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Abstract

Fine-grained classification via LLMs is sus-
ceptible to more complex label biases com-
pared to traditional classification tasks. Exist-
ing bias mitigation strategies, such as retraining,
post-hoc adjustment, and parameter-efficient
fine-tuning (PEFT) are primarily effective for
simple classification biases, such as stereo-
types, but fail to adequately address prediction
propensity and discriminative ability biases. In
this paper, we analyze these two bias phenom-
ena and observe their progressive accumula-
tion from intermediate to deeper layers within
LLMs. To mitigate this issue, we propose a
bias-aware optimization framework that incor-
porates two distinct label balance constraints
with a PEFT strategy targeting an intermediate
layer. Our approach adjusts less than 1% of the
model’s parameters while effectively curbing
bias amplification in deeper layers. Extensive
experiments conducted across 12 datasets and
5 LLMs demonstrate that our method consis-
tently outperforms or matches the performance
of full-parameter fine-tuning and LoRA, achiev-
ing superior results with lower perplexity.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional capabilities across a wide range of nat-
ural language processing (NLP) tasks (Qin et al.,
2023; Li et al., 2024; Wei et al., 2022, 2023; Huo
et al., 2023). Among these, fine-grained classifi-
cation via LLMs (figcLLM) has gained significant
attention in practical applications such as mental
health assessment, recommendation systems, and
conversational Al, owing to its ability to capture
subtle distinctions between labels (Zhang and Guo,
2024; Luna-Jimenéz et al., 2024; Lin et al., 2025;
Zhao et al., 2024; Xie and Pu, 2021; Welivita et al.,
2021).

However, figcLLM introduces complex label bi-
ases that are not typically observed in traditional
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Figure 1: Average predicted logits of Gemma2-9b-
it (Team, 2024) for each emotion label in TweetEmotion
dataset (Mohammad et al., 2018). Figure (a) shows
results for fine-grained categories, while Figure (b) dis-
plays results for coarse-grained categories.

classification tasks. Specifically, we have iden-
tified two distinct types of bias: (1) prediction
propensity bias, where the model assigns dispro-
portionately high probabilities to labels associated
with high-frequency words from its pretraining cor-
pus, and (2) discriminative ability bias, where
the model struggle to differentiate between posi-
tive and negative samples for certain low-frequency
labels.

Taking emotion detection as a case study, as illus-
trated in Figure 1, among the 11 emotion categories,
the model assigns significantly higher probabilities
to “anger” and “joy” compared to “pessimism’ and
“anticipation” due to the higher frequency of “anger’
and “joy” in pretrain corpus. This demonstrates
LLM outputs a clear preference for high-frequency
emotion categories. Moreover, the model exhibits
weak discriminability on “anticipation” and “trust”,
often producing nearly identical outputs regardless
of whether these labels are present in the samples.
Interestingly, when the same dataset was evalu-
ated using coarse-grained labels (“positive”, “neg-
ative”), these two phenomena were largely miti-
gated. It suggests that these two biases are closely
linked to the complex and fine-grained task with
low-frequency words as labels, which are typically
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absent in traditional classification tasks, thereby
rendering these biases less noticeable.

Existing approaches to mitigating traditional la-
bel bias, such as stereotypes bias (Gira et al., 2022;
Guo et al., 2022) and emotion bias (Fei et al., 2023;
Hassan and Alikhani, 2023), can be broadly cate-
gorized into three groups: post-hoc correction tech-
niques (Zhao et al., 2021; Fei et al., 2023; Yang
et al., 2024; Mamta et al., 2024), full model re-
training or fine-tuning (Thakur et al., 2023; Hassan
and Alikhani, 2023; Zhou et al., 2023; He et al.,
2022; Guo et al., 2022), and parameter-efficient
fine-tuning (PEFT) (Hu et al., 2021; Gira et al.,
2022; Xie and Lukasiewicz, 2023). Post-hoc meth-
ods primarily focus on correcting the model’s fi-
nal outputs while overlooking the underlying pro-
cess of bias propagation and accumulation from
intermediate layers to deep layers (Section 3). Al-
though retraining-based approaches can be effec-
tive by adjusting the model’s internal representa-
tions, they are computationally intensive and sus-
ceptible to catastrophic forgetting when applied to
LLMs (Kirkpatrick et al., 2017; Gira et al., 2022).
PEFT provides a trade-off between computational
efficiency and adaptability, achieving performance
comparable to full fine-tuning. Nevertheless, it
struggles with figcLLM tasks, as it fails to explic-
itly address the intertwined nature of biases related
to both prediction propensity and discriminative
ability.

To mitigate these two biases, we propose a bias-
aware optimization framework that incorporates
two distinct loss functions, each targeting a specific
bias type. First, to mitigate prediction propensity
bias, we introduce a constraint that regulates the
logits distribution across labels, ensuring a more
balanced prediction tendency. Second, to enhance
discriminative ability, we employ a contrastive loss
that strengthens the model’s capacity to distinguish
between positive and negative samples for each
specific label.

Furthermore, to reduce the amount of parame-
ters for fine-tuning, we use interchange ablation
to identify early layers where bias starts to propa-
gate and key parameters which cause most effects
on outputs. This enables targeted intervention at a
certain layer to suppress bias accumulation as the
model depth increases.

Through extensive experiments across 5 LLMs
and 12 datasets, we demonstrate that our proposed
approach effectively mitigates label bias, leading to
improved classification performance and more bal-

anced label predictions. Our method not only out-
performs post-hoc correction techniques but also
achieves results comparable to or exceeding those
of full fine-tuning and PEFT-based methods, while
maintaining lower perplexity.

Our main contributions are as follows.

(1) We identify and analyze two specific phe-
nomena of fine-grained label biases in LLMs and
reveal that these biases originate from the progres-
sive accumulation of erroneous predictions in in-
termediate layers, which become amplified in the
deeper layers.

(2) We propose a simple yet PEFT strategy, in-
corporating two bias balance losses. This approach
requires adjusting less than 1% of the total parame-
ters.

(3) We conduct extensive experiments, demon-
strating the effectiveness of our method in figcLLM
tasks while showcasing its adaptability to other do-
mains.

2 Related Works

Label bias. Existing works used to mitigate la-
bel bias can be roughly divided into three cat-
egories. (1) Retraining-based approaches. De-
pending on whether they involve data manipula-
tion or not, these methods are further divided into
two strategies: data-based and algorithm-based
(Thakur et al., 2023). The former balances the
training dataset through techniques such as coun-
terfactual data generation or resampling (Xie and
Lukasiewicz, 2023; He et al., 2022; Thakur et al.,
2023), while algorithm-based approaches modify
the architecture or training constraints (Zhou et al.,
2023; Hassan and Alikhani, 2023). However, they
are difficult to apply to fine-grained tasks or are
computationally expensive. (2) PEFT-based meth-
ods. Gira et al. (2022) proposed a new fine-tuning
strategy by adding a linear to the input and out-
put of the model and unfreezing some parameters.
(3) Post-hoc approaches: These methods attempt to
correct label biases after the model has made its pre-
dictions. For example, CC (Zhao et al., 2021) and
DC (Fei et al., 2023) recalibrate predictions based
on the unbalanced probability distributions gener-
ated by the model for free-text inputs (e.g.,“N/A”
or random tokens). Additionally, Yang et al. (2024)
pruned the top-K neurons contributing most to bi-
ased labels. Although these post-hoc approaches
mitigate bias to some extent, they predominantly
focus on adjusting the label probabilities in the final
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Figure 2: The changing trend of Contain,

NOT Contain of labels in the Gemma2 (9B)
model from 20th layer to 37th layer.

output or target only a limited, discrete subset of
neurons. As a result, they overlook the ongoing ac-
cumulation of bias within the intermediate layers of
the model, making it challenging to fundamentally
address the root causes of bias.

Intermediate layers. Recent studies have inves-
tigated the effectiveness of intermediate layers in
large language models (Skean et al., 2024; Chen
et al., 2024b; Sawtell et al., 2024; Valeriani et al.,
2023). Valeriani et al.’s (2023) work demonstrated
that the semantic information is better expressed
at the intermediate layers. In a similar vein, Skean
et al. (2024) and Sawtell et al. (2024) observed
that the intermediate layers of a transformer-based
model yield superior performance on various down-
stream tasks, including classification of embed-
dings. Our approach further reveals that the in-

fluence of bias is markedly diminished in the inter-
mediate layers compared to the deeper layers, and
we also show how the hidden state of the interme-
diate layer can be used to efficiently train a fairer
LLMs for a wide range of tasks.

3 Bias Accumulation Analysis

To investigate the dynamics and effects of bias
within the model, we performed a visual anal-
ysis on the TweetEmotion dataset (Mohammad
et al., 2018) using an early exit strategy (Teerapit-
tayanon et al., 2016; Elbayad et al., 2020; Schuster
et al., 2022). This method applies language heads
(Im_head), which is a unembedding matrix, di-
rectly to the hidden states of intermediate layers.

We first randomly sampled a class-balanced sub-
set from training data and conducted evaluation
under a zero-shot setting, without explicit instruc-
tions. For each target label, we divided the samples
into two types: those whose true label contained the
target label (C'ontain) and those whose true label
did not (NOT Contain). Using the Gemma2-9b-
it model, we predicted the target labels at each
layer and calculated the mean logits for each of
the two sample sets. For instance, for the label
“anger”, we recorded the logits as Containgnger
and NOT Containgnger, respectively.

The experimental results are presented in Fig-
ure 2 (a-b). Figure 2a illustrates the vari-
ation of Contain across all labels with re-
spect to model depth, while Figure 2b compares
the depth-dependent changes in Contain and
NOT Contain of both the high-frequency word
(“anger”) and low-frequency words (“anticipation”
and “trust”), providing a clear contrast. From these
figures, we observe that fine-grained label biases
exist even in the intermediate layers:

(1) Preference for high-frequency labels. In Fig-
ure 2a, the C'ontain values for high-frequency la-
bels (e.g., “anger”, “sadness”, “joy”) are consis-
tently higher than those for low-frequency labels
(e.g., “anticipation”, “trust”, “pessimism”). Fur-
thermore, the gap between high- and low-frequency
labels grows with increasing model depth begin-
ning with intermediate layers.

(2) Difficulty distinguishing low-frequency la-
bels. In Figure 2b, the distance between Contain
and NOT Contain is significantly wider for high-
frequency labels such as “anger” than for low-
frequency labels such as “anticipation” and “trust”.
The gap is also progressively amplified as the
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Figure 3: The overview of our method.

model depth increases at the beginning of inter-
mediate layers.

Upon analyzing the common causes of these
two biases, we conclude that they primarily stem
from incorrect predictions made in the intermedi-
ate layers. These errors accumulate and propagate
through deeper layers, ultimately influencing the
final predictions. Thus, suppressing the accumula-
tion of biases at the intermediate layers emerges as
a feasible and effective strategy for bias mitigation.

4 Methodology

This section provides a comprehensive overview of
the proposed methodology, as depicted in Figure
3. The task definition is first introduced, followed
by a detailed discussion of the proposed approach,
which comprises two key components: the deter-
mination of fine-tuning parameters, and the incor-
poration of bias balance constraints.

4.1 Task Definition

Given a supervised natural language processing
(NLP) dataset (X,Y’), where X denotes the in-
put texts and Y represents the corresponding cat-
egory labels, along with a prompt template P,
such as “Review: [X]. Emotion:”, model is
parameter-efficiently fine-tuned to learn the map-
ping: M(P, X) — Y. This process enhances the
model’s ability to mitigate undesirable associations
between biases and labels.

4.2 Overview
4.2.1 Determine Fine-tuning Parameters

The computational cost of fine-tuning all layers is
substantial. A key focus is to determine whether
similar results can be achieved by fine-tuning only
a small number of parameters in specific layers.
Based on the analysis in Section 3, we found that
biases largely arise from the accumulation of error
predictions as the model deepens. Consequently,
we aim to correct the early manifestations of bias
by intervening in the internal states of one selected
intermediate layer.

Intermediate target layer. We identify the tar-
get layer for fine-tuning by analyzing the extent to
which the model’s internal mechanisms contribute
to biased predictions, using the interchange abla-
tion method. Specifically, we replace the activation
values of the golden samples in selected compo-
nents with the corresponding hidden representa-
tions of biased samples, and observe the resulting
changes in the final output. We then select the
decoder layer where the largest change occurs as
the target for subsequent interventions. A more
detailed implementation can be found in Appendix
A.

Unfreeze parameters. For the selection of pa-
rameters to fine-tune within the target layer, we
draw on theoretical insights from “memory com-
ponent” (Chen et al., 2024a) and validate our
choices through extensive experiments. Taking the
Gemma?2 model as an example, each decoder con-
sists of a self-attention module (q_proj, k_proy,



v_proj, o_proj) and a feedforward network mod-
ule (gate_proj, up_proj, down_proj). Chen
et al.’s (2024a) research indicates that the atten-
tion output matrix (o_proy) and the final projection
layer of the MLP (down_proj) exhibit stronger
memory characteristics, retaining rich knowledge
acquired during pre-training. Motivated by this
finding, we selectively fine-tune only the o_proj
and down_proj parameters within the target layer,
while keeping all other weights frozen to ensure pa-
rameter efficiency. Additional experimental results
on alternative parameter combinations are provided
in the Appendix B. Furthermore, to enhance the
effectiveness of the target layer, we refine its input
by integrating a learnable parameter into the hidden
representations it receives.

4.2.2 Bias Balance Loss

To address two specific types of fine-grained la-
bel biases, we design two corresponding bias-
balancing constraints to complement the original
language modeling loss during fine-tuning. For
each batch, we separately compute the logits for
samples that Contain and NOT Contain each la-
bel ¢, denoted as H, (9 and H CN , respectively, based
on the final predicted logits. Then, these are aggre-
gated to form H¢ and H across all labels.

HC = [HY,..,HS]"

HYN = [HY,...,HNT

[

ey

where n is the number of label types appearing
in a batch.

(1) Prediction propensity bias. To reduce the
gap between the model’s predicted logits for high-
and low-frequency labels, we aimed to minimize
the internal differences within H¢ and HV. To
achieve this, we apply an L2 norm constrain to
regulate the distance between HS and HY relative
to their respective centroids, ct;, and ctoys.

Ly = ||HE = ctinllz + |HY = ctoutl2,

1
where ct;, = m Z H CC , o
ceY

1 N
Ctout = m;HC

(2) Discriminative ability bias. To enhance the
model’s sensitivity to all labels, we constrained the
distance between HS to HY for each label c, also
utilizing the L2 norm.

Loarz = —||HE — HN ||, 3)

Finally, we define the final loss in the fine-tuning
phase as follows:

L =alpn + BLyan + YLvbai2 “4)

where L) is the language modeling loss, a. 3
and ~ are hyperparameters.

S Experiment

5.1 Experimental setup

Datasets. We conducted extensive experimental
evaluations on five fine-grained tasks and seven
coarse-grained task datasets. The fine-grained tasks
include emotion detection (SuperTweetEval (Anty-
pas et al., 2023): TweetEmotion (Mohammad et al.,
2018), TweetHate (Sachdeva et al., 2022), GoE-
motions (Demszky et al., 2020), EmpatheticDia-
logues (Rashkin et al., 2019)) and fine-grained sen-
timent analysis (SST-5 (Socher et al., 2013)). The
coarse-grained tasks encompass social bias ques-
tion answering (SBQA (Parrish et al., 2022): BBQ-
Age, BBQ-SES, BBQ-Disability, BBQ-Gender),
topic classification (AGNews (Zhang et al., 2015)),
natural language inference (RTE (Dagan et al.,
2006)), and sentiment analysis (SST-2 (Socher
et al., 2013)). Notably, the SBQA dataset differs
from other datasets in that it contains a number
of inconsistent candidate labels. For instance, in
the socioeconomic status bias dataset BBQ-SES,
the labels include terms such as poor people, low-
income people and the truck driver. Further details
about the datasets and the division of the training
set can be found in Appendix C.

Baseline. For the fine-tuning approach, we com-
pared parameter-efficient fine-tuning (LoRA (Hu
et al., 2021)) and full-parameter fine-tuning. Ad-
ditionally, we compared the post-hoc methods CC
(Zhao et al., 2021), DC (Fei et al., 2023) and
CRISPR (Yang et al., 2024). A detailed description
of the baselines is provided in Appendix D.

Models and Implementation Details. In our
work, we utilized five LLMs, all sourced from Hug-
gingFace': Gemma2-2b-it, Gemma2-9b-it (Team,
2024), Mistral-7b-Instruct (Jiang et al., 2023),
Llama3.2-1b, Llama3.2-3b (Grattafiori et al., 2024).
The primary experiments were conducted on fine-
grained tasks, both with and without instructions in
a zero-shot setting. Other experiments were carried

"https://huggingface.co
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Fine-grained

Coarse-grained

Model AllLayers —p—GE ED TH S5 S2 BA BS BD BG AG RIE
Gemma2 (2B) 26 5 15 12 6 22 15 22 21 22 21 12 19
Gemma?2 (9B) 42 2 22 22 28 28 25 25 25 25 25 22 25

Mistral (7B) 32 2 12 12 12 12 - - - - ;
Llama3 (1B) 16 9 10 8 5 10 - - - - - . ;
Llama3 (3B) 28 14 14 8 14 14 - - - - ;

Table 1: Target layer of each dataset in our experience. Because of the better performance overall the fine- and
coarse-grained tasks on Gemma2 models (2B and 9B), we conduct the coarse-grained tasks (adaptability) only on

these two models.

Model Method TweetEmotion GoEmotions EmpathicDialogues TweetHate SST-5
Original 59.33 27.96 30.05 53.87 38.38
CcC 4242 (-1691)  12.14 (-15.82) 13.98 (-16.07) 8.35 (-45.52) 38.32 (-0.06)
DC 65.41 (+6.08) 20.04 (-7.92) 35.50 (+5.45) 24.55(-29.32)  40.96 (+2.58)
Gemma2 (2B) CRISPR  61.13 (+1.80) 30.43 (+2.47) 27.13 (-2.92) 56.52 (+2.65) 35.44 (-2.94)
LoRA  73.95 (+14.62) 50.11 (+22.15) 51.39 (+21.34) 15.83 (-38.04)  54.83 (+16.45)
Full FT  71.41 (+6.08)  49.76 (+21.80) 58.95 (+28.90) 14.28 (-39.59) 48.87 (+10.49)
Ours 75.87 (+16.54)  56.17 (+28.21) 57.31 (+27.26) 65.67 (+11.80) 55.70 (+17.32)
Original 66.34 24.03 45.04 56.28 54.86
cC 65.18 (-1.16) 25.19 (+1.16) 44.73 (-0.31) 2249 (-33.79) 4534 (-9.52)
Gemma2 (9B) DC 67.94 (+1.60) 24.97 (+0.94) 47.83 (+2.79) 32.33(-23.95)  51.69 (-3.17)
CRISPR  69.72 (+3.38) 26.63 (+2.60) 45.78 (+0.74) 57.26 (+0.98) 50.13 (-4.73)
LoRA 74.34 (+8.00)  49.24 (+25.21) 56.66 (+11.62) 14.90 (-41.38)  56.63 (+1.77)
Full FT 7427 (+7.93)  51.13 (+27.10) 57.36 (+12.32) 14.62 (-41.66)  55.81 (+0.95)
Ours 7549 (+9.15)  54.29 (+30.26) 59.13 (+14.09) 70.42 (+14.14)  61.08 (+6.22)
Original 67.31 3245 47.07 63.06 37.99
CcC 64.95 (-2.36) 22.30 (-10.15) 48.25 (+1.18) 49.17 (-13.89)  34.17 (-3.82)
Mistral (7B) DC 62.72 (-4.59) 24.51 (+7.94) 41.89 (-5.18) 29.89 (-33.17)  40.51 (+2.52)
CRISPR  67.05 (-0.26) 27.53 (-4.92) 50.76 (+3.69) 70.51 (+7.45)  44.82 (+6.83)
LoRA 71.81 (+4.50)  48.15 (+15.70) 59.34 (+12.27) 13.47 (-49.59)  53.42 (+15.43)
Full FT =~ 72.69 (+5.38)  48.94 (+16.47) 58.22 (+11.15) 14.84 (-48.22)  53.70 (+15.71)
Ours 73.91 (+6.60)  50.34 (+17.89) 60.19 (+13.12) 55.67 (-7.39)  57.74 (+19.75)
Original 42.71 8.95 19.97 18.25 24.90
CC 49.94 (+7.23) 12.30 (+3.35) 30.31 (+10.34) 4.87 (-13.38) 20.84 (-4.06)
DC 50.95 (+8.24) 16.42 (+7.47) 37.32 (+17.35) 4.82 (-13.43) 29.20 (+4.30)
Llama3 (1B) CRISPR  43.09 (+0.38) 9.15 (+0.20) 21.18 (+1.21) 23.82 (+5.57) 24.31 (-0.59)
LoRA  71.65(+28.94) 48.90 (+39.95) 49.92 (+29.95) 15.04 (-3.21)  55.74 (+30.84)
Full FT  71.71 (+#29.00)  48.66 (+39.71) 51.34 (+31.37) 14.90 (-3.35)  55.57 (+30.67)
Ours 72.55 (+29.84) 50.81 (+41.86) 51.36 (+31.39) 46.29 (+28.04) 57.67 (+32.77)
Original 46.35 12.70 19.27 3.48 27.27
CcC 51.06 (+4.71) 5.85 (-6.85) 28.85 (+9.58) 14.31 (+10.83)  20.79 (-6.48)
DC 57.92 (+11.57) 1597 (+3.27) 35.53 (+16.26) 12.65 (+9.17)  31.12 (+3.85)
Llama3 (3B) CRISPR  50.80 (+4.45) 17.51 (+4.81) 22.38 (+3.11) 18.63 (+15.15)  30.94 (+3.67)
LoRA 7092 (+24.57) 45.17 (+32.47) 59.16 (+39.89) 15.57 (+12.09)  57.23 (+29.96)
Full FT  73.82 (+27.47) 50.21 (+37.51) 61.03 (+41.76) 14.97 (+11.49) 5542 (+28.15)
Ours 74.22 (+27.87) 50.55 (+37.85) 58.98 (+39.71) 65.99 (+62.51) 55.50 (+28.23)

Table 2: The main results in the instruction setting. The bold/underlined font means the best/the second best result.

out exclusively with instructions. The templates
and task instructions employed can be found in
Appendix H. For the target layer selection step,
we randomly selected 20 samples from the train-
ing set for evaluation, with the results presented in
Table 1. Regarding hyperparameters, the learn-
ing rate was set to 5e-5, the batch size to 16,
a=1,0=1, v=1. All training was performed
using FP16 precision on NVIDIA GeForce RTX

3090 GPUs.

5.2 Main Results
5.2.1 Fine-grained Classification

We evaluated the bias mitigation performance of
our method and several baselines for fine-grained
label biases. Table 2 presents the weighted F1
scores of various methods across five fine-grained
datasets under the instruction setting, with results



Model TweetEmotion GoEmotions
Acc. F1 Acc. F1
Ours 53.15 75.87 53.55 56.17
w/o Ly 4746 73.62 52.00 54.60
w/0 Lpa2 3429 6827 3509 37.84
w/o Lpan 2 33.65 67.63 49.69 49.94
w/orefine 5032 7552 51.13 54.68
unfreeze (down)  49.83 7470 52.80 55.75
unfreeze (o) 49.17 7430 48.41 53.34
unfreeze (-) 37.13  69.10 27.54 29.63
unfreeze (¢, k, v) 45.88 7331 4648 50.85
unfreeze (gate, up) 50.06 75.13 50.88 54.50

Table 3: Ablation experiments.

for the no-instruction setting available in Appendix
E. The findings indicate that existing post-hoc
methods (CC, DC, CRISPR) are limited in effec-
tively mitigating fine-grained label biases. Particu-
larly when applied to the TweetHate dataset, which
exhibits a severe label imbalance, both CC and
DC lead to a notable decline in task performance.
While CRISPR shows some improvement in the
instruction setting, its performance still lags be-
hind that of the fine-tuning methods. In contrast,
training-based methods, which adjust the model’s
intrinsic representations, are more effective in miti-
gating the negative impact of bias. However, on the
TweetHate dataset, both full-parameter fine-tuning
and LoRA fail to improve the metric, highlight-
ing the complexity of the figcLLM task compared
to traditional classification tasks. Notably, our ap-
proach achieves performance comparable to, or
even better than, LoRA and full-parameter fine-
tuning methods, despite updating far fewer param-
eters. This underscores the effectiveness of our
strategy in suppressing bias accumulation within
the deeper layers by intervening at the intermediate
layer.

5.2.2 Ablation

We also conducted ablation experiments using the
Gemma2-2b-it model on the TweetEmotion and
GoEmotions datasets to assess the impact of our
proposed bias balance losses, learnable refine pa-
rameter (re fine), and the choice of training com-
ponents on the final task performance. Specifically,
TweetEmotion is a multi-label classification task,
for which we computed accuracy using the exact
match principle. In each ablation experiment, we
ensured that all settings remained constant except
for modifications in the conditions under investiga-
tion. The results of these experiments are presented

in Table 3.

In Table 3, w/o Lpu1, w/o Lpg2, and
w/o Lpa1,2 represent the removal of one or both
bias balance losses, respectively. The last five lines
represent different parameter combinations for un-
freezing. The results reveal that omitting the bal-
ance losses significantly impairs task performance,
with removal of Lp,5 leading to greater degrada-
tion than removal of Lp,;. This suggests that
enhancing the model’s discriminative ability for
low-frequency labels is crucial for improving task
performance. Moreover, freezing all components
in the target layer severely hinders bias mitigation.
Fine-tuning ¢, k, and v in the target layer proves
less effective than other combinations, while fine-
tuning only o and down yields the best results with
fewer parameters. More parameter combination
experiments can be found in Appendix B.

5.2.3 Parameter Analysis

Furthermore, Appendix F provides an analysis of
the impact of varying the location of the target
layer, training multiple decoder layers, and hyper-
parameters «, /3, « on task performance.

5.3 Adaptability

We also test the adaptability of our method on
coarse-grained tasks. Given the social bias ques-
tion answering tasks and the more balanced label
in the classification datasets, we chose accuracy as
the evaluation metric for this experiment. Addi-
tionally, based on the observations in Section 5.2,
where the Gemma2 models (2B and 9B) consis-
tently outperformed others, we limited this section
to the Gemma2 family of models.

Table 4 presents the performance of our ap-
proach in comparison with other baselines across
four types of coarse-grained tasks. Consistent
with the results from the fine-grained tasks, our
method achieves superior performance on most
of the datasets, particularly excelling on the topic
classification dataset (AGNews) and the age bias
dataset (BBQ-Age). These results strongly high-
light the adaptation capability of our approach.

5.4 Perplexity

The fine-tuning approach is susceptible to the issue
of “catastrophic forgetting”, where the fine-tuned
model may lose some of its original language mod-
eling capability. To assess the impact of different
fine-tuning methods on this aspect, we calculated
the perplexity of the model before and after train-



Type of Datasets

Model  Method SBQA (BBQ) SA TC NLI
Age SES Disability Gender SST-2 AGNews RTE
Original 69.14 71.75 71.95 65.63 90.17 77.73 74.65
CcC 52.34 (-16.80)  52.89 (-24.86)  50.20 (-21.75)  52.88 (-12.75)  90.65 (+0.48) 54.86 (-22.87)  77.52 (+2.87)
Gemma? DC 56.03 (-13.11) 5534 (-22.41) 56.47 (-15.48)  54.46 (-11.17)  93.26 (+3.09) 62.30 (-15.43)  79.23 (+4.58)
(2B) CRISPR  70.10 (+0.96)  79.06 (+1.31)  69.18 (-2.77) 68.33 (+2.70)  92.08 (+1.91)  76.64 (-1.09)  77.25 (+2.60)
LoRA  82.60 (+13.46) 98.77 (+21.02) 91.88 (+19.93) 99.50 (+33.87) 96.61 (+6.44) 91.47 (+13.74) 81.85 (+7.20)
Full FT =~ 86.60 (+17.46) 96.75 (+19.00) 92.06 (+20.11) 98.85 (+33.22) 94.94 (+4.77) 90.97 (+13.24)  84.64 (+9.99)
Ours 96.98 (+27.84) 97.54 (+19.79) 91.95 (+20.00) 99.61 (+33.98) 95.63 (5.46) 97.02 (+19.29) 84.82 (+10.17)
Original 85.45 85.73 86.22 88.40 95.61 86.61 75.62
CcCc 65.43 (-20.02)  65.74 (-19.99) 71.35(-14.87)  69.79 (-18.61)  95.56 (-0.05)  85.86 (-0.75)  75.53 (-0.09)
Gemma2 DC 80.82 (-4.63) 76.86 (-8.87) 81.66 (-4.56) 88.69 (+0.29)  95.12(-0.49)  86.11 (-0.50)  79.71 (+4.09)
(9B) CRISPR  86.45 (+1.00) 84.33 (-1.40) 85.51 (-0.71) 89.62 (+1.22)  95.53 (-0.08)  86.47 (-0.14)  77.99 (+2.37)
LoRA 94.04 (+8.59)  99.42 (+13.69) 97.32 (+11.10) 99.95 (+11.55) 95.73 (+0.12)  92.01 (+5.40)  82.44 (+6.82)
Full FT =~ 95.23 (+9.78)  99.55 (+13.82) 97.86 (+11.64) 99.26 (+10.86) 95.90 (+0.29)  94.06 (+7.45) 86.61 (+10.99)
Ours 98.19 (+12.74) 99.77 (+14.04) 97.57 (+11.35) 99.67 (+11.27) 96.10 (+0.49) 97.87 (+11.26) 93.09 (+17.47)

Table 4: The results of generalization. The bold/underlined font means the best/the second best result.

WikiText-2: Perplexity ({)

Method Gemma2 Gemma2 Mistral Llama3 Llama3
(2B) (9B) (7B) (1B) (3B)
Original 18.80 13.60 6.37 11.37 9.04
LoRA 35.68 34.29 8.04 22.05 15.59
Full FT 23.48 37.08 10.57 22.97 9.20
Ours 21.94 13.52 6.48 11.47 9.06

Table 5: The results of perplexity on fine-tuned methods.

ing, using the WikiText-2 datasets (Merity et al.,
2016). As an example, we used the model saved
after fine-tuning on the TweetEmotion, and the re-
sults are presented in Table 5.

It is evident that for the model fine-tuned using
our method, the perplexity remains nearly identi-
cal to that of the initial model, indicating that our
fine-tuning approach has minimal impact on the
language modeling capability. In contrast, mod-
els fine-tuned with LoRA and full-parameter fine-
tuning exhibit a significant increase in perplexity
to varying degrees.

5.5 Visualisation

To demonstrate the mitigation effect of our fine-
tuned model on fine-grained label biases, we visu-
alized the Contain and NOT Contain of labels
on TweetEmotion, as detailed in Section 3. The
corresponding results are provided in Appendix G.

6 Conclusion

This work addresses the mitigation of label biases
in Large Language Models (LLMs) for fine-grained
classification tasks. We identify two distinct forms
of fine-grained label biases within LLMs, named
prediction propensity bias and discriminative abil-
ity bias, and explore the underlying causes of these
biases, i.e., erroneous predictions in the interme-

diate layers are accumulated and amplified as the
model depth increases. To counteract this issue,
we propose two bias balance losses to parameter-
efficiently fine-tune an intermediate layer. No-
tably, our method requires training less than 1%
of the model’s total parameters. Extensive experi-
ments across a range of tasks and datasets demon-
strate that our approach not only exceeds existing
post-hoc methods in mitigating label biases, but
also achieves performance comparable to, or even
exceeding, that of full-parameter fine-tuning and
LoRA. Our findings underscore the potential of
intervening in the middle layer to enhance the fair-
ness and accuracy of LLMs in fine-grained classifi-
cation tasks.

7 Limitation

In this work, we have focused exclusively on
LLMs with a decoder-only architecture and have
not explored models with other architectural types,
such as encoder-only or encoder-decoder structures.
These alternative architectures warrant further in-
vestigation, particularly with respect to the varia-
tion of bias in the encoder modules, which may
differ significantly from that observed in the de-
coders. Consequently, we plan to extend our study
to include LLMs with diverse architectural config-
urations in future research.

References

Dimosthenis Antypas, Asahi Ushio, Francesco Barbieri,
Leonardo Neves, Kiamehr Rezaee, Luis Espinosa-
Anke, Jiaxin Pei, and Jose Camacho-Collados. 2023.
Supertweeteval: A challenging, unified and hetero-
geneous benchmark for social media nlp research.



In Findings of the Association for Computational
Linguistics: EMNLP 2023.

Hang Chen, Jiaying Zhu, Xinyu Yang, and Wenya Wang.
2024a. Unveiling language skills via path-level cir-
cuit discovery. Preprint, arXiv:2410.01334.

Nuo Chen, Ning Wu, Shining Liang, Ming Gong, Lin-
jun Shou, Dongmei Zhang, and Jia Li. 2024b. Is big-
ger and deeper always better? probing llama across
scales and layers. Preprint, arXiv:2312.04333.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual entailment
challenge. In Machine learning challenges. evaluat-
ing predictive uncertainty, visual object classification,
and recognising tectual entailment, pages 177-190.
Springer.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A Dataset of Fine-Grained Emo-
tions. In 58th Annual Meeting of the Association for
Computational Linguistics (ACL).

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive Transformer. In ICLR
2020 - Eighth International Conference on Learning
Representations, pages 1-14.

Yu Fei, Yifan Hou, Zeming Chen, and Antoine Bosselut.
2023. Mitigating label biases for in-context learn-
ing. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics, pages
14014-14031.

Michael Gira, Ruisu Zhang, and Kangwook Lee. 2022.
Debiasing pre-trained language models via efficient
fine-tuning. In Proceedings of the Second Workshop
on Language Technology for Equality, Diversity and
Inclusion, pages 59-69.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, Amy Yang, Angela Fan, and et al.
Anirudh Goyal. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Yue Guo, Yi Yang, and Ahmed Abbasi. 2022. Auto-
debias: Debiasing masked language models with
automated biased prompts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1012-1023.

Sabit Hassan and Malihe Alikhani. 2023. D-CALM: A
dynamic clustering-based active learning approach
for mitigating bias. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 5540—
5553.

Jacqueline He, Mengzhou Xia, Christiane Fellbaum,
and Danqi Chen. 2022. MABEL.: Attenuating gender
bias using textual entailment data. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 9681-9702.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Siqing Huo, Negar Arabzadeh, and Charles Clarke.
2023. Retrieving supporting evidence for generative
question answering. In Proceedings of the Annual In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval in the Asia Pa-
cific Region, page 11-20. Association for Computing
Machinery.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell.
2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of
Sciences, pages 3521-3526.

Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao
Duan, Bowen Dong, Ning Liu, and Jianyong Wang.
2024. Flexkbqa: A flexible llm-powered framework
for few-shot knowledge base question answering.
Proceedings of the AAAI Conference on Artificial
Intelligence, pages 18608—18616.

Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu,
Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu, Xi-
angyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu,
Ruiming Tang, and Weinan Zhang. 2025. How can
recommender systems benefit from large language
models: A survey. ACM Trans. Inf. Syst., 43(2).

Cristina Luna-Jimenéz, Zoraida Callejas, and David
Griol. 2024. Mental-health topic classification em-
ploying d-vectors of large language models. In 2024
IEEE 37th International Symposium on Computer-
Based Medical Systems (CBMS), pages 199-204.

Mamta Mamta, Rishikant Chigrupaatii, and Asif Ekbal.
2024. BiasWipe: Mitigating unintended bias in text
classifiers through model interpretability. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 21059-21070.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. SemEval-
2018 task 1: Affect in tweets. In Proceedings of the
12th International Workshop on Semantic Evaluation,
pages 1-17.


https://arxiv.org/abs/2410.01334
https://arxiv.org/abs/2410.01334
https://arxiv.org/abs/2410.01334
https://arxiv.org/abs/2312.04333
https://arxiv.org/abs/2312.04333
https://arxiv.org/abs/2312.04333
https://arxiv.org/abs/2312.04333
https://arxiv.org/abs/2312.04333
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh
Padmakumar, Jason Phang, Phu Mon Thompson,
Jana and Htut, and Samuel Bowman. 2022. BBQ:
A hand-built bias benchmark for question answering.
In Findings of the Association for Computational
Linguistics, pages 2086-2105.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
ChatGPT a general-purpose natural language pro-
cessing task solver? In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1339-1384.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-

ing of the Association for Computational Linguistics,
pages 5370-5381.

Pratik Sachdeva, Renata Barreto, Geoff Bacon, Alexan-
der Sahn, Claudia von Vacano, and Chris Kennedy.
2022. The measuring hate speech corpus: Leverag-
ing rasch measurement theory for data perspectivism.
In Proceedings of the 1st Workshop on Perspectivist
Approaches to NLP @ LREC2022, pages 83-94.

Mason Sawtell, Tula Masterman, Sandi Besen, and
Jim Brown. 2024. Lightweight safety classifi-
cation using pruned language models. Preprint,
arXiv:2412.13435.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. In
Advances in Neural Information Processing Systems,
volume 35, pages 17456-17472.

Oscar Skean, Md Rifat Arefin, Yann LeCun, and Ravid
Shwartz-Ziv. 2024. Does representation matter? ex-
ploring intermediate layers in large language models.
Preprint, arXiv:2412.09563.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642.

Gemma Team. 2024. Gemma 2: Improving open
language models at a practical size. Preprint,
arXiv:2408.00118.

Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. 2016. Branchynet: Fast inference via early ex-
iting from deep neural networks. In 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR),
pages 2464-2469.

Himanshu Thakur, Atishay Jain, Praneetha Vaddamanu,
Paul Pu Liang, and Louis-Philippe Morency. 2023.
Language models get a gender makeover: Mitigat-
ing gender bias with few-shot data interventions. In

10

Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 340-351.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello,
Alessandro Laio, Alessio Ansuini, and Alberto Caz-
zaniga. 2023. The geometry of hidden represen-
tations of large transformer models. In Advances
in Neural Information Processing Systems, pages
51234-51252.

Fusheng Wei, Robert Keeling, Nathaniel Huber-Fliflet,
Jianping Zhang, Adam Dabrowski, Jingchao Yang,
Qiang Mao, and Han Qin. 2023. Empirical study of
IIm fine-tuning for text classification in legal docu-
ment review. In 2023 IEEE International Conference
on Big Data, pages 2786-2792.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Preprint,
arXiv:2206.07682.

Anuradha Welivita, Yubo Xie, and Pearl Pu. 2021. A
large-scale dataset for empathetic response gener-
ation. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing,
pages 1251-1264.

Yubo Xie and Pearl Pu. 2021. Empathetic dialog gen-
eration with fine-grained intents. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 133-147.

Zhongbin Xie and Thomas Lukasiewicz. 2023. An em-
pirical analysis of parameter-efficient methods for
debiasing pre-trained language models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics, pages 15730-15745.

Nakyeong Yang, Taegwan Kang, Stanley Jungkyu Choi,
Honglak Lee, and Kyomin Jung. 2024. Mitigating
biases for instruction-following language models via
bias neurons elimination. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics, pages 9061-9073.

Jun Zhang and Yanrong Guo. 2024. Multilevel depres-
sion status detection based on fine-grained prompt
learning. Pattern Recognition Letters, 178:167-173.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference on
Machine Learning, pages 12697-12706.


https://arxiv.org/abs/2412.13435
https://arxiv.org/abs/2412.13435
https://arxiv.org/abs/2412.13435
https://arxiv.org/abs/2412.09563
https://arxiv.org/abs/2412.09563
https://arxiv.org/abs/2412.09563
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682

Metric
F1
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71.51
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73.83
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73.88
73.03
73.34
73.93
73.47
75.23
74.50
72.59
74.09
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72.45
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74.83
75.13
74.73
74.17
74.63
74.70
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Table 6: Results of selecting different combinations.

Zihuai Zhao, Wenqi Fan, Jiatong Li, Yunqing Liu, Xi-
aowei Mei, Yiqi Wang, Zhen Wen, Fei Wang, Xi-
angyu Zhao, Jiliang Tang, and Qing Li. 2024. Rec-
ommender systems in the era of large language mod-
els (Ilms). IEEE Transactions on Knowledge and
Data Engineering, pages 6889—-6907.

Fan Zhou, Yuzhou Mao, Liu Yu, Yi Yang, and Ting
Zhong. 2023. Causal-debias: Unifying debiasing
in pretrained language models and fine-tuning via
causal invariant learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics, pages 4227-4241.

A Target Layer Selection

The specific operation of the target layer selection
is as follows. Given a sample (z;,v;) € (X,Y)
and a prompt template P, we prompt LLM to make
predictions by connecting x; and P as inputs. We
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Datasets ‘ Class ‘ Balanced ‘ Train ‘ Test

Fine-grained

TweetEmotion 11 X 886 | 3259
GoEmotions 28 X 1000 | 5227
Empathetic 3 X 960 | 2538

Dialogues
TweetHate 7 X 895 | 1433
SST-5 5 X 1000 | 2210
Coarse-grained
BBQ-Age X 368 | 3312
BBQ-SES

(socio-economic X 686 | 6175
status bias)

BBQ-Disability

(disability status bias) X 155 | 1401

BBQ-Gender

(gender bias) X 567 | 5105
AGNews 4 v 760 | 6840
RTE 2 X 248 | 2242
SST-2 2 v 182 | 1639

Table 7: Full datasets information.

identify the bias label 7j; corresponding to x; based
on the logits by the last layer of the model.

argmaz M (c|P(x;))
wherec € Y Nc # y;

Yi )

Then, we connect P with y; and 7; in text form,
so that we get the gold sample s; and the biased
sample s;. According to this method, we sampled
a total of .S pairs of samples for analysis, where
1es.

For each pair of samples, we re-entered s; and
$; into LLM to capture the activation values of the
studied component at each layer, recorded as h; and
Ei respectively. Next, we replace the layer by layer
while ensuring that the input is still s;, replacing
the h; of a specified layer with the corresponding
Ei each time, and using KL divergence to calculate
the distribution change of the final output before
and after the replacement. Finally, we average the
KL divergence of the pair of samples, and the layer
¢ where the maximum value appears is the target
layer of the operation we are looking for.

Mhl(si)

1
! = argmal’lng Z Mhz(si)l()gm
hy\7?

i€S

(6)

In this implementation, the studied component
is focused on the output matrix of the self-attention
module, i.e., o_proj.



Model Method TweetEmotion GoEmotions EmpathicDialogues TweetHate SST-5
Original 59.56 13.75 38.73 68.15 35.18
CC 61.55 (+1.99) 15.95 (+2.20) 48.82 (+10.09) 50.22 (-17.93)  32.22(-2.96)
DC 64.63 (+5.07)  18.03 (+4.28) 45.93 (+7.20) 41.53 (-26.62)  42.35 (+7.17)
Gemma2 (2B) CRISPR  62.47 (+2.91) 15.63 (+1.88) 43.27 (+4.54) 70.63 (+2.48)  36.19 (+1.01)
LoRA  74.78 (+15.22) 51.53 (+37.78) 59.17 (+20.44) 15.45 (-52.70)  56.81 (+21.63)
Full FT  74.67 (+15.11)  52.90 (+39.15) 54.79 (+16.06) 19.90 (-48.25) 54.52 (+19.34)
Ours 75.72 (+16.16)  54.55 (+40.80) 59.69 (+20.96) 72.14 (+3.99) 58.52 (+23.34)
Original 60.86 21.13 39.05 64.40 39.09
CC 64.27 (+3.41) 22.17 (+1.04) 48.74 (+9.69) 67.07 (+2.67) 36.48 (-2.61)
Gemma2 (9B) DC 67.49 (+6.63)  22.25(+1.12) 46.73 (+7.68) 44.83 (-19.57)  47.54 (+8.45)
CRISPR  60.54(-0.32)  22.60 (+1.47) 38.91 (-0.14) 68.08 (+3.68)  41.38 (+2.29)
LoRA  74.52 (+13.66) 54.53 (+33.40) 60.88 (+21.83) 15.63 (-48.77)  59.12 (+20.03)
Full FT  75.74 (+14.88) 53.64 (+32.51) 60.21 (+21.16) 21.35(-43.05)  59.62 (+20.53)
Ours 76.21 (+15.35)  53.75 (+32.62) 61.12 (+22.07) 71.77 (+7.37)  59.45 (+20.36)
Original 59.06 13.16 34.66 35.60 34.79
CcC 62.01 (+2.95)  21.56 (+8.40) 49.54 (+14.88) 25.68 (-9.92) 38.75 (+3.96)
Mistral (7B) DC 63.75 (+4.69) 15.91 (+2.75) 50.20 (+15.54) 19.20 (-16.40)  32.14 (-2.65)
CRISPR  55.89 (-3.17) 12.53 (-0.63) 35.56 (+0.90) 22.17 (-13.43)  29.78 (-5.01)
LoRA  71.80 (+12.74)  52.66 (+39.50) 62.20 (+27.54) 15.44 (-20.16)  55.68 (+20.89)
Full FT  72.10 (+13.04) 52.43 (+39.27) 61.10 (+26.44) 18.62 (-16.98)  54.70 (+19.91)
Ours 72.57 (+13.51)  52.06 (+38.90) 61.53 (+26.87) 36.18 (+0.58)  56.27 (+21.48)
Original 37.16 8.43 21.04 40.32 21.44
CcC 48.97 (+11.81) 14.31 (+5.88) 34.88 (+13.84) 10.54 (-29.78)  24.43 (+2.99)
DC 51.56 (+14.40)  19.92 (+11.49) 36.36 (+15.32) 37.80 (-2.52) 16.66 (-4.78)
Llama3 (1B) CRISPR  36.92(-0.24) 7.48 (-0.95) 20.79 (-0.25) 53.81 (+13.49)  13.88 (-7.56)
LoRA 73.19 (+36.03)  48.94 (+40.51) 58.69 (+37.65) 15.06 (-25.26)  55.13 (+33.69)
Full FT  73.77 (+36.61)  50.58 (+42.15) 56.74 (+35.70) 53.99 (-13.67)  53.56 (+32.12)
Ours 73.69 (+36.53)  50.05 (+41.62) 57.17 (+36.13) 61.14 (+20.82) 54.10 (+32.66)
Original 38.35 11.02 28.25 55.42 14.14
CC 53.97 (+15.62)  10.73 (-0.29) 40.87 (+12.62) 1.60 (-53.82) 18.35 (+4.21)
DC 5145 (+13.10)  17.24 (+6.22) 4251 (+14.26) 2.60(-52.82)  23.65 (+9.51)
Llama3 (3B) CRISPR  40.71 (+2.36) 16.58 (+5.56) 31.83 (+3.58) 9.10 (-46.32) 19.17 (+5.03)
LoRA  73.71 (+35.36) 50.71 (+39.69) 60.86 (+32.61) 15.50(-39.92)  55.98 (+41.84)
Full FT  73.99 (+35.64) 51.71 (+40.69) 58.51 (+30.26) 58.96 (+3.54)  51.70 (+37.56)
Ours 73.26 (+34.91) 52.61 (+41.59) 59.43 (+31.18) 56.70 (+1.28)  56.68 (+42.54)

Table 8: The main results in the no-instruction setting. The bold/underlined font means the best/the second best

result.

B Selection of Fine-tune Parameters

Table 6 presents the impact of unfreezing different
parameter combinations on prediction performance
during the fine-tuning of Gemma?2 (2B). The ex-
periments were conducted on the TweetEmotion
dataset. Given the large number of possible com-
binations, we report results only where one or two
parameters were unfrozen.

C Datasets

The 12 datasets we used are all from the Hugging-
Face version. There is an extreme label imbal-
ance problem on the fine-grained dataset, which
causes that LoRA and full- parameter fine-tuning
require more training data to achieve positive im-
provements. Therefore, in fine-grained tasks, we
use a subset of the validation set or training set
divided by the original version for training, but en-
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sure that the number of training samples is within
1,000. For coarse-grained tasks, in all implementa-
tion methods, we sampled 10% of the test set for
training, and the rest for testing. The details are
shown in Table 7.

D Baselines

CC (Zhao et al., 2021) and DC (Fei et al., 2023)
investigated label bias in the few-shot setting. They
used the model’s output probability of free-text
inputs (“N/A” or random token) to adjust the la-
bel probability of the original instance. We imple-
mented both methods as described in their original
papers.

CRISPR (Yang et al., 2024) addressed both la-
bel and instruction bias. The method proposed the
concept of bias neurons. It identified the neurons
that more responsible for bias through gradient-
based attribution, and used pruning techniques to



modify the weight parameters learned during pre-
training. In accordance with the original paper,
we sampled 20 instances from the training set to
analyze and locate the bias neurons.

LoRA (Hu et al., 2021), low-rank adapter fine-
tuning, leverages the intrinsic low-rank structure
of large language models by introducing a bypass
matrix to simulate full-parameter fine-tuning. It
is currently one of the most effective and widely
used parameter-efficient fine-tuning methods. In
our implementation, we utilized the SFTrainer
tool from the TRL (Transformers Reinforcement
Learning) library developed by HuggingFace.
Specifically, we set k = 8, target_modules
[“q_proj”, “o_proj”, “k_proj”, “v_proj”, “gate
_proj”, “up_proj”, “down_proj”].

Full-parameter fine-tuning, in contrast, in-
volves adjusting all parameters of the language
model during training, which requires significantly
more computational resources compared to effi-
cient parameter fine-tuning methods. For our ex-
periments, we employed the Trainer tool from the
HuggingFace transformers library.

E Results without Instruction

Table 8 shows the weighted F1 scores of differ-
ent methods on five fine-grained datasets with no-
instruction setting. Our method achieves better
results especially on the Gemma?2 series models.

F Parameter Analysis

First, we conducted parameter analysis experi-
ments on Gemma?2 (2B) model to explore the im-
pact of target layer selection and the number of
layers trained on task performance. As illustrated
in Figure 4a, when the target layer is located in
the intermediate layers, task performance exhibits
a small peak. However, as the number of layers
selected for training increases, performance drops
rapidly. In Figure 4b, we present the effect of un-
freezing the components o_proj and down_proj
in layers which after the target. For the TweetEmo-
tion dataset, training the five layers immediately
following the target layer has minimal impact on
the F1 score, with a slight decline observed there-
after. In contrast, for the GoEmotions dataset, ad-
ditional training does not yield any performance
improvement; instead, it results in a substantial
decrease in the F1 score.

Then, we performed several experiments to de-
termine the value of the hyperparameters o, 5, 7.
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Figure 4: The results of parameter analysis.
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Figure 5: Hyperparameter analysis.

The results are shown in Figure 5.

G Visualisation

Figures 6 (a-d) illustrate the impact of fine-tuning
the Gemma?2 (9B) model with our method on la-
bel bias mitigation. The results demonstrate a sig-
nificant improvement in the model’s output logits
and its ability to discriminate low-frequency labels,
with a notable reduction in the gap between high-
frequency and low-frequency labels.
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Figure 6: (a-b) compare the Contain of each label and (c-d) compare the distinguish ability of specific labels on
the Gemma2 (9B) model before and after correction.

H Templates

In Table 9, we show all the templates used in our
experiments and the corresponding label names of
the datasets.

14



Datasets

Template

Label Name

TweetEmotion

(Mohammad et al., 2018)

Review: [review]
Emotion: [label]

Instruction: Select the right emotion words for the given
Review from Choices.

Choices: [options]

Review: [review]

Emotion: [label]

anger, anticipation, disgust,
fear, joy, love, optimism,
pessimism, sadness, surprise,
trust

GoEmotions
(Demszky et al., 2020)

Review: [review]
Emotion: [label]

Instruction: Select the right emotion words for the given
Review from Choices.

Choices: [options]

Review: [review]

Emotion: [label]

admiration, amusement, anger, annoyance,
approval, caring, confusion, curiosity,
desire, disappointment, disapproval, disgust,
embarrassment, excitement, fear, gratitude,
grief, joy, love, nervousness, optimism,
pride, realization, relief, remorse,
sadness, surprise, neutral

Empathic
Dialogues
(Rashkin et al., 2019)

Utterance: [utterance]
Emotion: [label]

Instruction: Select the right emotion word for the given
Utterance from Choices.

Choices: [options]

Utterance: [utterance]

Emotion: [label]

afraid, angry, annoyed, ashamed, anticipating,
anxious, apprehensive, confident, caring, content,
disappointed, disgusted, devastated, embarrassed,
excited, faithful, furious, grateful, guilty,
hopeful, impressed, jealous, joyful, lonely,
nostalgic, proud, prepared, sentimental,
sad, surprised, terrified, trusting

TweetHate
(Sachdeva et al., 2022)

Review: [review]
Emotion: [label]

Instruction: Select the right emotion label for the given
Review from Choices.

Choices: [options]

Review: [review]

Answer: [label]

hate_gender, hate_race, hate_sexuality,
hate_religion, hate_origin, hate_disability,
hate_age, not_hate

SST-5
(Socher et al., 2013)

Review: [review]
Sentiment: [label]

Instruction: Select the right sentiment label for the given
Review from Choices.

Choices: [options]

Review: [review]

Answer: [label]

very positive, positive, neutral, negative,
very negative

SST-2
(Socher et al., 2013)

Instruction: Select the right sentiment word for the given
Review from Choices.

Choices: [options]

Review: [review]

Emotion: [label]

positive, negative

BBQ-Age
(Parrish et al., 2022)

BBQ-SES
(Parrish et al., 2022)

BBQ-Disability
(Parrish et al., 2022)

Instruction: For the subsequent context and question, decide
on the most appropriate answer from the given options.
Context: [context]

Question: [question]

Options: [option]

Answer:[label]

The young adult, The sixty-something,
The middle-aged woman, The high schooler,
The elderly man, Can’t answer, Undetermined, ...

The judge, The psychologist, The bartender,
The low-income students, The farm worker,
The physician, Karen, Not enough info, ...

The friend who’s deaf, The person with PTSD,
The disabled woman, The person with anxiety,
The blind, Not known, Can’t be determined, ...

The boy, The girl, The cisgender woman,

(Parliilz}?e;t(};nd;(gﬂ) The transgender man, Steven, Carol,
” The cis woman, Not enough information,...
AGNews

(Zhang et al., 2015)

Instruction: Instruction: Classify the following news article
from the given Choices.

Choices: [option]

Text: [news]

Category: [label]

world, sports, business, technology

RTE
(Dagan et al., 2006)

Instruction: Context: [sentencel]
Question: [sentence2] True or False?
Answer: [label]

True, False

Table 9: Template of all 12 datasets used in our experiments.
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