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ABSTRACT

Reinforcement learning with verifiable reward has recently emerged as a central
paradigm for post-training large language models (LLMs); however, prevailing
mean-based methods, such as Group Relative Policy Optimization (GRPO), suffer
from entropy collapse and limited reasoning gains. We argue that these issues stem
from overemphasizing high-probability output sequences while neglecting rare
but informative reasoning paths. To address these challenges, we propose Risk-
based Policy Optimization (RiskPO), which substitutes classical mean-based ob-
jectives with principled risk measures. Specifically, we introduce a Mixed Value-
at-Risk objective that integrates weighted attention over multiple regions of the
reward distribution, thereby amplifying gradient signals on challenging instances
and preventing overconfident convergence. We further design a bundling scheme
that aggregates multiple questions into bundles, thus enriching the feedback sig-
nal and yielding more stable and informative training dynamics. Theoretically,
we prove that the risk-averse update alleviates entropy collapse and promotes ex-
ploration. Numerically, RiskPO achieves consistent and significant improvements
in mathematical reasoning, multi-modal reasoning, and code generation bench-
marks, surpassing GRPO and its variants on both Pass@1 and Pass@k metrics.
Our results demonstrate that risk-based optimization provides a rigorous and ef-
fective paradigm for enhancing LLM reasoning capabilities.

1 INTRODUCTION
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Figure 1: Pass@32 and Avg@32 learning
curves of DeepSeek-R1-Distill-Qwen-1.5B
trained by RiskPO on AIME2024.

Since reinforcement learning (RL) provides a unified
framework that flexibly accommodates diverse train-
ing targets and feedback, it has become a key tech-
nique for the post-training of large language models
(LLMs). Based on such a foundation, RL with ver-
ifiable reward (RLVR) has recently been recognized
as an effective paradigm for enhancing the reasoning
ability of LLMs. Unlike traditional RL from human
feedback, it leverages objective and binary reward
signals, providing clear optimization feedback. Max-
imizing the expected average reward is anticipated
to improve task performance of LLMs. Within this
framework, a series of efficiency-oriented extensions
have been developed from the classical policy-based
RL method. Among them, Group Relative Policy Op-
timization (Shao et al., 2024; Guo et al., 2025, GRPO)
achieves substantial efficiency gains by discarding re-
dundant structures originally designed for standard RL tasks, and has become the de facto baseline
in this area. Since then, several GRPO variants have been proposed; see Section 2 for details.

However, RLVR methods that maximize average performance suffer from the fundamental issue
of entropy collapse. Prior work shows that models trained via RLVR often experience rapid en-
tropy collapse in the early stages of training, leading to premature convergence and a plateau in
performance with little subsequent improvement (Cui et al., 2025; Gao et al., 2025). Entropy, as
emphasized by several studies, serves as a key indicator of exploration capacity in RL (Wang et al.,
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2025b; Cheng et al., 2025; Hou et al., 2025). Once entropy collapses, the model becomes over-
confident, reduces exploration prematurely, and fails to acquire new knowledge effectively. This
constrained exploration ultimately limits its reasoning capabilities and overall performance. As a
consequence, LLMs do not truly expand their intrinsic reasoning capacity or boundary; the ob-
served improvements often reflect a more efficient sampling of known answers rather than genuinely
stronger reasoning skills (Yue et al., 2025a; Xiong et al., 2025; Chen et al., 2025; Gao et al., 2025).
This boundary effect implies that GRPO may only enhance short-horizon performance metrics (e.g.,
Pass@1) without significantly lifting the capability of the base model.

Bundle 1 Bundle G
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Figure 2: The framework of RiskPO.

We argue that a key reason behind these chal-
lenges is that GRPO employs the mean as its
objective, which is inherently misaligned with
the goal of improving reasoning ability. A
mean-based objective disproportionately empha-
sizes common, high-probability generation paths
while neglecting rare yet informative reasoning
trajectories, leading to premature convergence
and limited exploration. Even worse, if the model
consistently generates either all wrong answers
for a question, the estimated GRPO’s advantage
collapses to zero, leaving the model without any
learning signal on its weakest areas. This overex-
ploitation of gradients on easier questions yields
marginal performance gains, as optimization pre-
dominantly reinforces knowledge the model al-
ready possesses rather than guiding it toward solv-
ing more challenging problems. In contrast, risk-
averse optimization objectives, such as Condi-
tional Value-at-Risk (CVaR) or Range Value-at-
Risk (RVaR), can encourage the model to explore
difficult problems and enhance reasoning abili-
ties. By amplifying gradient signals from low-reward answers, these objectives naturally encourage
the policy to reduce overconfidence, diversify its search, and promote novel reasoning strategies.
Consequently, Risk-based objectives provide an effective handle for better mitigating entropy col-
lapse, preventing overfitting to easy problems, and driving genuine improvements of the reasoning
boundary.

We propose Risk-based Policy Optimization (RiskPO), which employs a novel risk-sensitive objec-
tive termed Mixed Value-at-Risk (MVaR). Compared with mean-based post-training methods, our
risk-based approach demonstrates superior performance in encouraging exploration and fostering
stronger reasoning capabilities. The overall framework of RiskPO is illustrated in Figure 2. We
summarize our contributions as follows:

1. To the best of our knowledge, we are the first to incorporate risk measures into the training
objective. Since the reward for a single question is binary, we propose grouping multiple ques-
tions into a bundle to enrich the feedback signal. It is shown to avoid the zero advantage issue
and strengthen gradient signals for hard problems, thereby facilitating exploration.

2. We provide theoretical results that explain the superiority of the proposed MVaR objective.
By analyzing the entropy mechanism, we demonstrate that the risk-averse configuration can
effectively mitigate entropy collapse.

3. We conduct extensive numerical experiments to evaluate the performance of our algorithm.
RiskPO consistently outperforms GRPO and other baselines on multiple mathematical reason-
ing tasks. On Pass@k metrics, RiskPO even achieves better performance, indicating its strong
capacity for exploration and acquisition of new reasoning skills.

2 RELATED WORKS

RL for LLM Post-training. RL has played a critical role in the post-training phase of LLM (Shao
et al., 2024; Christiano et al., 2017; Lambert et al., 2022). Through verifiable reward, the LLM
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learn complicated reasoning skills across solving math problems and coding (Zhao et al., 2025a;
Chen et al., 2024; Huang et al., 2025). Originating from the PPO, much literature has proposed
new methods to cater to the requirements of RLVR. ReMax (Li et al., 2024) proposes to use the
deterministic output of the LLM as the baseline to reduce variance. DAPO (Yu et al., 2025) incorpo-
rates four engineering tricks to improve GRPO. VAPO shows that the value-based RL method can
also perform well in RLVR (Yue et al., 2025b). GPG (Chu et al., 2025) investigates the normaliz-
ing factor in GRPO. Several literatures (Wang et al., 2025b; Cui et al., 2025; Cheng et al., 2025;
Wang et al., 2025a) investigate the entropy mechanism in RLVR, pointing out the significance of
exploration in RLVR. GSPO (Zheng et al., 2025) and GMPO (Zhao et al., 2025b) focus on stabiliz-
ing the RL training. GSPO uses sequence-wise importance sampling, which has good performance
on Mixture-of-Expert models. GMPO uses the geometric mean in the gradient estimation, which
decreases the importance. ProRL (Liu et al., 2025a) shows that with stabilized training, the perfor-
mance gain would have a log-scale relationship with the training time. The above methods mainly
rely on engineering tricks rather than investigating fundamental dynamics.

Risk-sensitive RL. Risk-sensitive RL (see, e.g., Ren et al., 2024; Petersen et al., 2019) seeks to
shape the entire reward distribution rather than merely optimizing its mean. Chow et al. (2015)
investigates the Markov Decision Process (MDP) under CVaR objective and proposes a dynamic-
programming based solution. La & Ghavamzadeh (2013) and Prashanth et al. (2016) use finite
difference to optimize risk measure under the MDP setting. Dabney et al. (2018b;a) introduces state-
action value distribution approximation techniques to improve the effectiveness, which is referred
to as distributional RL. CVaRPG (Tamar et al., 2015) and QPO (Jiang et al., 2022) design policy
gradient style algorithm to optimize CVaR and quantile, respectively. Jiang et al. (2024) considers
a more general case, optimizing the distortion risk measure in a policy gradient manner. There is
also literature considering risk level as a constraint. Bertsekas (1997) use a Lagrangian approach to
solve RL problems. Borkar & Jain (2014) use CVaR as a constraint, and Chow et al. (2018) develop
actor-critic algorithms under quantile and CVaR constraint.

3 RETHINKING RLVR FROM A DISTRIBUTIONAL PERSPECTIVE

We formalize the post-training problem of RLVR as follows. Given an input problem x sampled
from a dataset D, an LLM parameterized as πθ generates a response y ∼ πθ(·|x). A rule-based
verifier R(·) then evaluates the correctness of the response, returning one if y is correct and zero
otherwise. Notably, no intermediate process-level feedback is provided. The standard objective in
this setting is to maximize the expected reward: J (θ) = Ex∼D, y∼πθ(·|x)[R(y)]. With a score-
function method, its gradient is given by ∇θJ (θ) = E[R(y)∇θ lnπθ(y|x)], resulting in a standard
RL framework, where a baseline or so-called value model is used for variance reduction.

As a widely adopted baseline for RLVR, GRPO (Shao et al., 2024) replaces the value model with
sequence-level standardized rewards computed within a group of responses. We denote by y<t the
partial response consisting of the first t tokens, i.e., πθ(y|x) =

∏
t π̃θ(yt|x, y<t). Specifically, given

a query x and a group of G responses {yi}Gi=1 sampled from a reference model πθ′(·|x), the GRPO
objective is defined as

JGRPO(θ) = E x∼D
{yi}G

i=1∼πθ′ (·|x)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
wi,t(θ) Âi, clip(wi,t(θ), 1− ϵ, 1 + ϵ) Âi

)]
,

where Âi =
R(yi)− 1

G

∑G
j=1 R(yj)

Std({R(yj)}G
j=1)

denotes the standardized feedback, whilewi,t(θ) =
π̃θ(yi,t|x,yi,<t)
π̃θ′ (yi,t|x,yi,<t)

is the importance sampling ratio that enables multiple parameter updates per group of generated
data. Despite these modifications, GRPO remains fundamentally a method for optimizing the mean
performance of LLMs. Since the reward provided by the verifier is an indirect objective, we argue
it may not be the best practice for RLVR to optimize its expectation. Instead, we propose to adopt
a distributional perspective. The most challenging problems correspond to the left tail of the reward
distribution. These samples represent the questions that the model has not yet mastered. Such hard
cases often lead to gradient vanishing in GRPO. For example, when all responses are incorrect, the
computed advantage collapses to zero, which provides no meaningful training signal. As a result,
the model fails to improve on its weakest regions of the distribution.
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Therefore, beyond optimizing the expectation, we claim that it is more beneficial to consider the
distributional structure of performance, particularly the lower tail. Incorporating risk measures, such
as CVaR or RVaR, into the training objective emphasizes hard problems in the tail of the distribution
and provides a finer-grained and more robust learning signal for RLVR.

4 MASTERING THE UNCERTAINTY VIA RISK-BASED POLICY OPTIMIZATION

In this section, we introduce our risk-based objective for RLVR and the associated post-training
methodology, establishing a principled framework for enhancing LLM reasoning ability.

Denote the RLVR reward signal distribution byFθ(·), where the parameter θ reflects the stochasticity
induced by the LLM πθ(·|x). RVaR is defined to capture the average performance within a specified
quantile interval of the distribution. Let F−1

θ (α) be the α-level quantile of R(y). Then, for 0 ≤ α <
β ≤ 1, RVaR on the interval [α, β] is written as

JRVaRα:β
(θ) := E

[
R(y)|R(y) ∈ [F−1

θ (α), F−1
θ (β)]

]
=

1

β − α

∫ F−1
θ (β)

F−1
θ (α)

rdFθ(r), (1)

that is, the conditional expectation of R(y) given that it falls between its α- and β-quantiles. To
optimize the RVaR through gradient descent algorithms, we first derive the gradient of RVaR as
shown in Theorem 1. The proofs of all theoretical results in this work can be found in Appendix B.
Theorem 1. Assume Fθ(r) is continuously differentiable with respect to both the parameter θ and
the variable r; the density is positive at the quantiles, i.e., fθ(F−1

θ (α)) > 0 and fθ(F−1
θ (β)) > 0;

and that the differentiation under the integral sign is justified. Then the gradient of RVaR is given by

∇θJRVaRα:β
(θ) =

1

β − α
E
[
g
(
R(y), F−1

θ (α), F−1
θ (β)

)
∇θ lnπθ(y|x)

]
,

where g(z, a, b) = (z − a)+ − (z − b)+ + a− b, and (z)+ = max{z, 0}.

Note that when α = 0, RVaR coincides with the lower-tail CVaR at level β, and the gradient in
Theorem 1 reduces to ∇θJRVaR0:β

(θ) = β−1E
[
− (F−1

θ (β)− R(y))+∇θ lnπθ(y|x)
]
. Since RVaR

effectively places a window for control on the reward distribution, it is natural to further combine
several such segments to better shape the overall distribution. Accordingly, we introduce a new
objective into RLVR, namely Mixed Value-at-Risk (MVaR), which integrates metrics over multiple
distributional segments as follows:

J MVaRω
α:β

(θ) =

{
(1 + ω)

∫ F−1
θ (α)

F−1
θ (0)

+

∫ F−1
θ (β)

F−1
θ (α)

}
rdFθ(r), (2)

where ω ≥ 0 controls the emphasis placed on tail samples during optimization, and high-
performance samples are excluded from the current training process. Note that JMVaRω

α:β
(θ) =

(1 + ω)αJRVaR0:α(θ) + (β − α)JRVaRα:β
(θ). The gradient of (2) can be derived by Theorem 1.

However, the distributional information from a single question x is very limited, since the feedback is
binary and offers only coarse signals. To obtain a richer source of information, we propose to group
several questions into a bundle, i.e., X := {xi}Bi=1 ∼ D⊗B , and calculate the advantage based
on the sum of the individual question scores within the bundle. This aggregation transforms sparse
binary feedback into a more informative distribution over bundle scores, enabling finer distinctions
between different levels of performance and avoiding zero gradient on difficult questions. We then
focus on optimizing the MVaR of the bundle score:

EX∼D⊗B ,{yi∼πθ(·|xi)}B
i=1

[
RB

(
(1 + ω)1{RB≤F−1

θ (α)} + 1{F−1
θ (α)<RB≤F−1

θ (β)}
)]
,

where RB =
∑B

i=1R(y
i) denotes the bundle score. For each i ∈ {1, . . . , B}, we sample Yi :=

{yij}Gj=1 with yij ∼ πθ(·|xi) i.i.d., and define Y := {Yi}Bi=1. Then we can generate G bundles
without overlaps from the G×B responses of B questions. The gradient can be calculated by

EX∼D⊗B ,{yi
j}G

j=1∼πθ(·|xi),ξi∼Unif(SG)

[
1

G

G∑
j=1

Aj
1

B

B∑
i=1

∇θ lnπθ(y
i
ξi,j |xi)

]
,

4
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where Aj = −(1 + ω)(F−1
θ (α) − RBj

)+ + g(RBj
, F−1

θ (α), F−1
θ (β)) is the bundle-wise advan-

tage under MVaR objective, RBj
=

∑B
i=1R(y

i
ξi,j

) is the bundle-wise score, ξ is a permutation of
{1, . . . , G} that independently draw ξi ∼ Unif(SG) for every i, SG is the symmetric group on G
element, and ξi,j is the j-th elements in the permutation. This construction yields G disjoint bun-
dles: the j-th bundle uses {yiξi,j}Bi=1, so that for each fixed i, {yiξi,1 , . . . , yiξi,G} is a permutation of
{yi1, . . . , yiG}, i.e., every answer is used only once (without replacement).

To ensure stable improvement (Schulman et al., 2017; 2015) with multiple updates per bundle-
wise MVaR objective evaluation, we adopt a trust-region style update with clipping and sequence-
level importance sampling (Zheng et al., 2025). Since the reward in RLVR is only available at the
sequence level, i.e., yi, it is natural to define importance weights also at the sequence (response) level
and then aggregate them into the bundle objective. Formally, given B problems X = {xi}Bi=1 and
G responses per problem Yi = {yij}Gj=1, we independently draw ξi ∼ Unif(SG) for each i, yielding
G bundles: Pj = {yiξi,j}Bi=1, j = 1, . . . , G, where every responses is used without replication. We
then construct the clipped MVaR objective at the bundle level, which constitutes the final loss for
backpropagation:

J clip
MVaR(θ) = EX,Y,{ξi}

[
1

G

G∑
j=1

1

B

B∑
i=1

min
(
sij(θ)A

(j), clip(sij(θ), 1− ϵ, 1 + ϵ)A(j)
)]
, (3)

where sij(θ) =
( πθ(y

i
ξi,j

|xi)

πθ′ (y
i
ξi,j

|xi)

)1/|yi
ξi,j

|
is the sequence-wise importance sampling ratio.

Every token within the same bundle shares the same MVaR-based advantage A(j), ensuring that op-
timization is aligned with the unit of reward (the bundle score) and directs training toward the left tail
of the performance distribution. We track F−1

θ (α) and F−1
θ (β) in an online manner. After substitut-

ing the tracked quantiles into the advantage and deriving the gradient, we update model parameters
accordingly. Therefore, RiskPO can be implemented as a two-timescale stochastic approximation
algorithm. The pseudocode of the proposed algorithm is provided in Algorithm 1.

Algorithm 1 Risk-based Policy Optimization

1: Input: quantile levels α, β, weight ω, policy π·, learning rates {γk}, {ηk}, and iterations K
2: Initialize: policy parameter θ0, and quantile trackers qα0 , qβ0
3: for k = 1, · · · ,K do
4: Sample B questions, X = {xi}Bi=1, from the dataset D
5: Generate G responses for each question, {yij}Gj=1 ∼ π(·|xi) and evaluate the reward R(yij)
6: Sample from the symmetric group for B times, ξi ∼ Unif(SG), yielding G papers
7: Track quantiles with batched papers’ scores: qαk+1 = qαk + γk(α− 1

G

∑G
j=1 1{RBj

< qαk }),
qβk+1 = qβk + γk(β − 1

G

∑G
j=1 1{RBj

< qβk })
8: Backpropagate the clipped MVaR objective (3) to compute ∇θJ clip

MVaR(θ)

9: Update policy parameter: θk+1 = θk + ηk ∇θJ clip
MVaR(θ)

10: end for
11: Output: Final policy parameter θK+1

5 ENTROPY MECHANISM FOR RISK-SENSITIVE OBJECTIVE

GRPO suffers from entropy collapse, where the policy entropy rapidly decreases during training.
This premature reduction in entropy limits exploration of alternative reasoning paths, thereby con-
straining performance improvement and reducing the likelihood of discovering correct solutions. In
this section, we conduct a per-step analysis for the change of policy entropy in the optimization and
give a theoretical guarantee that our RVaR policy gradient can mitigate the entropy collapse issue.

Following the standard framework in policy-gradient literature (see, e.g., Agarwal et al., 2021; Shani
et al., 2020; Abbasi-Yadkori et al., 2019), we conduct theoretical analysis under a tabular softmax
formulation with deterministic sequence-level rewards. Specifically, we consider an input set X and
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an output set Y . The actor is parameterized by a matrix θ ∈ R|X |×|Y|, where each entry θx,y is
the logit for choosing y given x. The policy is thus πθ(y|x) = exp(zx,y)∑

u∈Yx
exp(zx,u)

, and its conditional

entropy is H(πθ|x) = −∑
y πθ(y|x) log πθ(y|x). Let Aθ(x, y) be the advantage value associated

with the chosen algorithm. We begin with the following proposition, which links entropy dynamics
to the covariance between the advantage and the log-probability of the output.
Proposition 1. Fix a prompt x and a finite set of complete sequences Yx. Consider a natural-
gradient step, i.e., θk+1 = θk + η∆k, where ∆k,x,y = Aθk(x, y) otherwise zero, then

H
(
πθk+1

|x
)
−H(πθk |x) = −η Covy∼πθk

(·|x)
(
log πθk(y|x), Aθk(x, y)

)
+ O

(
∥∆k∥2

)
. (4)

The proposition indicates that the correlation between the advantage and the log probability of the
output affects entropy changes: a positive correlation leads to entropy decrease, and vice versa.
High advantage and high log probability suggest that the model is very confident about samples
with high advantage. Therefore, over-optimizing already well-learned problems accelerates entropy
collapse, reducing the model’s opportunities for trial and error on difficult problems and ultimately
limiting policy performance. RiskPO, which uses MVaR as its objective, can alleviate this issue.
It focuses more on difficult problems, i.e., samples from the left tail of the reward distribution, and
clips the gradient signal for well-learned problems. In the following theorems, we provide theo-
retical justifications, showing through the comparison of advantage–log-likelihood correlation that
RiskPO constitutes a relatively high-entropy update scheme. Before that, we present the follow-
ing assumption, which captures the most intuitive scenario but is not the only suitable one. Let
ψ(r) = E[log πθ(y|x)|R = r] denote the conditional log-likelihood.
Assumption 1. The conditional log-probability of output ψ(r) is non-decreasing for r ≥ F−1

θ (β),
non-increasing for r ≤ F−1

θ (α), and ψ(F−1
θ (α)), ψ(F−1

θ (β)) ≥ E[log πθ(y|x)].
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Figure 3: Log-probabilities as a function
of reward quantile levels for DeepSeek-R1-
Distill-Qwen-1.5B on DAPOMATH-17K.

Intuitively, this assumption captures the behavior
of a pre-trained base model. For relatively easier
problems in the upper tail of the reward distribu-
tion, the model exhibits well-calibrated confidence,
assigning higher probabilities to correct answers
(upper-tail monotonicity). In contrast, for harder
problems in the lower tail, the model often fails
systematically: it allocates substantial probability
mass to incorrect outputs, effectively making con-
fident but consistently wrong predictions (lower-
tail monotonicity). We empirically validate this
assumption using DeepSeek-R1-Distill-Qwen-1.5B
on the training set. For each question, the model
generates 16 responses and computes the mean re-
ward across these responses. Recall that the length-
normalized sequence-level log-probability is de-
fined as log πθ(y|x) = |y|−1

∑|y|
t=1 log π̃θ(yt|y<t, x). As shown in Figure 3, the sequence-wise

logprob exhibits monotonicity in [0, 0.3] and [0.7, 1], which justifies our assumption. Denote the
advantages in the associated algorithms as AMVaR and AMean, see Appendix X for details. Next,
we present a comparison of the correlations between the advantage values and the log-likelihood.
Theorem 2. If Assumption 1 holds and E[| log π(y|x)|] < ∞, then the covariance between MVaR-
based advantages and output log-probabilities is smaller than that of mean-based methods, i.e.,

Covy∼πθ(·|x)(log πθ(y|x), AMVaRω
α:β

) ≤ Covy∼πθ(·|x)(log πθ(y|x), AMean). (5)

The combination of Proposition 1 and Theorem 2 implies that, under the same update setting,
RiskPO leads to higher output entropy compared with mean-based methods. Similarly, we can
conclude that risk-seeking objectives assign greater weight to high-reward outcomes, thereby am-
plifying the covariance between log-probabilities and advantages. This stronger coupling causes
entropy to decrease more rapidly and results in severe entropy collapse. To further elucidate the
relationship between correlation and objective design, beyond the specified MVaR objective, we can
generalize to a more general transformation of the reward or so-called advantage value. This general
form allows us to assess the strength of the correlation and, in turn, reason about the resulting policy
entropy. Please refer to Appendix B.4 for details.
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6 EXPERIMENTS

To comprehensively evaluate the effectiveness of RISKPO, this section conducts systematic exper-
iments across a broad spectrum of tasks, including mathematical reasoning, code generation, and
multi-modal reasoning. We benchmark on more than ten datasets that span different levels of dif-
ficulty. Through these experiments, our goals are threefold: (i) to verify that risk-based objectives
consistently outperform mean-based methods across domains, (ii) to demonstrate that the proposed
distributional perspective leads to tangible improvements on the hardest reasoning problems, and
(iii) to provide empirical evidence that RiskPO mitigates entropy collapse and enables genuine ex-
pansion of reasoning capability rather than merely improving sampling efficiency. Detailed experi-
mental settings and supplementary results are provided in Appendix A.

6.1 MAIN RESULTS

Table 1: Pass@1 performance on hard-level mathematical reasoning benchmarks.

Model AIME25 AIME24 AMC MATH500 Minerva Oly. Avg.

Qwen2.5-Math-1.5B 6.6 10.0 43.4 61.8 15.1 28.4 27.55
Qwen2.5-Math-1.5B-Instruct 10.0 10.0 48.2 64.2 26.5 35.2 32.35
DeepSeek-R1-Distill-Qwen-1.5B 13.3 13.3 32.5 59.8 20.3 30.5 28.28

Dr.GRPO-1.5B (Liu et al., 2025b) 20.0 23.3 54.7 77.4 26.3 38.1 39.97
GRPO-1.5B (Shao et al., 2024) 20.0 20.0 56.6 79.2 27.1 39.6 40.41
GPG-1.5B (Chu et al., 2025) 16.6 20.0 55.7 74.5 28.8 37.6 38.90
DAPO-1.5B (Yu et al., 2025) 30.0 26.6 58.6 78.2 29.2 40.6 43.87
GMPO-1.5B (Zhao et al., 2025b) 23.3 23.3 54.2 76.2 29.2 39.2 40.90
RiskPO-1.5B (Ours) 33.3 33.3 60.8 81.8 29.5 41.2 46.65

Table 1 reports Pass@1 accuracy across six hard-level mathematical reasoning benchmarks. We
observe that RiskPO consistently achieves the best performance among all methods, outperforming
both the base models and recent GRPO variants. In particular, RiskPO attains an average score
of 46.65, representing a +2.78 absolute improvement over the strongest baseline DAPO (43.87)
and a +6.24 improvement over vanilla GRPO (40.41). The gains are especially pronounced on the
most challenging AIME datasets, where RiskPO surpasses DAPO by nearly +6.7 points (33.3 vs.
26.6). These results demonstrate that emphasizing distributional risk through our MVaR objective
substantially improves reasoning ability, not only enhancing performance on easier datasets like
AMC and MATH500 but also pushing the frontier on the hardest Olympiad-style tasks.

We complement these findings in hard-level math tasks with results on easier mathematical rea-
soning, multi-modal reasoning, and code generation tasks in Table 2. While performance gaps on
GSM8K are naturally small due to the dataset’s simplicity, RISKPO maintains a measurable ad-
vantage on MATH and yields consistent improvements on both LiveCodeBench and Geometry3K.
Together, these results underscore the broad applicability of risk-sensitive objectives and their ability
to enhance reasoning capacity across diverse domains.

Table 2: Pass@1 results on easy-level math benchmarks and multi-modal/coding benchmarks.

Method Easy-level math. reasoning Multi-modal & coding
MATH GSM8K Avg. LCB Geo3K Avg.

GRPO 54.3 78.8 66.55 25.8 53.7 39.75
DAPO 55.2 80.3 67.75 26.2 54.3 40.25
RiskPO (Ours) 56.2 80.3 68.25 26.8 54.5 40.65

We argue that the RiskPO is expanding the reasoning boundary of the base model. To support the
claim, we present the evolution of Pass@1, Pass@8, and Pass@16 on AMC and MATH500 during
the training process in Figure 4. A clear widening gap emerges as k increases, with RISKPO steadily
surpassing GRPO across all evaluation points. This pattern indicates that the model is not merely im-
proving its sampling efficiency on problems it could already solve—such as turning a “one success
in sixteen attempts” case into a reliable single-shot success—but is in fact acquiring genuinely new
solution strategies. Notably, RISKPO is able to solve instances that remain persistently unsolved
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under GRPO, even after sixteen attempts, all within the same computational budget. These results
substantiate our claim that RISKPO expands the reasoning boundary of the base model, enabling
progress beyond the capabilities achievable by conventional mean-based objectives.
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Figure 4: Pass@k learning curves on the AMC and MATH500 datasets.
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Figure 5: Learning curves on DAPOMATH-17K, the RiskPO mitigates the entropy collapse and
shows better performance on difficult problems, which is indicated by risk measures.

We investigate how the training dynamics of the RiskPO differ from GRPO, and Figure 5 depicts the
trajectories of different objectives and entropy during training on the DAPOMATH-17K dataset. We
contend that the mean reward is an inadequate training objective. The mean reward learning curves
of GRPO and RiskPO are almost indistinguishable, with RiskPO exhibiting slightly greater fluctu-
ations—likely a consequence of its inherently higher-entropy behavior. In contrast, the lower-tail
RVaR JRVaR0:α

(θ) and MVaR curves demonstrate a pronounced advantage for RiskPO. Since these
risk-sensitive measures emphasize the lower tail of the reward distribution, higher values indicate
stronger performance on the more challenging problems. Consistently, RiskPO maintains substan-
tially higher entropy throughout training, whereas GRPO’s entropy collapses early on, curtailing
exploration and limiting its ability to tackle difficult instances.

6.2 ABLATION STUDY

We conduct the ablation study on the easy-level mathematics reasoning tasks. We start our analysis
with the contrasting version:risk-seeking. As indicated by Section 5, focusing on the upper tail of
the reward distribution will catalyse the entropy collapse. Similar to the MVaR objective, we use the
counterpart risk-seeking objective, (1 + ω)(1 − β)JRVaRβ:1

(θ) + (β − α)JRVaRα:β
(θ), to train the

model and keep other parameters the same as the risk-averse version. The training curves are shown
in Figure 6. The entropy of the risk-seeking version decreases sharply as the training proceeds,
whereas the entropy of the risk-averse version decreases at the beginning, then remains stable around
0.2. In the Pass@1 curve on MATH, the risk-averse version exhibits a clear advantage over the risk-
seeking. Before 50 steps, the risk-seeking has a better Pass@1 value. However, after the 50th step,
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the risk-seeking struggles to keep improving because it fails to optimize on those difficult problems
(from 52% to 54%). The risk-averse version continues to improve on the Pass@1 (from 52% to
56%), showing 1.5 times improvement. This observation further justifies our theoretical results,
which suggest the risk-averse objective is better than both the mean and risk-seeking objectives.
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Figure 6: Ablation of risk profiles for training.
Table 3: Ablation of different quantile levels (α, β) on easy-level mathematical reasoning.

Levels (0.2, 0.8) (0.1, 0.8) (0.3, 0.8) (0.4, 0.8) (0.2, 0.6) (0.2, 0.7) (0.2, 0.9)

MATH 56.2 55.1 55.8 55.6 55.5 56.0 55.0
GSM8K 80.3 78.7 79.2 79.6 79.0 79.5 78.9
Avg. 68.25 66.90 67.50 67.60 67.25 67.75 66.95

We further conduct a systematic investigation of the parameterization of the risk-averse algorithm,
focusing on the quantile level (α, β). In the main experiments, we adopt (0.2, 0.8) as the default
configuration and independently perturb α and β to validate this choice. The results of the quantile-
level ablation are summarized in Table 3. Deviations from the configuration (0.2, 0.8) consistently
lead to a deterioration in performance. In particular, the configurations (0.1, 0.8) and (0.2, 0.9)
exhibit more degradation. Reducing α to 0.1 implies a diminished emphasis on the lower tail,
whereas increasing β to 0.9 intensifies the emphasis on the upper tail. These observations underscore
the importance of maintaining a risk-averse objective.

Table 4: Ablation of different bundle size B on easy-level mathematical reasoning.

Bundle size 1 2 3 4 5 6 7 8 9 10

MATH 53.6 55.4 55.8 56.0 56.2 55.8 55.8 55.2 54.9 54.7
GSM8K 78.0 79.0 79.5 80.1 80.3 79.9 79.4 78.8 78.6 78.6
Avg. 65.80 67.20 67.65 68.05 68.25 67.85 67.6 67.00 66.75 66.65

We also report the ablation results on the bundle size in Table 4. The best performance is achieved
at a bundle size of B = 5. This result can be intuitively explained by the trade-off in gradient esti-
mation. Since all instances in a bundle share the same advantage estimation, using an overly large
bundle dilutes the gradient signal, as too many instances rely on a single advantage value. Con-
versely, when the bundle size is too small, quantile tracking becomes unstable, which also weakens
the gradient signal. The results in Table 4 corroborate this intuition: at B = 2 and B = 10, the
average performance drops by 1.05% and 1.6%, respectively. Setting B = 1 (no bundling) leads to
the most severe degradation, with a 2.45% drop. These findings highlight the necessity of bundling
for RiskPO and suggest that bundle size should be carefully tuned, as both overly large and overly
small values harm performance.

7 CONCLUSIONS

In this paper, we introduced RiskPO, a distributional alternative to mean-based objectives for rein-
forcement learning with verifiable reward. By leveraging MVaR and bundling multiple questions
into informative training units, RiskPO effectively mitigates entropy collapse and strengthens ex-
ploration. Our theoretical analysis establishes that risk-averse updates weaken the coupling between
policy log-probabilities and advantages, thereby preventing premature overconfidence. Empirically,
RiskPO achieves consistent and significant improvements across a wide range of mathematical rea-
soning, code generation, and multi-modal benchmarks, outperforming GRPO and its strongest vari-
ants. These findings highlight that risk-averse objectives not only improve sample efficiency but also
expand the reasoning frontier of large language models.
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A EXPERIMENTAL SETUP AND SUPPLEMENTARY RESULTS

A.1 EXPERIMENTAL SETUP

Model. We focus on mathematics reasoning, code generation, and multi-modal reasoning. We
use DeepSeek-R1-Distill-Qwen-1.5B (Guo et al., 2025) as our base model to evaluate different
algorithms on hard-level mathematics reasoning and code generation. On easy-level mathematics
reasoning, we use Qwen2.5-Math-1.5B-Instruct (Yang et al., 2024) as the base model. On multi-
modal reasoning, we use Qwen2.5-VL-Instruct-3B (Bai et al., 2025) as the base model.

Training. For the hard-level mathematics reasoning tasks. We use the DAPO-math-17k as the
training set. For the easy-level, we use MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al.,
2021). For multi-modal reasoning, we use Geometry3K (Geo3K, Lu et al., 2021). For code genera-
tion, we train the models on Archer-6K (Wang et al., 2025a). We set the clipping threshold ϵ = 0.2.
KL penalty and entropy regularization are omitted from the loss objective. We use vLLM as the
inference backend and FSDP as the training backend. We set the temperature to 0.8 and top p to
1.0, and maximum output length as 3072. We generate 10 responses for each problem. The batch
size is 512, the mini-batch size is set to 128. For quantile levels, we set α to 0.2 and β to 0.8 corre-
spondingly. The bundle size B is set to 5. The mixing parameter of MVaR is ω = 0.5. All training
procedures are carried out on a Linux server equipped with 8 NVIDIA H20 GPUs, each providing
96 GB of memory.

Evaluation. For hard-level mathematics reasoning, We evaluate on six math reasoning datasets:
AIME24 (MAA, 2024) and AIME25 (MAA, 2025) with 30 problems from the American Invita-
tional Mathematics Examination, both targeting advanced pre-collegiate reasoning; AMC23 (MAA,
2023) with 83 problems from the American Mathematics Competitions, testing creative algebraic,
geometric, and number-theoretic skills; MATH-500 (Lightman et al., 2023) with 500 graduate-level
problems from the original MATH dataset covering algebra, geometry, and number theory; Minerva
Math (Lewkowycz et al., 2022) with 272 undergraduate-level quantitative reasoning problems; and
OlympiadBench (He et al., 2024) with 675 Olympiad-style problems. For easy-level math tasks and
the multi-modal task, we follow the train-test split in the original datasets. For code generations, we
evaluate trained models on LiveCodeBench v5 (LCB, Jain et al., 2024).

A.2 ABLATION ON THE MIXING PARAMETER

We fix the quantile level, and perturb the ω to investigate how different attention on the lower tail
influences the performance. The ablation of ω is shown in Table 5. Setting ω = 0.0 would reduce the
MVaR objective, JMVaRω

α:β
(θ), to JRVaR0:β

(θ), which does not have extra attention on the lower tail
even though it is still a risk-averse objective. The variant with ω = 0.0 has the largest performance
decrease, indicating the significance of extra attention on the lower tail. When setting ω = 1.0, the
variant also suffers from a mild performance drop. Overall, the phenomena suggest that the level of
risk aversion needs to be properly tuned; both an indifferent level and excessive focus would lead to
undesirable performance.

Table 5: Ablation of the mixing parameter.

Settings 0.0 0.1 0.5 0.6 1.0

MATH 54.8 55.1 56.2 56.0 55.7
GSM8K 79.6 80.0 80.3 80.2 80.0
Avg. 67.20 67.55 68.25 68.10 67.85

A.3 EXTENSIVE AVG@K AND PASS@K RESULTS

Since both AIME2024 and AIME2025 contain only 30 questions, the Pass@k metric exhibits high
variance and fluctuates significantly. To obtain a more stable evaluation, we report the Avg@k re-
sults in Figure 7. Across both datasets and different k values, RiskPO consistently outperforms
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GRPO, achieving higher Avg@k scores and demonstrating more stable improvements during train-
ing. The advantage of RiskPO is especially pronounced in the later training stages, where it con-
tinues to increase while GRPO tends to plateau. These results further confirm the effectiveness of
our risk-sensitive optimization in enhancing reasoning performance on small-scale but challenging
benchmarks like AIME.

Figure 8 reports Pass@k for k ∈ {1, 8, 16}. Across both datasets and all k, RISKPO consistently
outperforms GRPO throughout training. The margin is modest but stable at k = 1 (especially on
MINERVA, where variance is higher), and becomes clearly larger for k = 8, 16. This widening
gap at larger k indicates that RISKPO not only improves the best single prediction, but also spreads
probability mass over a broader set of valid solution paths, thereby increasing the likelihood that at
least one sampled response is correct. In effect, the risk-sensitive objective enhances coverage and
diversity of reasoning, pushing the success frontier on problems that initially have low correctness
probability and yielding larger gains at higher k.
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(b) Avg@64 on AIME2024.
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(c) Avg@32 on AIME2025.
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(d) Avg@64 on AIME2025.

Figure 7: Avg@k learning curves on AIME2024 and AIME2025 datasets.

0 100 200 300 400 500

Step

0.20

0.25

0.30

A
cc

u
ra

cy

(a) Pass@1 on Minerva.
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(b) Pass@8 on Minerva.
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Figure 8: Pass@k learning curves on Minerva and Olympiad datasets.
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A.4 DYNAMICS OF COVARIANCE AND ENTROPY
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(a) Dynamics of GRPO.
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(b) Dynamics of RiskPO.
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Figure 9: The dynamics of the covariance and the entropy difference. We calculate the one step
entropy difference and the covariance between log-prob and advantage.

In the Figure 9, we verify the validity of the Proposition 1 and Theorem 2. We record the covariance
between log-probability and the advantage, and calculate the entropy difference during the training
on easy-level math task. Figure 9a and 9b shows that the covariance and the entropy difference
move in synchronicity during both the GRPO and RiskPO training, which validate our Proposition
1. To validate the Theorem 2, we show the comparison of covariance between RiskPO and GRPO in
Figure 9c. The covariance of RiskPO is consistently smaller then the GRPO throughout the training,
which coincides with the conclusion in the Theorem 2.

A.5 JUSTIFICATION OF ASSUMPTION 1

Figure 10 presents the output log probability stratified by reward ranges across evaluation datasets.
On Minerva and Olympiad datasets, the patterns closely align with Assumption 1: the output log
probability is monotone with respect to reward in both the lower- and upper-tail regions, approxi-
mately on (0, 0.3) and (0.7, 1). Results on AMC show a similar monotone trend, although fluctua-
tions appear in the mid-reward ranges, suggesting mixed difficulty and solution modes. For MATH,
which is comparatively easier, the upper tail exhibits strong monotonicity, while the lower tail is less
pronounced—likely due to a scarcity of truly difficult items that would populate that region. Im-
portantly, these evaluation sets are not used for model training; the observed regularities therefore
provide additional evidence that Assumption 1 holds broadly for the pretrained base model across
diverse benchmarks.
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Figure 10: The output log probability on various evaluation datasets.

B THEORETICAL DETAILS

B.1 PROOF OF THEOREM 1

Proof. Recall the definition of the RVaR functional:

JRVaRα:β
(θ) = E

[
R(y)|R(y) ∈ [F−1

θ (α), F−1
θ (β)]

]
=

1

β − α

∫ F−1
θ (β)

F−1
θ (α)

rfθ(r)dr.

To compute the RVaR gradient, we apply Leibniz’s rule for differentiation, yielding

∇θJRVaRα:β
(θ) =

1

β − α

(∫ F−1
θ (β)

F−1
θ (α)

r∇θfθ(r)dr + F−1
θ (z)fθ(F

−1
θ (z))∇θF

−1
θ (z)

∣∣∣∣β
α

)
.

Note that, by the implicit function theorem, the quantile gradient can be expressed as (see, e.g., Fu
et al., 2009) ∇θF

−1
θ (z) = −∇θFθ(F

−1
θ̄

(z))
∣∣
θ̄=θ

/fθ(F
−1
θ (z)). Substituting this identity into our

previous expression, we can obtain

∇θJRVaRα:β
(θ) =

1

β − α

(∫ F−1
θ (β)

F−1
θ (α)

r∇θfθ(r)dr − F−1
θ (z)∇θFθ(F

−1
θ̄

(z))
∣∣
θ̄=θ

∣∣∣∣β
α

)
.

By the definition of CDF, we have ∇θFθ(r) = ∇θE
[
1{R(y)≤r}

]
= E

[
1{R(y)≤r}∇θ ln fθ(R(y))

]
.

Thus, with the score-function method, we rewrite the RVaR gradient in expectation form as

∇θJRVaRα:β
(θ) = E

[(
R(y)1{R(y)∈[F−1

θ (α),F−1
θ (β)]}−F−1

θ (z)1{R(y)≤F−1
θ (z)}

∣∣∣∣β
α

)∇θ ln fθ(R(y))

β − α

]
.

Finally, since the distribution ofR(y) is induced by the LLM πθ(·|·), we can apply the score-function
transformation to yield the final expression

∇θJRVaRα:β
(θ) =

1

β − α
E
[
g
(
R(y), F−1

θ (α), F−1
θ (β)

)
∇θ lnπθ(y|x)

]
,

which completes the proof.
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B.2 PROOF OF PROPOSITION 1

Proof. With a Lipschitz-continuous entropy gradient and a bounded Hessian, the first-order Taylor
expansion yields H(πθk+1

|x) = H(πθk |x)+⟨∇θH(πθk |x), ∆k⟩+O(∥∆k∥2). The entropy gradient
can be written as

∇θH(πθ | x) = ∇θ(−Ey∼πθ(·|x)[log πθ(y|x)])
= −Ey∼πθ(·|x)[∇θ log πθ(y|x) + log πθ(y|x)∇θ log πθ(y|x)]
= −Ey∼πθ(·|x)[log πθ(y|x)∇θ log πθ(y|x)],

where the second equality comes from the score-function method, and the last equality is due to
the identity Ey∼πθ(y|x)[∇θ log πθ(y|x)] = 0. Note that ∂

∂θx,y′
log πθ(y|x) = 1{y=y′} − πθ(y

′|x).
Taking the inner product with ∆ gives

⟨∇θH(πθ|x),∆⟩ = −⟨Ey∼πθ(·|x)
[
log πθ(y|x)∇θ log πθ(y|x)

]
,∆⟩

= −Ey∼πθ(·|x)
[
log πθ(y|x)⟨∇θ log πθ(y|x),∆⟩

]
= −Ey∼πθ(·|x)

[
log πθ(y|x)

∑
y′∈Y

∂ log πθ(y|x)
∂θx,y′

∆x,y′

]

= −Ey∼πθ(·|x)

[
log πθ(y|x)

∑
y′∈Y

(1{y=y′} − πθ(y
′|x))∆x,y′

]
= −Ey∼πθ(·|x)

[
log πθ(y|x)∆x,y

]
− Ey∼πθ(·|x)

[
log πθ(y|x)

] ∑
y′∈Y

πθ(y
′|x)∆x,y′

= −Covy∼πθ(·|x)
(
log πθ(y|x), ∆x,y

)
(6)

In a tabular softmax policy, a natural policy gradient update step admits ∆x,y = η Aθ(x, y) (Agarwal
et al., 2021). Plugging this into (6) yields the equality (4), which completes the proof.

B.3 PROOF OF THEOREM 2

Before proving Theorem 2, we first prepare the following lemma, which provides a convenient
representation of covariance.
Lemma 1. Let X,Y be real-valued random variables satisfying E[|XY |] <∞. Then

Cov(X,Y ) =

∫ ∞

−∞
Cov

(
1{X>t}, Y

)
dt. (7)

Proof. We start from the layer–cake representation X =
∫∞
0

(
1{X>t} − 1{−X>t}

)
dt, which holds

for any real-valued X . Multiplying by Y and taking expectations, we may apply the Tonelli–Fubini
theorem under the integrability condition E[|XY |] <∞, which yields

E[XY ] =

∫ ∞

0

(
E
[
Y 1{X>t}

]
− E

[
Y 1{−X>t}

])
dt.

Applying the same transformation to E[X]E[Y ] and subtracting, we obtain

Cov(X,Y ) =

∫ ∞

0

(
Cov

(
1{X>t}, Y

)
− Cov

(
1{−X>t}, Y

))
dt.

Changing the integral variable in the second term and using the identity −Cov(1 − Z, Y ) =
Cov(Z, Y ), we merge the two integrals and obtain the equality (7). The distinction between strict
and non-strict inequalities only affects a countable set of t values and does not change the integral
under the Lebesgue measure, which completes the proof.

Next, we present the proof of Theorem 2. For notational clarity, we focus on a single repre-
sentative output y from the model πθ(·|x) rather than a bundle. The advantage values for the
MVaR- and mean-based objectives are given by AMVaRω

α:β
= −(1 + ω)(F−1

θ (α) − R(y))+ +

g(R(y), F−1
θ (α), F−1

θ (β)) and AMean = R(y)− E[R(y)].
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Proof of Theorem 2. Recall that the positive part function can be expressed via the layer–cake rep-
resentation: (z − a)+ =

∫ +∞
a

1{z>t} dt. With Lemma 1, we can derive the covariances as below

Cov(AMVaRω
α:β
,SF) =

[
(1 + ω)

∫ F−1(α)

−∞
+

∫ F−1(β)

F−1(α)

]
Cov

(
1{R(y)>t},SF

)
dt, (8)

where, for notational convenience, we denote SF := log πθ(y|x). Define k(t) :=
Cov(1{R(y)>t},SF) and recall that the density of R(y) is fθ. Then, we compute the derivative
of k(t) as follows:

k′(t) =
d(E[1{R(y)>t}SF])

dt
− d(Pr(R(y) > t)E[SF])

dt

=
d

dt
E
[
E[1{R(y)>t}SF|R(y)]

]
− E[SF]

d

dt

∫ ∞

t

fθ(r)dr

=
d

dt
E
[
1{R(y)>t}E[SF|R(y)]

]
− E[SF]

d

dt

∫ ∞

t

fθ(r)dr

=
d

dt

∫ ∞

t

E[SF|R(y) = r]fθ(r)dr − E[SF]
d

dt

∫ ∞

t

fθ(r)dr

= −ψ(t)fθ(t)− (−E[SF]fθ(t))
= − fθ(t)

(
ψ(t)− E[SF]

)
.

Under Assumption 1, ψ(t) ≥ E[SF] for t ≥ F−1
θ (β) and t ≤ F−1

θ (α). Consequently, k′(t) ≤ 0 for
t ≥ F−1

θ (β) and t ≤ F−1
θ (α), which implies that k(t) is non-increasing in both the upper and lower

tails. Moreover, since E[|SF|] <∞, the dominated convergence theorem implies that
lim
t→∞

k(t) = lim
t→∞

Cov(1{R(y)>t},SF)

= lim
t→∞

E[1{R(y)>t}SF]− lim
t→∞

Pr(R(y) > t)E[SF]

= E[limt→∞1{R(y)>t}SF]− 0 = 0.

Analogously, we can show that limt→−∞ k(t) = E[SF] − E[SF] = 0. By the monotonicity in the
tails, we obtain k(t) ≥ 0 for t ≥ F−1

θ (β) and k(t) ≤ 0 for t ≤ F−1
θ (α). Therefore, noting that

k(t) = Cov
(
1{R(y)>t},SF

)
preserves its sign on both tails, we can further obtain

Cov(AMVaRω
α:β
,SF) ≤

∫
R
Cov

(
1{R(y)>t},SF

)
dt = Cov(AMean,SF),

which completes the proof.

B.4 SUPPLEMENTARY THEOREM OF SECTION 5

With the different treatment of the tail in the reward distribution, we obtain the following covariance
result between the resulting advantage value and the output log-probability.
Theorem 3. If Assumption 1 holds with E[|SF|] < ∞, and g1, g2 are nondecreasing and differen-
tiable with g′1(t) ≥ g′2(t) on [F−1

θ (β),∞), g1(t) = g2(t) on (−∞, F−1
θ (β)] , then we have

Cov(SF, g2(R(y))) ≥ Cov(SF, g1(R(y))).

Proof. Note that

Cov(SF, gi(R(y))) =

∫ ∞

−∞
Cov(SF,1{gi(R(y))>t})dt =

∫ ∞

−∞
Cov(SF,1{R(y)>u})dgi(u)

=

∫ ∞

−∞
Cov(SF,1{R(y)>t})g

′
i(t)dt,

where the first equality is due to Lemma 1 and the second equality is integration by substitution.
The proof of Theorem 2 implies that under Assumption 1, we have k(t) ≥ 0 for t ≥ F−1

θ (β), thus

Cov(SF, g2(R(y)))− Cov(SF, g1(R(y))) =

∫ ∞

F−1
θ (β)

k(t)(g′2(t)− g′1(t))dt ≥ 0,

which gives the desired result.
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A symmetric conclusion can be derived analogously for the treatment of the other tail.
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