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Abstract

Probability flow based models for image and001
audio synthesis, such as denoising diffusion002
probabilistic models and Poisson flow gener-003
ative models, can be interpreted as modeling004
any ground truth distribution through the non-005
compressible fluid partial differential equation,006
where the initial and final fluid density are007
the chosen prior distribution and the ground008
truth distribution correspondingly. In this re-009
search, we analyse various previous models un-010
der the unified perspective of probability flow011
equation, and propose WaveODE model for012
mel-spectrogram conditioned speech synthe-013
sis task, which learns a velocity field under a014
dynamically changing probability flow equa-015
tion instead of estimating the groud truth with016
a fixed evolution equation such as VP-SDE017
and sub-VP-SDE in previous works. Since018
mel-spectrogram is a relatively strong condi-019
tion which limits the possible audios to a small020
range, waveODE models the ground truth dis-021
tribution with a mel-conditioned prior distri-022
bution rather than the standard Gaussian dis-023
tribution, and adopts a distillation method to024
accelerate the inference process. Experimental025
results show that our model is more competi-026
tive with previous vocoders in sample quality,027
and could generate waveform with a single in-028
ference step.1029

1 Introduction030

Recent advancements in training algorithms and031

network architectures have facilitated the produc-032

tion of high-fidelity audio by deep generative mod-033

els in the realm of speech synthesis (Kumar et al.,034

2019; Kong et al., 2020b; Lam et al., 2022; Huang035

et al., 2023; Ye et al., 2023). The pioneering im-036

plementation of a deep generative model involved037

the autoregressive generation of waveforms from038

1Audio samples and codes are available at a newly
registered anonymous repository: https://github.com/
JBJWZZHCDS/WaveODE

mel-spectrograms (Oord et al., 2016; Kalchbren- 039

ner et al., 2018), which yielded high-fidelity audio 040

but was hindered by a significantly slow inference 041

speed. To overcome this limitation and achieve real- 042

time high-fidelity speech synthesis, a multitude of 043

non-autoregressive models have been proposed re- 044

cently. These models can be broadly categorized 045

into three types: flow-based models, generative 046

adversarial networks, and diffusion probabilistic 047

models. 048

Flow-based models generate waveforms from 049

a chosen prior distribution, such as the Gaussian 050

distribution,utilizing invertible neural networks to 051

estimate the log-likelihood for training. (Ping et al., 052

2020; Prenger et al., 2019). These models require 053

the preservation of invertibility and the evaluation 054

of the determinant for training, which is accom- 055

plished through the employment of intricately de- 056

signed neural networks. However, this design con- 057

strains the model’s flexibility and restricts the qual- 058

ity of the audio output.Chen et al. (2018) proposed 059

continuous normalizing flow(CRF) models, which 060

use instantaneous change of variable formula to es- 061

timate the variation of log probability density, and 062

generate data through a neural ordinary differen- 063

tial equation(ODE). Due to the Picard existence- 064

uniqueness theorem, the neural network which pro- 065

vides the velocity function in continuous normal- 066

izing flow models could be non-invertible, and 067

this improves the models’ performance(Grathwohl 068

et al., 2018). For mel-conditioned speech synthesis 069

task, CRF models were hindered by the slow train- 070

ing process and the large variance of trace estimator 071

(Wu and Ling, 2020; Kim et al., 2020). 072

Generative Adversarial Networks (GANs) pro- 073

vide greater flexibility than flow-based models and 074

can efficiently generate waveforms of superior fi- 075

delity (Kumar et al., 2019; Kong et al., 2020a; Kim 076

et al., 2021; Jang et al., 2021; Lee et al., 2022). 077

The success of these models can be attributed to 078

the large receptive fields of the generators and the 079
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discriminators’ capacity to identify noises of vary-080

ing scales and periods. Specifically, Kumar et al.081

(2019) proposed multi-scale discriminators, while082

Kong et al. (2020a) introduced a multi-receptive083

field (MRF) generator and multi-period discrimi-084

nators, significantly enhancing the model’s perfor-085

mance.086

Denoising diffusion probabilistic models087

(DDPMs), which employ a Markov chain to088

transform a known prior distribution into a089

complex ground truth distribution, have became090

very popular choices recently. (Kong et al., 2020b;091

Lam et al., 2022; Huang et al., 2023).092

These models utilize a noise-adding diffusion093

process without learnable parameters to obtain the094

training data for the denoising generator, eliminat-095

ing the need for additional networks such as dis-096

criminators or autodecoders during training. How-097

ever, the inference process using diffusion models098

is typically time-consuming. To address this, Kong099

et al. (2020b), Lam et al. (2022), and Huang et al.100

(2023) have proposed several different approximate101

fast-sampling algorithms that can generate wave-102

forms efficiently, albeit with a slight reduction in103

sample quality.104

In this study, we initially conduct a review of con-105

tinuous normalizing flow models,diffusion proba-106

bilistic models, Poisson flow generative models107

(Xu et al., 2022) and rectified flow models (Liu108

et al., 2022) under a unified perspective of a non-109

compressible passive fluid partial differential equa-110

tion. This equation has boundary conditions at111

t = 0 and t = 1, which are equivalent to a known112

prior distribution distribution and the ground truth113

distribution respectively. These models employ dif-114

ferent methods to parameterize the probability flow115

equation, which has significant influence on their116

different speech synthesis performance.117

Additionally, we propose the WaveODE model118

for the mel-spectrogram conditioned speech syn-119

thesis task, which could learn a velocity field120

directly and efficiently. It is noteworthy that121

the mel-spectrogram is a relatively strong condi-122

tion, choosing a advisable conditioned distribu-123

tion could speed up the inference process to a124

great extent. With our mel-condition prior distribu-125

tion,WaveODE could generate waveform in only126

one inference step.The similarity mean opinion127

score (SMOS) test results indicate that WaveODE128

is on par with previous flow-based models and dif-129

fusion models in terms of sample quality and effi-130

ciency.131

2 Backgrounds on Mathematics and 132

Related Works 133

2.1 Non-Compressible Fluid Equation 134

Equation (1) shows the non-compressible fluid 135

equation in physics, where n(x, t) is the fluid 136

density function, v(x, t) is the velocity field, and 137

s(x, t) is the source function.Without loss of gen- 138

erality, we assume the time range is [0, 1]. 139

∂n

∂t
(x, t)+∇x(n(x, t)v(x, t))−s(x, t) = 0 (1) 140

This equation discribes how the fluid’s density at 141

situation x varies from initial time t = 0 to finish- 142

ing time t = 1 according to a velocity field v(x, t) 143

and a source function s(x, t). It only requires the 144

fluid be non-compressile and move without friction, 145

thus there exist infinite many specific functions 146

n(x, t), v(x, t), s(x, t) that could solve it. 147

For speech synthesis task, we primarily concern 148

the case where the fluid density function n(x, t) 149

is a probability density function, and we denoted 150

it as p(x, t). Now the source term s(x, t) could 151

be regarded as the birth ( or death ) probability of 152

fluid particles at situation x and time t. If we can 153

sample from the initial probability distribution, and 154

both the velocity and source functions are given, 155

we can numerically simulate the fluid with birth- 156

death process(Lu et al., 2019).However, we don’t 157

want the costly birth-death simulation in the infer- 158

ence process, i.e. we focus on the probability flow 159

equation(2), where t ∈ [0, 1]. 160

∂p

∂t
(x, t) +∇x(p(x, t)v(x, t)) = 0 (2) 161

For this equation, we can easily sample from 162

p(x, t) if we can sample from p(x, 0) and the ve- 163

locity function v(x, t) is given. To realize this, we 164

only need to sample from the initial distribution 165

and solve the initial value problem (IVP) of the 166

ordinary differential equation(3), which could be 167

efficiently completed by ODE solvers. 168

dx

dt
= v(x, t) (3) 169

Additionally, for generative models, sample 170

from prior distribution and then solve the IVP of 171

velocity ODE is not enough, the key is to make 172

sure that the probability density become the ground 173

truth distribution at t = 1, i.e. p(x, t),v(x, t) in- 174

deed solve the boundary value problem (BVP) of 175

probability flow equation where p(x, t) equals to 176
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ground truth distribution and a chosen prior distri-177

bution at time t = 0 and t = 1 correspondingly,178

different models make different efforts to ensure179

the BVP is correctly solved, this is the key ingredi-180

ent of ODE based generative models.181

2.2 Mathematical Tools182

Now we introduce some mathematical tools with183

regard to the IVP and BVP.184

2.2.1 Instantaneous Change of Variables185

This formula is usefull to determine the velocity186

field when two boundary distributions are given and187

its proof could be found in (Chen et al., 2018). Let188

x(t) be a finite continuous random variable with189

probability density p(x(t)) dependent on time. Let190
dx
dt = v(x(t), t) be a differential equation describ-191

ing a continuous-in-time transformation of x(t).192

Assuming that v is uniformly Lipschitz continu-193

ous in x and continuous in t, then the change in194

log probability density also follows a differential195

equation:196

d log p(x(t))

dt
= −tr

(
∂v

∂x
(x(t), t)

)
(4)197

2.2.2 Expectation and Velocity198

This subsection shows that if the probability density199

function p(x, t) and the velocity function v(x, t)200

solve the probability flow equation, there is a help-201

ful relationship between them. Let x(t) be a contin-202

uously differentiable random process on t ∈ [0, 1],203

if the conditional expectation E[dx(t)dt |x(t)] is lo-204

cally Lipschitz and p(x, t),v(x, t) solve the prob-205

ability flow equation, then206

v(x, t) = E

[
dx(t)

dt

∣∣∣∣x(t)] almost surely, (5)207

hence this velocity IVP at time t = 0 and t = 1208

become the bridge between the initial and finishing209

distribution at time t = 0 and t = 1 of x.The proof210

could be found in Appendix A.211

2.2.3 Green’s Function Method212

Linear partial differential equations (PDEs) with213

a single function variable φ(x, t), could be solved214

by Green’s function method.2 Although in proba-215

bility flow equation we have two function variable216

p(x, t) and v(x, t), but we can consider them as217

functions of φ(x, t). Utilizing the ground truth dis-218

tribution and a Green’s function solution to φ(x, t),219

2Green’s function method: https://en.wikipedia.
org/wiki/Green%27s_function

along with the boundary condition at t = 1, the 220

analytical forms of p(x, t) and v(x, t) can be read- 221

ily derived.Consequently, the velocity field can be 222

trained efficiently. Figuratively speaking, Green’s 223

function method allow us to build the velocity field 224

through point charges given by the data at t = 1. 225

For example, the Gaussian perturbation kernels in 226

diffusion probabilistic models can be interpreted 227

as the Green’s function to the diffusion equation. 228

Detailed examples are provided in Appendix B and 229

Appendix C. 230

2.3 Continuous Normalizing Flow models 231

CRF models choose a prior distribution that could 232

be analytically discribed like Gaussian distribution, 233

and then solve the velocity IVP at t = 1 to evaluate 234

the log probability density at time t = 1. Then 235

during maximal likelihood training, the finishing 236

distribution gradually becomes the ground truth 237

distribution and the velocity function could solve 238

the BVP problem as we want. However, solving 239

the velocity IVP during training with adjoint sensi- 240

tive method mentioned in (Grathwohl et al., 2018) 241

leads to extremely slow training speed, and CRF 242

vocoders are also hindered by the large variance of 243

trace estimator, which leads to an inferior sample 244

quality.(Wu and Ling, 2020; Kim et al., 2020) 245

2.4 Score Based Generative Models and 246

Rectified Flow Models 247

Models for audio synthesis, such as DiffWave, 248

ProDiff (Huang et al., 2022b), and FastDiff, pri- 249

marily focus on data scoring. Song et al. (2020) 250

have successfully unified Noise Conditional Score 251

Networks (Song and Ermon, 2019) and the Denois- 252

ing Diffusion Probabilistic Model (Ho et al., 2020) 253

under the umbrella of stochastic differential equa- 254

tions (SDEs). This unification is exemplified in the 255

forward diffusion SDE, which is as equation (6). 256

dx = f(x, t)dt+ g(t)dw (6) 257

And the corresponding backward SDE for generat- 258

ing procress is shown in equation (7). 259

dx = [f(x, t)− g2(t)∇x log p(x, t)]dt+ g(t)dw
(7) 260

Rectified flow models (Liu et al., 2022) and score 261

based generative models build the velocity function 262

through the expectation property 2.2.2. Rectified 263

flow models choose random process 264

x(t) = tx(1) + (1− t)x(0), t ∈ [0, 1] (8) 265
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where x(1),x(0) represents the groud truth distri-266

bution and the chosen prior distribution, and they267

are independent sampled. This parameterization268

for p(x, t) is fixed when the two distributions are269

given, and it directly satisfy the two boundary con-270

dition. Hence the optimization goal for velocity271

function could be determined by272

v(x, t) = E[x(1)− x(0)|x(t)] (9)273

274
⇔ min

v
E[||x(1)− x(0)− v(x(t), t)||2] (10)275

Using the expectation property we can just sample276

from two marginal distribution and learn its corre-277

sponding velocity function without solving IVP in278

the training process. Score based generative mod-279

els could also be written in similar form, we take280

VP-SDE as an example. Song et al. (2020) have281

already derived the pertubation kernel of VP-SDE282

in their Appendix B, we coule rewrite the result as283

x(t) = α(t)x(1) + β(t)x(0), t ∈ [0, 1] (11)284

285

α(t) = exp(−1

4
a(1− t)2 − 1

2
b(1− t)), (12)286

287
β(t) =

√
1− α(t)2 (13)288

where the coefficient a is given by DDPM’s hy-289

perparameters N(βmax − βmin) = 1000(0.02 −290

0.0001) = 19.9 and b is given by Nβmin =291

1000 × 0.0001 = 0.1. Similar to rectified flow292

models, we could find a simple optimization goal293

for the velocity field with the expectation property:294

min
v

E[||α′(t)x(1) + β′(t)x(0)− v(x(t), t)||2]
(14)295

It worth mentioning that VP-SDE doesn’t solve the296

BVP precisely at t = 1, and β′(t) doesn’t exist at297

t = 1, thus we should train it in [0, 1− ϵ].298

2.5 Poisson Flow Generative Model299

Poisson Flow Generative Models (PFGMs) (Xu300

et al., 2022) are proficient visual generative mod-301

els that exhibit comparable efficiency to score-302

based models. These models generate samples303

from the ground truth distribution by utilizing high-304

dimensional electric fields, which are solutions to305

the Poisson partial differential equation. To cir-306

cumvent the issue of mode collapse, the original307

data is augmented with an additional dimension.308

The prior distribution is then defined as a uniform309

distribution on the surface of the superballs. It is310

noteworthy that this augmented dimension can be311

interpreted as time, thereby suggesting that PFGMs 312

are essentially modeling a time-dependent Poisson 313

equation as equation 15, where φ(x, t) is the elec- 314

tricity potential function. 315

∂2φ

∂t2
(x, t) +∇2

xφ(x, t) = 0, (15) 316

This equation cannot be directly interpreted as a 317

probability flow equation. To derive an appropriate 318

equation, the selection could be made by: 319

p(x, t) =
∂φ

∂t
(x, t),v(x, t) =

∇xφ(x, t)
∂φ
∂t (x, t)

, (16) 320

Thus, the boundary condition at t = 1 becomes: 321

p(x, 1) =
∂φ

∂t
(x, 1) = pdata(x) (17) 322

Presently, PFGMs are translated into a fluid equa- 323

tion, and training data can be generated subsequent 324

to the resolution of this linear PDE. Further details 325

regarding the Green’s function solution to this equa- 326

tion, as well as the training process of PFGMs from 327

the perspective of fluid equations, are deferred to 328

Appendix D. 329

What’s more, score based generative models 330

could also be viewed as solving a linear PDE with 331

Green’s function method, since Kolmogorov for- 332

ward equation, also known as the Fokker-Planck 333

Equation 3, can be reformulated into a probabil- 334

ity flow equation (8) with same p(x, t), and a de- 335

tailed proof of this transformation is provided in 336

Appendix B. 337

∂p

∂t
(x, t) + p(x, t)∇xf(x, t)+

f(x, t) · ∇x(p(x, t))−
1

2
g2(t)∇2

xp(x, t) = 0

(18) 338339

v(x, t) = [f(x, t)− 1

2
g2(t)∇x log p(x, t)]. (19) 340

It’s also a probability flow equation where velocity 341

function is given by equation (9), and the learning 342

process of score based models could be regarded as 343

fitting the analytical solution of the velocity func- 344

tion given by Green’s function method. We will 345

solve a special case ∂p
∂t (x, t) − ∇2

xp(x, t) = 0 346

in Appendix C using Fourier Transformation to 347

demonstrate this issue. 348

3Kolmogorov forward Equation or Fokker-Plank Equa-
tion: https://en.wikipedia.org/wiki/Fokker%E2%80%
93Planck_equation
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3 Methods349

3.1 Overview and Motivation350

With the mathematical tools mentioned above, we351

have a comparatively comprehensive understand-352

ing of how to make the probability density function353

and velocity function solve the BVP of probability354

flow equation and then generate the data by solv-355

ing the velocity IVP. Now we consider the specific356

mel-conditioned speech synthesis task.357

To our knowledge, there already exist rectified358

flow models which could generate acceptable mel-359

spectrograms from text in one step (Guan et al.,360

2023; Guo et al., 2023), but there is no probability361

flow based model which could generate waveforms362

from mel-spectrograms with acceptable quality in363

one step, thus we mainly focus on how to generate364

high-quality audio in one step.365

Consider the three mathematical tools and their366

corresponding generative models in section 2, con-367

tinuous normalizing flow models based on instan-368

taneous change of varaible formula need to solve369

velocity IVP during training, thus there is inher-370

ent difficulty for generating high-quality wave-371

form in one step. As for the methods based on372

Green’s function method, we need to construct a373

good Green’s function to make the velocity field be374

straight enough, which is not obvious in mathemat-375

ics, actually PFGMs and DDPMs cannot generate376

accecptable data in one step. Hence, we mainly uti-377

lize the expectation property of velocity function.378

3.2 Mel-Conditioned Prior Distribution379

If the initial and finishing boundary distribution are380

almost the same, then obviously the one step gener-381

ation task would be much easier, so we should take382

full advantage of the mel-spectrogram to provide383

a prior distribution that is close to the audio distri-384

bution. This thought has already been applied to385

diffusion models (Lee et al., 2021; Koizumi et al.,386

2022), but these prior distributions are not close387

to the audio distribution due to the need of stabliz-388

ing diffusion training objectives. For example, Lee389

et al. (2021) use N(µ,Σ) as the diffusion prior390

distribution, and their training objective is:391

xt =
√
ᾱt(x0 − µ) +

√
1− ᾱ2

t ϵ, (20)392

393
min
ϵ
(ϵ− ϵθ(xt, t))

⊤Σ−1(ϵ− ϵθ(xt, t)), (21)394

where x0 ∼ pdata, ϵ ∼ N(0,Σ). They choose395

µ = 0 and Σ to be a diagnoal matrix given by396

mel-spectrogram. However, to stable the training 397

process, they have to clamp the diagnoal Σ’s value 398

between 0.1 and 1, which enlarges the distance be- 399

tween the prior distribution and audio distribution. 400

According to the training target given by the ex- 401

pectation property, we can directly sample from 402

two boundary distribution without giving their 403

distribution analytically, which means WaveODE 404

could adopt a prior distribution with much more 405

smaller variance. In implementation, we also 406

choose N(0,Σ) as the prior distribution where Σ 407

is diagnoal. We use torchaudio.transforms. Mel- 408

Spectrogram to gain mel-spectrograms from au- 409

dios, whose value is ranged in [0, 32768.0]. (We 410

take logarithm mel-spectrogram for neural net- 411

works.) Since mel-spectrogram records the en- 412

ergy of voice, the square root of their sum at fre- 413

quency dimension is a good choose for the stan- 414

dard deviation of prior distribution, we divide it by 415√
mel-bands × 32768.0 to norm it into [0, 1] and 416

repeat a value at time dimension for hopsize time to 417

align its shape with audios. Since the value in a mel- 418

spectrogram is usually far samller than the possible 419

maximal value, the standard deviation could even 420

reach the level of 10−4 (at almost silence part). 421

This mel-conditioned prior distribution improve 422

the inference speed and sample quality to a great ex- 423

tend, and also helps WaveODE generalize better on 424

unseen out of distribution datasets. Experimental 425

evidence could be found in next section. 426

3.3 Training Objective 427

Now the initial and finishing distribution are known, 428

we need to construct a continuously differentiable 429

random process x(t) to train the velocity function. 430

Rectified flow is good choice for general generating 431

task, we adopt an parameterized x(t) near it: 432

x(t) = tx(1) + (1− t)x(0)

+t(1− t)fθ(x(0),x(1), t)
(22) 433

434
x′(t) =x(1)− x(0) + (1− 2t)fθ(x(0),x(1), t)

+ t(1− t)
∂fθ(x(0),x(1), t)

∂t
(23) 435436

min
v

E[||x′(t)− vθ(x(t), t)||2] (24) 437

This means p(x, t) is dynamically changing during 438

the training process, which allows us control the 439

evolution equation through adding loss functions 440

to x(t). The two functions are approximated by 441

two U-Nets, and mel-spectrogram is also fed to 442
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them as additional condition input. Besides, the443

partial derivative of f cannot be calculated directly444

by autograd, we use445

fθ(x(0),x(1), t+ ϵ)− fθ(x(0),x(1), t− ϵ)

2ϵ
(25)446

to estimate the derivative(ϵ = 5× 10−4). In recti-447

fied flow models v is trained by fitting x′(t), now448

in WaveODE x′(t) is also trainable, which could449

reduce the training error. Apart from the velocity450

loss, we also add loss functions to f to regulate the451

evolution of random variable x. Since we want the452

velocity IVP trajectory be straight and reach it ends453

as soon as possible, we add two loss functions to454

achieve the goals, where t ∼ U [0, 1].455

E[||fθ(x(0),x(1), t)||2], E[||x(t)− x(1)||2]
(26)456

The first loss avoid the trajectory become too curly457

and the second loss helps the trajectory reach its458

end faster. This parameterization may be unhelpful459

for general generative models, but experimental460

resuilts show that it could improve the quality for461

one-step generated waveforms.462

3.4 Networks and Distillation463

The velocity function is predicated on a U-Net464

model, we adopt the multi-receptive field (MRF)465

module in the generator of Hifi-GAN, and they are466

denoted as ResLayers in Figure 1. The U-net is467

simple in structure, and could be regarded as the468

combination of two Hifi-GAN generator and we469

just change the upsampling transposed convolution470

1D layers into strided downsampling convlution471

1D layers in the down way, and add the correspond-472

ing feature maps to the up way. As for the time473

term, we follow (Vaswani et al., 2017) to embed474

the time t ∈ [0, 1] into an 128-dimensional posi-475

tional encoding vector, and we multiply t by 100 to476

keep its magnitude be the same as diffusion models.477

Time embeddings are added to ResLayers aftering478

DNN’s processing.479

[sin(10
0×4
63 100t), · · · , sin(10

63×4
63 100t),

cos(10
0×4
63 100t), · · · , cos(10

63×4
63 100t)]

(27)480

The function f , we call it mixer since it produce481

the middle state between x(0) and x(1), it share482

the same structure with the velocity function, we483

just multiply with processed time embeddings to484

x(0) and x(1) and sum them up as x in velocity485

function.486

Figure 1: The neural networksśtructure

As for distillation process, We simply train a 487

copy of a trained velocity function through Eu- 488

ler discretilization, where the answer is given by 489

the trained velocity field and Runge-Kutta ODE 490

solvers.The evaluation time ∈ [0, 1] could also be 491

trained by gradient descent in the same time. 492

3.5 Training Algorithm 493

The training procedures for the proposed 494

WaveODE model are summaried in Algorithm 1 495

(in next page). 496

4 Experiments 497

4.1 Datasets 498

In order to ensure a fair and reproducible compar- 499

ison against other competing methodologies, we 500

utilize the LibriTTS dataset (Zen et al., 2019) , 501

which is a large-scale corpus of read English speech 502

amounting to 1,000 hours, and comprises more 503

than 350,000 audio clips of 24,000 Hz from mutiple 504

speakers. We feed all training data including train- 505

clean-100, train-clean-360 and train-other-500 to 506

all of the models. As for our mel-spectrogram 507

dataset, we use 100-bands mel-spectrogram and set 508

the frequency range be [0,12] kHz. The FFT size, 509

Hann window size, hop size of mel-spetrogram are 510

set to 1024,1024 and 256 correspondingly. 511
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Algorithm 1 Train WaveODE
Input: Mixer f , velocity field v, mel condition
c, time step t ∼ U [0, 1], ϵ = 5× 10−4

repeat
Sample x(1) ∼ pdata(x|c),
Sample x(0) ∼ N(0, prior(c))
f0 = fθ(x(0),x(1), t, c)
f+ = fθ(x(0),x(1), t+ ϵ, c)
f− = fθ(x(0),x(1), t− ϵ, c)
x(t) = tx(1) + (1− t)x(0) + t(1− t)f0
v0 = vθ(x(t), t, c)
x′(t) = x(1)− x(0) + (1− 2t)f0

+t(1− t) 1
2ϵ(f+ − f−)

Loss= ||v0 − x′(t)||2 + ||f0||2
+||x(t)− x(1)||2

Take gradient descent according to loss.
until WaveODE converged

To assess the model’s generalization capabili-512

ties in out of distribution scenarios, we employ the513

MUSDB18-HQ music dataset (Rafii et al., 2017).514

It is a multi-track musical dataset which contains515

the original mixture audios and four splitted tracks:516

vocal, drums, bass and other instruments. Synthe-517

sising the languages that are not inside the training518

dataset is also in our consideration. The Multi-519

lingual TEDx Corpus (Salesky et al., 2021) con-520

tains the audios of TEDx talks in Spanish,Italian,521

French and Portuguese; The CN-Celeb dataset (Fan522

et al., 2020) is a large-scale speaker recognition523

dataset collected in the wild. The dataset con-524

tains more than 126,000 utterances from 997 Chi-525

nese celebrities, and covers 11 different genres in526

real world; The deeply Korean read speech corpus527

dataset(Deeply, 2021) contains short speech audio528

clips in Korean, and the clips are recorded in three529

types of different environments.530

4.2 Training and Evaluation Metrics531

The detailed architectures and configurations of the532

models are listed in Appendix E. As for the tran-533

ing process,the model is trained on a single Nvidia534

RTX 4090 GPU with a initial learning rate 2×10−4535

and batch size 16 for the mixer and velocity func-536

tion. The learning rate would decay by 0.997 times537

every 1000 steps, and the training process includes538

1M steps in total. We use AdamW optimizer for539

training, where the betas are set to (0.9,0.98) and540

the weight decay rate is set to 0.01. The distillation541

process contains 50000 steps in total, and we ad-542

just the learning rate to 2 × 10−5. For multi-step543

distillation, the time scheduler is also learnable, we 544

set its learning rate to 0.01. 545

Since there are out of distribution data need to be 546

tested, the subjective evaluation of audios’ quality 547

is conducted through 5-scale Similarity Mean Opin- 548

ion Score (SMOS) tests mentioned in BigVGAN 549

(Lee et al., 2022), which are crowd-sourced via 550

Amazon Mechanical Turk. The SMOS scores are 551

documented with a 95% confidence interval. For 552

the precision of subjective evaluation, each model 553

generates 150 audio samples per dataset for testing 554

and each sample is evaluated by two distinct work- 555

ers. In addition to this, we employ supplementary 556

objective automatic evaluation metrics including 557

mean L1 mel-spectrogram error, Perceptual Evalu- 558

ation of Speech Quality (PESQ) (Rix et al., 2001), 559

Periodicity error and F1 score of voiced/unvoiced 560

classification (V/UV F1)(Morrison et al., 2021) to 561

assess sample equality. The real-time factor (RTF) 562

assessment is also calculated, utilizing a the same 563

RTX4090 GPU. 564

4.3 Comparsion With Other Models 565

We conduct a series of experiments on speech syn- 566

thesis tasks to evaluate our model. Models we have 567

compared with are listed below. 568

WaveGlow (Prenger et al., 2019), an parallel 569

discrete flow based model; 570

WaveNODE (Kim et al., 2020), a continuous 571

normalizing flow model using adjoint sensitive 572

method during training. 573

DiffWave (Kong et al., 2020b), PriorGrad (Lee 574

et al., 2021) BDDM (Lam et al., 2022), FastD- 575

iff (Huang et al., 2022a), four diffusion proba- 576

bilistic models, all been proved to be high-fidelity. 577

We use 6 denoising-steps for DiffWave,PriorGrad, 578

BDDM,and FastDiff; 579

We train these models following the setups as 580

in the original papers,and the results in Table 2 581

show that our models is comparable with different 582

kinds of previous models. And with only one in- 583

ference step, WaveODE is already able to generate 584

acceptable audios. 585

4.4 Out of Distribution Situation 586

The generalizability of our proposed model is as- 587

sessed utilizing two kinds of datasets: the musi- 588

cal dataset MUSDB18-HQ and several speaking 589

datasets with unseen language. The SMOS results 590

in Table 3 indicate that our model exhibits com- 591

mendable performance in unseen scenarios, exceed- 592

ing the performance of the baseline models. 593
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Model SMOS (↑)
Ground Truth 4.52± 0.08
WaveODE-1 4.08± 0.11

with Snake Activation 4.10± 0.08
with Weight Normalization 4.00± 0.07

w/o Conditioned Prior 3.73± 0.10
w/o Mixer 4.03± 0.07

Table 1: Ablation study results.

4.5 Ablation Study594

In order to demonstrate our structural designs are595

effective, we have conducted several ablation stud-596

ies , and the results are presented in Table 1.597

Our observations are concluded as follow:598

1. The snake activation function in BigVGAN599

cannot improve the sample quality of WaveODE,600

we attribute this to training objective: GANs gen-601

erate waveforms directly, but we estimating the602

expectation of random derivatives, the periodical603

bias could be unhelpful.604

2. Weight Normalization cannot improve the605

sample quality of WaveODE as well, this could606

be explained as the velocity function has a highly607

demand of precision, which could be harmed by608

weight normalization.609

3.The conditioned prior significantly improved610

the one step samples’ quality, and the mixer slightly611

helps the process too. Additionally, for full Runge-612

Kutta estimation (Dopri5 method) with atol=1e-613

3 and rtol=1e-3, the conditioned prior could re-614

duce the number of function evaluation from 70+615

to around 30.616

5 Conclusion617

In conclusion, this study has provided a compre-618

hensive review of probability flow equation based619

models, analysing them under a unified perspec-620

tive of BVP and IVP. We propose the WaveODE621

model, a efficient approach to mel-spectrogram622

conditioned speech synthesis. It could leverage the623

energy information in mel-spetrograms to generate624

a small variance prior disitribution, and then use625

the distilled velocity function v(x, t) to produce626

accecptable waveforms in one inference step. The627

SMOS test and auto evaluators have demonstrated628

that the WaveODE model is competitive with pre-629

vious diffusion models and flow based models in630

terms of sample quality and efficiency, and could631

generalize better to out of distribution data.632

Model SMOS (↑) MelError(↓) RTF (↓)
Ground Truth 4.52± 0.08 0 -

WaveGlow 3.91± 0.10 0.347 57.5x
WaveNODE 4.00± 0.09 0.336 5.03x
Diffwave-6 4.15± 0.07 0.160 16.1x
PriorGrad-6 4.19± 0.09 0.186 16.1x
BDDM-6 4.14± 0.10 0.194 16.1x
FastDiff-6 4.13± 0.08 0.245 59.6x

WaveODE-1 4.08± 0.11 0.165 76.3x
WaveODE-6 4.21± 0.07 0.157 28.5x

Model PESQ (↑) Periodicity(↓) V/UV F1 (↑)
Ground Truth 4.644 0 1

WaveGlow 3.133 0.215 0.861
WaveNODE 2.582 0.213 0.850
Diffwave-6 2.899 0.176 0.890
PriorGrad-6 3.028 0.199 0.866
BDDM-6 2.973 0.148 0.930
FastDiff-6 2.902 0.195 0.876

WaveODE-1 3.02 0.125 0.932
WaveODE-6 3.10 0.105 0.963

Table 2: The subjective and objective evaluation results
on LibriTTS Test dataset.

Model Mean SMOS on MUSDB18-HQ
Ground Truth 4.43± 0.09

WaveGlow 3.51± 0.10
WaveNODE 3.45± 0.11
Diffwave-6 3.73± 0.09
PriorGrad-6 3.85± 0.09
BDDM-6 3.82± 0.10
FastDiff-6 3.69± 0.12

WaveODE-1 3.81± 0.10
WaveODE-6 3.98± 0.10

Model Mean SMOS on Languages
Ground Truth 4.46± 0.09

WaveGlow 3.75± 0.11
WaveNODE 3.78± 0.12
Diffwave-6 4.10± 0.07
PriorGrad-6 4.15± 0.10
BDDM-6 4.05± 0.10
FastDiff-6 4.02± 0.08

WaveODE-1 4.05± 0.09
WaveODE-6 4.20± 0.11

Table 3: The SMOS results on MUSDB18-HQ data and
multiple non-English datasets
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6 Limitations and Potential Risks633

Our main limitation is that the training objectives634

only improves the sample quality slightly, which635

is not desired since it could make the training pro-636

cess become slower. There still need furthur ex-637

plorations to take full advantages of the probability638

flow equation.639

As for the risks, our proposed model lowers640

the requirements for high-fidelity speech synthesis,641

which is related to the potential risks concerning642

media or telephone fraud.643
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A Proof of Expectation Property 833

Let x(t) be a continuously differentiable random process on t ∈ [0, 1], if the conditional expectation 834

E[dx(t)dt |x(t)] is locally Lipschitz and p(x, t),v(x, t) solve the probability flow equation, then 835

v(x, t) = E

[
dx(t)

dt

∣∣∣∣x(t)] almost surely, (28) 836

Proof: Since p(x, t),v(x, t) solve the probability flow equation, 837

∂p

∂t
(x, t) +∇x(p(x, t)v(x, t)) = 0 (29) 838

Then for any finite supported continuously differentiable function h(x), we have: 839∫
h(x)(

∂p

∂t
(x, t) +∇x(p(x, t)v(x, t)))dx = 0 (30) 840

841
∂

∂t

∫
h(x)p(x, t)dx = −

∫
h(x)∇x(p(x, t)v(x, t)))dx (31) 842

Integrating by parts to the right hand side, since h is finite supported, we have 843

d

dt

∫
h(x)p(x, t)dx =

∫
(p(x, t)v(x, t))⊤∇xh(x)dx (32) 844

d

dt
E[h(x(t))] = E[v(x, t)⊤∇xh(x(t))] (33) 845

E[
dx(t)

dt

⊤
∇xh(x(t))] = E[v(x, t)⊤∇xh(x(t))] (34) 846

By the tower property of expectation we have: 847

E[E[
dx(t)

dt
|x(t)]⊤∇xh(x(t))] = E[v(x, t)⊤∇xh(x(t))] (35) 848

Since we could arbitrarily choose finite supported continuous differentiable function h, 849

v(x, t) = E[
dx(t)

dt
|x(t)] almost surely (36) 850

B Interpreting score based models into linear PDEs 851

We consider the general Kolmogorov forward equation: 852

dx = µ(x, t)dt+ σ(x, t)dw, (37) 853

where µ(x, t) is a vector function from Rn×R to R, σ(x, t) is a matrix function from Rn×R to Rn×n, and 854

dw is the infinitesimal of n-dimentional standard Wiener process (also called Brown Motion)(Øksendal, 855

2003, 2013). 856

Now x(t) becomes a random variable, we denote its probability density function as p(x, t).Assume 857

f is an arbitrary function ∈ C(2), and T is a arbitrary fixed positive time, using the tower property of 858

conditioned expectation, we have: 859

E[f(x(T ))] = E[E[f(x(T ))|x(t) = x]], ∀t ∈ [0, T ], (38) 860

we denote E[f(x(T ))|x(t) = x] as u(x, t),then we have: 861

E[f(x(T ))] =
∫

p(x, t)E[f(x(T ))|x(t) = x]dx =

∫
p(x, t)u(x, t)dx,∀t ∈ [0, T ] , (39) 862
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then we denote the integration as a inner product between p(x, t) and u(x, t), and noticing that the left863

hand side has nothing to do with variable t, taking derivative at t = T we have:864

0 =
dE[f(x(T ))]

dt

∣∣∣∣
t=T

=
d ⟨p(x, t), u(x, t)⟩

dt

∣∣∣∣
t=T

865

=

〈
∂p(x, t)

∂t

∣∣∣∣
t=T

, u(x, T )

〉
+

〈
p(x, T ),

∂u(x, t)

∂t

∣∣∣∣
t=T

〉
, (40)866

now we obtain an equation with ∂p(x,t)
∂t

∣∣
t=T

, where ∂u(x,t)
∂t

∣∣
t=T

could be further computed:867

∂u(x, t)

∂t

∣∣∣∣
t=T

= lim
t→0−

u(x, t+ T )− u(x, T )

t
868

= lim
t→0−

E[f(x(T ))|x(t+ T ) = x]− f(x)

t
, (41)869

then according to Itô 4 lemma we do Taylor expansion at t = T for f(x(t)) and gain:870

= −

 n∑
i=1

µi(x, t)
∂f(x)

∂xi

∣∣∣∣
t=T

+
1

2

n∑
i=1

n∑
j=1

n∑
k=1

σik(x, t)σjk(x, t)
∂2f(x)

∂xi∂xj

∣∣∣∣
t=T

 , (42)871

we regard this formula as a linear operator L act on function f(x), where872

L(f)(x) =
n∑

i=1

µi(x, t)
∂f(x)

∂xi

∣∣∣∣
t=T

+
1

2

n∑
i=1

n∑
j=1

n∑
k=1

σik(x, t)σjk(x, t)
∂2f(x)

∂xi∂xj

∣∣∣∣
t=T

(43)873

874

∂u(x, t)

∂t

∣∣∣∣
t=T

= −L(f)(x) (44)875

Now we have transformed the SDE into equation:876 〈
∂p(x, T )

∂t

∣∣∣∣
t=T

, f(x)

〉
+ ⟨p(x, T ),−L(f)(x)⟩ = 0. (45)877

Since L is a linear operator, we could find its dual operator L∗ with the integration inner product between878

functions using the formula of integration by parts: (⟨L(f), g⟩ = ⟨f,L∗g⟩ is the definition to dual operator879

L∗)880

L∗(f)(x) = −
n∑

i=1

∂[µi(x, t)f(x)]

∂xi

∣∣∣∣
t=T

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

∣∣∣∣
t=T

(
n∑

k=1

σik(x, t)σjk(x, t)f(x)

)
,

(46)881

Now the SDE can be further transformed into:882 〈
∂p(x, t)

∂t

∣∣∣∣
t=T

, f(x)

〉
− ⟨L∗(p)(x, T ), f(x)⟩ = 0. (47)883

884 〈
∂p(x, t)

∂t

∣∣∣∣
t=T

− L∗(p)(x, T ), f(x)

〉
= 0. (48)885

Since f(x) is an arbitrary function ∈ C(2),we have:886

∂p(x, t)

∂t

∣∣∣∣
t=T

− L∗(p)(x, T ) = 0, ∀ T ∈ [0,+∞), (49)887

4Itô lemma: https://en.wikipedia.org/wiki/It%C3%B4%27s_lemma
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888

∂p(x, t)

∂t
+

n∑
i=1

∂[µi(x, t)p(x, t)]

∂xi
− 1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

(
n∑

k=1

σik(x, t)σjk(x, t)p(x, t)

)
= 0, (50) 889

and this is the partial equation that the probability density function should obey. Now we can review the 890

simple situation: 891

dx = f(x, t)dt+ g(t)dw (51) 892

µ(x, t) = f(x, t),σ(x, t) = g(t)I, (52) 893

the equation can be simplified into: 894

∂p(x, t)

∂t
+∇x[f(x, t)p(x, t)]−

1

2
g2(t)∇2

xp(x, t) = 0, (53) 895

∂p(x, t)

∂t
+ p(x, t)∇xf(x, t) + f(x, t) · ∇xp(x, t)−

1

2
g2(t)∇2

xp(x, t) = 0, (54) 896

which is a linear non-compressible passive fluid partial differential equation. 897

C Solving standard diffusion equation 898

Diffusion equation, which is also known as heat equation, is a parabolic partial differential equation that 899

could be found in many PDE textbooks(Evans, 2022; John, 1991). 900

To make the derivation easier, we could do change variable for t, we project the ground truth distribution 901

at t = 1 to t = 0, and project the prior distribution at t = 0 to large enough t = T . 902

Then we derive the Green’s function solution to the standard diffusion equation and we assume the 903

source point x′ = 0 for simplicity: 904

∂p(x, t)

∂t
−∇2

xp(x, t) = δ(x)δ(t) , (55) 905

the Fourier transformation of p(x, t) is denoted as: 906

p̃(k, t) = F [p] ≡
∫

p(x, t)e−ik·xdNx, (56) 907

the corresponding reverse Fourier transformation of p̃(k, t) is denoted as: 908

p(x, t) = F−1[p̃] =
1

(2π)N

∫
p̃(k, t)eik·xdNk. (57) 909

Fourier transformation’s nice properties could remove the ∇x operator in some PDEs: 910

F [∇xp] = ikp̃,F [∇2
xp] = −|k|2p̃. (58) 911

Apply Fourier transformation to the standard diffusion equation,we have: 912

∂p̃

∂t
+ |k|2p̃ = δ(t) , 913

⇐⇒ ∂p̃

∂t
+ |k|2p̃ = 0 (t > 0), p̃(k, 0) = 1 . 914

⇐⇒ p̃(k, t) = exp(−|k|2t), (59) 915
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which is a Gaussian distribution in k domain. Now we transform it back to x domain:916

p(x, t) = F−1[p̃] =
1

(2π)N

∫
exp(−|k|2t) exp(ik · x)dNk917

=
N∏
j=1

[
1

2π

∫ +∞

−∞
exp(ikjxj) exp(−k2j t)dkj

]
918

=

N∏
j=1

exp(−x2
j

4t )

2π

∫ +∞

−∞
exp

[
−t

(
kj −

ixj
2t

)2
]
dkj

919

=

N∏
j=1

√π

t
·
exp

(
−x2

j

4t

)
2π

920

=
1

(4πt)
N
2

exp

(
−|x|2

4t

)
(60)921

which is the Green’s function solution whose source is at x′ = 0, thus for arbitrary source position:922

p(x, t;x′) =
1

(4πt)
N
2

exp

(
−|x− x′|2

4t

)
(61)923

Now the diffusion equation could be solved by superposition method since the boundary condition at924

t = 0 could be regarded as pdata(x)δ(t):925

p(x, t) =

∫
p(x, t;x′)pdata(x

′)dNx′926

v(x, t) = −∇x log p(x, t) = − 1

p(x, t)

∫
∇xp(x, t;x

′)pdata(x
′)dNx′927

=
1

p(x, t)

∫
p(x, t;x′)

x− x′

2t
pdata(x

′)dNx′928

=

∫
p(x′|x, t)x− x′

2t
dNx′929

= Ex∼p(x′|x,t)

[
x− x′

2t

]
(62)930

where931

p(x′|x, t) ∝ pdata(x
′)p(x, t;x′)932

∝ pdata(x
′) exp

(
−|x− x′|2

4t

)
(63)933

when t is large enough, p(x, t) is approximately proportional to exp
(
− |x−x′|2

4t

)
, which could serve as a934

prior distribution. Now the inference process has a proper beginning and the velocity field could be trained935

efficiently through adding Gaussian noises to the origin clear data like diffusion probabilistic models. It’s936

worth mentioning that, this conditioned expectation is also similar to another efficient training objective937

for diffusion models called stable target field objective (Xu et al., 2023), which means that the original938

data could be regarded as point charges, Green’s function determine the analytical form of the electricity939

field, and the velocity field could be viewed as the join electricity field of the point charges.940

D Solving time-dependent Poisson equation941

Again, to make the derivation easier, we could do change variable for t, we project the ground truth942

distribution at t = 1 to t = 0, and project the prior distribution at t = 0 to large enough t = T .943
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Firstly,we also needs to fine the Green’s function solution: 944

∂2φ

∂t2
(x, t) +∇2

xφ(x, t) = δ(x)δ(t) 945

⇐⇒ ∂2φ

∂t2
(x, t) +∇2

xφ(x, t) = 0(t > 0),
∂φ

∂t
(x, 0) = δ(x) (64) 946

Similar to Appendix B, we apply Fourier transformation to the equation: 947

∂2φ̃

∂t2
(k, t)− |k|2φ̃(k, t) = 0(t > 0),

∂φ̃

∂t
(x, 0) = δ(x) 948

⇐⇒ φ̃(k, t) =
u exp(−|k|t) + v exp(|k|t)

|k|
, −u+ v = 1 (65) 949

Since t → ∞, ˜φ(k, t) → 0,we have u = −1, b = 0, φ̃(k, t) = 1
|k| exp(−|k|t),then apply reverse Fourier 950

transformation with some properties of hypergeometric5function and n-dimensional spherical coordinates 951

mentioned in (Liu et al., 2023): 952

φ(x, t) =
Γ
(
N−1
2

)
2π

N+1
2

1

(t2 + |x|2)
N−1

2

, (66) 953

which is the n-dimensional electricity potential function of a unit point charge at x′ = 0, and for arbitraty 954

source position x,we have: 955

φ(x, t;x′) =
Γ
(
N−1
2

)
2π

N+1
2

1

(t2 + |x− x′|2)
N−1

2

, (67) 956

Actually since Poisson equation is very special, a more simpler method to solve it could be found in 957

PFGMs’ original paper(Xu et al., 2022). Now we have: 958

p(x, t) =
∂φ

∂t
(x, t) =

∫
∂φ(x, t;x′)

∂t
pdata(x

′)dx′ (68) 959

v(x, t) =
∇xφ(x, t)
∂φ
∂t (x, t)

=
1

p(x, t)

∫
∇xφ(x, t;x

′)pdata(x
′)dNx′, 960

=
1

p(x, t)

∫
∂φ(x, t;x′)

∂t

x− x′

t
pdata(x

′)dx′ 961

= Ex∼p(x′|x,t)

[
x− x′

t

]
(69) 962

where 963

p(x′|x, t) ∝ pdata(x
′)
∂φ(x, t;x′)

∂t
964

∝ pdata(x
′)

(t2 + |x− x′|2)
N+1

2

(70) 965

Then we could use a training process that is very similar to diffusion models in Appendix B to train this 966

velocity field by changing Gaussian perturbation kernel according to corresponding Green’s function. 967

5hypergeometric function:https://en.wikipedia.org/wiki/Hypergeometric_function
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Hyperparameters Values
velocityChannels [512,256,128,64,32],

velocityUpSampleRates [8,8,2,2],
velocityKernelSizes [[3,7,11],[3,7,11],[3,7,11],[3,7,11]],

velocityDilations [[1,3,5],[1,3,5],[1,3,5],[1,3,5]],
mixerChannels [128,64,32,16],

mixerUpSampleRates [8,8,4],
mixerKernelSizes [[3,5],[3,5],[3,5]],

mixerDilations [[1,3],[1,3],[1,3]],
parameters 28.7M

E Hyperparameters of The Networks968

The hyperparameters in our model are as follow:969
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