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Abstract

Fine-grained classification via LLMs is sus-001
ceptible to more complex label biases com-002
pared to traditional classification tasks. Exist-003
ing bias mitigation strategies, such as retraining,004
post-hoc adjustment, and parameter-efficient005
fine-tuning (PEFT) are primarily effective for006
simple classification biases, such as stereo-007
types, but fail to adequately address prediction008
propensity and discriminative ability biases. In009
this paper, we analyze these two bias phenom-010
ena and observe their progressive accumula-011
tion from intermediate to deeper layers within012
LLMs. To mitigate this issue, we propose a013
bias-aware optimization framework that incor-014
porates two distinct label balance constraints015
with a PEFT strategy targeting an intermediate016
layer. Our approach adjusts less than 1% of the017
model’s parameters while effectively curbing018
bias amplification in deeper layers. Extensive019
experiments conducted across 12 datasets and020
5 LLMs demonstrate that our method consis-021
tently outperforms or matches the performance022
of full-parameter fine-tuning and LoRA, achiev-023
ing superior results with lower perplexity.024

1 Introduction025

Large language models (LLMs) have demonstrated026

exceptional capabilities across a wide range of nat-027

ural language processing (NLP) tasks (Qin et al.,028

2023; Li et al., 2024; Wei et al., 2022, 2023; Huo029

et al., 2023). Among these, fine-grained classifi-030

cation via LLMs (figcLLM) has gained significant031

attention in practical applications such as mental032

health assessment, recommendation systems, and033

conversational AI, owing to its ability to capture034

subtle distinctions between labels (Zhang and Guo,035

2024; Luna-Jimenéz et al., 2024; Lin et al., 2025;036

Zhao et al., 2024; Xie and Pu, 2021; Welivita et al.,037

2021).038

However, figcLLM introduces complex label bi-039

ases that are not typically observed in traditional040

Figure 1: Average predicted logits of Gemma2-9b-
it (Team, 2024) for each emotion label in TweetEmotion
dataset (Mohammad et al., 2018). Figure (a) shows
results for fine-grained categories, while Figure (b) dis-
plays results for coarse-grained categories.

classification tasks. Specifically, we have iden- 041

tified two distinct types of bias: (1) prediction 042

propensity bias, where the model assigns dispro- 043

portionately high probabilities to labels associated 044

with high-frequency words from its pretraining cor- 045

pus, and (2) discriminative ability bias, where 046

the model struggle to differentiate between posi- 047

tive and negative samples for certain low-frequency 048

labels. 049

Taking emotion detection as a case study, as illus- 050

trated in Figure 1, among the 11 emotion categories, 051

the model assigns significantly higher probabilities 052

to “anger” and “joy” compared to “pessimism” and 053

“anticipation” due to the higher frequency of “anger” 054

and “joy” in pretrain corpus. This demonstrates 055

LLM outputs a clear preference for high-frequency 056

emotion categories. Moreover, the model exhibits 057

weak discriminability on “anticipation” and “trust”, 058

often producing nearly identical outputs regardless 059

of whether these labels are present in the samples. 060

Interestingly, when the same dataset was evalu- 061

ated using coarse-grained labels (“positive”, “neg- 062

ative”), these two phenomena were largely miti- 063

gated. It suggests that these two biases are closely 064

linked to the complex and fine-grained task with 065

low-frequency words as labels, which are typically 066
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absent in traditional classification tasks, thereby067

rendering these biases less noticeable.068

Existing approaches to mitigating traditional la-069

bel bias, such as stereotypes bias (Gira et al., 2022;070

Guo et al., 2022) and emotion bias (Fei et al., 2023;071

Hassan and Alikhani, 2023), can be broadly cate-072

gorized into three groups: post-hoc correction tech-073

niques (Zhao et al., 2021; Fei et al., 2023; Yang074

et al., 2024; Mamta et al., 2024), full model re-075

training or fine-tuning (Thakur et al., 2023; Hassan076

and Alikhani, 2023; Zhou et al., 2023; He et al.,077

2022; Guo et al., 2022), and parameter-efficient078

fine-tuning (PEFT) (Hu et al., 2021; Gira et al.,079

2022; Xie and Lukasiewicz, 2023). Post-hoc meth-080

ods primarily focus on correcting the model’s fi-081

nal outputs while overlooking the underlying pro-082

cess of bias propagation and accumulation from083

intermediate layers to deep layers (Section 3). Al-084

though retraining-based approaches can be effec-085

tive by adjusting the model’s internal representa-086

tions, they are computationally intensive and sus-087

ceptible to catastrophic forgetting when applied to088

LLMs (Kirkpatrick et al., 2017; Gira et al., 2022).089

PEFT provides a trade-off between computational090

efficiency and adaptability, achieving performance091

comparable to full fine-tuning. Nevertheless, it092

struggles with figcLLM tasks, as it fails to explic-093

itly address the intertwined nature of biases related094

to both prediction propensity and discriminative095

ability.096

To mitigate these two biases, we propose a bias-097

aware optimization framework that incorporates098

two distinct loss functions, each targeting a specific099

bias type. First, to mitigate prediction propensity100

bias, we introduce a constraint that regulates the101

logits distribution across labels, ensuring a more102

balanced prediction tendency. Second, to enhance103

discriminative ability, we employ a contrastive loss104

that strengthens the model’s capacity to distinguish105

between positive and negative samples for each106

specific label.107

Furthermore, to reduce the amount of parame-108

ters for fine-tuning, we use interchange ablation109

to identify early layers where bias starts to propa-110

gate and key parameters which cause most effects111

on outputs. This enables targeted intervention at a112

certain layer to suppress bias accumulation as the113

model depth increases.114

Through extensive experiments across 5 LLMs115

and 12 datasets, we demonstrate that our proposed116

approach effectively mitigates label bias, leading to117

improved classification performance and more bal-118

anced label predictions. Our method not only out- 119

performs post-hoc correction techniques but also 120

achieves results comparable to or exceeding those 121

of full fine-tuning and PEFT-based methods, while 122

maintaining lower perplexity. 123

Our main contributions are as follows. 124

(1) We identify and analyze two specific phe- 125

nomena of fine-grained label biases in LLMs and 126

reveal that these biases originate from the progres- 127

sive accumulation of erroneous predictions in in- 128

termediate layers, which become amplified in the 129

deeper layers. 130

(2) We propose a simple yet PEFT strategy, in- 131

corporating two bias balance losses. This approach 132

requires adjusting less than 1% of the total parame- 133

ters. 134

(3) We conduct extensive experiments, demon- 135

strating the effectiveness of our method in figcLLM 136

tasks while showcasing its adaptability to other do- 137

mains. 138

2 Related Works 139

Label bias. Existing works used to mitigate la- 140

bel bias can be roughly divided into three cat- 141

egories. (1) Retraining-based approaches. De- 142

pending on whether they involve data manipula- 143

tion or not, these methods are further divided into 144

two strategies: data-based and algorithm-based 145

(Thakur et al., 2023). The former balances the 146

training dataset through techniques such as coun- 147

terfactual data generation or resampling (Xie and 148

Lukasiewicz, 2023; He et al., 2022; Thakur et al., 149

2023), while algorithm-based approaches modify 150

the architecture or training constraints (Zhou et al., 151

2023; Hassan and Alikhani, 2023). However, they 152

are difficult to apply to fine-grained tasks or are 153

computationally expensive. (2) PEFT-based meth- 154

ods. Gira et al. (2022) proposed a new fine-tuning 155

strategy by adding a linear to the input and out- 156

put of the model and unfreezing some parameters. 157

(3) Post-hoc approaches: These methods attempt to 158

correct label biases after the model has made its pre- 159

dictions. For example, CC (Zhao et al., 2021) and 160

DC (Fei et al., 2023) recalibrate predictions based 161

on the unbalanced probability distributions gener- 162

ated by the model for free-text inputs (e.g.,“N/A” 163

or random tokens). Additionally, Yang et al. (2024) 164

pruned the top-K neurons contributing most to bi- 165

ased labels. Although these post-hoc approaches 166

mitigate bias to some extent, they predominantly 167

focus on adjusting the label probabilities in the final 168
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(a) Contain of each label

(b) Distinguish ability of specific labels

Figure 2: The changing trend of Contain,
NOT Contain of labels in the Gemma2 (9B)
model from 20th layer to 37th layer.

output or target only a limited, discrete subset of169

neurons. As a result, they overlook the ongoing ac-170

cumulation of bias within the intermediate layers of171

the model, making it challenging to fundamentally172

address the root causes of bias.173

Intermediate layers. Recent studies have inves-174

tigated the effectiveness of intermediate layers in175

large language models (Skean et al., 2024; Chen176

et al., 2024b; Sawtell et al., 2024; Valeriani et al.,177

2023). Valeriani et al.’s (2023) work demonstrated178

that the semantic information is better expressed179

at the intermediate layers. In a similar vein, Skean180

et al. (2024) and Sawtell et al. (2024) observed181

that the intermediate layers of a transformer-based182

model yield superior performance on various down-183

stream tasks, including classification of embed-184

dings. Our approach further reveals that the in-185

fluence of bias is markedly diminished in the inter- 186

mediate layers compared to the deeper layers, and 187

we also show how the hidden state of the interme- 188

diate layer can be used to efficiently train a fairer 189

LLMs for a wide range of tasks. 190

3 Bias Accumulation Analysis 191

To investigate the dynamics and effects of bias 192

within the model, we performed a visual anal- 193

ysis on the TweetEmotion dataset (Mohammad 194

et al., 2018) using an early exit strategy (Teerapit- 195

tayanon et al., 2016; Elbayad et al., 2020; Schuster 196

et al., 2022). This method applies language heads 197

(lm_head), which is a unembedding matrix, di- 198

rectly to the hidden states of intermediate layers. 199

We first randomly sampled a class-balanced sub- 200

set from training data and conducted evaluation 201

under a zero-shot setting, without explicit instruc- 202

tions. For each target label, we divided the samples 203

into two types: those whose true label contained the 204

target label (Contain) and those whose true label 205

did not (NOT Contain). Using the Gemma2-9b- 206

it model, we predicted the target labels at each 207

layer and calculated the mean logits for each of 208

the two sample sets. For instance, for the label 209

“anger”, we recorded the logits as Containanger 210

and NOT Containanger, respectively. 211

The experimental results are presented in Fig- 212

ure 2 (a-b). Figure 2a illustrates the vari- 213

ation of Contain across all labels with re- 214

spect to model depth, while Figure 2b compares 215

the depth-dependent changes in Contain and 216

NOT Contain of both the high-frequency word 217

(“anger”) and low-frequency words (“anticipation” 218

and “trust”), providing a clear contrast. From these 219

figures, we observe that fine-grained label biases 220

exist even in the intermediate layers: 221

(1) Preference for high-frequency labels. In Fig- 222

ure 2a, the Contain values for high-frequency la- 223

bels (e.g., “anger”, “sadness”, “joy”) are consis- 224

tently higher than those for low-frequency labels 225

(e.g., “anticipation”, “trust”, “pessimism”). Fur- 226

thermore, the gap between high- and low-frequency 227

labels grows with increasing model depth begin- 228

ning with intermediate layers. 229

(2) Difficulty distinguishing low-frequency la- 230

bels. In Figure 2b, the distance between Contain 231

and NOT Contain is significantly wider for high- 232

frequency labels such as “anger” than for low- 233

frequency labels such as “anticipation” and “trust”. 234

The gap is also progressively amplified as the 235
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Figure 3: The overview of our method.

model depth increases at the beginning of inter-236

mediate layers.237

Upon analyzing the common causes of these238

two biases, we conclude that they primarily stem239

from incorrect predictions made in the intermedi-240

ate layers. These errors accumulate and propagate241

through deeper layers, ultimately influencing the242

final predictions. Thus, suppressing the accumula-243

tion of biases at the intermediate layers emerges as244

a feasible and effective strategy for bias mitigation.245

4 Methodology246

This section provides a comprehensive overview of247

the proposed methodology, as depicted in Figure248

3. The task definition is first introduced, followed249

by a detailed discussion of the proposed approach,250

which comprises two key components: the deter-251

mination of fine-tuning parameters, and the incor-252

poration of bias balance constraints.253

4.1 Task Definition254

Given a supervised natural language processing255

(NLP) dataset (X,Y ), where X denotes the in-256

put texts and Y represents the corresponding cat-257

egory labels, along with a prompt template P ,258

such as “Review: [X]. Emotion:”, model is259

parameter-efficiently fine-tuned to learn the map-260

ping: M(P,X) → Y . This process enhances the261

model’s ability to mitigate undesirable associations262

between biases and labels.263

4.2 Overview 264

4.2.1 Determine Fine-tuning Parameters 265

The computational cost of fine-tuning all layers is 266

substantial. A key focus is to determine whether 267

similar results can be achieved by fine-tuning only 268

a small number of parameters in specific layers. 269

Based on the analysis in Section 3, we found that 270

biases largely arise from the accumulation of error 271

predictions as the model deepens. Consequently, 272

we aim to correct the early manifestations of bias 273

by intervening in the internal states of one selected 274

intermediate layer. 275

Intermediate target layer. We identify the tar- 276

get layer for fine-tuning by analyzing the extent to 277

which the model’s internal mechanisms contribute 278

to biased predictions, using the interchange abla- 279

tion method. Specifically, we replace the activation 280

values of the golden samples in selected compo- 281

nents with the corresponding hidden representa- 282

tions of biased samples, and observe the resulting 283

changes in the final output. We then select the 284

decoder layer where the largest change occurs as 285

the target for subsequent interventions. A more 286

detailed implementation can be found in Appendix 287

A. 288

Unfreeze parameters. For the selection of pa- 289

rameters to fine-tune within the target layer, we 290

draw on theoretical insights from “memory com- 291

ponent” (Chen et al., 2024a) and validate our 292

choices through extensive experiments. Taking the 293

Gemma2 model as an example, each decoder con- 294

sists of a self-attention module (q_proj, k_proj, 295
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v_proj, o_proj) and a feedforward network mod-296

ule (gate_proj, up_proj, down_proj). Chen297

et al.’s (2024a) research indicates that the atten-298

tion output matrix (o_proj) and the final projection299

layer of the MLP (down_proj) exhibit stronger300

memory characteristics, retaining rich knowledge301

acquired during pre-training. Motivated by this302

finding, we selectively fine-tune only the o_proj303

and down_proj parameters within the target layer,304

while keeping all other weights frozen to ensure pa-305

rameter efficiency. Additional experimental results306

on alternative parameter combinations are provided307

in the Appendix B. Furthermore, to enhance the308

effectiveness of the target layer, we refine its input309

by integrating a learnable parameter into the hidden310

representations it receives.311

4.2.2 Bias Balance Loss312

To address two specific types of fine-grained la-313

bel biases, we design two corresponding bias-314

balancing constraints to complement the original315

language modeling loss during fine-tuning. For316

each batch, we separately compute the logits for317

samples that Contain and NOT Contain each la-318

bel c, denoted as HC
c and HN

c , respectively, based319

on the final predicted logits. Then, these are aggre-320

gated to form HC and HN across all labels.321

HC = [HC
c1, ...,H

C
cn]

T

HN = [HN
c1 , ...,H

N
cn]

T
(1)322

where n is the number of label types appearing323

in a batch.324

(1) Prediction propensity bias. To reduce the325

gap between the model’s predicted logits for high-326

and low-frequency labels, we aimed to minimize327

the internal differences within HC and HN . To328

achieve this, we apply an L2 norm constrain to329

regulate the distance between HC
c and HN

c relative330

to their respective centroids, ctin and ctout.331

Lbal1 = ∥HC − ctin∥2 + ∥HN − ctout∥2,

where ctin =
1

|Y |
∑
c∈Y

HC
c ,

ctout =
1

|Y |
∑
c∈Y

HN
c

(2)332

(2) Discriminative ability bias. To enhance the333

model’s sensitivity to all labels, we constrained the334

distance between HC
c to HN

c for each label c, also335

utilizing the L2 norm.336

Lbal2 = −∥HC −HN∥2 (3) 337

Finally, we define the final loss in the fine-tuning 338

phase as follows: 339

L = αLLM + βLbal1 + γLbal2 (4) 340

where LLM is the language modeling loss, α. β 341

and γ are hyperparameters. 342

5 Experiment 343

5.1 Experimental setup 344

Datasets. We conducted extensive experimental 345

evaluations on five fine-grained tasks and seven 346

coarse-grained task datasets. The fine-grained tasks 347

include emotion detection (SuperTweetEval (Anty- 348

pas et al., 2023): TweetEmotion (Mohammad et al., 349

2018), TweetHate (Sachdeva et al., 2022), GoE- 350

motions (Demszky et al., 2020), EmpatheticDia- 351

logues (Rashkin et al., 2019)) and fine-grained sen- 352

timent analysis (SST-5 (Socher et al., 2013)). The 353

coarse-grained tasks encompass social bias ques- 354

tion answering (SBQA (Parrish et al., 2022): BBQ- 355

Age, BBQ-SES, BBQ-Disability, BBQ-Gender), 356

topic classification (AGNews (Zhang et al., 2015)), 357

natural language inference (RTE (Dagan et al., 358

2006)), and sentiment analysis (SST-2 (Socher 359

et al., 2013)). Notably, the SBQA dataset differs 360

from other datasets in that it contains a number 361

of inconsistent candidate labels. For instance, in 362

the socioeconomic status bias dataset BBQ-SES, 363

the labels include terms such as poor people, low- 364

income people and the truck driver. Further details 365

about the datasets and the division of the training 366

set can be found in Appendix C. 367

Baseline. For the fine-tuning approach, we com- 368

pared parameter-efficient fine-tuning (LoRA (Hu 369

et al., 2021)) and full-parameter fine-tuning. Ad- 370

ditionally, we compared the post-hoc methods CC 371

(Zhao et al., 2021), DC (Fei et al., 2023) and 372

CRISPR (Yang et al., 2024). A detailed description 373

of the baselines is provided in Appendix D. 374

Models and Implementation Details. In our 375

work, we utilized five LLMs, all sourced from Hug- 376

gingFace1: Gemma2-2b-it, Gemma2-9b-it (Team, 377

2024), Mistral-7b-Instruct (Jiang et al., 2023), 378

Llama3.2-1b, Llama3.2-3b (Grattafiori et al., 2024). 379

The primary experiments were conducted on fine- 380

grained tasks, both with and without instructions in 381

a zero-shot setting. Other experiments were carried 382

1https://huggingface.co
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Model All Layers Fine-grained Coarse-grained
TE GE ED TH S5 S2 BA BS BD BG AG RTE

Gemma2 (2B) 26 15 15 12 6 22 15 22 21 22 21 12 19
Gemma2 (9B) 42 22 22 22 28 28 25 25 25 25 25 22 25
Mistral (7B) 32 12 12 12 12 12 - - - - - - -
Llama3 (1B) 16 9 10 8 5 10 - - - - - - -
Llama3 (3B) 28 14 14 8 14 14 - - - - - - -

Table 1: Target layer of each dataset in our experience. Because of the better performance overall the fine- and
coarse-grained tasks on Gemma2 models (2B and 9B), we conduct the coarse-grained tasks (adaptability) only on
these two models.

Model Method TweetEmotion GoEmotions EmpathicDialogues TweetHate SST-5

Gemma2 (2B)

Original 59.33 27.96 30.05 53.87 38.38
CC 42.42 (-16.91) 12.14 (-15.82) 13.98 (-16.07) 8.35 (-45.52) 38.32 (-0.06)
DC 65.41 (+6.08) 20.04 (-7.92) 35.50 (+5.45) 24.55 (-29.32) 40.96 (+2.58)

CRISPR 61.13 (+1.80) 30.43 (+2.47) 27.13 (-2.92) 56.52 (+2.65) 35.44 (-2.94)
LoRA 73.95 (+14.62) 50.11 (+22.15) 51.39 (+21.34) 15.83 (-38.04) 54.83 (+16.45)

Full FT 71.41 (+6.08) 49.76 (+21.80) 58.95 (+28.90) 14.28 (-39.59) 48.87 (+10.49)
Ours 75.87 (+16.54) 56.17 (+28.21) 57.31 (+27.26) 65.67 (+11.80) 55.70 (+17.32)

Gemma2 (9B)

Original 66.34 24.03 45.04 56.28 54.86
CC 65.18 (-1.16) 25.19 (+1.16) 44.73 (-0.31) 22.49 (-33.79) 45.34 (-9.52)
DC 67.94 (+1.60) 24.97 (+0.94) 47.83 (+2.79) 32.33 (-23.95) 51.69 (-3.17)

CRISPR 69.72 (+3.38) 26.63 (+2.60) 45.78 (+0.74) 57.26 (+0.98) 50.13 (-4.73)
LoRA 74.34 (+8.00) 49.24 (+25.21) 56.66 (+11.62) 14.90 (-41.38) 56.63 (+1.77)

Full FT 74.27 (+7.93) 51.13 (+27.10) 57.36 (+12.32) 14.62 (-41.66) 55.81 (+0.95)
Ours 75.49 (+9.15) 54.29 (+30.26) 59.13 (+14.09) 70.42 (+14.14) 61.08 (+6.22)

Mistral (7B)

Original 67.31 32.45 47.07 63.06 37.99
CC 64.95 (-2.36) 22.30 (-10.15) 48.25 (+1.18) 49.17 (-13.89) 34.17 (-3.82)
DC 62.72 (-4.59) 24.51 (+7.94) 41.89 (-5.18) 29.89 (-33.17) 40.51 (+2.52)

CRISPR 67.05 (-0.26) 27.53 (-4.92) 50.76 (+3.69) 70.51 (+7.45) 44.82 (+6.83)
LoRA 71.81 (+4.50) 48.15 (+15.70) 59.34 (+12.27) 13.47 (-49.59) 53.42 (+15.43)

Full FT 72.69 (+5.38) 48.94 (+16.47) 58.22 (+11.15) 14.84 (-48.22) 53.70 (+15.71)
Ours 73.91 (+6.60) 50.34 (+17.89) 60.19 (+13.12) 55.67 (-7.39) 57.74 (+19.75)

Llama3 (1B)

Original 42.71 8.95 19.97 18.25 24.90
CC 49.94 (+7.23) 12.30 (+3.35) 30.31 (+10.34) 4.87 (-13.38) 20.84 (-4.06)
DC 50.95 (+8.24) 16.42 (+7.47) 37.32 (+17.35) 4.82 (-13.43) 29.20 (+4.30)

CRISPR 43.09 (+0.38) 9.15 (+0.20) 21.18 (+1.21) 23.82 (+5.57) 24.31 (-0.59)
LoRA 71.65 (+28.94) 48.90 (+39.95) 49.92 (+29.95) 15.04 (-3.21) 55.74 (+30.84)

Full FT 71.71 (+29.00) 48.66 (+39.71) 51.34 (+31.37) 14.90 (-3.35) 55.57 (+30.67)
Ours 72.55 (+29.84) 50.81 (+41.86) 51.36 (+31.39) 46.29 (+28.04) 57.67 (+32.77)

Llama3 (3B)

Original 46.35 12.70 19.27 3.48 27.27
CC 51.06 (+4.71) 5.85 (-6.85) 28.85 (+9.58) 14.31 (+10.83) 20.79 (-6.48)
DC 57.92 (+11.57) 15.97 (+3.27) 35.53 (+16.26) 12.65 (+9.17) 31.12 (+3.85)

CRISPR 50.80 (+4.45) 17.51 (+4.81) 22.38 (+3.11) 18.63 (+15.15) 30.94 (+3.67)
LoRA 70.92 (+24.57) 45.17 (+32.47) 59.16 (+39.89) 15.57 (+12.09) 57.23 (+29.96)

Full FT 73.82 (+27.47) 50.21 (+37.51) 61.03 (+41.76) 14.97 (+11.49) 55.42 (+28.15)
Ours 74.22 (+27.87) 50.55 (+37.85) 58.98 (+39.71) 65.99 (+62.51) 55.50 (+28.23)

Table 2: The main results in the instruction setting. The bold/underlined font means the best/the second best result.

out exclusively with instructions. The templates383

and task instructions employed can be found in384

Appendix H. For the target layer selection step,385

we randomly selected 20 samples from the train-386

ing set for evaluation, with the results presented in387

Table 1. Regarding hyperparameters, the learn-388

ing rate was set to 5e-5, the batch size to 16,389

α = 1, β = 1, γ = 1. All training was performed390

using FP16 precision on NVIDIA GeForce RTX391

3090 GPUs. 392

5.2 Main Results 393

5.2.1 Fine-grained Classification 394

We evaluated the bias mitigation performance of 395

our method and several baselines for fine-grained 396

label biases. Table 2 presents the weighted F1 397

scores of various methods across five fine-grained 398

datasets under the instruction setting, with results 399
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Model TweetEmotion GoEmotions
Acc. F1 Acc. F1

Ours 53.15 75.87 53.55 56.17
w/o Lbal1 47.46 73.62 52.00 54.60
w/o Lbal2 34.29 68.27 35.09 37.84
w/o Lbal1,2 33.65 67.63 49.69 49.94
w/o refine 50.32 75.52 51.13 54.68

unfreeze (down) 49.83 74.70 52.80 55.75
unfreeze (o) 49.17 74.30 48.41 53.34
unfreeze (-) 37.13 69.10 27.54 29.63

unfreeze (q, k, v) 45.88 73.31 46.48 50.85
unfreeze (gate, up) 50.06 75.13 50.88 54.50

Table 3: Ablation experiments.

for the no-instruction setting available in Appendix400

E. The findings indicate that existing post-hoc401

methods (CC, DC, CRISPR) are limited in effec-402

tively mitigating fine-grained label biases. Particu-403

larly when applied to the TweetHate dataset, which404

exhibits a severe label imbalance, both CC and405

DC lead to a notable decline in task performance.406

While CRISPR shows some improvement in the407

instruction setting, its performance still lags be-408

hind that of the fine-tuning methods. In contrast,409

training-based methods, which adjust the model’s410

intrinsic representations, are more effective in miti-411

gating the negative impact of bias. However, on the412

TweetHate dataset, both full-parameter fine-tuning413

and LoRA fail to improve the metric, highlight-414

ing the complexity of the figcLLM task compared415

to traditional classification tasks. Notably, our ap-416

proach achieves performance comparable to, or417

even better than, LoRA and full-parameter fine-418

tuning methods, despite updating far fewer param-419

eters. This underscores the effectiveness of our420

strategy in suppressing bias accumulation within421

the deeper layers by intervening at the intermediate422

layer.423

5.2.2 Ablation424

We also conducted ablation experiments using the425

Gemma2-2b-it model on the TweetEmotion and426

GoEmotions datasets to assess the impact of our427

proposed bias balance losses, learnable refine pa-428

rameter (refine), and the choice of training com-429

ponents on the final task performance. Specifically,430

TweetEmotion is a multi-label classification task,431

for which we computed accuracy using the exact432

match principle. In each ablation experiment, we433

ensured that all settings remained constant except434

for modifications in the conditions under investiga-435

tion. The results of these experiments are presented436

in Table 3. 437

In Table 3, w/o Lbal1, w/o Lbal2, and 438

w/o Lbal1,2 represent the removal of one or both 439

bias balance losses, respectively. The last five lines 440

represent different parameter combinations for un- 441

freezing. The results reveal that omitting the bal- 442

ance losses significantly impairs task performance, 443

with removal of Lbal2 leading to greater degrada- 444

tion than removal of Lbal1. This suggests that 445

enhancing the model’s discriminative ability for 446

low-frequency labels is crucial for improving task 447

performance. Moreover, freezing all components 448

in the target layer severely hinders bias mitigation. 449

Fine-tuning q, k, and v in the target layer proves 450

less effective than other combinations, while fine- 451

tuning only o and down yields the best results with 452

fewer parameters. More parameter combination 453

experiments can be found in Appendix B. 454

5.2.3 Parameter Analysis 455

Furthermore, Appendix F provides an analysis of 456

the impact of varying the location of the target 457

layer, training multiple decoder layers, and hyper- 458

parameters α, β, γ on task performance. 459

5.3 Adaptability 460

We also test the adaptability of our method on 461

coarse-grained tasks. Given the social bias ques- 462

tion answering tasks and the more balanced label 463

in the classification datasets, we chose accuracy as 464

the evaluation metric for this experiment. Addi- 465

tionally, based on the observations in Section 5.2, 466

where the Gemma2 models (2B and 9B) consis- 467

tently outperformed others, we limited this section 468

to the Gemma2 family of models. 469

Table 4 presents the performance of our ap- 470

proach in comparison with other baselines across 471

four types of coarse-grained tasks. Consistent 472

with the results from the fine-grained tasks, our 473

method achieves superior performance on most 474

of the datasets, particularly excelling on the topic 475

classification dataset (AGNews) and the age bias 476

dataset (BBQ-Age). These results strongly high- 477

light the adaptation capability of our approach. 478

5.4 Perplexity 479

The fine-tuning approach is susceptible to the issue 480

of “catastrophic forgetting”, where the fine-tuned 481

model may lose some of its original language mod- 482

eling capability. To assess the impact of different 483

fine-tuning methods on this aspect, we calculated 484

the perplexity of the model before and after train- 485
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Model Method
Type of Datasets

SBQA (BBQ) SA TC NLI
Age SES Disability Gender SST-2 AGNews RTE

Gemma2
(2B)

Original 69.14 77.75 71.95 65.63 90.17 77.73 74.65
CC 52.34 (-16.80) 52.89 (-24.86) 50.20 (-21.75) 52.88 (-12.75) 90.65 (+0.48) 54.86 (-22.87) 77.52 (+2.87)
DC 56.03 (-13.11) 55.34 (-22.41) 56.47 (-15.48) 54.46 (-11.17) 93.26 (+3.09) 62.30 (-15.43) 79.23 (+4.58)

CRISPR 70.10 (+0.96) 79.06 (+1.31) 69.18 (-2.77) 68.33 (+2.70) 92.08 (+1.91) 76.64 (-1.09) 77.25 (+2.60)
LoRA 82.60 (+13.46) 98.77 (+21.02) 91.88 (+19.93) 99.50 (+33.87) 96.61 (+6.44) 91.47 (+13.74) 81.85 (+7.20)

Full FT 86.60 (+17.46) 96.75 (+19.00) 92.06 (+20.11) 98.85 (+33.22) 94.94 (+4.77) 90.97 (+13.24) 84.64 (+9.99)
Ours 96.98 (+27.84) 97.54 (+19.79) 91.95 (+20.00) 99.61 (+33.98) 95.63 (5.46) 97.02 (+19.29) 84.82 (+10.17)

Gemma2
(9B)

Original 85.45 85.73 86.22 88.40 95.61 86.61 75.62
CC 65.43 (-20.02) 65.74 (-19.99) 71.35 (-14.87) 69.79 (-18.61) 95.56 (-0.05) 85.86 (-0.75) 75.53 (-0.09)
DC 80.82 (-4.63) 76.86 (-8.87) 81.66 (-4.56) 88.69 (+0.29) 95.12 (-0.49) 86.11 (-0.50) 79.71 (+4.09)

CRISPR 86.45 (+1.00) 84.33 (-1.40) 85.51 (-0.71) 89.62 (+1.22) 95.53 (-0.08) 86.47 (-0.14) 77.99 (+2.37)
LoRA 94.04 (+8.59) 99.42 (+13.69) 97.32 (+11.10) 99.95 (+11.55) 95.73 (+0.12) 92.01 (+5.40) 82.44 (+6.82)

Full FT 95.23 (+9.78) 99.55 (+13.82) 97.86 (+11.64) 99.26 (+10.86) 95.90 (+0.29) 94.06 (+7.45) 86.61 (+10.99)
Ours 98.19 (+12.74) 99.77 (+14.04) 97.57 (+11.35) 99.67 (+11.27) 96.10 (+0.49) 97.87 (+11.26) 93.09 (+17.47)

Table 4: The results of generalization. The bold/underlined font means the best/the second best result.

Method WikiText-2: Perplexity (↓)
Gemma2

(2B)
Gemma2

(9B)
Mistral

(7B)
Llama3

(1B)
Llama3

(3B)
Original 18.80 13.60 6.37 11.37 9.04
LoRA 35.68 34.29 8.04 22.05 15.59

Full FT 23.48 37.08 10.57 22.97 9.20
Ours 21.94 13.52 6.48 11.47 9.06

Table 5: The results of perplexity on fine-tuned methods.

ing, using the WikiText-2 datasets (Merity et al.,486

2016). As an example, we used the model saved487

after fine-tuning on the TweetEmotion, and the re-488

sults are presented in Table 5.489

It is evident that for the model fine-tuned using490

our method, the perplexity remains nearly identi-491

cal to that of the initial model, indicating that our492

fine-tuning approach has minimal impact on the493

language modeling capability. In contrast, mod-494

els fine-tuned with LoRA and full-parameter fine-495

tuning exhibit a significant increase in perplexity496

to varying degrees.497

5.5 Visualisation498

To demonstrate the mitigation effect of our fine-499

tuned model on fine-grained label biases, we visu-500

alized the Contain and NOT Contain of labels501

on TweetEmotion, as detailed in Section 3. The502

corresponding results are provided in Appendix G.503

6 Conclusion504

This work addresses the mitigation of label biases505

in Large Language Models (LLMs) for fine-grained506

classification tasks. We identify two distinct forms507

of fine-grained label biases within LLMs, named508

prediction propensity bias and discriminative abil-509

ity bias, and explore the underlying causes of these510

biases, i.e., erroneous predictions in the interme-511

diate layers are accumulated and amplified as the 512

model depth increases. To counteract this issue, 513

we propose two bias balance losses to parameter- 514

efficiently fine-tune an intermediate layer. No- 515

tably, our method requires training less than 1% 516

of the model’s total parameters. Extensive experi- 517

ments across a range of tasks and datasets demon- 518

strate that our approach not only exceeds existing 519

post-hoc methods in mitigating label biases, but 520

also achieves performance comparable to, or even 521

exceeding, that of full-parameter fine-tuning and 522

LoRA. Our findings underscore the potential of 523

intervening in the middle layer to enhance the fair- 524

ness and accuracy of LLMs in fine-grained classifi- 525

cation tasks. 526

7 Limitation 527

In this work, we have focused exclusively on 528

LLMs with a decoder-only architecture and have 529

not explored models with other architectural types, 530

such as encoder-only or encoder-decoder structures. 531

These alternative architectures warrant further in- 532

vestigation, particularly with respect to the varia- 533

tion of bias in the encoder modules, which may 534

differ significantly from that observed in the de- 535

coders. Consequently, we plan to extend our study 536

to include LLMs with diverse architectural config- 537

urations in future research. 538
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Combination Metric
q k v o gate up down F1
✓ ✗ ✗ ✗ ✗ ✗ ✗ 70.66
✓ ✓ ✗ ✗ ✗ ✗ ✗ 71.51
✓ ✗ ✓ ✗ ✗ ✗ ✗ 73.46
✓ ✗ ✗ ✓ ✗ ✗ ✗ 73.83
✓ ✗ ✗ ✗ ✓ ✗ ✗ 75.03
✓ ✗ ✗ ✗ ✗ ✓ ✗ 74.59
✓ ✗ ✗ ✗ ✗ ✗ ✓ 73.88
✗ ✓ ✗ ✗ ✗ ✗ ✗ 73.03
✗ ✓ ✓ ✗ ✗ ✗ ✗ 73.34
✗ ✓ ✗ ✓ ✗ ✗ ✗ 73.93
✗ ✓ ✗ ✗ ✓ ✗ ✗ 73.47
✗ ✓ ✗ ✗ ✗ ✓ ✗ 75.23
✗ ✓ ✗ ✗ ✗ ✗ ✓ 74.50
✗ ✗ ✓ ✗ ✗ ✗ ✗ 72.59
✗ ✗ ✓ ✓ ✗ ✗ ✗ 74.09
✗ ✗ ✓ ✗ ✓ ✗ ✗ 74.96
✗ ✗ ✓ ✗ ✗ ✓ ✗ 74.91
✗ ✗ ✓ ✗ ✗ ✗ ✓ 72.45
✗ ✗ ✗ ✓ ✗ ✗ ✗ 74.30
✗ ✗ ✗ ✓ ✓ ✗ ✗ 74.93
✗ ✗ ✗ ✓ ✗ ✓ ✗ 74.10
✗ ✗ ✗ ✓ ✗ ✗ ✓ 75.87
✗ ✗ ✗ ✗ ✓ ✗ ✗ 74.83
✗ ✗ ✗ ✗ ✓ ✓ ✗ 75.13
✗ ✗ ✗ ✗ ✓ ✗ ✓ 74.73
✗ ✗ ✗ ✗ ✗ ✓ ✗ 74.17
✗ ✗ ✗ ✗ ✗ ✓ ✓ 74.63
✗ ✗ ✗ ✗ ✗ ✗ ✓ 74.70

Table 6: Results of selecting different combinations.

Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xi-767
aowei Mei, Yiqi Wang, Zhen Wen, Fei Wang, Xi-768
angyu Zhao, Jiliang Tang, and Qing Li. 2024. Rec-769
ommender systems in the era of large language mod-770
els (llms). IEEE Transactions on Knowledge and771
Data Engineering, pages 6889–6907.772

Fan Zhou, Yuzhou Mao, Liu Yu, Yi Yang, and Ting773
Zhong. 2023. Causal-debias: Unifying debiasing774
in pretrained language models and fine-tuning via775
causal invariant learning. In Proceedings of the 61st776
Annual Meeting of the Association for Computational777
Linguistics, pages 4227–4241.778

A Target Layer Selection779

The specific operation of the target layer selection780

is as follows. Given a sample (xi, yi) ∈ (X,Y )781

and a prompt template P , we prompt LLM to make782

predictions by connecting xi and P as inputs. We783

Datasets Class Balanced Train Test
Fine-grained

TweetEmotion 11 ✗ 886 3259
GoEmotions 28 ✗ 1000 5227
Empathetic
Dialogues

32 ✗ 960 2538

TweetHate 7 ✗ 895 1433
SST-5 5 ✗ 1000 2210

Coarse-grained
BBQ-Age - ✗ 368 3312
BBQ-SES

(socio-economic
status bias)

- ✗ 686 6175

BBQ-Disability
(disability status bias)

- ✗ 155 1401

BBQ-Gender
(gender bias)

- ✗ 567 5105

AGNews 4 ✓ 760 6840
RTE 2 ✗ 248 2242

SST-2 2 ✓ 182 1639

Table 7: Full datasets information.

identify the bias label ŷi corresponding to xi based 784

on the logits by the last layer of the model. 785

ŷi = argmaxM(c|P (xi))

where c ∈ Y ∩ c ̸= yi
(5) 786

Then, we connect P with yi and ŷi in text form, 787

so that we get the gold sample si and the biased 788

sample ŝi. According to this method, we sampled 789

a total of S pairs of samples for analysis, where 790

i ∈ S. 791

For each pair of samples, we re-entered si and 792

ŝi into LLM to capture the activation values of the 793

studied component at each layer, recorded as hi and 794

ĥi respectively. Next, we replace the layer by layer 795

while ensuring that the input is still si, replacing 796

the hi of a specified layer with the corresponding 797

ĥi each time, and using KL divergence to calculate 798

the distribution change of the final output before 799

and after the replacement. Finally, we average the 800

KL divergence of the pair of samples, and the layer 801

ℓ where the maximum value appears is the target 802

layer of the operation we are looking for. 803

ℓ = argmaxl∈L
1

S

∑
i∈S

Mhl
(si)log

Mhl
(si)

M
ĥl
(si)

(6) 804

In this implementation, the studied component 805

is focused on the output matrix of the self-attention 806

module, i.e., o_proj. 807
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Model Method TweetEmotion GoEmotions EmpathicDialogues TweetHate SST-5

Gemma2 (2B)

Original 59.56 13.75 38.73 68.15 35.18
CC 61.55 (+1.99) 15.95 (+2.20) 48.82 (+10.09) 50.22 (-17.93) 32.22 (-2.96)
DC 64.63 (+5.07) 18.03 (+4.28) 45.93 (+7.20) 41.53 (-26.62) 42.35 (+7.17)

CRISPR 62.47 (+2.91) 15.63 (+1.88) 43.27 (+4.54) 70.63 (+2.48) 36.19 (+1.01)
LoRA 74.78 (+15.22) 51.53 (+37.78) 59.17 (+20.44) 15.45 (-52.70) 56.81 (+21.63)

Full FT 74.67 (+15.11) 52.90 (+39.15) 54.79 (+16.06) 19.90 (-48.25) 54.52 (+19.34)
Ours 75.72 (+16.16) 54.55 (+40.80) 59.69 (+20.96) 72.14 (+3.99) 58.52 (+23.34)

Gemma2 (9B)

Original 60.86 21.13 39.05 64.40 39.09
CC 64.27 (+3.41) 22.17 (+1.04) 48.74 (+9.69) 67.07 (+2.67) 36.48 (-2.61)
DC 67.49 (+6.63) 22.25 (+1.12) 46.73 (+7.68) 44.83 (-19.57) 47.54 (+8.45)

CRISPR 60.54 (-0.32) 22.60 (+1.47) 38.91 (-0.14) 68.08 (+3.68) 41.38 (+2.29)
LoRA 74.52 (+13.66) 54.53 (+33.40) 60.88 (+21.83) 15.63 (-48.77) 59.12 (+20.03)

Full FT 75.74 (+14.88) 53.64 (+32.51) 60.21 (+21.16) 21.35 (-43.05) 59.62 (+20.53)
Ours 76.21 (+15.35) 53.75 (+32.62) 61.12 (+22.07) 71.77 (+7.37) 59.45 (+20.36)

Mistral (7B)

Original 59.06 13.16 34.66 35.60 34.79
CC 62.01 (+2.95) 21.56 (+8.40) 49.54 (+14.88) 25.68 (-9.92) 38.75 (+3.96)
DC 63.75 (+4.69) 15.91 (+2.75) 50.20 (+15.54) 19.20 (-16.40) 32.14 (-2.65)

CRISPR 55.89 (-3.17) 12.53 (-0.63) 35.56 (+0.90) 22.17 (-13.43) 29.78 (-5.01)
LoRA 71.80 (+12.74) 52.66 (+39.50) 62.20 (+27.54) 15.44 (-20.16) 55.68 (+20.89)

Full FT 72.10 (+13.04) 52.43 (+39.27) 61.10 (+26.44) 18.62 (-16.98) 54.70 (+19.91)
Ours 72.57 (+13.51) 52.06 (+38.90) 61.53 (+26.87) 36.18 (+0.58) 56.27 (+21.48)

Llama3 (1B)

Original 37.16 8.43 21.04 40.32 21.44
CC 48.97 (+11.81) 14.31 (+5.88) 34.88 (+13.84) 10.54 (-29.78) 24.43 (+2.99)
DC 51.56 (+14.40) 19.92 (+11.49) 36.36 (+15.32) 37.80 (-2.52) 16.66 (-4.78)

CRISPR 36.92 (-0.24) 7.48 (-0.95) 20.79 (-0.25) 53.81 (+13.49) 13.88 (-7.56)
LoRA 73.19 (+36.03) 48.94 (+40.51) 58.69 (+37.65) 15.06 (-25.26) 55.13 (+33.69)

Full FT 73.77 (+36.61) 50.58 (+42.15) 56.74 (+35.70) 53.99 (-13.67) 53.56 (+32.12)
Ours 73.69 (+36.53) 50.05 (+41.62) 57.17 (+36.13) 61.14 (+20.82) 54.10 (+32.66)

Llama3 (3B)

Original 38.35 11.02 28.25 55.42 14.14
CC 53.97 (+15.62) 10.73 (-0.29) 40.87 (+12.62) 1.60 (-53.82) 18.35 (+4.21)
DC 51.45 (+13.10) 17.24 (+6.22) 42.51 (+14.26) 2.60 (-52.82) 23.65 (+9.51)

CRISPR 40.71 (+2.36) 16.58 (+5.56) 31.83 (+3.58) 9.10 (-46.32) 19.17 (+5.03)
LoRA 73.71 (+35.36) 50.71 (+39.69) 60.86 (+32.61) 15.50 (-39.92) 55.98 (+41.84)

Full FT 73.99 (+35.64) 51.71 (+40.69) 58.51 (+30.26) 58.96 (+3.54) 51.70 (+37.56)
Ours 73.26 (+34.91) 52.61 (+41.59) 59.43 (+31.18) 56.70 (+1.28) 56.68 (+42.54)

Table 8: The main results in the no-instruction setting. The bold/underlined font means the best/the second best
result.

B Selection of Fine-tune Parameters808

Table 6 presents the impact of unfreezing different809

parameter combinations on prediction performance810

during the fine-tuning of Gemma2 (2B). The ex-811

periments were conducted on the TweetEmotion812

dataset. Given the large number of possible com-813

binations, we report results only where one or two814

parameters were unfrozen.815

C Datasets816

The 12 datasets we used are all from the Hugging-817

Face version. There is an extreme label imbal-818

ance problem on the fine-grained dataset, which819

causes that LoRA and full- parameter fine-tuning820

require more training data to achieve positive im-821

provements. Therefore, in fine-grained tasks, we822

use a subset of the validation set or training set823

divided by the original version for training, but en-824

sure that the number of training samples is within 825

1,000. For coarse-grained tasks, in all implementa- 826

tion methods, we sampled 10% of the test set for 827

training, and the rest for testing. The details are 828

shown in Table 7. 829

D Baselines 830

CC (Zhao et al., 2021) and DC (Fei et al., 2023) 831

investigated label bias in the few-shot setting. They 832

used the model’s output probability of free-text 833

inputs (“N/A” or random token) to adjust the la- 834

bel probability of the original instance. We imple- 835

mented both methods as described in their original 836

papers. 837

CRISPR (Yang et al., 2024) addressed both la- 838

bel and instruction bias. The method proposed the 839

concept of bias neurons. It identified the neurons 840

that more responsible for bias through gradient- 841

based attribution, and used pruning techniques to 842
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modify the weight parameters learned during pre-843

training. In accordance with the original paper,844

we sampled 20 instances from the training set to845

analyze and locate the bias neurons.846

LoRA (Hu et al., 2021), low-rank adapter fine-847

tuning, leverages the intrinsic low-rank structure848

of large language models by introducing a bypass849

matrix to simulate full-parameter fine-tuning. It850

is currently one of the most effective and widely851

used parameter-efficient fine-tuning methods. In852

our implementation, we utilized the SFTrainer853

tool from the TRL (Transformers Reinforcement854

Learning) library developed by HuggingFace.855

Specifically, we set k = 8, target_modules =856

[“q_proj”, “o_proj”, “k_proj”, “v_proj”, “gate857

_proj”, “up_proj”, “down_proj”].858

Full-parameter fine-tuning, in contrast, in-859

volves adjusting all parameters of the language860

model during training, which requires significantly861

more computational resources compared to effi-862

cient parameter fine-tuning methods. For our ex-863

periments, we employed the Trainer tool from the864

HuggingFace transformers library.865

E Results without Instruction866

Table 8 shows the weighted F1 scores of differ-867

ent methods on five fine-grained datasets with no-868

instruction setting. Our method achieves better869

results especially on the Gemma2 series models.870

F Parameter Analysis871

First, we conducted parameter analysis experi-872

ments on Gemma2 (2B) model to explore the im-873

pact of target layer selection and the number of874

layers trained on task performance. As illustrated875

in Figure 4a, when the target layer is located in876

the intermediate layers, task performance exhibits877

a small peak. However, as the number of layers878

selected for training increases, performance drops879

rapidly. In Figure 4b, we present the effect of un-880

freezing the components o_proj and down_proj881

in layers which after the target. For the TweetEmo-882

tion dataset, training the five layers immediately883

following the target layer has minimal impact on884

the F1 score, with a slight decline observed there-885

after. In contrast, for the GoEmotions dataset, ad-886

ditional training does not yield any performance887

improvement; instead, it results in a substantial888

decrease in the F1 score.889

Then, we performed several experiments to de-890

termine the value of the hyperparameters α, β, γ.891

(a) The impact of target layer selection on performance.

(b) The impact of the number of training layers on perfor-
mance.

Figure 4: The results of parameter analysis.

Figure 5: Hyperparameter analysis.

The results are shown in Figure 5. 892

G Visualisation 893

Figures 6 (a-d) illustrate the impact of fine-tuning 894

the Gemma2 (9B) model with our method on la- 895

bel bias mitigation. The results demonstrate a sig- 896

nificant improvement in the model’s output logits 897

and its ability to discriminate low-frequency labels, 898

with a notable reduction in the gap between high- 899

frequency and low-frequency labels. 900
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(a) Contain on the original model. (b) Contain on the fine-tuned model using our method.

(c) Distinguish ability of specific labels on the original
model.

(d) Distinguish ability of specific labels on the fine-tuned
model using our method.

Figure 6: (a-b) compare the Contain of each label and (c-d) compare the distinguish ability of specific labels on
the Gemma2 (9B) model before and after correction.

H Templates901

In Table 9, we show all the templates used in our902

experiments and the corresponding label names of903

the datasets.904
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Datasets Template Label Name
TweetEmotion

(Mohammad et al., 2018)
Review: [review]
Emotion: [label]

anger, anticipation, disgust,
fear, joy, love, optimism,

pessimism, sadness, surprise,
trust

Instruction: Select the right emotion words for the given
Review from Choices.
Choices: [options]
Review: [review]
Emotion: [label]

GoEmotions
(Demszky et al., 2020)

Review: [review]
Emotion: [label]

admiration, amusement, anger, annoyance,
approval, caring, confusion, curiosity,

desire, disappointment, disapproval, disgust,
embarrassment, excitement, fear, gratitude,

grief, joy, love, nervousness, optimism,
pride, realization, relief, remorse,

sadness, surprise, neutral

Instruction: Select the right emotion words for the given
Review from Choices.
Choices: [options]
Review: [review]
Emotion: [label]

Empathic
Dialogues

(Rashkin et al., 2019)

Utterance: [utterance]
Emotion: [label]

afraid, angry, annoyed, ashamed, anticipating,
anxious, apprehensive, confident, caring, content,
disappointed, disgusted, devastated, embarrassed,

excited, faithful, furious, grateful, guilty,
hopeful, impressed, jealous, joyful, lonely,

nostalgic, proud, prepared, sentimental,
sad, surprised, terrified, trusting

Instruction: Select the right emotion word for the given
Utterance from Choices.
Choices: [options]
Utterance: [utterance]
Emotion: [label]

TweetHate
(Sachdeva et al., 2022)

Review: [review]
Emotion: [label]

hate_gender, hate_race, hate_sexuality,
hate_religion, hate_origin, hate_disability,

hate_age, not_hateInstruction: Select the right emotion label for the given
Review from Choices.
Choices: [options]
Review: [review]
Answer: [label]

SST-5
(Socher et al., 2013)

Review: [review]
Sentiment: [label]

very positive, positive, neutral, negative,
very negative

Instruction: Select the right sentiment label for the given
Review from Choices.
Choices: [options]
Review: [review]
Answer: [label]

SST-2
(Socher et al., 2013)

Instruction: Select the right sentiment word for the given
Review from Choices.
Choices: [options]
Review: [review]
Emotion: [label]

positive, negative

BBQ-Age
(Parrish et al., 2022)

Instruction: For the subsequent context and question, decide
on the most appropriate answer from the given options.
Context: [context]
Question: [question]
Options: [option]
Answer:[label]

The young adult, The sixty-something,
The middle-aged woman, The high schooler,

The elderly man, Can’t answer, Undetermined, ...

BBQ-SES
(Parrish et al., 2022)

The judge, The psychologist, The bartender,
The low-income students, The farm worker,
The physician, Karen, Not enough info, ...

BBQ-Disability
(Parrish et al., 2022)

The friend who’s deaf, The person with PTSD,
The disabled woman, The person with anxiety,
The blind, Not known, Can’t be determined, ...

BBQ-Gender
(Parrish et al., 2022)

The boy, The girl, The cisgender woman,
The transgender man, Steven, Carol,

The cis woman, Not enough information,...
AGNews

(Zhang et al., 2015)
Instruction: Instruction: Classify the following news article
from the given Choices.
Choices: [option]
Text: [news]
Category: [label]

world, sports, business, technology

RTE
(Dagan et al., 2006)

Instruction: Context: [sentence1]
Question: [sentence2] True or False?
Answer: [label]

True, False

Table 9: Template of all 12 datasets used in our experiments.
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