathcal{D} \\ \{y_i\}_{i=1}^G \sim \pi_{\theta'}(\cdot|x)}} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \min \left(w_{i,t}(\theta) \hat{A}_i, \text{clip}(w_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_i \right) \right],$$

where $\hat{A}_i = \frac{R(y_i) - \frac{1}{G} \sum_{j=1}^G R(y_j)}{\text{Std}(\{R(y_j)\}_{j=1}^G)}$ denotes the standardized feedback, while $w_{i,t}(\theta) = \frac{\tilde{\pi}_\theta(y_{i,t}|x, y_{i,<t})}{\tilde{\pi}_{\theta'}(y_{i,t}|x, y_{i,<t})}$ is the importance sampling ratio that enables multiple parameter updates per group of generated data. Despite these modifications, GRPO remains fundamentally a method for optimizing the mean performance of LLMs. Since the reward provided by the verifier is an indirect objective, we argue it may not be the best practice for RLVR to optimize its expectation. Instead, we propose to adopt a distributional perspective. The most challenging problems correspond to the left tail of the reward distribution. These samples represent the questions that the model has not yet mastered. Such hard cases often lead to gradient vanishing in GRPO. For example, when all responses are incorrect, the computed advantage collapses to zero, which provides no meaningful training signal. As a result, the model fails to improve on its weakest regions of the distribution.

162 Therefore, beyond optimizing the expectation, we claim that it is more beneficial to consider the
 163 distributional structure of performance, particularly the lower tail. Incorporating risk measures, such
 164 as CVaR or RVaR, into the training objective emphasizes hard problems in the tail of the distribution
 165 and provides a finer-grained and more robust learning signal for RLVR.
 166

167 4 MASTERING THE UNCERTAINTY VIA RISK-BASED POLICY OPTIMIZATION

169 In this section, we introduce our risk-based objective for RLVR and the associated post-training
 170 methodology, establishing a principled framework for enhancing LLM reasoning ability.
 171

172 Denote the RLVR reward signal distribution by $F_\theta(\cdot)$, where the parameter θ reflects the stochasticity
 173 induced by the LLM $\pi_\theta(\cdot|x)$. RVaR is defined to capture the average performance within a specified
 174 quantile interval of the distribution. Let $F_\theta^{-1}(\alpha)$ be the α -level quantile of $R(y)$. Then, for $0 \leq \alpha < \beta \leq 1$, RVaR on the interval $[\alpha, \beta]$ is written as
 175

$$176 \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) := \mathbb{E}[R(y)|R(y) \in [F_\theta^{-1}(\alpha), F_\theta^{-1}(\beta)]] = \frac{1}{\beta - \alpha} \int_{F_\theta^{-1}(\alpha)}^{F_\theta^{-1}(\beta)} r dF_\theta(r), \quad (1)$$

179 that is, the conditional expectation of $R(y)$ given that it falls between its α - and β -quantiles. To
 180 optimize the RVaR through gradient descent algorithms, we first derive the gradient of RVaR as
 181 shown in Theorem 1. The proofs of all theoretical results in this work can be found in Appendix B.

182 **Theorem 1.** *Assume $F_\theta(r)$ is continuously differentiable with respect to both the parameter θ and
 183 the variable r ; the density is positive at the quantiles, i.e., $f_\theta(F_\theta^{-1}(\alpha)) > 0$ and $f_\theta(F_\theta^{-1}(\beta)) > 0$;
 184 and that the differentiation under the integral sign is justified. Then the gradient of RVaR is given by*

$$185 \nabla_\theta \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) = \frac{1}{\beta - \alpha} \mathbb{E}[g(R(y), F_\theta^{-1}(\alpha), F_\theta^{-1}(\beta)) \nabla_\theta \ln \pi_\theta(y|x)],$$

187 where $g(z, a, b) = (z - a)^+ - (z - b)^+ + a - b$, and $(z)^+ = \max\{z, 0\}$.
 188

189 Note that when $\alpha = 0$, RVaR coincides with the lower-tail CVaR at level β , and the gradient in
 190 Theorem 1 reduces to $\nabla_\theta \mathcal{J}_{\text{RVaR}_{0:\beta}}(\theta) = \beta^{-1} \mathbb{E}[-(F_\theta^{-1}(\beta) - R(y))^+ \nabla_\theta \ln \pi_\theta(y|x)]$. Since RVaR
 191 effectively places a window for control on the reward distribution, it is natural to further combine
 192 several such segments to better shape the overall distribution. Accordingly, we introduce a new
 193 objective into RLVR, namely Mixed Value-at-Risk (MVaR), which integrates metrics over multiple
 194 distributional segments as follows:
 195

$$196 \mathcal{J}_{\text{MVaR}_{\alpha:\beta}}(\theta) = \left\{ (1 + \omega) \int_{F_\theta^{-1}(0)}^{F_\theta^{-1}(\alpha)} + \int_{F_\theta^{-1}(\alpha)}^{F_\theta^{-1}(\beta)} \right\} r dF_\theta(r), \quad (2)$$

198 where $\omega \geq 0$ controls the emphasis placed on tail samples during optimization, and high-
 199 performance samples are excluded from the current training process. Note that $\mathcal{J}_{\text{MVaR}_{\alpha:\beta}}(\theta) = (1 + \omega) \mathcal{J}_{\text{RVaR}_{0:\alpha}}(\theta) + (\beta - \alpha) \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta)$. The gradient of (2) can be derived by Theorem 1.
 200

201 However, the distributional information from a single question x is very limited, since the feedback is
 202 binary and offers only coarse signals. To obtain a richer source of information, we propose to group
 203 several questions into a bundle, i.e., $X := \{x_i\}_{i=1}^B \sim \mathcal{D}^{\otimes B}$, and calculate the advantage based
 204 on the sum of the individual question scores within the bundle. This aggregation transforms sparse
 205 binary feedback into a more informative distribution over bundle scores, enabling finer distinctions
 206 between different levels of performance and avoiding zero gradient on difficult questions. We then
 207 focus on optimizing the MVaR of the bundle score:
 208

$$209 \mathbb{E}_{X \sim \mathcal{D}^{\otimes B}, \{y^i \sim \pi_\theta(\cdot|x_i)\}_{i=1}^B} \left[R_B \left((1 + \omega) \mathbf{1}_{\{R_B \leq F_\theta^{-1}(\alpha)\}} + \mathbf{1}_{\{F_\theta^{-1}(\alpha) < R_B \leq F_\theta^{-1}(\beta)\}} \right) \right],$$

210 where $R_B = \sum_{i=1}^B R(y^i)$ denotes the bundle score. For each $i \in \{1, \dots, B\}$, we sample $Y_i := \{y_j^i\}_{j=1}^G$ with $y_j^i \sim \pi_\theta(\cdot|x_i)$ i.i.d., and define $Y := \{Y_i\}_{i=1}^B$. Then we can generate G bundles
 211 without overlaps from the $G \times B$ responses of B questions. The gradient can be calculated by
 212

$$214 \mathbb{E}_{X \sim \mathcal{D}^{\otimes B}, \{y^i_j\}_{j=1}^G \sim \pi_\theta(\cdot|x_i), \xi_i \sim \text{Unif}(\mathcal{S}_G)} \left[\frac{1}{G} \sum_{j=1}^G A_j \frac{1}{B} \sum_{i=1}^B \nabla_\theta \ln \pi_\theta(y_j^i | x_i) \right],$$

216 where $A_j = -(1 + \omega)(F_\theta^{-1}(\alpha) - R_{B_j})^+ + g(R_{B_j}, F_\theta^{-1}(\alpha), F_\theta^{-1}(\beta))$ is the bundle-wise advantage under MVaR objective, $R_{B_j} = \sum_{i=1}^B R(y_{\xi_{i,j}}^i)$ is the bundle-wise score, ξ is a permutation of $\{1, \dots, G\}$ that independently draw $\xi_i \sim \text{Unif}(\mathfrak{S}_G)$ for every i , \mathfrak{S}_G is the symmetric group on G element, and $\xi_{i,j}$ is the j -th elements in the permutation. This construction yields G disjoint bundles: the j -th bundle uses $\{y_{\xi_{i,j}}^i\}_{i=1}^B$, so that for each fixed i , $\{y_{\xi_{i,1}}^i, \dots, y_{\xi_{i,G}}^i\}$ is a permutation of $\{y_1^i, \dots, y_G^i\}$, i.e., every answer is used only once (without replacement).

223 To ensure stable improvement (Schulman et al., 2017; 2015) with multiple updates per bundle-
224 wise MVaR objective evaluation, we adopt a trust-region style update with clipping and sequence-
225 level importance sampling (Zheng et al., 2025). Since the reward in RLVR is only available at the
226 sequence level, i.e., y^i , it is natural to define importance weights also at the sequence (response) level
227 and then aggregate them into the bundle objective. Formally, given B problems $X = \{x_i\}_{i=1}^B$ and
228 G responses per problem $Y_i = \{y_j^i\}_{j=1}^G$, we independently draw $\xi_i \sim \text{Unif}(\mathfrak{S}_G)$ for each i , yielding
229 G bundles: $\mathcal{P}_j = \{y_{\xi_{i,j}}^i\}_{i=1}^B, j = 1, \dots, G$, where every responses is used without replication. We
230 then construct the clipped MVaR objective at the bundle level, which constitutes the final loss for
231 backpropagation:

$$232 \quad \mathcal{J}_{\text{MVaR}}^{\text{clip}}(\theta) = \mathbb{E}_{X, Y, \{\xi_i\}} \left[\frac{1}{G} \sum_{j=1}^G \frac{1}{B} \sum_{i=1}^B \min \left(s_j^i(\theta) A^{(j)}, \text{clip}(s_j^i(\theta), 1 - \epsilon, 1 + \epsilon) A^{(j)} \right) \right], \quad (3)$$

236 where $s_j^i(\theta) = \left(\frac{\pi_\theta(y_{\xi_{i,j}}^i | x_i)}{\pi_{\theta'}(y_{\xi_{i,j}}^i | x_i)} \right)^{1/|y_{\xi_{i,j}}^i|}$ is the sequence-wise importance sampling ratio.

238 Every token within the same bundle shares the same MVaR-based advantage $A^{(j)}$, ensuring that optimiza-
239 tion is aligned with the unit of reward (the bundle score) and directs training toward the left tail
240 of the performance distribution. We track $F_\theta^{-1}(\alpha)$ and $F_\theta^{-1}(\beta)$ in an online manner. After substitut-
241 ing the tracked quantiles into the advantage and deriving the gradient, we update model parameters
242 accordingly. Therefore, RiskPO can be implemented as a two-timescale stochastic approximation
243 algorithm. The pseudocode of the proposed algorithm is provided in Algorithm 1.

Algorithm 1 Risk-based Policy Optimization

246 1: **Input:** quantile levels α, β , weight ω , policy $\pi_.$, learning rates $\{\gamma_k\}, \{\eta_k\}$, and iterations K
247 2: **Initialize:** policy parameter θ_0 , and quantile trackers q_0^α, q_0^β
248 3: **for** $k = 1, \dots, K$ **do**
249 4: Sample B questions, $X = \{x_i\}_{i=1}^B$, from the dataset \mathcal{D}
250 5: Generate G responses for each question, $\{y_j^i\}_{j=1}^G \sim \pi(\cdot | x_i)$ and evaluate the reward $R(y_j^i)$
251 6: Sample from the symmetric group for B times, $\xi_i \sim \text{Unif}(\mathfrak{S}_G)$, yielding G papers
252 7: Track quantiles with batched papers' scores: $q_{k+1}^\alpha = q_k^\alpha + \gamma_k(\alpha - \frac{1}{G} \sum_{j=1}^G \mathbf{1}\{R_{B_j} < q_k^\alpha\})$,
253 $q_{k+1}^\beta = q_k^\beta + \gamma_k(\beta - \frac{1}{G} \sum_{j=1}^G \mathbf{1}\{R_{B_j} < q_k^\beta\})$
254 8: Backpropagate the clipped MVaR objective (3) to compute $\nabla_\theta \mathcal{J}_{\text{MVaR}}^{\text{clip}}(\theta)$
255 9: Update policy parameter: $\theta_{k+1} = \theta_k + \eta_k \nabla_\theta \mathcal{J}_{\text{MVaR}}^{\text{clip}}(\theta)$
256 10: **end for**
257 11: **Output:** Final policy parameter θ_{K+1}

5 ENTROPY MECHANISM FOR RISK-SENSITIVE OBJECTIVE

260 GRPO suffers from entropy collapse, where the policy entropy rapidly decreases during training.
261 This premature reduction in entropy limits exploration of alternative reasoning paths, thereby con-
262 straining performance improvement and reducing the likelihood of discovering correct solutions. In
263 this section, we conduct a per-step analysis for the change of policy entropy in the optimization and
264 give a theoretical guarantee that our RVaR policy gradient can mitigate the entropy collapse issue.

265 Following the standard framework in policy-gradient literature (see, e.g., Agarwal et al., 2021; Shani
266 et al., 2020; Abbasi-Yadkori et al., 2019), we conduct theoretical analysis under a tabular softmax
267 formulation with deterministic sequence-level rewards. Specifically, we consider an input set \mathcal{X} and

270 an output set \mathcal{Y} . The actor is parameterized by a matrix $\theta \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{Y}|}$, where each entry $\theta_{x,y}$ is
 271 the logit for choosing y given x . The policy is thus $\pi_\theta(y|x) = \frac{\exp(z_{x,y})}{\sum_{u \in \mathcal{Y}_x} \exp(z_{x,u})}$, and its conditional
 272 entropy is $\mathcal{H}(\pi_\theta|x) = -\sum_y \pi_\theta(y|x) \log \pi_\theta(y|x)$. Let $A_\theta(x, y)$ be the advantage value associated
 273 with the chosen algorithm. We begin with the following proposition, which links entropy dynamics
 274 to the covariance between the advantage and the log-probability of the output.
 275

276 **Proposition 1.** *Fix a prompt x and a finite set of complete sequences \mathcal{Y}_x . Consider a natural-
 277 gradient step, i.e., $\theta_{k+1} = \theta_k + \eta \Delta_k$, where $\Delta_{k,x,y} = A_{\theta_k}(x, y)$ otherwise zero, then*

$$278 \mathcal{H}(\pi_{\theta_{k+1}}|x) - \mathcal{H}(\pi_{\theta_k}|x) = -\eta \operatorname{Cov}_{y \sim \pi_{\theta_k}(\cdot|x)}(\log \pi_{\theta_k}(y|x), A_{\theta_k}(x, y)) + O(\|\Delta_k\|^2). \quad (4)$$

280 The proposition indicates that the correlation between the advantage and the log probability of the
 281 output affects entropy changes: a positive correlation leads to entropy decrease, and vice versa.
 282 High advantage and high log probability suggest that the model is very confident about samples
 283 with high advantage. Therefore, over-optimizing already well-learned problems accelerates entropy
 284 collapse, reducing the model’s opportunities for trial and error on difficult problems and ultimately
 285 limiting policy performance. RiskPO, which uses MVaR as its objective, can alleviate this issue.
 286 It focuses more on difficult problems, i.e., samples from the left tail of the reward distribution, and
 287 clips the gradient signal for well-learned problems. In the following theorems, we provide theo-
 288 retical justifications, showing through the comparison of advantage–log-likelihood correlation that
 289 RiskPO constitutes a relatively high-entropy update scheme. Before that, we present the follow-
 290 ing assumption, which captures the most intuitive scenario but is not the only suitable one. Let
 291 $\psi(r) = \mathbb{E}[\log \pi_\theta(y|x)|R = r]$ denote the conditional log-likelihood.

292 **Assumption 1.** *The conditional log-probability of output $\psi(r)$ is non-decreasing for $r \geq F_\theta^{-1}(\beta)$,
 293 non-increasing for $r \leq F_\theta^{-1}(\alpha)$, and $\psi(F_\theta^{-1}(\alpha)), \psi(F_\theta^{-1}(\beta)) \geq \mathbb{E}[\log \pi_\theta(y|x)]$.*

294 Intuitively, this assumption captures the behavior
 295 of a pre-trained base model. For relatively easier
 296 problems in the upper tail of the reward distribution,
 297 the model exhibits well-calibrated confidence,
 298 assigning higher probabilities to correct answers
 299 (upper-tail monotonicity). In contrast, for harder
 300 problems in the lower tail, the model often fails
 301 systematically: it allocates substantial probability
 302 mass to incorrect outputs, effectively making con-
 303 fident but consistently wrong predictions (lower-
 304 tail monotonicity). We empirically validate this
 305 assumption using DeepSeek-R1-Distill-Qwen-1.5B
 306 on the training set. For each question, the model
 307 generates 16 responses and computes the mean re-
 308 ward across these responses. Recall that the length-
 309 normalized sequence-level log-probability is de-
 310 fined as $\log \pi_\theta(y|x) = |y|^{-1} \sum_{t=1}^{|y|} \log \tilde{\pi}_\theta(y_t|y_{<t}, x)$. As shown in Figure 3, the sequence-wise
 311 logprob exhibits monotonicity in $[0, 0.3]$ and $[0.7, 1]$, which justifies our assumption. Denote the
 312 advantages in the associated algorithms as A_{MVaR} and A_{Mean} , see Appendix X for details. Next,
 313 we present a comparison of the correlations between the advantage values and the log-likelihood.

314 **Theorem 2.** *If Assumption 1 holds and $E[\log \pi(y|x)] < \infty$, then the covariance between MVaR-
 315 based advantages and output log-probabilities is smaller than that of mean-based methods, i.e.,*

$$316 \operatorname{Cov}_{y \sim \pi_\theta(\cdot|x)}(\log \pi_\theta(y|x), A_{\text{MVaR}}_{\alpha, \beta}) \leq \operatorname{Cov}_{y \sim \pi_\theta(\cdot|x)}(\log \pi_\theta(y|x), A_{\text{Mean}}). \quad (5)$$

317 The combination of Proposition 1 and Theorem 2 implies that, under the same update setting,
 318 RiskPO leads to higher output entropy compared with mean-based methods. Similarly, we can
 319 conclude that risk-seeking objectives assign greater weight to high-reward outcomes, thereby am-
 320 plifying the covariance between log-probabilities and advantages. This stronger coupling causes
 321 entropy to decrease more rapidly and results in severe entropy collapse. To further elucidate the
 322 relationship between correlation and objective design, beyond the specified MVaR objective, we can
 323 generalize to a more general transformation of the reward or so-called advantage value. This general
 324 form allows us to assess the strength of the correlation and, in turn, reason about the resulting policy
 325 entropy. Please refer to Appendix B.4 for details.

326 Figure 3: Log-probabilities as a function
 327 of reward quantile levels for DeepSeek-R1-
 328 Distill-Qwen-1.5B on DAPOMATH-17K.

324 6 EXPERIMENTS

326 To comprehensively evaluate the effectiveness of RISKPO, this section conducts systematic experiments
 327 across a broad spectrum of tasks, including mathematical reasoning, code generation, and
 328 multi-modal reasoning. We benchmark on more than ten datasets that span different levels of difficulty.
 329 Through these experiments, our goals are threefold: (i) to verify that risk-based objectives
 330 consistently outperform mean-based methods across domains, (ii) to demonstrate that the proposed
 331 distributional perspective leads to tangible improvements on the hardest reasoning problems, and
 332 (iii) to provide empirical evidence that RiskPO mitigates entropy collapse and enables genuine ex-
 333 pansion of reasoning capability rather than merely improving sampling efficiency. Detailed experi-
 334 mental settings and supplementary results are provided in Appendix A.

335 6.1 MAIN RESULTS

337 Table 1: Pass@1 performance on hard-level mathematical reasoning benchmarks.

339 Model	AIME25	AIME24	AMC	MATH500	Minerva	Oly.	Avg.
340 Qwen2.5-Math-1.5B	6.6	10.0	43.4	61.8	15.1	28.4	27.55
341 Qwen2.5-Math-1.5B-Instruct	10.0	10.0	48.2	64.2	26.5	35.2	32.35
342 DeepSeek-R1-Distill-Qwen-1.5B	13.3	13.3	32.5	59.8	20.3	30.5	28.28
343 Dr.GRPO-1.5B (Liu et al., 2025b)	20.0	23.3	54.7	77.4	26.3	38.1	39.97
344 GRPO-1.5B (Shao et al., 2024)	20.0	20.0	56.6	79.2	27.1	39.6	40.41
345 GPG-1.5B (Chu et al., 2025)	16.6	20.0	55.7	74.5	28.8	37.6	38.90
346 DAPO-1.5B (Yu et al., 2025)	30.0	26.6	58.6	78.2	29.2	40.6	43.87
347 GMPO-1.5B (Zhao et al., 2025b)	23.3	23.3	54.2	76.2	29.2	39.2	40.90
348 RiskPO-1.5B (Ours)	33.3	33.3	60.8	81.8	29.5	41.2	46.65

349 Table 1 reports Pass@1 accuracy across six hard-level mathematical reasoning benchmarks. We
 350 observe that RiskPO consistently achieves the best performance among all methods, outperforming
 351 both the base models and recent GRPO variants. In particular, RiskPO attains an average score
 352 of 46.65, representing a +2.78 absolute improvement over the strongest baseline DAPO (43.87)
 353 and a +6.24 improvement over vanilla GRPO (40.41). The gains are especially pronounced on the
 354 most challenging AIME datasets, where RiskPO surpasses DAPO by nearly +6.7 points (33.3 vs.
 355 26.6). These results demonstrate that emphasizing distributional risk through our MVaR objective
 356 substantially improves reasoning ability, not only enhancing performance on easier datasets like
 357 AMC and MATH500 but also pushing the frontier on the hardest Olympiad-style tasks.

358 We complement these findings in hard-level math tasks with results on easier mathematical rea-
 359 soning, multi-modal reasoning, and code generation tasks in Table 2. While performance gaps on
 360 GSM8K are naturally small due to the dataset’s simplicity, RISKPO maintains a measurable ad-
 361 vantage on MATH and yields consistent improvements on both LiveCodeBench and Geometry3K.
 362 Together, these results underscore the broad applicability of risk-sensitive objectives and their ability
 363 to enhance reasoning capacity across diverse domains.

364 Table 2: Pass@1 results on easy-level math benchmarks and multi-modal/coding benchmarks.

366 Method	367 Easy-level math. reasoning			368 Multi-modal & coding		
	369 MATH	370 GSM8K	371 Avg.	372 LCB	373 Geo3K	374 Avg.
375 GRPO	54.3	78.8	66.55	25.8	53.7	39.75
376 DAPO	55.2	80.3	67.75	26.2	54.3	40.25
377 RiskPO (Ours)	56.2	80.3	68.25	26.8	54.5	40.65

378 We argue that the RiskPO is expanding the reasoning boundary of the base model. To support the
 379 claim, we present the evolution of Pass@1, Pass@8, and Pass@16 on AMC and MATH500 during
 380 the training process in Figure 4. A clear widening gap emerges as k increases, with RISKPO steadily
 381 surpassing GRPO across all evaluation points. This pattern indicates that the model is not merely im-
 382 proving its sampling efficiency on problems it could already solve—such as turning a “one success
 383 in sixteen attempts” case into a reliable single-shot success—but is in fact acquiring genuinely new
 384 solution strategies. Notably, RISKPO is able to solve instances that remain persistently unsolved

under GRPO, even after sixteen attempts, all within the same computational budget. These results substantiate our claim that RISKPO expands the reasoning boundary of the base model, enabling progress beyond the capabilities achievable by conventional mean-based objectives.

Figure 4: Pass@k learning curves on the AMC and MATH500 datasets.

Figure 5: Learning curves on DAPOMATH-17K, the RiskPO mitigates the entropy collapse and shows better performance on difficult problems, which is indicated by risk measures.

We investigate how the training dynamics of the RiskPO differ from GRPO, and Figure 5 depicts the trajectories of different objectives and entropy during training on the DAPOMATH-17K dataset. We contend that the mean reward is an inadequate training objective. The mean reward learning curves of GRPO and RiskPO are almost indistinguishable, with RiskPO exhibiting slightly greater fluctuations—likely a consequence of its inherently higher-entropy behavior. In contrast, the lower-tail RVaR $\mathcal{J}_{\text{RVaR}_{0:\alpha}}(\theta)$ and MVaR curves demonstrate a pronounced advantage for RiskPO. Since these risk-sensitive measures emphasize the lower tail of the reward distribution, higher values indicate stronger performance on the more challenging problems. Consistently, RiskPO maintains substantially higher entropy throughout training, whereas GRPO’s entropy collapses early on, curtailing exploration and limiting its ability to tackle difficult instances.

6.2 ABLATION STUDY

We conduct the ablation study on the easy-level mathematics reasoning tasks. We start our analysis with the contrasting version:risk-seeking. As indicated by Section 5, focusing on the upper tail of the reward distribution will catalyse the entropy collapse. Similar to the MVaR objective, we use the counterpart risk-seeking objective, $(1 + \omega)(1 - \beta)\mathcal{J}_{\text{RVaR}_{\beta:1}}(\theta) + (\beta - \alpha)\mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta)$, to train the model and keep other parameters the same as the risk-averse version. The training curves are shown in Figure 6. The entropy of the risk-seeking version decreases sharply as the training proceeds, whereas the entropy of the risk-averse version decreases at the beginning, then remains stable around 0.2. In the Pass@1 curve on MATH, the risk-averse version exhibits a clear advantage over the risk-seeking. Before 50 steps, the risk-seeking has a better Pass@1 value. However, after the 50th step,

432 the risk-seeking struggles to keep improving because it fails to optimize on those difficult problems
 433 (from 52% to 54%). The risk-averse version continues to improve on the Pass@1 (from 52% to
 434 56%), showing 1.5 times improvement. This observation further justifies our theoretical results,
 435 which suggest the risk-averse objective is better than both the mean and risk-seeking objectives.

Figure 6: Ablation of risk profiles for training.

Table 3: Ablation of different quantile levels (α, β) on easy-level mathematical reasoning.

Levels	(0.2, 0.8)	(0.1, 0.8)	(0.3, 0.8)	(0.4, 0.8)	(0.2, 0.6)	(0.2, 0.7)	(0.2, 0.9)
MATH	56.2	55.1	55.8	55.6	55.5	56.0	55.0
GSM8K	80.3	78.7	79.2	79.6	79.0	79.5	78.9
Avg.	68.25	66.90	67.50	67.60	67.25	67.75	66.95

452 We further conduct a systematic investigation of the parameterization of the risk-averse algorithm,
 453 focusing on the quantile level (α, β) . In the main experiments, we adopt $(0.2, 0.8)$ as the default
 454 configuration and independently perturb α and β to validate this choice. The results of the quantile-
 455 level ablation are summarized in Table 3. Deviations from the configuration $(0.2, 0.8)$ consistently
 456 lead to a deterioration in performance. In particular, the configurations $(0.1, 0.8)$ and $(0.2, 0.9)$
 457 exhibit more degradation. Reducing α to 0.1 implies a diminished emphasis on the lower tail,
 458 whereas increasing β to 0.9 intensifies the emphasis on the upper tail. These observations underscore
 459 the importance of maintaining a risk-averse objective.

Table 4: Ablation of different bundle size B on easy-level mathematical reasoning.

Bundle size	1	2	3	4	5	6	7	8	9	10
MATH	53.6	55.4	55.8	56.0	56.2	55.8	55.8	55.2	54.9	54.7
GSM8K	78.0	79.0	79.5	80.1	80.3	79.9	79.4	78.8	78.6	78.6
Avg.	65.80	67.20	67.65	68.05	68.25	67.85	67.6	67.00	66.75	66.65

466 We also report the ablation results on the bundle size in Table 4. The best performance is achieved
 467 at a bundle size of $B = 5$. This result can be intuitively explained by the trade-off in gradient esti-
 468 mation. Since all instances in a bundle share the same advantage estimation, using an overly large
 469 bundle dilutes the gradient signal, as too many instances rely on a single advantage value. Con-
 470 versely, when the bundle size is too small, quantile tracking becomes unstable, which also weakens
 471 the gradient signal. The results in Table 4 corroborate this intuition: at $B = 2$ and $B = 10$, the
 472 average performance drops by 1.05% and 1.6%, respectively. Setting $B = 1$ (no bundling) leads to
 473 the most severe degradation, with a 2.45% drop. These findings highlight the necessity of bundling
 474 for RiskPO and suggest that bundle size should be carefully tuned, as both overly large and overly
 475 small values harm performance.

7 CONCLUSIONS

478 In this paper, we introduced RiskPO, a distributional alternative to mean-based objectives for rein-
 479 forcement learning with verifiable reward. By leveraging MVaR and bundling multiple questions
 480 into informative training units, RiskPO effectively mitigates entropy collapse and strengthens ex-
 481 ploration. Our theoretical analysis establishes that risk-averse updates weaken the coupling between
 482 policy log-probabilities and advantages, thereby preventing premature overconfidence. Empirically,
 483 RiskPO achieves consistent and significant improvements across a wide range of mathematical rea-
 484 soning, code generation, and multi-modal benchmarks, outperforming GRPO and its strongest vari-
 485 ants. These findings highlight that risk-averse objectives not only improve sample efficiency but also
 486 expand the reasoning frontier of large language models.

486 REFERENCES
487

488 Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
489 Weisz. Politex: Regret bounds for policy iteration using expert prediction. In *International
490 Conference on Machine Learning*, pp. 3692–3702. PMLR, 2019.

491 Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
492 gradient methods: Optimality, approximation, and distribution shift. *Journal of Machine Learning
493 Research*, 22(98):1–76, 2021.

494 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
495 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
496 2025.

497 Dimitri P Bertsekas. Nonlinear programming. *Journal of the Operational Research Society*, 48(3):
498 334–334, 1997.

499 Vivek Borkar and Rahul Jain. Risk-constrained markov decision processes. *IEEE Transactions on
500 Automatic Control*, 59(9):2574–2579, 2014.

501 Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
502 Pass@ k training for adaptively balancing exploration and exploitation of large reasoning models.
503 *arXiv preprint arXiv:2508.10751*, 2025.

504 Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
505 converts weak language models to strong language models. *arXiv preprint arXiv:2401.01335*,
506 2024.

507 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
508 Furu Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for
509 llms, 2025. URL <https://arxiv.org/abs/2506.14758>.

510 Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
511 making: a cvar optimization approach. *Advances in neural information processing systems*, 28,
512 2015.

513 Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
514 forcement learning with percentile risk criteria. *Journal of Machine Learning Research*, 18(167):
515 1–51, 2018.

516 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
517 reinforcement learning from human preferences. *Advances in neural information processing sys-
518 tems*, 30, 2017.

519 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
520 reinforcement learning baseline for model reasoning. *arXiv preprint arXiv:2504.02546*, 2025.

521 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
522 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
523 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
524 2021.

525 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
526 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
527 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

528 Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
529 distributional reinforcement learning. In *International conference on machine learning*, pp. 1096–
530 1105. PMLR, 2018a.

531 Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
532 learning with quantile regression. In *Proceedings of the AAAI conference on artificial intelligence*,
533 volume 32, 2018b.

540 Michael C Fu, L Jeff Hong, and Jian-Qiang Hu. Conditional monte carlo estimation of quantile
 541 sensitivities. *Management Science*, 55(12):2019–2027, 2009.

542

543 Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, and Bryan Dai. One-shot entropy minimization.
 544 *arXiv preprint arXiv:2505.20282*, 2025.

545

546 D. Guo, D. Yang, H. Zhang, and et al. Deepseek-r1 incentivizes reasoning in llms through re-
 547 enforcement learning. *Nature*, 645:633–638, September 2025. doi: <https://doi.org/10.1038/s41586-025-09422-z>. URL <https://doi.org/10.1038/s41586-025-09422-z>. Re-
 548 ceived: 14 February 2025; Accepted: 17 July 2025; Published: 17 September 2025; Issue Date:
 549 18 September 2025.

550

551 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 552 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 553 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 554 *arXiv:2402.14008*, 2024.

555

556 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 557 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 558 *preprint arXiv:2103.03874*, 2021.

559

560 Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao
 561 Dong. T1: Advancing language model reasoning through reinforcement learning and inference
 562 scaling, 2025. URL <https://arxiv.org/abs/2501.11651>.

563

564 Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
 565 Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. *arXiv*
 566 *preprint arXiv:2508.05004*, 2025.

567

568 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 569 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 570 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

571

572 Jinyang Jiang, Yijie Peng, and Jiaqiao Hu. Quantile-based policy optimization for reinforcement
 573 learning. In *2022 Winter Simulation Conference (WSC)*, pp. 2712–2723. IEEE, 2022.

574

575 Jinyang Jiang, Bernd Heidergott, Jiaqiao Hu, and Yijie Peng. Distortion risk measure-based deep
 576 reinforcement learning. In *2024 Winter Simulation Conference (WSC)*. IEEE, 2024.

577

578 Prashanth La and Mohammad Ghavamzadeh. Actor-critic algorithms for risk-sensitive mdps. *Ad-*
 579 *vances in neural information processing systems*, 26, 2013.

580

581 Nathan Lambert, Louis Castricato, Leandro von Werra, and Alex Havrilla. Illustrating reinforcement
 582 learning from human feedback (rlhf). *Hugging Face Blog*, 2022. <https://huggingface.co/blog/rlhf>.

583

584 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 585 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 586 reasoning problems with language models. *Advances in neural information processing systems*,
 587 35:3843–3857, 2022.

588

589 Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A
 590 simple, effective, and efficient reinforcement learning method for aligning large language models.
 591 In *International Conference on Machine Learning (ICML)*, 2024.

592

593 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 594 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 595 *International Conference on Learning Representations*, 2023.

596

597 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 598 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 599 *arXiv preprint arXiv:2505.24864*, 2025a.

594 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 595 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 596 *arXiv:2503.20783*, 2025b.

597

598 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 599 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
 600 *arXiv preprint arXiv:2105.04165*, 2021.

601 MAA. American mathematics contest 12 (amc 12), november 2023, 11 2023. URL
 602 https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions.

603

604 MAA. American invitational mathematics examination (aime), february 2024, 2024. URL
 605 https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

606

607 MAA. American invitational mathematics examination (aime), february 2025, 2025. URL
 608 https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

609

610 Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
 611 Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
 612 risk-seeking policy gradients. *arXiv preprint arXiv:1912.04871*, 2019.

613

614 LA Prashanth, Cheng Jie, Michael Fu, Steve Marcus, and Csaba Szepesvári. Cumulative prospect
 615 theory meets reinforcement learning: Prediction and control. In *International Conference on*
 616 *Machine Learning*, pp. 1406–1415. PMLR, 2016.

617

618 Tao Ren, Ruihan Zhou, Jinyang Jiang, Jiafeng Liang, Qinghao Wang, and Yijie Peng. Riskminer:
 619 Discovering formulaic alphas via risk seeking Monte Carlo tree search. In *Proceedings of the 5th*
 620 *ACM International Conference on AI in Finance*, pp. 752–760, 2024.

621

622 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 623 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 624 2015.

625

626 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 627 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

628

629 Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
 630 convergence and faster rates for regularized mdps. In *Proceedings of the AAAI conference on*
 631 *artificial intelligence*, volume 34, pp. 5668–5675, 2020.

632

633 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 634 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 635 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

636

637 Aviv Tamar, Yonatan Glassner, and Shie Mannor. Optimizing the cvar via sampling. In *Proceedings*
 638 *of the AAAI Conference on Artificial Intelligence*, volume 29, 2015.

639

640 Jiakang Wang, Runze Liu, Fuzheng Zhang, Xiu Li, and Guorui Zhou. Stabilizing knowledge, pro-
 641 moting reasoning: Dual-token constraints for rlvr. *arXiv preprint arXiv:2507.15778*, 2025a.

642

643 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 644 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 645 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 646 effective reinforcement learning for llm reasoning, 2025b. URL <https://arxiv.org/abs/2506.01939>.

647

648 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
 649 Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
 650 to reinforce. *arXiv preprint arXiv:2504.11343*, 2025.

648 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
649 hong Tu, Jingren Zhou, Junyang Lin, and et al. Qwen2.5-math technical report: Toward mathe-
650 matical expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

651

652 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
653 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
654 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

655 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
656 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
657 *preprint arXiv:2504.13837*, 2025a.

658

659 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
660 Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
661 advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*, 2025b.

662 Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
663 Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
664 data. *arXiv preprint arXiv:2505.03335*, 2025a.

665

666 Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan
667 Huang, Lei Cui, Qixiang Ye, Fang Wan, and Furu Wei. Geometric-mean policy optimization,
668 2025b. URL <https://arxiv.org/abs/2507.20673>.

669

670 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
671 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
arXiv:2507.18071, 2025.

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A EXPERIMENTAL SETUP AND SUPPLEMENTARY RESULTS**
703704 **A.1 EXPERIMENTAL SETUP**
705706 **Model.** We focus on mathematics reasoning, code generation, and multi-modal reasoning. We
707 use DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) as our base model to evaluate different
708 algorithms on hard-level mathematics reasoning and code generation. On easy-level mathematics
709 reasoning, we use Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) as the base model. On multi-
710 modal reasoning, we use Qwen2.5-VL-Instruct-3B (Bai et al., 2025) as the base model.
711712 **Training.** For the hard-level mathematics reasoning tasks. We use the DAPO-math-17k as the
713 training set. For the easy-level, we use MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al.,
714 2021). For multi-modal reasoning, we use Geometry3K (Geo3K, Lu et al., 2021). For code genera-
715 tion, we train the models on Archer-6K (Wang et al., 2025a). We set the clipping threshold $\epsilon = 0.2$.
716 KL penalty and entropy regularization are omitted from the loss objective. We use vLLM as the
717 inference backend and FSDP as the training backend. We set the temperature to 0.8 and top_p to
718 1.0, and maximum output length as 3072. We generate 10 responses for each problem. The batch
719 size is 512, the mini-batch size is set to 128. For quantile levels, we set α to 0.2 and β to 0.8 corre-
720 spondingly. The bundle size B is set to 5. The mixing parameter of MVaR is $\omega = 0.5$. All training
721 procedures are carried out on a Linux server equipped with 8 NVIDIA H20 GPUs, each providing
722 96 GB of memory.
723724 **Evaluation.** For hard-level mathematics reasoning, We evaluate on six math reasoning datasets:
725 AIME24 (MAA, 2024) and AIME25 (MAA, 2025) with 30 problems from the American Invita-
726 tional Mathematics Examination, both targeting advanced pre-collegiate reasoning; AMC23 (MAA,
727 2023) with 83 problems from the American Mathematics Competitions, testing creative algebraic,
728 geometric, and number-theoretic skills; MATH-500 (Lightman et al., 2023) with 500 graduate-level
729 problems from the original MATH dataset covering algebra, geometry, and number theory; Minerva
730 Math (Lewkowycz et al., 2022) with 272 undergraduate-level quantitative reasoning problems;
731 and OlympiadBench (He et al., 2024) with 675 Olympiad-style problems. For easy-level math tasks and
732 the multi-modal task, we follow the train-test split in the original datasets. For code generations, we
733 evaluate trained models on LiveCodeBench v5 (LCB, Jain et al., 2024).
734735 **A.2 ABLATION ON THE MIXING PARAMETER**
736737 We fix the quantile level, and perturb the ω to investigate how different attention on the lower tail
738 influences the performance. The ablation of ω is shown in Table 5. Setting $\omega = 0.0$ would reduce the
739 MVaR objective, $\mathcal{J}_{\text{MVaR}_{\alpha:\beta}^{\omega}}(\theta)$, to $\mathcal{J}_{\text{RVaR}_{0:\beta}}(\theta)$, which does not have extra attention on the lower tail
740 even though it is still a risk-averse objective. The variant with $\omega = 0.0$ has the largest performance
741 decrease, indicating the significance of extra attention on the lower tail. When setting $\omega = 1.0$, the
742 variant also suffers from a mild performance drop. Overall, the phenomena suggest that the level of
743 risk aversion needs to be properly tuned; both an indifferent level and excessive focus would lead to
744 undesirable performance.
745746 **Table 5: Ablation of the mixing parameter.**
747748

Settings	0.0	0.1	0.5	0.6	1.0
MATH	54.8	55.1	56.2	56.0	55.7
GSM8K	79.6	80.0	80.3	80.2	80.0
Avg.	67.20	67.55	68.25	68.10	67.85

752 **A.3 EXTENSIVE AVG@K AND PASS@K RESULTS**
753754 Since both AIME2024 and AIME2025 contain only 30 questions, the Pass@k metric exhibits high
755 variance and fluctuates significantly. To obtain a more stable evaluation, we report the Avg@k re-
sults in Figure 7. Across both datasets and different k values, RiskPO consistently outperforms

GRPO, achieving higher Avg@k scores and demonstrating more stable improvements during training. The advantage of RiskPO is especially pronounced in the later training stages, where it continues to increase while GRPO tends to plateau. These results further confirm the effectiveness of our risk-sensitive optimization in enhancing reasoning performance on small-scale but challenging benchmarks like AIME.

Figure 8 reports Pass@k for $k \in \{1, 8, 16\}$. Across both datasets and all k , RISKPO consistently outperforms GRPO throughout training. The margin is modest but stable at $k = 1$ (especially on MINERVA, where variance is higher), and becomes clearly larger for $k = 8, 16$. This widening gap at larger k indicates that RISKPO not only improves the best single prediction, but also spreads probability mass over a broader set of valid solution paths, thereby increasing the likelihood that at least one sampled response is correct. In effect, the risk-sensitive objective enhances coverage and diversity of reasoning, pushing the success frontier on problems that initially have low correctness probability and yielding larger gains at higher k .

Figure 7: Avg@k learning curves on AIME2024 and AIME2025 datasets.

Figure 8: Pass@k learning curves on Minerva and Olympiad datasets.

810
811 A.4 DYNAMICS OF COVARIANCE AND ENTROPY
812823
824 Figure 9: The dynamics of the covariance and the entropy difference. We calculate the one step
825 entropy difference and the covariance between log-prob and advantage.
826

In the Figure 9, we verify the validity of the Proposition 1 and Theorem 2. We record the covariance between log-probability and the advantage, and calculate the entropy difference during the training on easy-level math task. Figure 9a and 9b shows that the covariance and the entropy difference move in synchronicity during both the GRPO and RiskPO training, which validate our Proposition 1. To validate the Theorem 2, we show the comparison of covariance between RiskPO and GRPO in Figure 9c. The covariance of RiskPO is consistently smaller than the GRPO throughout the training, which coincides with the conclusion in the Theorem 2.

833
834 A.5 JUSTIFICATION OF ASSUMPTION 1
835

Figure 10 presents the output log probability stratified by reward ranges across evaluation datasets. On Minerva and Olympiad datasets, the patterns closely align with Assumption 1: the output log probability is monotone with respect to reward in both the lower- and upper-tail regions, approximately on $(0, 0.3)$ and $(0.7, 1)$. Results on AMC show a similar monotone trend, although fluctuations appear in the mid-reward ranges, suggesting mixed difficulty and solution modes. For MATH, which is comparatively easier, the upper tail exhibits strong monotonicity, while the lower tail is less pronounced—likely due to a scarcity of truly difficult items that would populate that region. Importantly, these evaluation sets are not used for model training; the observed regularities therefore provide additional evidence that Assumption 1 holds broadly for the pretrained base model across diverse benchmarks.

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 10: The output log probability on various evaluation datasets.

B THEORETICAL DETAILS

B.1 PROOF OF THEOREM 1

Proof. Recall the definition of the RVaR functional:

$$\mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) = \mathbb{E}[R(y)|R(y) \in [F_\theta^{-1}(\alpha), F_\theta^{-1}(\beta)]] = \frac{1}{\beta - \alpha} \int_{F_\theta^{-1}(\alpha)}^{F_\theta^{-1}(\beta)} r f_\theta(r) dr.$$

To compute the RVaR gradient, we apply Leibniz's rule for differentiation, yielding

$$\nabla_\theta \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) = \frac{1}{\beta - \alpha} \left(\int_{F_\theta^{-1}(\alpha)}^{F_\theta^{-1}(\beta)} r \nabla_\theta f_\theta(r) dr + F_\theta^{-1}(z) f_\theta(F_\theta^{-1}(z)) \nabla_\theta F_\theta^{-1}(z) \Big|_{\alpha}^{\beta} \right).$$

Note that, by the implicit function theorem, the quantile gradient can be expressed as (see, e.g., Fu et al., 2009) $\nabla_\theta F_\theta^{-1}(z) = -\nabla_\theta F_\theta(F_\theta^{-1}(z))|_{\theta=\theta}/f_\theta(F_\theta^{-1}(z))$. Substituting this identity into our previous expression, we can obtain

$$\nabla_\theta \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) = \frac{1}{\beta - \alpha} \left(\int_{F_\theta^{-1}(\alpha)}^{F_\theta^{-1}(\beta)} r \nabla_\theta f_\theta(r) dr - F_\theta^{-1}(z) \nabla_\theta F_\theta(F_\theta^{-1}(z))|_{\theta=\theta} \Big|_{\alpha}^{\beta} \right).$$

By the definition of CDF, we have $\nabla_\theta F_\theta(r) = \nabla_\theta \mathbb{E}[\mathbf{1}_{\{R(y) \leq r\}}] = \mathbb{E}[\mathbf{1}_{\{R(y) \leq r\}} \nabla_\theta \ln f_\theta(R(y))]$. Thus, with the score-function method, we rewrite the RVaR gradient in expectation form as

$$\nabla_\theta \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) = \mathbb{E} \left[\left(R(y) \mathbf{1}_{\{R(y) \in [F_\theta^{-1}(\alpha), F_\theta^{-1}(\beta)]\}} - F_\theta^{-1}(z) \mathbf{1}_{\{R(y) \leq F_\theta^{-1}(z)\}} \Big|_{\alpha}^{\beta} \right) \frac{\nabla_\theta \ln f_\theta(R(y))}{\beta - \alpha} \right].$$

Finally, since the distribution of $R(y)$ is induced by the LLM $\pi_\theta(\cdot| \cdot)$, we can apply the score-function transformation to yield the final expression

$$\nabla_\theta \mathcal{J}_{\text{RVaR}_{\alpha:\beta}}(\theta) = \frac{1}{\beta - \alpha} \mathbb{E}[g(R(y), F_\theta^{-1}(\alpha), F_\theta^{-1}(\beta)) \nabla_\theta \ln \pi_\theta(y|x)],$$

which completes the proof. \square

918 B.2 PROOF OF PROPOSITION 1
919

920 *Proof.* With a Lipschitz-continuous entropy gradient and a bounded Hessian, the first-order Taylor
921 expansion yields $\mathcal{H}(\pi_{\theta_{k+1}}|x) = \mathcal{H}(\pi_{\theta_k}|x) + \langle \nabla_{\theta} \mathcal{H}(\pi_{\theta_k}|x), \Delta_k \rangle + O(\|\Delta_k\|^2)$. The entropy gradient
922 can be written as

$$\begin{aligned} 923 \quad \nabla_{\theta} \mathcal{H}(\pi_{\theta}|x) &= \nabla_{\theta}(-\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\log \pi_{\theta}(y|x)]) \\ 924 &= -\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\nabla_{\theta} \log \pi_{\theta}(y|x) + \log \pi_{\theta}(y|x) \nabla_{\theta} \log \pi_{\theta}(y|x)] \\ 925 &= -\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\log \pi_{\theta}(y|x) \nabla_{\theta} \log \pi_{\theta}(y|x)], \end{aligned}$$

927 where the second equality comes from the score-function method, and the last equality is due to
928 the identity $\mathbb{E}_{y \sim \pi_{\theta}(y|x)}[\nabla_{\theta} \log \pi_{\theta}(y|x)] = 0$. Note that $\frac{\partial}{\partial \theta_{x,y'}} \log \pi_{\theta}(y|x) = \mathbf{1}_{\{y=y'\}} - \pi_{\theta}(y'|x)$.
929 Taking the inner product with Δ gives

$$\begin{aligned} 930 \quad \langle \nabla_{\theta} \mathcal{H}(\pi_{\theta}|x), \Delta \rangle &= -\langle \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\log \pi_{\theta}(y|x) \nabla_{\theta} \log \pi_{\theta}(y|x)], \Delta \rangle \\ 931 &= -\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\log \pi_{\theta}(y|x) \langle \nabla_{\theta} \log \pi_{\theta}(y|x), \Delta \rangle] \\ 932 &= -\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}\left[\log \pi_{\theta}(y|x) \sum_{y' \in \mathcal{Y}} \frac{\partial \log \pi_{\theta}(y|x)}{\partial \theta_{x,y'}} \Delta_{x,y'}\right] \\ 933 &= -\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}\left[\log \pi_{\theta}(y|x) \sum_{y' \in \mathcal{Y}} (\mathbf{1}_{\{y=y'\}} - \pi_{\theta}(y'|x)) \Delta_{x,y'}\right] \\ 934 &= -\mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\log \pi_{\theta}(y|x) \Delta_{x,y}] - \mathbb{E}_{y \sim \pi_{\theta}(\cdot|x)}[\log \pi_{\theta}(y|x)] \sum_{y' \in \mathcal{Y}} \pi_{\theta}(y'|x) \Delta_{x,y'} \\ 935 &= -\text{Cov}_{y \sim \pi_{\theta}(\cdot|x)}(\log \pi_{\theta}(y|x), \Delta_{x,y}) \end{aligned} \tag{6}$$

936 In a tabular softmax policy, a natural policy gradient update step admits $\Delta_{x,y} = \eta A_{\theta}(x,y)$ (Agarwal
937 et al., 2021). Plugging this into (6) yields the equality (4), which completes the proof. \square
938

940 B.3 PROOF OF THEOREM 2
941

942 Before proving Theorem 2, we first prepare the following lemma, which provides a convenient
943 representation of covariance.
944

945 **Lemma 1.** *Let X, Y be real-valued random variables satisfying $\mathbb{E}[|XY|] < \infty$. Then*

$$946 \quad \text{Cov}(X, Y) = \int_{-\infty}^{\infty} \text{Cov}(\mathbf{1}_{\{X>t\}}, Y) dt. \tag{7}$$

947 *Proof.* We start from the layer-cake representation $X = \int_0^{\infty} (\mathbf{1}_{\{X>t\}} - \mathbf{1}_{\{-X>t\}}) dt$, which holds
948 for any real-valued X . Multiplying by Y and taking expectations, we may apply the Tonelli–Fubini
949 theorem under the integrability condition $\mathbb{E}[|XY|] < \infty$, which yields
950

$$951 \quad \mathbb{E}[XY] = \int_0^{\infty} (\mathbb{E}[Y \mathbf{1}_{\{X>t\}}] - \mathbb{E}[Y \mathbf{1}_{\{-X>t\}}]) dt.$$

952 Applying the same transformation to $\mathbb{E}[X]\mathbb{E}[Y]$ and subtracting, we obtain
953

$$954 \quad \text{Cov}(X, Y) = \int_0^{\infty} (\text{Cov}(\mathbf{1}_{\{X>t\}}, Y) - \text{Cov}(\mathbf{1}_{\{-X>t\}}, Y)) dt.$$

955 Changing the integral variable in the second term and using the identity $-\text{Cov}(1 - Z, Y) =$
956 $\text{Cov}(Z, Y)$, we merge the two integrals and obtain the equality (7). The distinction between strict
957 and non-strict inequalities only affects a countable set of t values and does not change the integral
958 under the Lebesgue measure, which completes the proof. \square
959

960 Next, we present the proof of Theorem 2. For notational clarity, we focus on a single repre-
961 sentative output y from the model $\pi_{\theta}(\cdot|x)$ rather than a bundle. The advantage values for the
962 MVaR- and mean-based objectives are given by $A_{\text{MVaR}_{\alpha:\beta}^{\omega}} = -(1 + \omega)(F_{\theta}^{-1}(\alpha) - R(y))^+ +$
963 $g(R(y), F_{\theta}^{-1}(\alpha), F_{\theta}^{-1}(\beta))$ and $A_{\text{Mean}} = R(y) - \mathbb{E}[R(y)]$.
964

Proof of Theorem 2. Recall that the positive part function can be expressed via the layer-cake representation: $(z - a)^+ = \int_a^{+\infty} \mathbf{1}_{\{z > t\}} dt$. With Lemma 1, we can derive the covariances as below

$$\text{Cov}(A_{\text{MVaR}_{\alpha:\beta}^{\omega}}, \text{SF}) = \left[(1 + \omega) \int_{-\infty}^{F^{-1}(\alpha)} + \int_{F^{-1}(\alpha)}^{F^{-1}(\beta)} \right] \text{Cov}(\mathbf{1}_{\{R(y) > t\}}, \text{SF}) dt, \quad (8)$$

where, for notational convenience, we denote $\text{SF} := \log \pi_{\theta}(y|x)$. Define $k(t) := \text{Cov}(\mathbf{1}_{\{R(y) > t\}}, \text{SF})$ and recall that the density of $R(y)$ is f_{θ} . Then, we compute the derivative of $k(t)$ as follows:

$$\begin{aligned} k'(t) &= \frac{d(\mathbb{E}[\mathbf{1}_{\{R(y) > t\}} \text{SF}])}{dt} - \frac{d(\Pr(R(y) > t) \mathbb{E}[\text{SF}])}{dt} \\ &= \frac{d}{dt} \mathbb{E}[\mathbf{1}_{\{R(y) > t\}} \text{SF} | R(y)] - \mathbb{E}[\text{SF}] \frac{d}{dt} \int_t^{\infty} f_{\theta}(r) dr \\ &= \frac{d}{dt} \mathbb{E}[\mathbf{1}_{\{R(y) > t\}} \mathbb{E}[\text{SF} | R(y)]] - \mathbb{E}[\text{SF}] \frac{d}{dt} \int_t^{\infty} f_{\theta}(r) dr \\ &= \frac{d}{dt} \int_t^{\infty} \mathbb{E}[\text{SF} | R(y) = r] f_{\theta}(r) dr - \mathbb{E}[\text{SF}] \frac{d}{dt} \int_t^{\infty} f_{\theta}(r) dr \\ &= -\psi(t) f_{\theta}(t) - (-\mathbb{E}[\text{SF}] f_{\theta}(t)) \\ &= -f_{\theta}(t) (\psi(t) - \mathbb{E}[\text{SF}]). \end{aligned}$$

Under Assumption 1, $\psi(t) \geq \mathbb{E}[\text{SF}]$ for $t \geq F_{\theta}^{-1}(\beta)$ and $t \leq F_{\theta}^{-1}(\alpha)$. Consequently, $k'(t) \leq 0$ for $t \geq F_{\theta}^{-1}(\beta)$ and $t \leq F_{\theta}^{-1}(\alpha)$, which implies that $k(t)$ is non-increasing in both the upper and lower tails. Moreover, since $\mathbb{E}[|\text{SF}|] < \infty$, the dominated convergence theorem implies that

$$\begin{aligned} \lim_{t \rightarrow \infty} k(t) &= \lim_{t \rightarrow \infty} \text{Cov}(\mathbf{1}_{\{R(y) > t\}}, \text{SF}) \\ &= \lim_{t \rightarrow \infty} \mathbb{E}[\mathbf{1}_{\{R(y) > t\}} \text{SF}] - \lim_{t \rightarrow \infty} \Pr(R(y) > t) \mathbb{E}[\text{SF}] \\ &= \mathbb{E}[\lim_{t \rightarrow \infty} \mathbf{1}_{\{R(y) > t\}} \text{SF}] - 0 = 0. \end{aligned}$$

Analogously, we can show that $\lim_{t \rightarrow -\infty} k(t) = \mathbb{E}[\text{SF}] - \mathbb{E}[\text{SF}] = 0$. By the monotonicity in the tails, we obtain $k(t) \geq 0$ for $t \geq F_{\theta}^{-1}(\beta)$ and $k(t) \leq 0$ for $t \leq F_{\theta}^{-1}(\alpha)$. Therefore, noting that $k(t) = \text{Cov}(\mathbf{1}_{\{R(y) > t\}}, \text{SF})$ preserves its sign on both tails, we can further obtain

$$\text{Cov}(A_{\text{MVaR}_{\alpha:\beta}^{\omega}}, \text{SF}) \leq \int_{\mathbb{R}} \text{Cov}(\mathbf{1}_{\{R(y) > t\}}, \text{SF}) dt = \text{Cov}(A_{\text{Mean}}, \text{SF}),$$

which completes the proof. \square

B.4 SUPPLEMENTARY THEOREM OF SECTION 5

With the different treatment of the tail in the reward distribution, we obtain the following covariance result between the resulting advantage value and the output log-probability.

Theorem 3. *If Assumption 1 holds with $\mathbb{E}[|\text{SF}|] < \infty$, and g_1, g_2 are nondecreasing and differentiable with $g'_1(t) \geq g'_2(t)$ on $[F_{\theta}^{-1}(\beta), \infty)$, $g_1(t) = g_2(t)$ on $(-\infty, F_{\theta}^{-1}(\beta)]$, then we have*

$$\text{Cov}(\text{SF}, g_2(R(y))) \geq \text{Cov}(\text{SF}, g_1(R(y))).$$

Proof. Note that

$$\begin{aligned} \text{Cov}(\text{SF}, g_i(R(y))) &= \int_{-\infty}^{\infty} \text{Cov}(\text{SF}, \mathbf{1}_{\{g_i(R(y)) > t\}}) dt = \int_{-\infty}^{\infty} \text{Cov}(\text{SF}, \mathbf{1}_{\{R(y) > u\}}) dg_i(u) \\ &= \int_{-\infty}^{\infty} \text{Cov}(\text{SF}, \mathbf{1}_{\{R(y) > t\}}) g'_i(t) dt, \end{aligned}$$

where the first equality is due to Lemma 1 and the second equality is integration by substitution. The proof of Theorem 2 implies that under Assumption 1, we have $k(t) \geq 0$ for $t \geq F_{\theta}^{-1}(\beta)$, thus

$$\text{Cov}(\text{SF}, g_2(R(y))) - \text{Cov}(\text{SF}, g_1(R(y))) = \int_{F_{\theta}^{-1}(\beta)}^{\infty} k(t) (g'_2(t) - g'_1(t)) dt \geq 0,$$

which gives the desired result. \square

1026 A symmetric conclusion can be derived analogously for the treatment of the other tail.
1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079