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Abstract

Probability flow based models for image and
audio synthesis, such as denoising diffusion
probabilistic models and Poisson flow gener-
ative models, can be interpreted as modeling
any ground truth distribution through the non-
compressible fluid partial differential equation,
where the initial and final fluid density are
the chosen prior distribution and the ground
truth distribution correspondingly. In this re-
search, we analyse various previous models un-
der the unified perspective of probability flow
equation, and propose WaveODE model for
mel-spectrogram conditioned speech synthe-
sis task, which learns a velocity field under a
dynamically changing probability flow equa-
tion instead of estimating the groud truth with
a fixed evolution equation such as VP-SDE
and sub-VP-SDE in previous works. Since
mel-spectrogram is a relatively strong condi-
tion which limits the possible audios to a small
range, waveODE models the ground truth dis-
tribution with a mel-conditioned prior distri-
bution rather than the standard Gaussian dis-
tribution, and adopts a distillation method to
accelerate the inference process. Experimental
results show that our model is more competi-
tive with previous vocoders in sample quality,
and could generate waveform with a single in-
ference step.!

1 Introduction

Recent advancements in training algorithms and
network architectures have facilitated the produc-
tion of high-fidelity audio by deep generative mod-
els in the realm of speech synthesis (Kumar et al.,
2019; Kong et al., 2020b; Lam et al., 2022; Huang
et al., 2023; Ye et al., 2023). The pioneering im-
plementation of a deep generative model involved
the autoregressive generation of waveforms from

'Audio samples and codes are available at a newly
registered anonymous repository: https://github.com/
JBJIWZZHCDS/WaveODE

mel-spectrograms (Oord et al., 2016; Kalchbren-
ner et al., 2018), which yielded high-fidelity audio
but was hindered by a significantly slow inference
speed. To overcome this limitation and achieve real-
time high-fidelity speech synthesis, a multitude of
non-autoregressive models have been proposed re-
cently. These models can be broadly categorized
into three types: flow-based models, generative
adversarial networks, and diffusion probabilistic
models.

Flow-based models generate waveforms from
a chosen prior distribution, such as the Gaussian
distribution,utilizing invertible neural networks to
estimate the log-likelihood for training. (Ping et al.,
2020; Prenger et al., 2019). These models require
the preservation of invertibility and the evaluation
of the determinant for training, which is accom-
plished through the employment of intricately de-
signed neural networks. However, this design con-
strains the model’s flexibility and restricts the qual-
ity of the audio output.Chen et al. (2018) proposed
continuous normalizing flow(CRF) models, which
use instantaneous change of variable formula to es-
timate the variation of log probability density, and
generate data through a neural ordinary differen-
tial equation(ODE). Due to the Picard existence-
uniqueness theorem, the neural network which pro-
vides the velocity function in continuous normal-
izing flow models could be non-invertible, and
this improves the models’ performance(Grathwohl
et al., 2018). For mel-conditioned speech synthesis
task, CRF models were hindered by the slow train-
ing process and the large variance of trace estimator
(Wu and Ling, 2020; Kim et al., 2020).

Generative Adversarial Networks (GANs) pro-
vide greater flexibility than flow-based models and
can efficiently generate waveforms of superior fi-
delity (Kumar et al., 2019; Kong et al., 2020a; Kim
et al., 2021; Jang et al., 2021; Lee et al., 2022).
The success of these models can be attributed to
the large receptive fields of the generators and the
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discriminators’ capacity to identify noises of vary-
ing scales and periods. Specifically, Kumar et al.
(2019) proposed multi-scale discriminators, while
Kong et al. (2020a) introduced a multi-receptive
field (MRF) generator and multi-period discrimi-
nators, significantly enhancing the model’s perfor-
mance.

Denoising diffusion probabilistic models
(DDPMs), which employ a Markov chain to
transform a known prior distribution into a
complex ground truth distribution, have became
very popular choices recently. (Kong et al., 2020b;
Lam et al., 2022; Huang et al., 2023).

These models utilize a noise-adding diffusion
process without learnable parameters to obtain the
training data for the denoising generator, eliminat-
ing the need for additional networks such as dis-
criminators or autodecoders during training. How-
ever, the inference process using diffusion models
is typically time-consuming. To address this, Kong
et al. (2020b), Lam et al. (2022), and Huang et al.
(2023) have proposed several different approximate
fast-sampling algorithms that can generate wave-
forms efficiently, albeit with a slight reduction in
sample quality.

In this study, we initially conduct a review of con-
tinuous normalizing flow models,diffusion proba-
bilistic models, Poisson flow generative models
(Xu et al., 2022) and rectified flow models (Liu
et al., 2022) under a unified perspective of a non-
compressible passive fluid partial differential equa-
tion. This equation has boundary conditions at
t = 0 and ¢t = 1, which are equivalent to a known
prior distribution distribution and the ground truth
distribution respectively. These models employ dif-
ferent methods to parameterize the probability flow
equation, which has significant influence on their
different speech synthesis performance.

Additionally, we propose the WaveODE model
for the mel-spectrogram conditioned speech syn-
thesis task, which could learn a velocity field
directly and efficiently. It is noteworthy that
the mel-spectrogram is a relatively strong condi-
tion, choosing a advisable conditioned distribu-
tion could speed up the inference process to a
great extent. With our mel-condition prior distribu-
tion,WaveODE could generate waveform in only
one inference step.The similarity mean opinion
score (SMOS) test results indicate that WaveODE
is on par with previous flow-based models and dif-
fusion models in terms of sample quality and effi-
ciency.

2 Backgrounds on Mathematics and
Related Works

2.1 Non-Compressible Fluid Equation

Equation (1) shows the non-compressible fluid
equation in physics, where n(x,t) is the fluid
density function, v(x, t) is the velocity field, and
s(z, t) is the source function.Without loss of gen-
erality, we assume the time range is [0, 1].

867;(33, )+ Vg (n(z, t)v(x,t))—s(x,t) =0 (1)
This equation discribes how the fluid’s density at
situation x varies from initial time ¢ = 0 to finish-
ing time ¢ = 1 according to a velocity field v(x, t)
and a source function s(x, t). It only requires the
fluid be non-compressile and move without friction,
thus there exist infinite many specific functions
n(x,t), v(x,t), s(x,t) that could solve it.

For speech synthesis task, we primarily concern
the case where the fluid density function n(x,t)
is a probability density function, and we denoted
it as p(«,t). Now the source term s(x,t) could
be regarded as the birth ( or death ) probability of
fluid particles at situation & and time ¢. If we can
sample from the initial probability distribution, and
both the velocity and source functions are given,
we can numerically simulate the fluid with birth-
death process(Lu et al., 2019).However, we don’t
want the costly birth-death simulation in the infer-
ence process, i.e. we focus on the probability flow
equation(2), where ¢ € [0, 1].

Ip

E(a:vt)—i_vm(p(wat)v(w?t)) =0 (2)
For this equation, we can easily sample from
p(z,t) if we can sample from p(z,0) and the ve-
locity function v(x, t) is given. To realize this, we
only need to sample from the initial distribution
and solve the initial value problem (IVP) of the
ordinary differential equation(3), which could be
efficiently completed by ODE solvers.

i—f = v(x,t) 3)

Additionally, for generative models, sample
from prior distribution and then solve the IVP of
velocity ODE is not enough, the key is to make
sure that the probability density become the ground
truth distribution at ¢t = 1, i.e. p(x,t), v(x,t) in-
deed solve the boundary value problem (BVP) of
probability flow equation where p(x, t) equals to



ground truth distribution and a chosen prior distri-
bution at time ¢ = 0 and ¢ = 1 correspondingly,
different models make different efforts to ensure
the BVP is correctly solved, this is the key ingredi-
ent of ODE based generative models.

2.2 Mathematical Tools

Now we introduce some mathematical tools with
regard to the IVP and BVP.

2.2.1 Instantaneous Change of Variables

This formula is usefull to determine the velocity
field when two boundary distributions are given and
its proof could be found in (Chen et al., 2018). Let
x(t) be a finite continuous random variable with
probability density p(x(t)) dependent on time. Let
%—‘f = v(x(t), t) be a differential equation describ-
ing a continuous-in-time transformation of ().
Assuming that v is uniformly Lipschitz continu-
ous in x and continuous in ¢, then the change in
log probability density also follows a differential
equation:

dlog p(e(t) _ _tr@j;(w(t),t)) @

2.2.2 Expectation and Velocity

This subsection shows that if the probability density
function p(x,t) and the velocity function v(x, t)
solve the probability flow equation, there is a help-
ful relationship between them. Let (t) be a contin-
uously differentiable random process on ¢ € [0, 1],
if the conditional expectation E[dﬁgt) |z (t)] is lo-
cally Lipschitz and p(x, t), v(x, t) solve the prob-
ability flow equation, then

da(t)

v(x,t) = E[ It

:c(t)} almost surely,  (5)

hence this velocity IVP at time ¢ = O and ¢t = 1
become the bridge between the initial and finishing
distribution at time ¢ = 0 and ¢ = 1 of «.The proof
could be found in Appendix A.

2.2.3 Green’s Function Method

Linear partial differential equations (PDEs) with
a single function variable ¢(x, t), could be solved
by Green’s function method.? Although in proba-
bility flow equation we have two function variable
p(x,t) and v(x,t), but we can consider them as
functions of p(x, t). Utilizing the ground truth dis-
tribution and a Green’s function solution to ¢(x, t),

’Green’s function method:
org/wiki/Green%27s_function

https://en.wikipedia.

along with the boundary condition at ¢ = 1, the
analytical forms of p(x,t) and v(x, t) can be read-
ily derived.Consequently, the velocity field can be
trained efficiently. Figuratively speaking, Green’s
function method allow us to build the velocity field
through point charges given by the data at ¢t = 1.
For example, the Gaussian perturbation kernels in
diffusion probabilistic models can be interpreted
as the Green’s function to the diffusion equation.
Detailed examples are provided in Appendix B and
Appendix C.

2.3 Continuous Normalizing Flow models

CRF models choose a prior distribution that could
be analytically discribed like Gaussian distribution,
and then solve the velocity IVP at ¢ = 1 to evaluate
the log probability density at time ¢ = 1. Then
during maximal likelihood training, the finishing
distribution gradually becomes the ground truth
distribution and the velocity function could solve
the BVP problem as we want. However, solving
the velocity IVP during training with adjoint sensi-
tive method mentioned in (Grathwohl et al., 2018)
leads to extremely slow training speed, and CRF
vocoders are also hindered by the large variance of
trace estimator, which leads to an inferior sample
quality.(Wu and Ling, 2020; Kim et al., 2020)

2.4 Score Based Generative Models and
Rectified Flow Models

Models for audio synthesis, such as DiffWave,
ProDiff (Huang et al., 2022b), and FastDiff, pri-
marily focus on data scoring. Song et al. (2020)
have successfully unified Noise Conditional Score
Networks (Song and Ermon, 2019) and the Denois-
ing Diffusion Probabilistic Model (Ho et al., 2020)
under the umbrella of stochastic differential equa-
tions (SDEs). This unification is exemplified in the
forward diffusion SDE, which is as equation (6).

de = f(z,t)dt + g(t)dw (6)

And the corresponding backward SDE for generat-
ing procress is shown in equation (7).

da = [f(w,1) — ¢*(1) Vs log p(a, £)]dt + g(t)dw

(N
Rectified flow models (Liu et al., 2022) and score
based generative models build the velocity function
through the expectation property 2.2.2. Rectified
flow models choose random process

z(t) = te(1) + (1 — )z(0),t € [0,1] (8)
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where (1), z(0) represents the groud truth distri-
bution and the chosen prior distribution, and they
are independent sampled. This parameterization
for p(x, t) is fixed when the two distributions are
given, and it directly satisfy the two boundary con-
dition. Hence the optimization goal for velocity
function could be determined by

v(z,t) = Elz(1) — 2(0)[=(1)] ©)
& minB[lJz(1) — 2(0) —v(z(t),0)[°] (10)

Using the expectation property we can just sample
from two marginal distribution and learn its corre-
sponding velocity function without solving IVP in
the training process. Score based generative mod-
els could also be written in similar form, we take
VP-SDE as an example. Song et al. (2020) have
already derived the pertubation kernel of VP-SDE
in their Appendix B, we coule rewrite the result as

x(t) = a(t)z(1) + B(t)x(0),t € [0,1]  (11)

alt) = exp(—ia(l 42— %b(l —1), (2

B(t) = v/1— a(t)? (13)

where the coefficient a is given by DDPM’s hy-
perparameters N (Bmaz — Bmin) = 1000(0.02 —
0.0001) = 19.9 and b is given by NS =
1000 x 0.0001 = 0.1. Similar to rectified flow
models, we could find a simple optimization goal
for the velocity field with the expectation property:

min B[/ (t)2(1) + 5'(1)2(0) — v(=(t), 1)]]
(14)
It worth mentioning that VP-SDE doesn’t solve the
BVP precisely at t = 1, and 3'(t) doesn’t exist at
t = 1, thus we should train it in [0, 1 — €].

2.5 Poisson Flow Generative Model

Poisson Flow Generative Models (PFGMs) (Xu
et al., 2022) are proficient visual generative mod-
els that exhibit comparable efficiency to score-
based models. These models generate samples
from the ground truth distribution by utilizing high-
dimensional electric fields, which are solutions to
the Poisson partial differential equation. To cir-
cumvent the issue of mode collapse, the original
data is augmented with an additional dimension.
The prior distribution is then defined as a uniform
distribution on the surface of the superballs. It is
noteworthy that this augmented dimension can be

interpreted as time, thereby suggesting that PFGMs

are essentially modeling a time-dependent Poisson

equation as equation 15, where ¢(x, t) is the elec-

tricity potential function.
0%

ot (1)

This equation cannot be directly interpreted as a
probability flow equation. To derive an appropriate
equation, the selection could be made by:

p(est) = 22 1) ol 1) =

Vaep(x,t)
92 (x,t)

Thus, the boundary condition at ¢ = 1 becomes:

, (16)

p(:l}7 1) = 8790(113, 1) = pdata(w)

5t a7

Presently, PFGMs are translated into a fluid equa-
tion, and training data can be generated subsequent
to the resolution of this linear PDE. Further details
regarding the Green’s function solution to this equa-
tion, as well as the training process of PFGMs from
the perspective of fluid equations, are deferred to
Appendix D.

What’s more, score based generative models
could also be viewed as solving a linear PDE with
Green’s function method, since Kolmogorov for-
ward equation, also known as the Fokker-Planck
Equation 3 can be reformulated into a probabil-
ity flow equation (8) with same p(x, t), and a de-
tailed proof of this transformation is provided in
Appendix B.

gf(a:, t) 4 p(x, t) Ve fx, t)+
£(@.0) Valpla,0) - 560 Viple.1) =0

(18)
vl ) = [ (@ 1)~ 36" (1)Va logp(w, 1)) (19)

It’s also a probability flow equation where velocity
function is given by equation (9), and the learning
process of score based models could be regarded as
fitting the analytical solution of the velocity func-
tion given by Green’s function method. We will
solve a special case %(m, t) — Vip(z,t) = 0
in Appendix C using Fourier Transformation to
demonstrate this issue.

3Kolmogorov forward Equation or Fokker-Plank Equa-
tion: https://en.wikipedia.org/wiki/Fokker%E2%80%
93Planck_equation
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3 Methods

3.1 Overview and Motivation

With the mathematical tools mentioned above, we
have a comparatively comprehensive understand-
ing of how to make the probability density function
and velocity function solve the BVP of probability
flow equation and then generate the data by solv-
ing the velocity IVP. Now we consider the specific
mel-conditioned speech synthesis task.

To our knowledge, there already exist rectified
flow models which could generate acceptable mel-
spectrograms from text in one step (Guan et al.,
2023; Guo et al., 2023), but there is no probability
flow based model which could generate waveforms
from mel-spectrograms with acceptable quality in
one step, thus we mainly focus on how to generate
high-quality audio in one step.

Consider the three mathematical tools and their
corresponding generative models in section 2, con-
tinuous normalizing flow models based on instan-
taneous change of varaible formula need to solve
velocity IVP during training, thus there is inher-
ent difficulty for generating high-quality wave-
form in one step. As for the methods based on
Green’s function method, we need to construct a
good Green’s function to make the velocity field be
straight enough, which is not obvious in mathemat-
ics, actually PFGMs and DDPMs cannot generate
accecptable data in one step. Hence, we mainly uti-
lize the expectation property of velocity function.

3.2 Mel-Conditioned Prior Distribution

If the initial and finishing boundary distribution are
almost the same, then obviously the one step gener-
ation task would be much easier, so we should take
full advantage of the mel-spectrogram to provide
a prior distribution that is close to the audio distri-
bution. This thought has already been applied to
diffusion models (Lee et al., 2021; Koizumi et al.,
2022), but these prior distributions are not close
to the audio distribution due to the need of stabliz-
ing diffusion training objectives. For example, Lee
et al. (2021) use N(u,X) as the diffusion prior
distribution, and their training objective is:

x; = ay (o —p) +1/1—aje,  (20)

min(e — eg(@¢, )T 7" (€ — eg(@e, 1), (21

where €9 ~ pgata,€ ~ N(0,X). They choose
¢ = 0 and X to be a diagnoal matrix given by

mel-spectrogram. However, to stable the training
process, they have to clamp the diagnoal >’s value
between 0.1 and 1, which enlarges the distance be-
tween the prior distribution and audio distribution.

According to the training target given by the ex-
pectation property, we can directly sample from
two boundary distribution without giving their
distribution analytically, which means WaveODE
could adopt a prior distribution with much more
smaller variance. In implementation, we also
choose N (0, X) as the prior distribution where 3
is diagnoal. We use torchaudio.transforms. Mel-
Spectrogram to gain mel-spectrograms from au-
dios, whose value is ranged in [0, 32768.0]. (We
take logarithm mel-spectrogram for neural net-
works.) Since mel-spectrogram records the en-
ergy of voice, the square root of their sum at fre-
quency dimension is a good choose for the stan-
dard deviation of prior distribution, we divide it by
v/mel-bands x 32768.0 to norm it into [0, 1] and
repeat a value at time dimension for hopsize time to
align its shape with audios. Since the value in a mel-
spectrogram is usually far samller than the possible
maximal value, the standard deviation could even
reach the level of 10~ (at almost silence part).

This mel-conditioned prior distribution improve
the inference speed and sample quality to a great ex-
tend, and also helps WaveODE generalize better on
unseen out of distribution datasets. Experimental
evidence could be found in next section.

3.3 Training Objective

Now the initial and finishing distribution are known,
we need to construct a continuously differentiable
random process x(t) to train the velocity function.
Rectified flow is good choice for general generating
task, we adopt an parameterized x(t) near it:

x(t) =tx(l) + (1 —t)=(0)

- O fe0).2(1).t)

'(t) =2(1) — 2(0) + (1 — 2t) fo((0), z(1), 1)

8f9(a:(0), w(l)v t)

Tl t) =

(23)
min B||2'(t) —vp(x(t), OIP] (24
This means p(x, t) is dynamically changing during
the training process, which allows us control the
evolution equation through adding loss functions
to x(t). The two functions are approximated by
two U-Nets, and mel-spectrogram is also fed to



them as additional condition input. Besides, the
partial derivative of f cannot be calculated directly
by autograd, we use

f@(x(0)7 w(l)vt + 6) - fg(x((]), m(l)vt - 6)
2e

(25)
to estimate the derivative(e = 5 x 10™%). In recti-
fied flow models v is trained by fitting =’ (t), now
in WaveODE «/(t) is also trainable, which could
reduce the training error. Apart from the velocity
loss, we also add loss functions to f to regulate the
evolution of random variable . Since we want the
velocity IVP trajectory be straight and reach it ends
as soon as possible, we add two loss functions to
achieve the goals, where t ~ U0, 1].

B[ fo(2(0), 2(1), )| "), Ell[2(t) - 2(1)]]

(26)
The first loss avoid the trajectory become too curly
and the second loss helps the trajectory reach its
end faster. This parameterization may be unhelpful
for general generative models, but experimental
resuilts show that it could improve the quality for
one-step generated waveforms.

3.4 Networks and Distillation

The velocity function is predicated on a U-Net
model, we adopt the multi-receptive field (MRF)
module in the generator of Hifi-GAN, and they are
denoted as ResLayers in Figure 1. The U-net is
simple in structure, and could be regarded as the
combination of two Hifi-GAN generator and we
just change the upsampling transposed convolution
1D layers into strided downsampling convlution
1D layers in the down way, and add the correspond-
ing feature maps to the up way. As for the time
term, we follow (Vaswani et al., 2017) to embed
the time ¢ € [0, 1] into an 128-dimensional posi-
tional encoding vector, and we multiply t by 100 to
keep its magnitude be the same as diffusion models.
Time embeddings are added to ResLayers aftering
DNN’s processing.

[sin(10°5 100¢), - - - , sin(10"6 100¢), o
c0s(10°55 100t), - - - , cos(10"6 100¢)]

The function f, we call it mixer since it produce
the middle state between x(0) and x(1), it share
the same structure with the velocity function, we
just multiply with processed time embeddings to
2(0) and (1) and sum them up as x in velocity
function.
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Figure 1: The neural networksStructure

As for distillation process, We simply train a
copy of a trained velocity function through Eu-
ler discretilization, where the answer is given by
the trained velocity field and Runge-Kutta ODE
solvers.The evaluation time € [0, 1] could also be
trained by gradient descent in the same time.

3.5 Training Algorithm

The training procedures for the proposed
WaveODE model are summaried in Algorithm 1
(in next page).

4 Experiments

4.1 Datasets

In order to ensure a fair and reproducible compar-
ison against other competing methodologies, we
utilize the LibriTTS dataset (Zen et al., 2019) ,
which is a large-scale corpus of read English speech
amounting to 1,000 hours, and comprises more
than 350,000 audio clips of 24,000 Hz from mutiple
speakers. We feed all training data including train-
clean-100, train-clean-360 and train-other-500 to
all of the models. As for our mel-spectrogram
dataset, we use 100-bands mel-spectrogram and set
the frequency range be [0,12] kHz. The FFT size,
Hann window size, hop size of mel-spetrogram are
set to 1024,1024 and 256 correspondingly.



Algorithm 1 Train WaveODE

Input: Mixer f, velocity field v, mel condition
c,time stept ~ U[0,1],e =5 x 1074
repeat
Sample (1) ~ paaa(x|c),
Sample x(0) ~ N(O0, prior(c))
Jo= f9(m(0)’ iL'(l), t, C)
T+ = fo(x(0),z(1),t +€¢)
f-= f@(.’l?(O), m(1)7t -6 C)
x(t) =tx(l) + (1 —t)x(0) + t(1 —t) fo
vy = vg(x(t),t,c)
2/(t) = @(1) — 2(0) + (1 — 20) fo
(1 — 1) (f+ — f-)
Loss= [[vo — &' (1)| |2 + || fol
Hlz(t) — 2(1)]?
Take gradient descent according to loss.
until WaveODE converged

To assess the model’s generalization capabili-
ties in out of distribution scenarios, we employ the
MUSDB18-HQ music dataset (Rafii et al., 2017).
It is a multi-track musical dataset which contains
the original mixture audios and four splitted tracks:
vocal, drums, bass and other instruments. Synthe-
sising the languages that are not inside the training
dataset is also in our consideration. The Multi-
lingual TEDx Corpus (Salesky et al., 2021) con-
tains the audios of TEDx talks in Spanish,Italian,
French and Portuguese; The CN-Celeb dataset (Fan
et al., 2020) is a large-scale speaker recognition
dataset collected in the wild. The dataset con-
tains more than 126,000 utterances from 997 Chi-
nese celebrities, and covers 11 different genres in
real world; The deeply Korean read speech corpus
dataset(Deeply, 2021) contains short speech audio
clips in Korean, and the clips are recorded in three
types of different environments.

4.2 Training and Evaluation Metrics

The detailed architectures and configurations of the
models are listed in Appendix E. As for the tran-
ing process,the model is trained on a single Nvidia
RTX 4090 GPU with a initial learning rate 2 x 10~4
and batch size 16 for the mixer and velocity func-
tion. The learning rate would decay by 0.997 times
every 1000 steps, and the training process includes
1M steps in total. We use AdamW optimizer for
training, where the betas are set to (0.9,0.98) and
the weight decay rate is set to 0.01. The distillation
process contains 50000 steps in total, and we ad-
just the learning rate to 2 x 10~°. For multi-step

distillation, the time scheduler is also learnable, we
set its learning rate to 0.01.

Since there are out of distribution data need to be
tested, the subjective evaluation of audios’ quality
is conducted through 5-scale Similarity Mean Opin-
ion Score (SMOS) tests mentioned in BigVGAN
(Lee et al., 2022), which are crowd-sourced via
Amazon Mechanical Turk. The SMOS scores are
documented with a 95% confidence interval. For
the precision of subjective evaluation, each model
generates 150 audio samples per dataset for testing
and each sample is evaluated by two distinct work-
ers. In addition to this, we employ supplementary
objective automatic evaluation metrics including
mean L1 mel-spectrogram error, Perceptual Evalu-
ation of Speech Quality (PESQ) (Rix et al., 2001),
Periodicity error and F1 score of voiced/unvoiced
classification (V/UV F1)(Morrison et al., 2021) to
assess sample equality. The real-time factor (RTF)
assessment is also calculated, utilizing a the same
RTX4090 GPU.

4.3 Comparsion With Other Models

We conduct a series of experiments on speech syn-
thesis tasks to evaluate our model. Models we have
compared with are listed below.

WaveGlow (Prenger et al., 2019), an parallel
discrete flow based model;

WaveNODE (Kim et al., 2020), a continuous
normalizing flow model using adjoint sensitive
method during training.

DiffWave (Kong et al., 2020b), PriorGrad (Lee
et al., 2021) BDDM (Lam et al., 2022), FastD-
iff (Huang et al., 2022a), four diffusion proba-
bilistic models, all been proved to be high-fidelity.
We use 6 denoising-steps for DiffWave,PriorGrad,
BDDM, and FastDiff;

We train these models following the setups as
in the original papers,and the results in Table 2
show that our models is comparable with different
kinds of previous models. And with only one in-
ference step, WaveODE is already able to generate
acceptable audios.

4.4 Out of Distribution Situation

The generalizability of our proposed model is as-
sessed utilizing two kinds of datasets: the musi-
cal dataset MUSDB18-HQ and several speaking
datasets with unseen language. The SMOS results
in Table 3 indicate that our model exhibits com-
mendable performance in unseen scenarios, exceed-
ing the performance of the baseline models.



Model SMOS (1)

Ground Truth 4.52 £ 0.08
WaveODE-1 4.08 +0.11

with Snake Activation 4.10 £0.08
with Weight Normalization | 4.00 £ 0.07
w/o Conditioned Prior 3.73+0.10
w/o Mixer 4.03 +0.07

Table 1: Ablation study results.

4.5 Ablation Study

In order to demonstrate our structural designs are
effective, we have conducted several ablation stud-
ies , and the results are presented in Table 1.

Our observations are concluded as follow:

1. The snake activation function in BigVGAN
cannot improve the sample quality of WaveODE,
we attribute this to training objective: GANs gen-
erate waveforms directly, but we estimating the
expectation of random derivatives, the periodical
bias could be unhelpful.

2. Weight Normalization cannot improve the
sample quality of WaveODE as well, this could
be explained as the velocity function has a highly
demand of precision, which could be harmed by
weight normalization.

3.The conditioned prior significantly improved
the one step samples’ quality, and the mixer slightly
helps the process too. Additionally, for full Runge-
Kutta estimation (Dopri5 method) with atol=1e-
3 and rtol=1e-3, the conditioned prior could re-
duce the number of function evaluation from 70+
to around 30.

5 Conclusion

In conclusion, this study has provided a compre-
hensive review of probability flow equation based
models, analysing them under a unified perspec-
tive of BVP and IVP. We propose the WaveODE
model, a efficient approach to mel-spectrogram
conditioned speech synthesis. It could leverage the
energy information in mel-spetrograms to generate
a small variance prior disitribution, and then use
the distilled velocity function v(x,t) to produce
accecptable waveforms in one inference step. The
SMOS test and auto evaluators have demonstrated
that the WaveODE model is competitive with pre-
vious diffusion models and flow based models in
terms of sample quality and efficiency, and could
generalize better to out of distribution data.

Model SMOS (1) MelError(]) RTF (})
Ground Truth | 4.52 +0.08 0 -
WaveGlow 3.91 £0.10 0.347 57.5x
WaveNODE | 4.00 4 0.09 0.336 5.03x
Diffwave-6 4.15+0.07 0.160 16.1x
PriorGrad-6 | 4.19 4+0.09 0.186 16.1x
BDDM-6 4.14 +0.10 0.194 16.1x
FastDiff-6 4.13 +£0.08 0.245 59.6x
WaveODE-1 | 4.08 £0.11 0.165 76.3x
WaveODE-6 | 4.21 4+ 0.07 0.157 28.5x
Model PESQ (1) Periodicity(]) V/UV F1 (1)
Ground Truth 4.644 0 1
WaveGlow 3.133 0.215 0.861
WaveNODE 2.582 0.213 0.850
Diffwave-6 2.899 0.176 0.890
PriorGrad-6 3.028 0.199 0.866
BDDM-6 2.973 0.148 0.930
FastDiff-6 2.902 0.195 0.876
WaveODE-1 3.02 0.125 0.932
WaveODE-6 3.10 0.105 0.963

Table 2: The subjective and objective evaluation results
on LibriTTS Test dataset.

Model Mean SMOS on MUSDB18-HQ
Ground Truth 4.43 +£0.09
WaveGlow 3.51 £0.10
WaveNODE 3.45 +0.11
Diffwave-6 3.73 £0.09
PriorGrad-6 3.85 £ 0.09
BDDM-6 3.824+0.10
FastDiftf-6 3.69 +0.12
WaveODE-1 3.81 £ 0.10
WaveODE-6 3.98 £0.10
Model Mean SMOS on Languages
Ground Truth 4.46 £+ 0.09
WaveGlow 3.75£0.11
WaveNODE 3.78 +£0.12
Diffwave-6 4.10 +0.07
PriorGrad-6 4.15+0.10
BDDM-6 4.05+0.10
FastDiff-6 4.02 +0.08
WaveODE-1 4.05+0.09
WaveODE-6 4.20+0.11

Table 3: The SMOS results on MUSDB18-HQ data and
multiple non-English datasets



6 Limitations and Potential Risks

Our main limitation is that the training objectives
only improves the sample quality slightly, which
is not desired since it could make the training pro-
cess become slower. There still need furthur ex-
plorations to take full advantages of the probability
flow equation.

As for the risks, our proposed model lowers
the requirements for high-fidelity speech synthesis,
which is related to the potential risks concerning
media or telephone fraud.
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A Proof of Expectation Property

Let x(t) be a continuously differentiable random process on ¢ € [0, 1], if the conditional expectation
E[dﬁ—gt) |z (t)] is locally Lipschitz and p(x, t), v(x, t) solve the probability flow equation, then

v(x,t) =E [dzit)

x (t)] almost surely, (28)

Proof: Since p(x,t), v(x,t) solve the probability flow equation,

?Z(az,t) + Vaz(p(x, t)v(x,t)) =0 (29)

Then for any finite supported continuously differentiable function h(x), we have:

/h(m)(g}t)(m, t) + Ve (p(z, t)v(x,t)))de =0 (30)
2 / h(a)p(e, tydz = — / W) Vo (p(, (. 1)) da (1)
Integrating by parts to the right hand side, since h is finite supported, we have

% h(z)p(x,t)de = /(p(a:, tyv(x,t)) " Veh(z)d (32)

S Blh((1))] = Elo(e, 1) Vah(e(t)] 33)

T
2 G @) = Blote, )T Vah(e() 34
By the tower property of expectation we have:

BB o ()] Ve (a(0)] = Elota. ) Vah(a(t) 35)

Since we could arbitrarily choose finite supported continuous differentiable function h,

da(t)

v(x,t) = F] i

|z (t)] almost surely (36)

B Interpreting score based models into linear PDEs
We consider the general Kolmogorov forward equation:
de = p(x, t)dt + o(x, t)dw, 37)

where p(x, t) is a vector function from R" xR to R, o (, t) is a matrix function from R™ xR to R™*", and
dw is the infinitesimal of n-dimentional standard Wiener process (also called Brown Motion)(@ksendal,
2003, 2013).

Now x(t) becomes a random variable, we denote its probability density function as p(x, t).Assume
f is an arbitrary function € C(?), and T is a arbitrary fixed positive time, using the tower property of
conditioned expectation, we have:

E[f(2(T))] = E[E[f(z(T))|x(t) = z]],vt € [0, T], (38)

we denote E[f (x(T))|x(t) = x] as u(z, t),then we have:
E[f(2(T))] = / P, OE[f (@(T)) |z (t) = 2)dz = / P, tyule, )z, ¥t € [0,T],  (39)
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then we denote the integration as a inner product between p(«, t) and u(x, t), and noticing that the left
hand side has nothing to do with variable ¢, taking derivative at t = T" we have:

o AEF@D)| ), u@,n)
dt T dt T
Op(zx,t) Ou(zx,t)
= T T 40
(P52 )+ (). 20, (“0)
now we obtain an equation with ap d t) | > Where 6u(m t ‘ . could be further computed:
ou(x,t) ~ lim u(x, t+T) —u(x,T)
ot =7 t—0~ t
i B @) +T) = 2] - f(@) )
t—0— t
then according to It # lemma we do Taylor expansion at t = T for f(z(t)) and gain:
- of(x) 0%f ()
wi(x,t) + oiu(x, t)ok(x,t) , (42)
ZZ; ox; |, Zz; ; ; J 0x;0x; |,_p
we regard this formula as a linear operator L act on function f(x), where
- of(x) 0%f(x)
L(H)(@) =D pil@.1) I, = ZZZ% 2,)ok(@, t) 5 (43)
i=1 t= i=1 j=1k=1 Jlt=T
ou(x,t
@D - L@) @
t=T
Now we have transformed the SDE into equation:
op(x, T
(P @)+ bla 1) ~Lif) @) = @s)
t=T

Since L is a linear operator, we could find its dual operator L* with the integration inner product between
functions using the formula of integration by parts: ((L(f), g) = (f, L*g) is the definition to dual operator
L*)

. — Opi(, ) f ()]
(46)
Now the SDE can be further transformed into:
0
(D) @) - 1 o)1), () =0 @)
=T
<8p @) _ L*(p)(m,T),f<m>> = 0. (48)
ot |
Since f(x) is an arbitrary function € C(?),we have:
o g’;’“ ~L*(p)(@,T)=0, VT el +oo). (49)
t=T

4Itélemma:https://en.wikipedia.org/wiki/It%C3%B4%27s_1emma
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8p(g;’ 2 Z 8W$aisz S Z Z axzaxj <Z aik(@, 1)k (@, )p(, t)) =0, (50)

=1 =1 j=

and this is the partial equation that the probability density function should obey. Now we can review the
simple situation:

dz = f(x,t)dt + g(t)dw (51)
p(x,t) = f(z,t),o(x,t) = g(t)I, (52)
the equation can be simplified into:
Op(x,t
Pl 4 Valf(e,Op(ent)] - POV =0, (6D
0 t 1
PEL) bl Vo (@.0) + F(@.0) Vaple,t) — Se2(OVap(a ) =0, (54

which is a linear non-compressible passive fluid partial differential equation.

C Solving standard diffusion equation

Diffusion equation, which is also known as heat equation, is a parabolic partial differential equation that
could be found in many PDE textbooks(Evans, 2022; John, 1991).

To make the derivation easier, we could do change variable for t, we project the ground truth distribution
att = 1tot = 0, and project the prior distribution at £ = 0 to large enought = T..

Then we derive the Green’s function solution to the standard diffusion equation and we assume the
source point ' = 0 for simplicity:

op(x,t)

2 _
ot - vmp(mv t) - 5(50)(;@) ) (55)

the Fourier transformation of p(, t) is denoted as:
pk,t) = Flp] = / p(x, t)e *F2dNg, (56)
the corresponding reverse Fourier transformation of p(k, t) is denoted as:

p(x,t) = F1[p = (2;‘_[)N / p(k,t)e®®dV . (57)

Fourier transformation’s nice properties could remove the V operator in some PDEs:
FIVap] = ikp, F[Vap] = —|k[*p. (58)

Apply Fourier transformation to the standard diffusion equation,we have:

op 2-
D Wkl = o(0).
— gfﬂk\ —0(t>0), p(k,0)=1
= Bk, t) = exp(—|k[*t), (59)
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which is a Gaussian distribution in k& domain. Now we transform it back to « domain:

p(a,t) = F1p = (271)]V/exp(—\kz|2t) exp(ik - 2)dV k
—+o00

exp(ik;x;) exp(—k?t)dkj]

— 00

z? ,
exp(—37) /+oo exp [—t < - mﬂ>2] dk
J 21 J

<
Il
—

Il Il
e i
|
[(\)
3

Il
!
8

Il
— =
1
@
>
o]
N[~ N
3
£l
N~

j=1
1 < |1:|2>
= exp | ——— (60)

(471'25)% 4t

which is the Green’s function solution whose source is at &’ = 0, thus for arbitrary source position:
1 |z — |
p(x, tz’) = exp <— (61)
(4rt) > 4t

Now the diffusion equation could be solved by superposition method since the boundary condition at
t = 0 could be regarded as pgata ()0 (t):

p(x,t) = /p(a:,t; w')pdata(a:’)dN:B’

1
(@) = ~Volorn(@.t) =~ o [ Vapla.t:2/pun(@)1"e’

1 Tz —x
_ tx! (! dN /
p(w,t) /p(m7 7m ) 2t pddtd(w ) 44

/
/ T—& N_y
/p(a:|sc,) 57 T

x—a
= Exwp(w’\m,t) |:2t:| (62)

where

p(a:’]a:, t) X pdata(frl)p(w, t; a:’)

xr — |2
o8 pdata(a:/) exp (_m> (63)
when ¢ is large enough, p(x, t) is approximately proportional to exp (— |w_4:fl|2 ), which could serve as a

prior distribution. Now the inference process has a proper beginning and the velocity field could be trained
efficiently through adding Gaussian noises to the origin clear data like diffusion probabilistic models. It’s
worth mentioning that, this conditioned expectation is also similar to another efficient training objective
for diffusion models called stable target field objective (Xu et al., 2023), which means that the original
data could be regarded as point charges, Green’s function determine the analytical form of the electricity
field, and the velocity field could be viewed as the join electricity field of the point charges.

D Solving time-dependent Poisson equation

Again, to make the derivation easier, we could do change variable for t, we project the ground truth
distribution at ¢ = 1 to ¢ = 0, and project the prior distribution at ¢ = 0 to large enough ¢t = T'.
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Firstly,we also needs to fine the Green’s function solution:

0%

Sz (@) + Vap(@,t) = 6(x)d(?)
2

Similar to Appendix B, we apply Fourier transformation to the equation:

9% . %
Sz (ko t) = [E[G(k, 8) = 0(t > 0),  —5(@,0) = d(=)
— Bk ) = uexp(—|k|t) + vexp(|k|t) futv=1 65)

L1 ’

Since t — 00, p(k,t) — O,we have u = —1,b = 0, p(k, ) = ﬁ exp(—|k|t).then apply reverse Fourier
transformation with some properties of hypergeometric’function and n-dimensional spherical coordinates
mentioned in (Liu et al., 2023):
N-1
r (%5 1

p(x,t) = = (66)
277 (24 |2|2) 7

which is the n-dimensional electricity potential function of a unit point charge at &’ = 0, and for arbitraty
source position x,we have:
N—1
r (%) 1

oz, t;x’) = — (67)
ors (24w —a|2) T

Actually since Poisson equation is very special, a more simpler method to solve it could be found in
PFGMs’ original paper(Xu et al., 2022). Now we have:

_ a‘P . 890(;1;’15; :I}/) / /
VwQD(:E,t) 1 / / -
v(x,t) = = Vzo(x, t;x z)dV ',
0 % (x,t)  p(=,1) 2¢( )Pdata (')
— 1 a(p(w,t,m’)w_w/ , )
a p(x,t) / ot P Pdata(x)dx
xXr — ag’
— Epr(il:"a:,t) |: t :l (69)
where
dp(x, t; '
p(x'|z,t) o pdm(m/)‘!’(a)
t
o pdata(m/) .

N+1

(B2 + |z —a'|?) 2

Then we could use a training process that is very similar to diffusion models in Appendix B to train this
velocity field by changing Gaussian perturbation kernel according to corresponding Green’s function.

5hypergeometric function:https://en.wikipedia.org/wiki/Hypergeometric_function
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Hyperparameters Values
velocityChannels [512,256,128,64,32],
velocityUpSampleRates [8.8,2,2],
velocityKernelSizes [[3,7,111,[3,7,111,[3,7,111,[3,7,11]],
velocityDilations [[1,3,51,[1,3,5],[1,3,5].[1,3,5]],
mixerChannels [128,64,32,16],
mixerUpSampleRates [8,8,4],
mixerKernelSizes [[3,5].[3,5],[3,5]1,
mixerDilations [[1,31,[1,3],[1,3]1,
parameters 28.7M

E Hyperparameters of The Networks

The hyperparameters in our model are as follow:
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