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This paper provides an electronic companion to Qin and Russo [2022]. It contains the proof of a
proposition regarding the asymptotic behavior of deconfounded Thompson sampling. The proof is omitted
from that paper, since it is closely related to analyses in Russo [2020], Qin et al. [2017], and Shang et al. [2020].
While the analysis here is quite technical, we have tried to give a relatively clear proof template that could be
useful in future work.

1 Statement of the proposition

Our goal is to prove the following proposition. Part 2 is Proposition 7. Most of our work is to prove part 1,
however, as the second part follows from the first.

Proposition 1. Suppose DTS is applied with βt set by Algorithm 2 and condition on the event that θ = θ0 for some
θ0 ∈ Θ. Then, the following properties hold.

1. For every ε > 0, there exists a random time T with E[T | θ = θ0] < ∞ such that for each t > T,

|pt,i − p∗i (θ0)| 6 ε for all i ∈ [k].

2. For every ε > 0, there exists a random time T with E[T | θ = θ0] < ∞ such that for each t > T,∣∣∣∣∣Z
2
t, Ît ,i

t
− 2Γ−1

θ0

∣∣∣∣∣ 6 ε for all i ∈ [k].

The proof extends the analysis in Qin et al. [2017] and Shang et al. [2020] for problems without contexts
to those where context vectors are drawn i.i.d. from some context distribution. In addition, we provide a
new proof template of proving sufficient exploration for bandit algorithms, which is of independent interest.

2 Outline

The proofs from Section 8 are organized as follows.

1. Section 3 provides the notation used in the proofs.

2. Section 4 formalizes a notion of convergence called “strong convergence” and its properties that are
frequently used in the proof of Proposition 1.

3. Section 5 introduces the maximal inequalities for controlling stochastic contexts, random observations
and randomized action selections, and uses them to derive the accuracy and confidence of beliefs with
sufficient samples.
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4. Section 6 shows that under DTS, each arm is sufficiently explored.

5. Section 7 proves that under DTS, the empirical proportions allocated to each arm strongly converge to
the optimal context-independent sampling frequencies.

6. Section 8 completes the proofs in Section 5.

7. Section 9 includes technical lemmas used in the proofs.

3 Notation

To simplify the exposition, instead of θ0, we use θ to denote the fixed but unknown problem parameter, and
denote θ̃ as a random vector drawn from some distribution of interest (e.g., posterior beliefs). In addition,
define Pt(·) = P(·|Ht) as the posterior measure, under which θ is a random variable, and Pθ = P(· | θ).

Notation for minimum gap. We define the minimum value between the expected rewards of two arms
under the population distribution:

∆min(θ) , min
i 6=j
|µ(θ, i, w)− µ(θ, j, w)|.

Under the parameter class in in Equation (12), ∆min(θ) > 0.

Two measures of cumulative effort. For (t, i) ∈ N× [k], we denote the number of samples allocated to
sampling arm i before time t as

Nt,i ,
t−1

∑
`=1

1{I` = i}. (1)

For randomized algorithms such as DTS, we define the probability of measuring arm i at time t as ψt,i ,
P(It = i | Ht) and an alternative measure of the the cumulative effort

Ψt,i ,
t−1

∑
`=1

ψ`,i. (2)

Note that under DTS, the probability of measuring arm i at time t has the following expression:

ψt,i = αt,i

(
βt + (1− βt)∑

j 6=i

αt,j

1− αt,j

)
.

Uniformly strictly bounded tuning sequence. We say that the sequence {βt}t∈N is uniformly strictly
bounded if there exists a constant βmin > 0 such that with probability 1,

inf
t∈N

min{βt, 1− βt} > βmin. (3)

As shown in Lemma 17, the tuning sequence given by Algorithm 2 is uniformly strictly bounded.

Notation for context distribution. Recall Λ = E[X1X>1 ] � 0 by Assumption 1. We define the smallest
eigenvalue of σ−2Λ as bmin , λmin(σ

−2Λ) > 0. Also Assumption 1 states that the context distribution has
bounded support, i.e., there exists bmax > 0 such that σ−2‖X1‖2 6 bmax. This implies the largest eigenvalue
of σ−2Λ is upper bounded by bmax. Therefore,

σ2bmin 6 λmin(Λ) 6 λmax(Λ) 6 σ2bmax.
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Notation for prior covariance matrices. Let pmin, pmax > 0 such that for any i ∈ [k],

pmin 6 λmin

(
Σ−1

1,i

)
6 λmax

(
Σ−1

1,i

)
6 pmax.

4 Properties of strong convergence

Proposition 1 relies on bounding time until pt,i reaches and remains close to p∗i . Here we formalize a
corresponding notion of convergence, which we call “strong convergence”.

Define the p-norm ‖X‖p = (E [|X|p])1/p and let the space Lp consist of all measurable X with ‖X‖p < ∞.
We define a set of random variables that is ‘light-tailed‘, in the sense that it is in Lp for any p > 1.

Definition 1. For a real valued random variable X, we say X ∈ M if and only if ‖X‖p < ∞ for all p > 1.
Equivalently, M = ∩p>1Lp.

With this notion in place, we define a custom notion of convergence for random variables. To understand
this, it is helpful to start with the usual definition of almost sure convergence. For a sequence of random
variables {Xn} on a probability space (Ω,F , P), we say Xn → x almost surely if

P
(

ω : lim
n→∞

Xn(ω) = x
)
= 1.

If we explicitly write out the definition of a limit for a deterministic sequence, the condition for almost sure
convergence becomes

P (ω : ∀ε > 0 ∃N(ω) ∈N s.t. ∀n > N(ω) |Xn(ω)− x| 6 ε) = 1. (4)

This definition says that random quantities (e.g. empirical arm means) converge to a neighborhood of their
limit (e.g. population mean) eventually. A subtle issue for our analysis is that the expected time one needs to
wait could be infinite; that is, one could have E[N(ω)] = ∞ in (4). To bound quantities like the expected
stopping time of our best-arm algorithms, we rely on the following stronger notion of convergence.

Definition 2. For a sequence of real valued random variables {Xn}n∈N and a scalar x ∈ R, we say Xn
M−→ x if

for all ε > 0 there exists N ∈M such that for all n > N, |Xn − x| 6 ε.

We say Xn
M−→ ∞ if

for all c > 0 there exists N ∈M such that for all n > N, Xn > c.

Similarly, we say Xn
M−→ −∞ if −Xn

M−→ ∞. For a sequence of random vectors {Xn}n∈N taking values in Rd and

a vector x ∈ Rd, we say Xn
M−→ x if Xn,i

M−→ xi for all i ∈ [d]. Similarly, a sequence of random matrices converges
strongly to a fixed matrix if each element converges strongly.

To show the asymptotic convergence of the proposed algorithm’s sampling proportions on any sample
path, we could rely on a variety of powerful asymptotic tools to simplify our arguments. Our aim is to
develop a strategy for establishing this mode of convergence that inherits some of the elegance of sample
path analysis. To this end, we will develop here a number of convenient properties of the class of random
variables M and the strong convergence notion in Definition 2. We start by showing M is closed under many
natural operations. The most notable exception is exponentiation: a Gaussian random variable X ∈M, but
eeX

/∈M.

Lemma 1 (Closedness of M). Let any non-negative X, Y ∈M.
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A) aX + bY ∈M for any scalars a, b ∈ R.

B) XY ∈M.

C) max{X, Y} ∈M.

D) Xq ∈M for any q > 0.

E) If g : R→ R satisfies supx∈−[c,c] |g(x)| < ∞ for all c > 0 and |g(x)| = O(|x|q) as |x| → ∞ for some q > 0,
then g(X) ∈M.

F) If g : R→ R is continuous and |g(x)| = O(|x|q) as |x| → ∞ for some q > 0, then g(X) ∈M.

Proof. Parts A) and B) follow from subadditivity and submultiplicativity, respectively. Part C) holds due to
max{X, Y} 6 X + Y and part A). Part D) follows from Hölder’s inequality. To show part E) carefully, take
constants C1 and C2 such that |g(x)| 6 C2|x|q for all x with |x| > C1, and thus |g(X)| 6 supx∈[−C1,C1]

|g(x)|+
C2|X|q. Then Part E) holds due to part D). Part F) follows from part E), since continuous functions are
bounded on compact sets.

Clearly, many of these properties can be extended by induction to any finite collection of random variables
in M. For example, if Xi ∈M for each i ∈ [d] then

X1 + · · ·+ Xd ∈M and max{X1, . . . , Xd} ∈M.

For example, when d = 3 we see that X1 + X2 + X3 = (X1 + X2) + X3 ∈ M and max {X1, X2, X3} =
max {X1, max {X2, X3}} ∈M. Proceeding by induction in this manner establishes the claim. We can also
repeatedly compose many of the operations described in the above lemma. For example, by parts C), D)
and F), we have log(1 + (max{X, Y})2) ∈M whenever X, Y ∈M. We will freely use such properties in our
analysis.

Leveraging the properties of M established in the previous lemma allows for conclusions about the
notion of strong convergence in Definition 2. First, we show an equivalence between pointwise convergence
and convergence in the maximum norm.

Lemma 2. For a sequence of random vectors {Xn}n∈N taking values in Rd and a vector x ∈ Rd, if Xn
M−→ x, then

‖Xn − x‖∞
M−→ 0. Equivalently, if Xn,i

M−→ xi for all i ∈ [d], then for all ε > 0, there exists N ∈M such that n > N
implies |Xn,i − xi| 6 ε for all i ∈ [d].

Proof. Fix ε > 0. For each i ∈ [d], choose Ni such that n > Ni implies |Xn,i − xi| 6 ε. Then defining
N , max{N1, N2, . . . Nd}, we have that n > N implies ‖Xn − x‖∞ 6 ε. That N ∈M follows from Lemma
1.

Now we note a continuous mapping theorem for this stronger notion of convergence.

Lemma 3 (Continuous Mapping). For random sequence {Xn}n∈N and x taking values in a normed vector space:

A) If g is continuous at x, then Xn
M−→ x implies g(Xn)

M−→ g(x).

B) If the range of function g belongs to R and g(y)→ ∞ as y→ ∞, then Xn
M−→ ∞ implies g(Xn)

M−→ ∞.

Proof. We prove only part A) and the proof of part B) is similar. Fix any ε > 0. By continuity, there is some

δ > 0 such that ‖x′ − x‖ 6 δ implies |g(x′)− g(x)| 6 ε. Since Xn
M−→ x, there exists N ∈M such that n > N

implies ‖Xn − x‖ 6 δ. Hence, for n > N we have |g(Xn)− g(x)| 6 ε as desired. Here ‖ · ‖ can be any norm
on the vector space.
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5 Accuracy and confidence of beliefs in terms of maximal inequalities

In this section, we first introduce the maximal inequalities for controlling stochastic contexts, random
observations and randomized action selections. Then we can derive the accuracy and confidence of beliefs
in terms of these maximal inequalities.

5.1 Maximal inequalities

To control the impact of random contexts and observation noises, we define the following path-dependent
random variable

W1 , sup
(t,i)∈N×[k]

|mt,i − µ(θ, i, w)|
st,i
√

log (Nt,i + e)
. (5)

where we call the numerator prediction error. The prediction error is close to the standard error of the estimate
if observations were i.i.d. The term st,i in the denominator is the posterior standard deviation, which captures
the natural scale of error we’d might expect at a single time period. The term

√
log (Nt,i + e) corrects for the

fact that we are maximizing over times t.
Similarly, to control the impact of randomness in action selection, we introduce the path-dependent

random variable

W2 , sup
(t,i)∈N×[k]

|Nt,i −Ψt,i|√
(t + 1) log (t + e2)

(6)

where two measures of cumulative effort Nt,i and Ψt,i are defined in Equations (1) and (2).
Finally, the action selection is context independent. By Assumption 1, contexts are drawn i.i.d. with

second moment Λ = E
[
X1X>1

]
� 0. We would expect that when Nt,i is large, the posterior covariance

matrix
1

Nt,i + 1
Σ−1

t,i =
1

Nt,i + 1

[
Σ−1

1,i + σ−2
t−1

∑
`=1

1{I` = i}X`X>`

]
→ σ−2Λ.

To control the impact of i.i.d. contexts in updating the posterior covariance matrices, we define the following
path-dependent random variable

W3 , sup
(t,i)∈N×[k]

∥∥∥Σ−1
t,i − A−1

t,i

∥∥∥√
(Nt,i + 1) log (Nt,i + e)

where A−1
t,i , σ−2Λ(Nt,i + 1). (7)

The next lemma ensures that these maximal deviations are almost surely finite and light-tailed, in the
sense that all their moments are finite.

Lemma 4. Conditioned on θ, the random variables W1, W2 and W3 are elements of M. That is E[|Wi|p | θ = θ0] < ∞
for any θ0 and any p > 0.

The detailed proof of this result is presented in Section 8. By the definition of W2 and this result, we have
the following corollary.

Corollary 1. For each arm i ∈ [k],
Nt,i

t
− Ψt,i

t
M−→ 0.

5.2 Accuracy and confidence of beliefs with sufficient samples

We first provide the upper and lower bounds of s2
t,i, the posterior variance of the average reward of arm i at

time t, in terms of W3.
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Lemma 5. For any (t, i) ∈N× [k],

‖Xpop‖2

bmaxNt,i + pmax
6 s2

t,i 6
‖Xpop‖2(W3 + pmin)

pminbmin(Nt,i + 1)1/4 .1

Proof. The first inequality follows from

‖Σt,i‖ =

∥∥∥∥∥∥
(

Σ−1
1,i + σ−2

t−1

∑
`=1

1{I` = i}X`X>`

)−1
∥∥∥∥∥∥ > 1

pmax + bmaxNt,i

where we use σ−2‖X`X>` ‖ = σ−2‖X`‖2 6 bmax. This completes the proof of the lower bound.
Now we are going to show the upper bound. By the submultiplicative property of the spectral norm,

‖Σt,i − At,i‖ =
∥∥∥Σt,i At,i

(
A−1

t,i − Σ−1
t,i

)∥∥∥
6 ‖Σt,i‖ ‖At,i‖

∥∥∥Σ−1
t,i − A−1

t,i

∥∥∥
6

W3

pminbmin

√
log(Nt,i + e)

Nt,i + 1

6
W3

pminbmin(Nt,i + 1)1/4

where the second inequality follows from

‖Σt,i‖ 6 ‖Σ1,i‖ 6
1

pmin
and ‖At,i‖ =

‖σ2Λ−1‖
Nt,i + 1

6
1

bmin(Nt,i + 1)

as well as the definition of W3; the last inequality uses log(x + e) 6 (x + 1)1/2 for x > 0. Then by triangle
inequality,

‖Σt,i‖ 6 ‖Σt,i − At,i‖+ ‖At,i‖

6
W3

pminbmin(Nt,i + 1)1/4 +
1

bmin(Nt,i + 1)

6
W3 + pmin

pminbmin(Nt,i + 1)1/4 .

where the last inequality uses (x + 1)−1 6 (x + 1)−1/4 for x > 0. This completes the proof.

By the definition of W1 and Lemma 5, we can provide the following upper bound for each prediction
error in terms of the corresponding number of samples.

Corollary 2. For any (t, i) ∈N× [k],

|mt,i − µ(θ, i, w)| 6 W1‖Xpop‖
√

(W3 + pmin) log (Nt,i + e)
pminbmin(Nt,i + 1)1/4 .

Proof. By the definition of W1,

|mt,i − µ(θ, i, w)| 6 W1st,i

√
log (Nt,i + e) 6 W1

∥∥Xpop
∥∥√ (W3 + pmin) log (Nt,i + e)

pminbmin(Nt,i + 1)1/4

1In the denominator of the upper bound, the exponent 1/4 is not essential. It is just an arbitrarily chosen number in (0, 1/2).
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where the last inequality uses Lemma 5.

The above result implies the prediction error of the reward of an arm can be as small as possible if the
number of samples allocated to this arm is large enough, which is formalized in the next result.

Lemma 6. For all ε > 0, there exists Sε ∈M such that for all (t, i) ∈N× [k],

Nt,i > Sε =⇒ |mt,i − µ(θ, i, w)| 6 ε.

Proof. The result follows from Corollary 2 since there exists Sε ∈M such that for all (t, i) ∈N× [k],

Nt,i > Sε =⇒ W1
∥∥Xpop

∥∥√ (W3 + pmin) log (Nt,i + e)
pminbmin(Nt,i + 1)1/4 6 ε.

The next lemma says that if at least two arms have been sampled a sufficient number of times, then the
posterior probability assigned to the worse arm is exponentially small.

Lemma 7. There exists S ∈M such that for all t ∈N and arms i 6= j such that mt,j −mt,i > 0,

min
{

Nt,i, Nt,j
}
> S =⇒ mt,j −mt,i > ∆min/2 and αt,i 6 e−Q2

t,i,j/2

where ∆min = ∆min(θ) = mini 6=j |µ(θ, i, w)− µ(θ, j, w)| > 0 and

Qt,i,j ,
∆min

2
∥∥Xpop

∥∥ (W3+pmin
pminbmin

)1/2
(

1
N1/4

t,i +1
+ 1

N1/4
t,j +1

)1/2 .

Proof. Fix t ∈N and i 6= j such that mt,j −mt,i > 0. Let θ̃t be a sample drawn independently from Pt(θ ∈ ·).
Then

αt,i 6 Pt
(
µ(θ̃t, i, w)− µ(θ̃t, j, w) > 0

)
= Φ

− mt,j −mt,i√
s2

t,i + s2
t,j

 .

By Lemma 5, √
s2

t,i + s2
t,j 6

∥∥Xpop
∥∥(W3 + pmin

pminbmin

)1/2
 1

N1/4
t,i + 1

+
1

N1/4
t,j + 1

1/2

.

Next we lower bound mt,j −mt,i.
Set ε = ∆min/4 and take S∆min/4 in Lemma 6. If min

{
Nt,i, Nt,j

}
> S∆min/4, then

mt,j −mt,i =
∣∣mt,j −mt,i

∣∣
=
∣∣(µ(θ, j, w)− µ(θ, i, w)) +

(
mt,j − µ(θ, j, w)

)
− (mt,i − µ(θ, i, w))

∣∣
> |µ(θ, j, w)− µ(θ, i, w)| −

∣∣mt,j − µ(θ, j, w)
∣∣− |mt,i − µ(θ, i, w)|

> ∆min − ∆min/4− ∆min/4

= ∆min/2

where the first inequality uses the triangle inequality and the second inequality follows from Lemma 6, and
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thus

αt,i 6 Φ

− mt,j −mt,i√
s2

t,i + s2
t,j

 6 Φ
(
−Qt,i,j

)
6 e−Q2

t,i,j/2

where the last inequality uses Lemma 25. Taking S = S∆min/4 completes the proof.

6 Proof of sufficient exploration

As the first step to proving Proposition 1, we first show that under DTS, each arm is sufficiently explored.
This lets us apply results of an asymptotic style — for example results on the concentration of beliefs in
Section 7— throughout the remaining proofs of Proposition 1.

Note that, were we only interested in asymptotic results, we could guarantee a result like this by simply
interleaving random exploration phases in between phases where DTS is applied. This simplifies proofs and
is done in other papers. Here we are trying ot keep the algorithm simple, at the expense of considerable
effort in the proofs. The details of this proof are not used elsewhere, so the reader may, on first reading,
skip certain details.

Proposition 2. Under DTS applied with any uniformly strictly bounded {βt}, there exists T ∈M such that for all
t > T,

min
i∈[k]

Nt,i > t3/16.2

To prove this proposition, we need two major parts, and each of them requires a sequence of results. At a
high level the proof proceeds as follows.

1. In part 1, we define a set of insufficiently sampled arms. The complement of this set, the sufficiently
sampled set, contains arms that have been measured much more than the least sampled arm and for
which further measurement is not valuable at the moment.

2. In part 2, we show one of the two most promising arms – i.e. one of the two arms with highest posterior
probability of being optimal – is always insufficiently sampled.

3. In part 3, we use this to show DTS assigns a constant probability to measuring an arm from the
insufficiently sampled set. This is intuitive, as DTS is a randomized algorithm that tends to favor the
arms identified in part 2.

4. Part 4 uses the the pigeonhole principle. If we’re frequently measuring the insufficiently sampled arms,
then on average total the arms in that set must have received high measurement effort in the past.

5. Part 5 is mostly technical. We rewrite our results about the “measurement effort” assigned to arm i,
captured in terms of the chance of measuring an arm as in Ψt,i, in terms of the actual number of times
it was measured Nt,i.

6. In part 6, we observe that the definition of the insufficiently sampled set, requires that no arm in that
set is measured too much more than others. If parts 4/5 show some arms in the set are measured a lot,
they must all have been measured a lot. In particular, the least sampled arm is measured frequently.

6.1 Part 1: Definition of insufficiently sampled arms

We define a set of arms that are “insufficiently sampled”, in the sense that they have not been sampled too
much more than the least sampled arm. The intuition is that further sampling of sufficiently sampled arms,
would not be valuable, as the quality of these arms is comparatively very well understood.

2Similar to the exponent 1/4 in Lemma 5, the exponent 3/16 here is also arbitrarily chosen. We are not interested in the growth rate
of Nt,i (which later results reveal is linear), but in having as long as it is of the order tc for some c > 0.
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Precisely, for t ∈N and random variable R > 1 (almost surely), we define the insufficiently sampled set
UR

t based on the least sampled arm Jmin
t :

UR
t ,

{
i ∈ [k] : N1/4

t,i 6 R
(

Nt,Jmin
t

+ 1
)}

where Jmin
t ∈ arg min

j∈[k]
Nt,j. (8)

Note that R > 1 ensures Jmin
t ∈ UR

t for all t ∈ N. Here 1/4 is the same exponent in Lemma 5, which was
arbitrarily chosen among (0, 1/2). The dependence of this set on a (yet to be defined) random scalar R is a
subtlety required for establishing strong convergence. We will work with arbitrary R for now and later need
to show an adequate choice of R exists as some implicit function of W1, W2 and W3.

6.2 Part 2: An insufficiently sampled arm is always one of the two most promising
arms

We define the following auxiliary arms, representing the two “most promising arms”:

J(1)t ∈ arg max
i∈[k]

αt,i and J(2)t ∈ arg max
i 6=J(1)t

αt,i. (9)

The first part of the proof focuses on showing that either J(1)t , J(2)t or both belong to the insufficiently
sampled set parametrized by some R ∈M.

Lemma 8. There exists R ∈M such that for any t ∈N,

J(1)t /∈ UR
t =⇒ J(2)t ∈ UR

t .

To prove this result, we are concerned about the case where both of the most promising arms are
sufficiently sampled. The core of the proof is then contained in the next technical lemma, which effectively
rules out this concerning case. It shows that only one sufficiently sampled arm could ever be more promising
than all insufficiently sampled arms: the arm with highest estimated mean among those that were sufficiently
sampled.

To see the intuition behind this result, let set UR
t be the complement of insufficiently sampled set UR

t

and imagine that sufficiently sampled arms in UR
t had in fact been sampled an infinite number of times.

In that case, the posterior mean mt,i would be the arm true quality µ(θ, i, w) and the posterior variance st,i
would equal zero. Under the parameter class in Equation (12), each µ(θ, i, w) is unique, so every sufficiently
sampled arm in UR

t other than arg max
i∈UR

t
µ(θ, i, w) would have a zero chance of being optimal, while

insufficiently sampled arms in UR
t , having more uncertain quality, would still be believed to have some

chance of being optimal. The proof is a technical version of this argument that uses that uncertainty about
sufficiently sampled arms is an order of magnitude lower than uncertainty about some other arms (namely
Jmin
t ).

Lemma 9. There exists R ∈M such that for any t ∈N, if UR
t is nonempty,

A) arg max
i∈UR

t
mt,i is unique, and let IR

t , arg max
i∈UR

t
mt,i

B) for any arm i ∈ UR
t \

{
IR
t

}
, αt,i < maxj∈UR

t
αt,j.

Proof. Fix t ∈N. We first prove part A). Pick S as in Lemma 7 and consider R > S1/4. By the definition of
set UR

t ,
Nt,i >

[
R
(

Nt,Jt + 1
)]4 > S, ∀i ∈ UR

t . (10)

Then by Lemma 7, arg max
i∈UR

t
mt,i is unique, and let IR

t = arg max
i∈UR

t
mt,i.
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Now we are going to show part B). Fix arm i ∈ UR
t \

{
IR
t

}
. By Equation (10), min

{
Nt,i, N

t,IR
t

}
> S, and

thus by Lemma 7,

αt,i 6 e
−Q2

t,i,IR
t

/2
where Q

t,i,IR
t
=

∆min

2
∥∥Xpop

∥∥ (W3+pmin
pminbmin

)1/2
 1

N1/4
t,i +1

+ 1
N1/4

t,IR
t
+1

1/2 .

Recall the least sampled arm Jmin
t defined in Equation (8). By the definition of UR

t in (8), R > 1 ensures
Jmin
t ∈ UR

t , so maxj∈UR
t

αt,j > αt,Jmin
t

. Now it suffices to show αt,Jmin
t

is greater than the upper bound of αt,i

above. Denote θ̃t as a sample drawn independently from Pt(θ ∈ ·) and recall Ît ∈ arg maxj∈[k] mt,j. Then

αt,Jmin
t

= Pt

(
µ(θ̃t, Jmin

t , w)− µ(θ̃t, j, w) > 0, ∀j 6= Jmin
t

)
> Pt

(
µ(θ̃t, Jmin

t , w) > mt, Ît
; µ(θ̃t, j, w) 6 mt, Ît

, ∀j 6= Jmin
t

)
= Pt

(
µ(θ̃t, Jmin

t , w) > mt, Ît

)
∏

j 6=Jmin
t

Pt

(
µ(θ̃t, j, w) 6 mt, Ît

)

> 2−k+1Φ

(
−

mt, Ît
−mt,Jmin

t

st,Jmin
t

)

where the last equality follows from the independent posterior distributions, and the final inequality holds
because for each j 6= Jmin

t ,

mt,j 6 mt, Ît
=⇒ Pt

(
µ(θ̃t, j, w) 6 mt, Ît

)
> 1/2.

Now we are going to lower bound the argument −
mt, Ît
−mt,Jmin

t
st,Jmin

t

. By Lemma 5,

st,Jmin
t

>

∥∥Xpop
∥∥(

bmaxNt,Jmin
t

+ pmax

)1/2 ,

and by Corollary 2,

mt, Ît
−mt,Jmin

t
=
[
µ(θ, Ît, w)− µ(θ, Jmin

t , w)
]
+
[
mt, Ît
− µ(θ, Ît, w)

]
−
[
mt,Jmin

t
− µ(θ, Jmin

t , w)
]

6 ∆max + W1
∥∥Xpop

∥∥√W3 + pmin

pminbmin


√√√√ log

(
Nt, Ît

+ e
)

(Nt, Ît
+ 1)1/4 +

√√√√√ log
(

Nt,Jmin
t

+ e
)

(Nt,Jmin
t

+ 1)1/4


6 ∆max + c1W1

∥∥Xpop
∥∥√W3 + pmin

where ∆max(θ) , maxj∈[k] µ(θ, j, w)−minj∈[k] µ(θ, j, w); the last inequality follows from log(x+e)
(x+1)1/4 6 1.2 for

10
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x > 0 and c1 , 3√
pminbmin

. Hence,

αt,Jmin
t

> 2−k+1Φ

(
−

mt, Ît
−mt,Jmin

t

st,Jmin
t

)
> 2−k+1Φ

(
−Pt,Jmin

t

)
> 2−k+1e

−
(

Pt,Jmin
t

+
√

2π

)2
/2

where the last inequality uses the lower bound of Gaussian tail, (see Lemma 25), and

Pt,Jmin
t

,

(
∆max + c1W1‖Xpop‖

√
W3 + pmin

) (
bmaxNt,Jmin

t
+ pmax

)1/2∥∥Xpop
∥∥ .

The final step is using Lemma 10 below this proof to show the upper bound of αt,i is no more than the
lower bound of αt,Jmin

t
. Disregarding terms like W1 > 0 which are non-negative, we have

Pt,Jmin
t

> c2 where c2 ,
∆max p1/2

max∥∥Xpop
∥∥ > 0.

We notice that there exists R̃ ∈M (whose choice depends on constants like ∆max and is polynomial in W1

and W3, but independent of arms i, IR
n and Jmin

t ) such that for R > R̃,

i, IR
t ∈ UR

t i.e. min
{

N1/4
t,i , N1/4

t,IR
t

}
> R

(
Nt,Jmin

t
+ 1
)

implies

Q
t,i,IR

t

Pt,Jmin
t

=
∆min

2
(

W3+pmin
pminbmin

)1/2 (
∆max + c1W1‖Xpop‖

√
W3 + pmin

) bmax Nt,Jmin
t

+pmax

N1/4
t,i +1

+
bmax Nt,Jmin

t
+pmax

N1/4

t,IR
t
+1

1/2 > gc2,21−k

where gc2,21−k is defined in Lemma 10 below. Then by Lemma 10, the upper bound of αt,i is no more than the

lower bound of αt,Jmin
t

, and thus αt,i < αt,Jmin
t

. Taking R = max
{

1, R̃, S1/4
}

completes the proof.

Lemma 10 (Comparison of two exponential functions.). For any a, b > 0, there exists ga,b ∈ (0, ∞) such that

x > a and
y
x
> ga,b =⇒ e−y2/2

b · e−(x+
√

2π)
2
/2

< 1.

We omit the proof of Lemma 10 and instead proceed to complete the proof of Lemma 8.

Proof of Lemma 8. Fix t ∈ N. Pick R as in Lemma 9, and we are going to show if J(1)t /∈ UR
t then J(2)t ∈ UR

t .
If UR

t is empty, we are done. Now suppose UR
t is nonempty. By Lemma 9, the two “most promising arms”

11
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defined in Equation (9) can be rewritten as follows:

J(1)t = arg max
i∈[k]

αt,i = arg max
i∈UR

t ∪{IR
t }

αt,i, (11)

J(2)t = arg max
i 6=J(1)t

αt,i = arg max
i∈UR

t ∪{IR
t }\{J(1)t }

αt,i. (12)

Suppose J(1)t /∈ UR
t . By Equation (11), J(1)t = IR

t , in which case Equation (12) implies J(2)t ∈ UR
t . This

completes the proof.

6.3 Part 3: DTS assigns constant effort to the insufficiently sampled set in each period

Lemma 8 shows that at any time t ∈N, either J(1)t , J(2)t or both belong to the insufficiently sampled set UR
t .

We denote such an insufficiently sampled arm as

ĨR
t =

{
J(1)t if J(1)t ∈ UR

t ,

J(2)t otherwise .

Note that the identity of ĨR
t can change over time. In this part, we show that at any time t, DTS allocates

a decent amount of effort to ĨR
t . Think of this insufficiently sampled arm ĨR

t as a tool for showing that the
insufficiently sample set UR

t is measured.

Lemma 11. Take R in Lemma 9. Under DTS applied with any uniformly strictly bounded {βt}, for any t ∈N,

ψt, ĨR
t
>

βmin

k2

where βmin is defined in Equation (3).

Proof. Fix t ∈N. Recall for any arm i ∈ [k], αt,i = P(I∗ = i | Ht) and under DTS,

ψt,i = αt,i

(
βt + (1− βt)∑

j 6=i

αt,j

1− αt,j

)
.

By the definition of two “most promising arms” J(1)t and J(2)t in Equation (9), we have

α
t,J(1)t

>
1
k

and
α

t,J(2)t

1− α
t,J(1)t

>
1

k− 1
.

Hence, if ĨR
t = J(1)t ,

ψt, ĨR
t
= ψ

t,J(1)t
> α

t,J(1)t
βt >

βmin

k
;

otherwise,

ψt, ĨR
t
= ψ

t,J(2)t
> α

t,J(1)t

α
t,J(2)t

1− α
t,J(1)t

(1− βt) >
βmin

k(k− 1)
.

This completes the proof.
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6.4 Part 4: By the pigeonhole principle, in total a lot of measurement effort is assigned
to insufficiently sampled arms

Recall that Ψt,i = ∑t−1
`=1 ψ`,i is the total probability assigned to measuring arm i prior to time t. By taking the

average, we suggest that at most times, the "under-sampled" arm ĨR
` has actually had a lot of effort assigned

to it in the past. Think of the arm ĨR
` as a tool for helping us lower bound how much a representative arm

in insufficiently-sampled set has been sampled; the construction of the insufficiently-sampled set rules out
cases where one arm in this set is measured too much more than others, as will be made formal in the next
step of the proof.

Lemma 12. Take R in Lemma 9. Under DTS applied with any uniformly strictly bounded {βt}, for any t ∈N,

1
t

t

∑
`=1

Ψ`, ĨR
`
>

βmin(t− 1)
2k3 .

Proof. For any (t, i) ∈N× [k], we define

St,i ,
t−1

∑
`=1

1
{

i = ĨR
`

}
,

and then

Ψt,i =
t−1

∑
`=1

ψ`,i >
t−1

∑
`=1

1
{

i = ĨR
`

}
ψ`, ĨR

`
>

βmin

k2 St,i

where the last inequality follows from Lemma 11. Hence, for any t ∈N,

t

∑
`=1

Ψ`, ĨR
`
>

βmin

k2

t

∑
`=1

S`, ĨR
`

.

Now we are going to lower bound the RHS above.

t

∑
`=1

S`, ĨR
`
=

t

∑
`=1

k

∑
i=1

1
{

ĨR
` = i

}
S`,i =

k

∑
i=1

t

∑
`=1

1
{

i = ĨR
`

}
S`,i =

k

∑
i=1

St,i

∑
h=0

h

=
1
2

k

∑
i=1

(St,i + 1)St,i

(a)
>

1
2


(

∑k
i=1 St,i

)2

k
+

k

∑
i=1

St,i


(b)
=

1
2

[
(t− 1)2

k
+ (t− 1)

]
=

(t− 1)(t− 1 + k)
2k

>
(t− 1)t

2k

where step (a) applies Jensen’s inequality and step (b) follows from ∑k
i=1 St,i = t− 1.
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6.5 Part 5: From measurement effort to realized measurements

The next Lemma uses the definition of W2 from Section 5.1 to control deviations between the measurement
effort Ψt,i and the actual number of measurements collected Nt,i.

Lemma 13. Take R as in Lemma 9. Under DTS applied with any uniformly strictly bounded {βt}, there exist
(nonrandom) constant c1, c2 > 0 such that for any t ∈N,

1
t

t

∑
`=1

N`, ĨR
`
>

βmin(t− 1)
2k3 −W2

(
c1t3/4 + c2

)
.

Proof. There exist (nonrandom) constants c1, c2 > 0 such that for any t ∈N,

c1t3/4 + c2 >
√
(t + 1) log (t + e2),

and thus by the definition of W2, for any (t, i) ∈ N× [k],

Nt,i > Ψt,i −W2

√
(t + 1) log (t + e2) > Ψt,i −W2

(
c1t3/4 + c2

)
.

Then take R as in Lemma 9, and for any t ∈N,

1
t

t

∑
`=1

N`, ĨR
`
>

1
t

t

∑
`=1

Ψ`, ĨR
`
− 1

t

t

∑
`=1

W2

(
c1`

3/4 + c2

)
>

βmin(t− 1)t
2k3 −W2

(
c1t3/4 + c2

)
where the second inequality applies Lemma 12 and that `3/4 is increasing in `.

6.6 Part 6: Completing the proof by using the definition of the under-sampled set

We have just shown that lot of measurements are collected across time from some representative arm
ĨR
t chosen within the insufficiently sampled set. To complete the proof, we use the definition of of the

insufficiently sampled set to relate the number of measurements collected from the representative arm across
time to the minimal number of measurements taken from any arm.

Proof of Proposition 2. Take R, c1, c2 as in Lemma 13. Fix t ∈N. We have

R4
(

min
i∈[k]

Nt,i + 1
)4

>
1
t

t

∑
`=1

R4
(

min
i∈K

N`,i + 1
)4

>
1
t

t

∑
`=1

N`, ĨR
`

where the first inequality follows from that mini∈[k] N`,i is increasing in `; the second inequality holds since

by Lemma 8 and the definition of ĨR
` , we have ĨR

` ∈ UR
` , i.e., R4

(
mini∈[k] Nt,i + 1

)4
> Nt, ĨR

t
.

Therefore,

min
i∈[k]

Nt,i + 1 >
1
R

(
1
t

t

∑
`=1

N`, ĨR
`

)1/4

.

Then by Lemma 13,

min
i∈[k]

Nt,i + 1 >
1
R

(
1
t

t

∑
`=1

N`, ĨR
`

)1/4

>
1
R

[
βmin(t− 1)

2k3 −W2

(
c1t3/4 + c2

)]1/4

.
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Hence, mini∈[k] Nt,i > t3/16 whenever

βmin(t− 1)
2k3 −W2

(
c1t3/4 + c2

)
> R4

(
t3/16 + 1

)4
.

We only need t >
(
c3R4 + c4W2 + c5

)4 where c4, c4, c5 > 0 are nonrandom constants. This completes the

proof, as
(
c3R4 + c4W2 + c5

)4 ∈M.

7 Proof of Proposition 1: Strong convergence to the optimal propor-
tions

In this section, we complete the proof of Proposition 1. Restated in terms of, strong convergence notation,
our goal is to show two limits:

pt,i
M−→ p∗i and

Zt, Ît ,i

t
M−→ 2Γ−1

θ , ∀i ∈ [k]

Here p∗ and Γθ are the optimal sampling ratios and exponent given in (19).
To prove this proposition, we need a sequence of results that can be categorized into the following parts.

1. As shown in Subsection 6, DTS sufficiently explores all arms. In part 1, we use this to control the
asymptotic behavior of posterior means and variances under DTS.

2. In part 2, we show that under DTS, the fraction of samples allocated to the true best arm converges to
the optimal sampling proportion.

3. In part 3, building on the results in the previous parts, we show that under DTS, the fraction of samples
allocated to each suboptimal arm also converges to the optimal sampling proportion.

7.1 Part 1: Strong convergence of posterior means and variances under DTS

As shown in Subsection 6, under DTS, each arm is sufficiently explored. As the number of samples collected
from each arm tends to infinity, we expect estimated arm-means to converge to the truth. The next result
establishes this using the notion of strong convergence.

Lemma 14. Under DTS applied with any uniformly strictly bounded {βt},

mt,i
M−→ µ(θ, i, w), ∀i ∈ [k].

Proof. Fix arm i ∈ [k]. Fix any ε > 0. Take T as in Proposition 2 and Sε in Lemma 6. Then

t > Tε , max
{

T, S16/3
ε

}
=⇒ Nt,i > t3/16 > Sε =⇒ |mt,i − µ(θ, i, w)| 6 ε.

Lemma 14 and the definition of strong convergence immediately leads to that after enough periods have
elapsed, the empirically best arm, Ît = arg maxi∈[k] mt,i, is uniquely determined and always the true best
one, I∗ = arg maxi∈[k] µ(θ, i, w). Recall that I∗ is unique (see the parameter class in Equation (12)).

Corollary 3. Under DTS applied with any uniformly strictly bounded {βt}, there exists T ∈M such that for any
t > T, Ît = I∗.
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Later to prove the results in part 3, we need to better control each arm’s posterior variance. Recall that
s2

t,i = X>popΣt,iXpop is the posterior variance evaluated in the direction of the population-weights, Xpop.
Recall also that the posterior covariance matrix Σ−1

t,i = Σ−1
1,i + σ−2 ∑t−L

`=1 1{I` = i}X`X>` . The next result
shows that as the number of time periods tends to infinity (and so does the number of sampled allocated to
each arm by Proposition 2), the posterior variance σ2

t,i scales inversely with the number of samples allocated
to it, Nt,i. This is a faster rate than in the crude bound of Lemma 5.

Lemma 15. Under DTS applied with any uniformly strictly bounded {βt},

Nt,is2
t,i

M−→ σ2‖Xpop‖2
Λ−1 , ∀i ∈ [k].

Proof. Fix arm i ∈ [k]. By the definition of W3 in Equation (7),∥∥∥Σ−1
t,i − σ−2Λ(Nt,i + 1)

∥∥∥ 6 W3

√
(Nt,i + 1) log (Nt,i + e),

which implies ∥∥∥∥∥ Σ−1
t,i

Nt,i + 1
− σ−2Λ

∥∥∥∥∥ 6 W3

√
log (Nt,i + e)

Nt,i + 1
M−→ 0.

Since strong convergence is a new convergence concept, we justify last step explicitly. Fix any ε > 0. Fix a
(nonrandom) constant n0 such that for n > n0,

√
log(n + e)/(n + 1) 6 n−1/4. Take T ∈M as in Proposition

2 and define Sε , max
{

n0, (W3/ε)4}. Then

t > Tε , max
{

T, S16/3
ε

}
=⇒ Nt,i > t3/16 > Sε =⇒

∥∥∥∥∥ Σ−1
t,i

Nt,i + 1
− σ−2Λ

∥∥∥∥∥ 6 W3

N1/4
t,i

6 ε.

We have shown that (Nt,i + 1)−1Σ−1
t,i

M−→ σ−2Λ. Since the function f (E) = E−1 is continuous at each
point that is invertible, and Λ is invertible, the continuous mapping theorem in Lemma 3, implies (Nt,i +

1)Σt,i
M−→ σ2Λ−1. Again by the continuous mapping theorem, (Nt,i + 1)X>popΣt,iXpop

M−→ σ2X>popΛ−1Xpop =

σ2‖Xpop‖2
Λ−1 . Recalling s2

t,i = X>popΣt,iXpop give the result.

7.2 Part 2: DTS ensures strong convergence to optimal proportion for the best arm

In this section, we are going to show that under DTS applied with Algorithm 2, the empirical proportion of
the best arm strongly converges to its optimal proportion:

Proposition 3. Under DTS applied with Algorithm 2,

Nt,I∗

t
M−→ p∗I∗ .

By Corollary 1 that connects Nt,i and Ψt,i, it suffices to show

Lemma 16. Under DTS applied with Algorithm 2,

Ψt,I∗

t
M−→ p∗I∗ .

To prove this lemma, we need a sequence of results. The following one studies the limiting behavior
of the posterior beliefs (αt,i : i ∈ [k]) about the identity of the optimal arm. We show that this distribution
converges strongly to a point mass at the true best arm, I∗. This can be thought of as a result about the
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asymptotic consistency of the posterior distribution, but here stated in terms of a bespoke convergence
notion.

Lemma 17. Under DTS applied with any uniformly strictly bounded {βt},

αt,I∗
M−→ 1.

Proof. It is equivalent of showing αt,i
M−→ 0 for any i 6= I∗.

Fix i ∈ [k]. Take T in Corollary 3 as T1. For any t > T1, Ît = I∗, and then by Lemma 7,

Nt,i, Nt,I∗ > S =⇒ αt,i 6 e−Q2
t,i,I∗/2

where
Qt,i,I∗ =

∆min

2
∥∥Xpop

∥∥ (W3+pmin
pminbmin

)1/2
(

1
N1/4

t,i +1
+ 1

N1/4
t,I∗+1

)1/2 .

Note that there exists a (nonrandom) constant sε > 0 such that

Nt,i, Nt,I∗ > sε, =⇒ e−Q2
t,i,I∗/2 6 ε.

Now take T in Proposition 2 as T2. We have

t > max
{

T1, S16/3, s16/3
ε , T2

}
=⇒ Nt,i, Nt,I∗ > max{S, sε} =⇒ αt,i 6 e−Q2

t,i,I∗/2 6 ε.

This completes the proof.

In Algorithm 2, the optimal long-run sampling ratios p̂ = p∗(µt) is continuous in the plug-in posterior
mean vector µt. By Lemma 14, we immediately have the following result on the tuning parameter βt = p̂ Ît

Lemma 18. Under DTS applied with Algorithm 2,

βt
M−→ p∗I∗ .

Proof. Take T as in Corollary 3. For any t > T, Ît = I∗, and then Lemma 5 gives

βt =
1

1 + ∑i 6=I∗
(

∆2
t,iyt − 1

)−1

where ∆t,i = mt,I∗ − mt,i for i ∈ [k] and yt satisfies ∑i 6=I∗
(

∆2
t,iyt − 1

)−2
= 1. Similarly, by the proof of

Lemma 5 in Section D,

p∗I∗ =
1

1 + ∑i 6=I∗
(
∆2

i y∗ − 1
)−1

where ∆i = µ(θ, I∗, w)− µ(θ, i, w) for i ∈ [k] and y∗ satisfies ∑i 6=I∗
(
∆2

i y∗ − 1
)−2

= 1. By applying Lemma
14 and Lemma 3 (continuous mapping theorem), ∆2

t,i

yt
M−→ y∗ implies βt

M−→ p∗I∗ . Hence, it suffices to prove yt
M−→ y∗.

Fix any ε > 0. By Lemma 14 and Lemma 3 (continuous mapping theorem), there exists Tε ∈M such that
for any t > Tε,

|∆2
t,i − ∆2

i | 6 δ where δ ,
ε

y∗ + ε
min
i∈[k]

∆2
i .
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Next we are going to prove by contradiction that for any t > max{T, Tε}, |yt − y∗| 6 ε.
Suppose yt > y∗ + ε. Then

∑
i 6=I∗

(
∆2

t,iyt − 1
)−2

6 ∑
i 6=I∗

[
(∆2

i − δ)(y∗ + ε)− 1
]−2

< ∑
i 6=I∗

(
∆2

i y∗ − 1
)−2

= 1,

which contradicts ∑i 6=I∗
(

∆2
t,iyt − 1

)−2
= 1.

Now suppose yt < y∗ − ε. Then

∑
i 6=I∗

(
∆2

t,iyt − 1
)−2

> ∑
i 6=I∗

[
(∆2

i + δ)(y∗ − ε)− 1
]−2

> ∑
i 6=I∗

(
∆2

i y∗ − 1
)−2

= 1,

which again contradicts ∑i 6=I∗
(

∆2
t,iyt − 1

)−2
= 1. This completes the proof.

Now we are ready to complete the proof of Lemma 16.

Proof of Lemma 16. Under DTS, for any t ∈N,

ψt,I∗ = αt,I∗

[
βt + (1− βt) ∑

i 6=I∗

αt,i

1− αt,i

]
:= f (αt, βt).

The right hand side is a continuous function, f , of βt and αt := (αt,i : i ∈ [k]). We know βt
M−→ p∗I∗ and

αt
M−→ eI∗ , where ei is the ith standard basis vector. These follow by Corollary 18 and Lemma 17, respectively.

Therefore, by the continuous mapping theorem in Lemma 3, ψt,I∗
M−→ f (eI∗ , p∗I∗) = p∗I∗ .

We conclude by showing that ψt,I∗
M−→ p∗I∗ implies strong convergence of the Cesàro mean, in the sense

that 1
t ∑t

`=1 ψ`,I∗
M−→ p∗I∗ . To show this, fix arbitrary ε > 0 and pick T̃ε ∈ M such that for any t > T̃ε,

|ψt,I∗ − p∗I∗ | 6 ε/2. Then for any t > Tε , max
{

T̃ε, 2T̃ε/ε
}

,∣∣∣∣∣1t t

∑
`=1

ψ`,i − p∗I∗

∣∣∣∣∣ 6
∣∣∣∣∣1t T̃ε

∑
`=1

(ψ`,I∗ − p∗I∗)

∣∣∣∣∣+
∣∣∣∣∣∣1t

t

∑
`=T̃ε+1

(ψ`,I∗ − p∗I∗)

∣∣∣∣∣∣ 6 T̃ε

t
+

ε

2
6 ε.

Recalling Ψt,I∗ = ∑t−1
`=1 ψ`,I∗ completes the proof.

7.3 Part 3: Strong convergence to optimal proportions under DTS

In this section, we are going to show that under DTS, the empirical proportion of each arm strongly converges
to its optimal proportion, which completes the proof of Proposition 1.

The next lemma looks at the “z-scores” which appear from pairwise comparison between arms under
posterior beliefs. As Lemma 17 shows that posterior concentrates on the unique true best arm I∗, it is natural
to consider comparisons against this arm. Recall in Equation (13), we define the z-scores

Zt,I∗ ,j =
mt,I∗ −mt,j√

s2
t,I∗ + s2

t,j

, ∀j 6= I∗.

We show that asymptotically each z-score is approximated by a deterministic function of the proportion of
samples taken from the sub-optimal arm being compared. The key to the result is that Proposition 3 already
fixes the fraction of samples allocated to the best arm I∗.
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Lemma 19. For any arm j 6= I∗,

Zt,I∗ ,j√
t f j
(

pt,j
) M−→ 1 where pt,j =

Nt,j

t
and f j(pt,j) ,

µ(θ, I∗, w)− µ(θ, j, w)

σ‖Xpop‖Λ−1

√
(p∗I∗)

−1 + p−1
t,j

.

Proof. Fix j 6= I∗. By Proposition 3, pt,I∗
M−→ p∗I∗ > 0, and by Proposition 2, there exists T ∈M such that for

t > T, pt,j = Nt,j/t > 0. Then we have

Zt,I∗ ,j√
t f j(pt,j)

=
mt,I∗ −mt,j

µ(θ, I∗, w)− µ(θ, j, w)
·

σ‖Xpop‖Λ−1

√
(p∗I∗)

−1 + p−1
t,j√

ts2
t,I∗ + ts2

t,j

=
mt,I∗ −mt,j

µ(θ, I∗, w)− µ(θ, j, w)
·

σ‖Xpop‖Λ−1

√
(p∗I∗)

−1 + p−1
t,j√

Nt,I∗ s2
t,I∗

pt,I∗
+

Nt,js2
t,j

pt,j

M−→ 1

where the last step follows from Lemmas 14 and 15 and Proposition 3 imply

mt,j
M−→ µ(θ, j, w), Nt,js2

t,j
M−→ σ2‖Xpop‖2

Λ−1 and pt,I∗
M−→ p∗I∗ .

The result below is the key one for this part. It shows that, under DTS, if an arm has been sampled more
in the past than is prescribed under the optimal allocation, then its probability of being sampled this period
is exponentially small.

Lemma 20. For any ε > 0, there exist a deterministic constant cε > 0 and a random variable Tε ∈M such that for
any t > Tε and i 6= I∗,

Ψt,i

t
> p∗i + ε =⇒ ψt,i 6 exp(−cεt)

Proof. Fix ε > 0. It suffices to show that for any arm i 6= I∗, there exist a deterministic constant c(i)ε > 0 and a
random variable T(i)

ε ∈M such that for t > T(i)
ε ,

Ψt,i

t
> p∗i + ε =⇒ ψt,i 6 exp

(
−c(i)ε t

)
,

since taking Tε , maxi 6=I∗ T(i)
ε and cε , mini 6=I∗ c(i)ε completes the proof.

Throughout the remaining proof, we fix arm i 6= I∗. Under DTS,

ψt,i = αt,i

[
βt + (1− βt)∑

j 6=i

αt,j

1− αt,j

]
6 αt,iβt + αt,i(1− βt)

1
1− αt,I∗

6
αt,i

1− αt,I∗
.

Denote θ̃t as a sample drawn from Pt(θ ∈ ·). Then we have

αt,i 6 Pt
(
µ(θ̃t, i, w) > µ(θ̃t, I∗, w)

)
and

1− αt,I∗ = Pt
(
∃j 6= I∗ : µ(θ̃t, j, w) > µ(θ̃t, I∗, w)

)
> max

j 6=I∗
Pt
(
µ(θ̃t, j, w) > µ(θ̃t, I∗, w)

)
.

Therefore

ψt,i 6
Pt
(
µ(θ̃t, i, w) > µ(θ̃t, I∗, w)

)
maxj 6=I∗ Pt

(
µ(θ̃t, Jt, w) > µ(θ̃t, I∗, w)

) =
Φ (−Zt,I∗ ,i)

maxj 6=I∗ Φ
(
−Zt,I∗ ,j

) . (13)
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where each z-scores Zt,I∗ ,j is defined in Equation (13).

Now suppose the hypothesized condition Ψt,i
t > p∗i + ε holds. Recall that

1. Corollary 1 states pt,i −Ψt,i/t M−→ 0 where pt,i = Nt,i/t;

2. Proposition 3 states pt,I∗
M−→ p∗I∗ , which is equivalent to ∑j 6=I∗ pt,j

M−→ ∑j 6=I∗ p∗j .

Combining these two facts, we know there exists T̃ε ∈M such that for any t > T̃ε,

Ψt,i

t
> p∗i + ε =⇒ pt,i > p∗i +

ε

2
and ∃Jt 6= I∗ s.t. pt,Jt 6 p∗Jt

. (14)

In words, if arm i has been measured in a proportion of rounds that strictly exceeds the optimal proportion,
then some other arm Jt must have been under-sampled. Then by Equation (13) and Lemma 19, for any δ > 0,
there exists Tδ ∈M such that Tδ > T̃ε and for any t > Tδ,

Ψt,i

t
> p∗i + ε =⇒ ψt,i 6

Φ (−Zt,I∗ ,i)

Φ
(
−Zt,I∗ ,Jn

) 6
Φ
(
−
√

t fi(pt,i) · (1− δ))
)

Φ
(
−
√

t f Jt(pt,Jt) · (1 + δ)
) .

Since each f j(·) is a strictly increasing function, when Equation (14) holds, we have fi(pt,i) > fi(p∗i + ε/2)
and f Jt(pt,Jt) 6 f Jt(p∗Jt

) = fi(p∗i ). The final equality uses that f j(p∗j ) = fi(p∗i ) for any j 6= i, which is the
defining property of the vector p∗ given in Equation (20). Therefore, for any δ > 0, for t > Tδ,

Ψt,i

t
> p∗i + ε =⇒ ψt,i 6

Φ
(
−
√

t fi(p∗i + ε/2) · (1− δ))
)

Φ
(
−
√

t fi(p∗i ) · (1 + δ)
)

Pick a sufficiently small δ as a function of ε such that we have

c1 , fi(p∗i + ε/2) · (1− δ) > fi(p∗i ) · (1 + δ) , c2.

The result then follows by the limiting approximation Φ(−
√

tc1)/Φ(−
√

tc2) ≈ exp(−t(c2
1− c2

2)/2) for large
t, which can be made precise through the fact that 1

t log Φ(−
√

tx)→ −x2/2 as t→ ∞.

The result above shows that once enough time has passed, almost no further measurement effort is
allocated to arms which have been sampled more than its optimal proportion. One expects then that
sampling proportions should self-correct; those that have been sampled too much are not sampled until
their proportions re-align to the desired level and they cannot become over-sampled again. The proof of this
result formalized this intuition.

Lemma 21. For any ε > 0, there exists Tε ∈M such that for any t > Tε and i ∈ [k],

Ψt,i

t
6 p∗i + ε.

Proof. It suffices to prove this statement only for i 6= I∗ since Lemma 16 already handle the cases for i = I∗.
Fix some i 6= I∗ and ε > 0. By Lemma 20, there exists cε > 0 and T̃ε ∈M (whose choice depends on ε)

such that for any t > T̃ε and i 6= I∗,

Ψt,i

t
> p∗i +

ε

2
=⇒ ψt,i 6 exp (−cεt) .

Define κε , ∑∞
`=1 exp (−cε`) < ∞.
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We provide two different upper bounds on 1
t Ψt,i for t > T̃ε, by separately considering two cases.

In the first case, suppose that ∀` ∈
{

T̃ε, T̃ε + 1, . . . , t− 1
}

, Ψ`,i
` > p∗i +

ε
2 . Then we have the bound

Ψt,i

t
=

1
t

T̃ε−1

∑
`=1

ψ`,i +
1
t

t−1

∑
`=T̃ε

ψ`,i =
1
t

T̃ε−1

∑
`=1

ψ`,i +
1
t

t−1

∑
`=T̃ε

ψ`,i1
(

Ψ`,i

`
> p∗i +

ε

2

)
6

1
t

T̃ε − 1 +
t−1

∑
`=T̃ε

exp (−cε`)


6

1
t
(
T̃ε − 1 + κε

)
.

In the alternative case, where ∃` ∈
{

T̃ε, T̃ε + 1, . . . , t− 1
}

, Ψ`,i
` < p∗i +

ε
2 , define

Lt , max
{
` ∈

{
T̃ε, T̃ε + 1, . . . , t− 1

}
:

Ψ`,i

`
< p∗i +

ε

2

}
.

Then we have the bound

Ψt,i

t
=

1
t

Lt−1

∑
`=1

ψ`,i +
ψLt ,i

t
+

1
t

t−1

∑
`=Lt+1

ψ`,i =
ΨLt ,i

t
+

ψLt ,i

t
+

1
t

t−1

∑
`=Lt+1

ψ`,i1
(

Ψ`,i

`
> p∗i +

ε

2

)

6
(

p∗i +
ε

2

)
+

1
t
+

1
t

t−1

∑
`=Lt+1

exp (−cε`)

6
(

p∗i +
ε

2

)
+

1
t
(1 + κε)

Putting these together the two cases, we find that for any t > T̃ε,

Ψt,i

t
6 max

{
1
t
(
T̃ε − 1 + κε

)
,
(

p∗i +
ε

2

)
+

1
t
(1 + κε)

}
6
(

p∗i +
ε

2

)
+

T̃ε + 2κε

t
.

Then we have

t > Tε ,
2
(
T̃ε + 2κε

)
ε

=⇒ Ψt,i

t
6 p∗i + ε.

Since T̃ε ∈M, so does Tε. This completes the proof.

The above result shows that no arm is over sampled in the asymptotic regime, which further implies that
no arm is under sampled since the summation of empirical sampling proportions always equals one. With
this, we complete the proof of Proposition 1 part 1.

Proof of Proposition 1 part 1. Fix i ∈ [k]. By Lemma 21, there exists T̃ε ∈M such that for any t > T̃ε,

Ψt,j

t− 1
6 p∗j +

ε

k− 1
, ∀j ∈ [k],

and thus
Ψt,i

t− 1
= 1−∑

j 6=i

Ψt,j

t− 1
> 1−∑

j 6=i

(
p∗j +

ε

k− 1

)
= p∗i − ε.

Hence, Ψt,i
t

M−→ p∗i , and by Corollary 1, Nt,i
t

M−→ p∗i .
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7.4 Proof of Proposition 1 part 2: Strong convergence of z-scores

Proof of Proposition 1 part 2. Fix j ∈ [k]. By Corollary 3, there exists T ∈M such that

t > T =⇒ Ît = arg max
i∈[k]

mt,i = I∗ =⇒ Zt, Ît ,j = Zt,I∗ ,j =
mt,I∗ −mt,j√

s2
t,I∗ + s2

t,j

=
√

2tΓ−1
t,j .

By Lemmas 14 and 15 and Proposition 1 part 1, for i ∈ {j, I∗},

mt,i
M−→ µ(θ, i, w) and ts2

t,i =
t

Nt,i
Nt,is2

t,i
M−→

σ2‖Xpop‖2
Λ−1

p∗i
,

Since the above expression Z2
t,I∗ ,j is a continuous function of

(
mt,I∗ , mt,j, ts2

t,I∗ , ts2
t,j

)
, we have that

Z2
t,I∗ ,i

t
M−→ (µ(θ, I∗, w)− µ(θ, j, w))2

σ2‖Xpop‖2
Λ−1

[
(p∗I∗)

−1 + (p∗j )
−1
] = 2Γ−1

θ .

8 Proof of Lemma 4 in Section 5

In this section, we show that for each (path-dependent) random variable W1, W2, W3 defined in Section 5, its
moment generating function is bounded, which completes the proof of Lemma 4 in Section 5.

8.1 Maximal inequality for prediction errors

Recall that to control the impact of random contexts and observation noises, we introduce the following
path-dependent random variable in Equation (5):

W1 = sup
(t,i)∈N×[k]

|mt,i − µ(θ, i, w)|
st,i
√

log (Nt,i + e)
.

The following lemma extends Lemma 5 in Qin et al. [2017] to our problem here with i.i.d. contexts.

Lemma 22. Under Assumption 1, for any λ ∈ R, E[eλW1 ] < ∞.

As discussed in Subsubsection F.1.1, to simulate an algorithm, we could generate all the randomness
upfront by using the so-called latent reward and context tables. We define the following counterpart of W1:

W̃1 , sup
(n,i)∈N0×[k]

|m̃n,i − µ(θ, i, w)|
s̃n,i
√

log(n + e)
.

where m̃n,i and s̃n,i are defined in Equation (43). If every arm is played infinitely often, W1 = W̃1. One always
has W1 6 W̃1, so it suffices to prove the moment generating functions for W̃1 is bounded.

Proof of Lemma 22. We define

W̃1,1 , sup
(n,i)∈N0×[k]

∣∣m̃n,i − µ(θ, i, w)− B̃n,i
∣∣

s̃n,i
√

log(n + e)
and W̃1,0 , sup

(n,i)∈N0×[k]

∣∣B̃n,i
∣∣

s̃n,i
√

log(n + e)

where the bias B̃n,i is defined in Lemma 21. By triangle inequality, we have W̃1 6 W̃1,0 + W̃1,1, and thus it
suffices to show the boundedness of moment generating functions for W̃1,0 and W̃1,1, respectively.
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We first bound W̃1,0. By the first bound in Lemma 21,

W̃1,0 6 sup
(n,i)∈N0×[k]

‖µ̃0,i − θ(i)‖Σ̃−1
0,i√

log(n + e)
= max

i∈[k]
‖µ̃0,i − θ(i)‖Σ̃−1

0,i
.

Since W̃1,0 is bounded by a constant, its moment generating function of W̃1,0 is bounded.
Next we analyze W̃1,1. Note that when n = 0,∣∣m̃0,i − µ(θ, i, w)− B̃0,i

∣∣ = 0, ∀i ∈ [k].

Hence, we only need to consider n > 1, and thus

W̃1,1 = sup
(n,i)∈N×[k]

∣∣m̃n,i − µ(θ, i, w)− B̃n,i
∣∣

s̃n,i
√

log(n + e)
.

where we replace N0 with N.
Let X ,

{
X̃n′ ,i′

}
(n′ ,i′)∈N×[k] be the context table. Then for all x > 2,

P
(
W̃1,1 > 2x | X

)
=P

(
∃(n, i) ∈N× [k] :

∣∣m̃n,i − µ(θ, i, w)− B̃n,i
∣∣

s̃n,i
√

log(n + e)
> 2x | X

)

6 ∑
i∈[k]

∑
n∈N

P


∣∣m̃n,i − µ(θ, i, w)− B̃n,i

∣∣√
s̃2

n,i −
∥∥Σ̃n,iXpop

∥∥2
Σ̃−1

0,i

> 2x
√

log(n + e) | X


62k ∑

n∈N

exp
(
−2x2 log(n + e)

)
62k ∑

n∈N

exp
(
−x2 − 2 log(n + e)

)
=ce−x2

where c , 2k ∑n∈N(n + e)−2 < ∞; the inequalities follow from the union bound, Lemmas 21 and 25, and
ab > a + b when a, b > 2, respectively. By integrating over the context table X =

{
X̃n,i

}
(n,i)∈N×[k],

P
(
W̃1,1 > 2x

)
6 ce−x2

, ∀x > 2.

It is clear that E
[
eλW̃1,1

]
< ∞ for λ 6 0. Then for λ > 0,

E
[
eλW̃1,1

]
=
∫ ∞

x=1
P
(

eλW̃1,1 > x
)

dx
(∗)
=

∞∫
u=0

P
(

eλW̃1,1 > e2λu
)

2λe2λudu

= 2λ
∫ 2

u=0
P
(
W̃1,1 > 2u

)
e2λudu + 2λ

∫ ∞

u=2
P
(
W̃1,1 > 2u

)
e2λudu

6 (e4λ − 1) + 2λc
∫ ∞

u=2
e−u2 · e2λudu < ∞

where in step (∗), we have substituted x = e2λu. This concludes the proof.
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8.2 Maximal inequality for randomized action selections

To control the impact of randomness in action selection, we introduce the path-dependent random variable
in Equation (6):

W2 = sup
(t,i)∈N×[k]

|Nt,i −Ψt,i|√
(t + 1) log (t + e2)

where two measures of cumulative effort Nt,i and Ψt,i are defined in Equations (1) and (2).
Although Shang et al. [2020] studies the problem without contexts, the following lemma also applies to

our contextual problem.

Lemma 23 (Lemma 4 in Shang et al. [2020]). For any λ ∈ R, E[eλW2 ] < ∞.

8.3 Maximal inequality for posterior covariance matrices

To control the impact of i.i.d. contexts in updating the posterior covariance matrices, we introduce the
following path-dependent random variable in Equation (7):

W3 = sup
(t,i)∈N×[k]

∥∥∥Σ−1
t,i − A−1

t,i

∥∥∥√
(Nt,i + 1) log (Nt,i + e)

where

Σ−1
t,i = Σ−1

1,i + σ−2
t−1

∑
`=1

1{I` = i}X`X>` and A−1
t,i = σ−2Λ(Nt,i + 1).

Recall that Λ = E[X1X>1 ]. The following result shows that its moment generating function is bounded.

Lemma 24. Under Assumption 1, for any λ ∈ R, E[eλW3 ] < ∞.

As discussed in Subsubsection F.1.1, to simulate an algorithm, we could generate all the randomness
upfront by using the so-called latent reward and context tables. We define the following counterpart of W3:
Recall in Equation (42),

Σ̃n,i =

(
Σ̃−1

0,i + σ−2
n

∑
`=1

X̃`,iX̃>`,i

)−1

.

We define the counterpart of W3:

W̃3 , sup
(n,i)∈N0×[k]

∥∥∥Σ̃−1
n,i − σ−2Λ(n + 1)

∥∥∥√
(n + 1) log (n + e)

.

where

Σ̃−1
n,i = Σ̃−1

0,i + σ−2
n

∑
`=1

X̃`,iX̃>`,i.

is defined in Equation (42). If every arm is played infinitely often, W3 = W̃3. One always has W3 6 W̃3, so it
suffices to prove the moment generating function of W̃3 is bounded.

Proof. We further decompose W̃3 into

W̃3,0 , sup
(n,i)∈N0×[k]

∥∥∥Σ̃−1
0,i − σ−2Λ

∥∥∥√
(n + 1) log (n + e)

and W̃3,1 , sup
(n,i)∈N×[k]

‖Qn,i‖√
(n + 1) log (n + e)
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where

Qn,i ,
n

∑
`=1

(
σ−2X̃`,iX̃>`,i − σ−2Λ

)
.

By triangle inequality, we have W̃3 6 W̃3,0 + W̃3,1. To prove Lemma 24, it suffices to show the boundedness

of the moment generating functions of W̃3,0 and W̃3,1, respectively. Since W̃3,0 = maxi∈[k]

∥∥∥Σ̃−1
0,i − σ−2Λ

∥∥∥ is a
constant, its moment generating function is clearly bounded.

Now we analyze W̃3,1. By triangle inequality,∥∥∥σ−2X̃`,iX̃>`,i − σ−2Λ
∥∥∥ 6 ∥∥∥σ−2X̃`,iX̃>`,i

∥∥∥+ ∥∥∥σ−2Λ
∥∥∥ 6 2bmax

where bmax is defined in Section 3. This gives(
σ−2X̃`,iX̃>`,i − σ−2Λ

)2
6 4b2

max I.

Let X ,
{

X̃n′ ,i′
}
(n′ ,i′)∈N×[k] be the context table. By applying Lemma 26 (Matrix Hoeffding), for all x > 0,

P (‖Qn,i‖ > x | X) = P

(∥∥∥∥∥ n

∑
`=1

(
σ−2X̃`,iX̃>`,i − σ−2Λ

)∥∥∥∥∥ > x | X

)

6 2d · exp
(
−x2

32nb2
max

)
.

Then for all x > 16bmax,

P
(
W̃3,1 > x | X

)
=P

(
∃(n, i) ∈N× [k] : ‖Qn,i‖ > x

√
(n + 1) log(n + e) | X

)
6 ∑

i∈[k]
∑

n∈N

P

(
‖Qn,i‖ > x

√
(n + 1) log(n + e) | X

)

62dk ∑
n∈N

exp
(
− x2 log(n + e)

32b2
max

)
62dk ∑

n∈N

exp
(
− x2

64b2
max
− 2 log(n + e)

)

=ce
− x2

64b2
max

where c , 2dk ∑n∈N(n + e)−2 < ∞ is a constant; the first and third inequalities follow from the union bound
and ab > a + b when a, b > 2, respectively. By integrating over the context table X =

{
X̃n,i

}
(n,i)∈N×[k],

P
(
W̃3,1 > x

)
6 ce

− x2

64b2
max , ∀x > 0.
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It is clear that E
[
eλW̃3,1

]
< ∞ for λ 6 0. Then for λ > 0,

E
[
eλW̃3,1

]
=
∫ ∞

x=1
P
(

eλW̃3,1 > x
)

dx
(∗)
=

∞∫
u=0

P
(

eλW̃3,1 > eλu
)

λeλudu

= λ
∫ 16bmax

u=0
P
(
W̃3,1 > u

)
eλudu + λ

∫ ∞

u=16bmax
P
(
W̃3,1 > u

)
eλudu

6 λ
∫ 16bmax

u=0
eλudu + λc

∫ ∞

u=16bmax
e
− u2

64b2
max · eλudu < ∞

where in step (∗), we have substituted x = eλu. This concludes the proof.

9 Technical lemmas

Lemma 25 (Upper and Lower Bounds of Gaussian Tail). Let X ∼ N (0, 1). Then, for all x > 0,

e−(x+
√

2π)
2
/2 6 P(X 6 −x) = P(X > x) 6 e−x2/2.

Proof. The upper bound is well-known. Now we are going to prove this version of the lower bound.

P(X > x) =
∫ ∞

x

1√
2π

e−z2/2dz

=
∫ ∞

0

1√
2π

e−(x+u)2/2du

>
∫ √2π

0

1√
2π

e−(x+u)2/2du

>
∫ √2π

0

1√
2π

e−(x+
√

2π)
2
/2du

> e−(x+
√

2π)
2
/2.

Lemma 26 (Matrix Hoeffding [Tropp, 2012]). Consider a finite sequence {Xn} of independent, random, self-adjoint
matrices with dimension d and a sequence {Yn} of fixed self-adjoint matrices. Assume that each random matrix satisfies

E[Xn] = 0 and X2
n � Y2

n almost surely.

Then, for all x > 0,

P

(∥∥∥∥∥∑n
Xn

∥∥∥∥∥ > x

)
6 2d · exp

(
−x2

8 ‖∑n Y2
n‖

)
.
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