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ABSTRACT

A robot operating in a household makes observations of multiple objects as it moves
around over the course of days or weeks. The objects may be moved by inhabitants,
but not completely at random. The robot may be called upon later to retrieve objects
and will need a long-term object-based memory in order to know how to find them.
In this paper, we combine some aspects of classic techniques for data-association
filtering with modern attention-based neural networks to construct object-based
memory systems that consume and produce high-dimensional observations and
hypotheses. We perform end-to-end learning on labeled observation trajectories
to learn both the internal transition and observation models. We demonstrate the
system’s effectiveness on a sequence of problem classes of increasing difficulty and
show that it outperforms clustering-based methods, classic filters, and unstructured
neural approaches.

1 INTRODUCTION

Consider a robot operating in a household, making observations of multiple objects as it moves
around over the course of days or weeks. The objects may be moved by the inhabitants, even when
the robot is not observing them, and we expect the robot to be able to find any of the objects when
requested. We will call this type of problem entity monitoring. It occurs in many applications, but
we are particularly motivated by the robotics applications where the observations are very high
dimensional, such as images or point clouds. Such systems need to perform online data association,
determining which individual objects generated each observation, and state estimation, aggregating
the observations of each individual object to obtain a representation that is lower variance and more
complete than any individual observation. This problem can be addressed by an online recursive
filtering algorithm that receives a stream of object detections as input and generates, after each input
observation, a set of hypotheses corresponding to the actual objects observed by the agent.

When observations are closely spaced in time and objects only briefly go out of view, the entity
monitoring problem becomes the well studied problem of object tracking. In contrast, in this paper,
we are interested in studying the more generalized entity monitoring problem, where a robot must
associate a set of sparse and temporally separated observations of objects over the course of days
or weeks into a coherent estimate of the underlying objects and associated properties in a scene
(Figure 1). In such a setting, it is important that the system does not depend on continuous visual
tracking, as any individual object may be seen at one time and then again significantly later. A
sub-problem of generalized entity monitoring corresponds to object identification, in which we seek
to consistently re-identify objects across time. However, to solve the generalized entity monitoring
problem, a system must not only identify similar objects across time, but integrate the observations
into an estimate of their properties that may not be directly inferrable from any single observation.

A classical solution to the entity monitoring problem, developed for the tracking case but extensible
to other dynamic settings, is a data association filter (DAF) (the tutorial of Bar-Shalom et al. (2009)
provides a good introduction). A Bayes-optimal solution to this problem can be formulated, but it
requires representing a number of possible hypotheses that grows exponentially with the number of
observations. A much more practical, though less robust, approach is a maximum likelihood DAF
(ML-DAF), which commits, on each step, to a maximum likelihood data association: the algorithm
maintains a set of object hypotheses, one for each object (generally starting with the empty set)
and for each observation it decides to either: (a) associate the observation with an existing object
hypothesis and perform a Bayesian update on that hypothesis with the new data, (b) start a new object
hypothesis based on this observation, or (c) discard the observation as noise. As the number of entities
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Figure 1: (left) Example observations to the OBM system. At each time-step, the OBM obtains a segmented
depth map of a single object. (right) Example domain layout. Sample layout with a robot trajectory, field of
view (in yellow) and tables that can contain objects. Objects in the domain can move both locally on the table
they are on as well as to different tables (simulating perturbations induced by the inhabitants). The robot moves
through the environment acquiring local, partial observations of objects and must predict the number, location,
and shape of objects it has seen.

in the domain and the time between observations of the same entity increase, the problem becomes
more difficult and the system can begin to play the role of the long-term object-based memory (OBM)
for an autonomous agent.

The engineering approach to constructing such an OBM requires many design choices, including the
specification of a latent state-space for object hypotheses, a model relating observations to object
states, another model specifying the evolution of object states over time, and thresholds or other
decision rules for choosing, for a new observation, whether to associate it with an existing hypothesis,
use it to start a new hypothesis, or discard it. In any particular application, the engineer must tune
all of these models and parameters to build an OBM that performs well. This is a time-consuming
process that must be repeated for each new application.

In this paper, we develop a method for training neural networks to perform as OBMs for dynamic entity
monitoring. In particular, we train a system to construct a memory of the objects in the environment,
without explicit models of the robot’s sensors, the types of objects to be encountered, or the patterns
in which they might move in the environment. Although it is possible to train an unstructured recurrent
neural network (RNN) to solve this problem, we find that building in some aspects of the structure
of the OBM allows faster learning with less data and enables the system to address problems with a
longer horizon. We describe a neural-network architecture that uses self-attention as a mechanism
for data association, and demonstrate its effectiveness in several illustrative problems. We first
validate that OBM can estimate object states when observations are drawn online from a set of cluster
centers. Next, we validate that OBM can estimate object states when observations correspond to
high-dimensional images. Finally, we illustrate its application on a realistic simulated robotic domain.

2 RELATED WORK

Online clustering methods In the simple setting, where object state does not change over time,
the entity monitoring problem can be seen as a form of online clustering, where the assignment
of data points to clusters is done online, with observations arriving sequentially and a cumulative
set of hypotheses output after each observation. One of the most fundamental online clustering
methods is vector quantization, articulated originally by Gray (1984) and understood as a stochastic
gradient method by Kohonen (1995). It initializes cluster centers at random and assigns each new
observation to the closest cluster center, and updates that center to be closer to the observation. We
show that our approach can learn to outperform this online clustering method. More recent work has
explored theoretical aspects of online clustering with guarantees (Liberty et al., 2016; Bhaskara and
Rwanpathirana, 2020; Cohen-Addad et al., 2021).
Data-Association Filters The most classic filter, for the case of a single entity, is the Kalman filter
(Welch and Bishop, 2006). In the presence of data-association uncertainty the Kalman filter can
be extended by considering assignments of observations to multiple existing hypotheses in a DAF
or ML-DAF. These approaches, all of which require hand-tuned transition and observation models,
are described by (Bar-Shalom et al., 2009). We show that our approach can learn the underlying
transition and observation models and performs comparably to ML-DAF with ground truth system
dynamic and observation models.
Visual data-association methods A special case of the entity monitoring problem where observa-
tions are closely spaced in time has been extensively explored in the visual object tracking setting
(Luo et al., 2014; Xiang et al., 2015; Bewley et al., 2016; Frossard and Urtasun, 2018; Brasó and
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Leal-Taixé, 2020). In these problems, there is typically a fixed visual field populated with many
smoothly moving objects. This enables some specialized techniques that take advantage of the fact
that the observations of each object are typically smoothly varying in space-time, and incorporate
additional visual appearance cues. In contrast, in our setting, there is no fixed spatial field for obser-
vations and they may be temporally widely spaced, as would be the case when a robot moves through
the rooms of a house, encountering and re-encountering different objects as it does so. While work
has studied the detection of repeated objects with similar appearance (Girdhar and Ramanan, 2019;
Bai et al., 2019; Bansal et al., 2021; He et al., 2021; Zhang et al., 2021b;a; Huang et al., 2019), our
focus is on aggregating and estimating the individual states of objects based on substantially different
observations in a different space, and our methods are not competitive with specialized techniques on
the much more specialized problems of fixed-visual-field tracking or object re-identication.
Learning for data association There is relatively little work in the area of learning for generalized
data association, but Liu et al. (2019) provide a recent application of LSTMs (Hochreiter and
Schmidhuber, 1997) to a rich version of the data association problem, in which batches of observations
arrive simultaneously, with a constraint that each observation can be assigned to at most one object
hypothesis. The sequential structure of the LSTM is used here not for recursive filtering, but to
handle the variable numbers of observations and hypotheses. It is assumed that Euclidean distance
is an appropriate metric and that the observation and state spaces are the same. Milan et al. (2017)
combine a similar use of LSTM for data association with a recurrent network that learns to track
multiple targets. It learns a dynamics model for the targets, including birth and death processes, but
operates in simple state and observation spaces.
Slot Based and Object Centric Learning Our approach to the dynamic entity monitoring task
relies on the use of attention over a set of object hypothesis slots. Generic architectures for processing
such slots can be found in (Shi et al., 2015; Vinyals et al., 2015; Lee et al., 2018), where we use
(Lee et al., 2018) as a point of comparison for OBM. We note that these architectures provide generic
mechanisms to process sets of inputs, and lack the explicit structure from DAF we build into our
model. Our individual hypothesis slots correspond to beliefs over object hypotheses, and thus relates
to existing work in object-centric scene learning. Such work has explored the discovery of factorized
objects from both static scenes (Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020).
Developed concurrently and most similar to our work, (Locatello et al., 2020) also utilizes slots as a
means of representing a factorized object decomposition of static images. In contrast to (Locatello
et al., 2020), our work focuses on the use of a set of slots to represent the evolution of uncertain
object hypotheses over time, and incorporates attention and inductive biases from DAF to selectively
update beliefs across time to obtain object hypotheses as well as their associated confidences.
Algorithmic priors for neural networks One final comparison is to other methods that integrate
algorithmic structure with end-to-end neural network training. This approach has been applied to
sequential decision making by Tamar et al. (2016), particle filters by Jonschkowski et al. (2018), and
Kalman filters by Krishnan et al. (2015), as well as to a complex multi-module robot control system
by Karkus et al. (2019). The results generally are much more robust than completely hand-built
models and much more sample-efficient than completely unstructured deep-learning. We view our
work as an instance of this general approach.

3 PROBLEM FORMULATION

We formalize the process of learning an object-based memory system (OBM). Formally, when the
OBM is executed online, it receives a stream of input observations z1, . . . zT where zt ∈ Rdz , and
after each input zt, it will output two vectors representing a set of predicted properties of hypothesized
objects yt = [ytk]k∈(1..K) and an associated confidence score for each hypothesis, ct = [ctk]k∈(1..K),
where ytk ∈ Rdy , ctk ∈ (0, 1). To ensure that confidences are bounded, we constrain

∑
k ctk = 1.

We limit the maximum number of hypothesis “slots” in advance to K. Dependent on the application,
the z and y values may be in the same space with the same representation, but this is not necessary.

We have training data representing N different entity-monitoring problem instances, D =

{(z(i)t ,m
(i)
t )t∈(1..Li)}i∈(1..N), where each training example is an input/output sequence of length

Li, each element of which consists of a pair of input z and m = {mj}j∈(1..J
(i)
t )

, which is a set
of nominal object hypotheses representing the true current state of objects that have actually been
observed so far in the sequence. It will always be true that m(i)

t ⊆ m
(i)
t+1 and J (i)

t ≤ K because the
set of objects seen so far is cumulative.
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Observation 𝑧 Algorithm 1 OBM-Net execution.
Input: input observations z1, . . . , zT ,
count n ∈ RK , state s ∈ RK×D

for timestep t = 1 to T do
e← encode(zt)
r ← relevance(e, s, n)
for slot k = 1 to K do
ak ← suppress(attend(sk, nk, e))
uk ← update(sk, nk, e)
s′k ← (1− rak)sk + rakuk

nk ← nk + ak
yk ← decode(s′k)
ck ← nk/(

∑
i ni)

sk ← transition(s′k)
end for

end for

Figure 2: Architecture and pseudocode of OBM-Net. Observations are fed sequentially to OBM-Net, and
encoded with respect to each hypothesis. A subset of the hypotheses are updated at each time-step, with
corresponding slot counts incremented according to attention weight. Slots are then decoded, with the confidence
of an output proportional to underlying slot count.

Our objective is to train a recurrent computational model to perform as an OBM effectively in problems
that are drawn from the same distribution over latent domains as those in the training set. To do so,
we formulate a model (described in section 4) with parameters θ, which transduces the input sequence
z1, . . . , zL into an output sequence (y1, c1), . . . , (yL, cL), and train it to minimize the following loss
function:

L(θ;D) =
N∑
i=1

Li∑
t=1

Lobj(y
(i)
t ,m

(i)
t ) + Lslot(y

(i)
t , c

(i)
t ,m

(i)
t ) + Lsparse(c

(i)
t ) . (1)

The Lobj term is a chamfer loss (Barrow et al., 1977), which looks for the predicted yk that is closest
to each actual mj and sums their distances, making sure the model has found a good, high-confidence
representation for each true object, with ε� 1 :

Lobj(y, c,m) =
∑
j

min
k

1

ck + ε
‖yk −mj‖ .

The Lslot term is similar, but makes sure that each object the model has found is a true object, where
we multiply by ck to not penalize for predicted objects in which we have low confidence:

Lslot(y, c,m) =
∑
k

min
j
ck‖yk −mj‖ .

Finally, the sparsity loss discourages the model from using multiple outputs to represent the same
true object, by encouraging sparsity in object hypothesis confidences (derivation in Section D):

Lsparse(c) = − log‖c‖ .
4 OBM-NETS

Inspired by the the basic form of classic DAF algorithms and the ability of modern neural-network
techniques to learn complex models, we have designed the OBM-Net architecture for learning OBMs
and a cuwwwstomized procedure for training it from data, motivated by several design considerations.
First, because object hypotheses must be available after each individual input and because observations
will generally be too large and the problem too difficult to solve from scratch each time, the network
will have the structure of a recursive filter, with new memory values computed on each observation
and then fed back for the next. Second, because the loss function is set based, that is, it doesn’t matter
what order the object hypotheses are delivered in, our memory structure should also be permutation
invariant and independent of the number of objects, and so the memory processing is in the style of
an attention mechanism. Finally, in applications where the observations z may be in a representation
not well suited for hypothesis representation and aggregation, the memory operates on a latent
representation that is related to observations and output hypotheses via encoder and decoder modules.

Figure 2 shows the architecture of the OBM-Net model. The memory of the system is stored in
s, which consists of K elements, the K hypotheses in DAF, each in Rds ; the length-K vector n of
positive values encodes how many observations have been assigned to each slot during the execution
so far. New observations are combined with the memory state, and the state is updated to reflect the
passage of time by a neural network constructed from seven modules with trainable weights.

When an observation z arrives, it is immediately encoded into a vector e in Rds , which is fed into
subsequent modules. First, attention weights w are computed for each hypothesis slot, using the
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encoded input and the existing content of that slot, representing the degree to which the current
input “matches” the current value of each hypothesis in memory (corresponding to hypothesis
matching computation in DAF algorithms). To force the network to commit to a sparse assignment of
observations to object hypotheses while retaining the ability to effectively train with gradient descent,
the suppress module sets all but the top M values in w to 0 and renormalizes, to obtain the vector a
of M values that sum to 1:

wk =
exp(attend(sk, nk, e))∑n
j=0 exp(attend(sj , nk, e))

; a = suppress(w) .

The a vectors are integrated to obtain n, which is normalized to obtain the output confidence c.

The update module also operates on the encoded input and the contents of each hypothesis slot,
producing a hypothetical update of the hypothesis in that slot under the assumption that the current z
is an observation of the object represented by that slot (corresponding to hypothesis updates in DAF
algorithms); so for all slots k,

uk = update(sk, nk, e) .

Additionally, a scalar relevance value, r ∈ (0, 1), is computed from s and e; this value modulates the
degree to which slot values are updated, and gives the machine the ability to ignore or downweight
an input, corresponding to rejection of outlier observations in DAF algorithms. It is computed as

r = relevance(e, s, n) = NN2(
K
avg
k=1

NN1(e, sk, nk)) ,

where NN1 is a fully connected network with the same input and output dimensions and NN2 is a
fully connected network with a single sigmoid output unit. The attention output a and relevance r are
now used to decide how to combine all possible slot-updates u with the old slot values st using the
following fixed formula for each slot k:

s′tk = (1− rak)stk + rakuk .

Because most of the ak values have been set to 0, this results in a sparse update which will ideally
concentrate on a single slot to which this observation is being “assigned”, and correspond to the
DAFhypothesis updates in DAF algorithms.

To obtain outputs, slot values s′t are then decoded into the outputs, y, using a fully connected network:
yk = decode(s′tk) .

Finally, to handle the setting in which object state evolves over time, we add a transition module,
which computes the state st+1 from the new slot values s′t using an additional neural network,
corresponding to DAFtransition updates in DAF algorithms:

st+1k = transition(s′t)k .

These values are then fed back, recurrently, as inputs to the overall system.

Given a data set D, we train the OBM-Net model end-to-end to minimize loss function L, with a
slight modification. We find that including the Lsparse term from the beginning of training results in
poor learning, but adopting a training scheme in which the Lsparse is first omitted then reintroduced
over training epochs, results in reliable training that is efficient in both time and data.

5 EMPIRICAL RESULTS

We evaluate OBM-Net on several different entity monitoring tasks. First, we consider a simple online
clustering task and validate the underlying machinery of OBM-Net as well as its ability to generalize
at inference time to differences in (a) the number of actual objects, (b) the number of hypothesis slots
and (c) the number of observations. Next, we evaluate the performance of OBM-Net on an image
domain in which the underlying observation space is substantially different from the hypothesis
space. Finally, we evaluate the performance of OBM-Net on the complex simulated household robot
domain shown in Figure 1, and validate the ability of OBM-Net to capture an object with underlying
dynamics and complex properties, as well as its utility for downstream robotics object-fetching tasks.
We provide additional evaluation of our approach in Sections A, B and C.
Baselines and Metrics In each domain, we compare OBM-Net to online learned baselines of
LSTM (Hochreiter and Schmidhuber, 1997) and set transformer (Lee et al., 2018) (details in E.3), as
well as to task-specific baselines. All learned network architectures are structured to use ∼ 50000
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Model Online Learned Normal Elongated Mixed Angular Noise

OBM-Net + + 0.157 0.191 0.184 0.794 0.343
Set Transformer + + 0.407 0.395 0.384 0.794 0.424
LSTM + + 0.256 0.272 0.274 0.799 0.408
VQ + - 0.173 0.195 0.191 0.992 0.947

Set Transformer - + 0.226 0.248 0.274 0.816 0.406
Slot Attention - - 0.254 0.267 0.268 0.823 0.504
K-means++ - - 0.103 0.139 0.135 0.822 1.259
GMM - - 0.113 0.141 0.136 0.865 1.207

Table 1: Quantitative Results on Online Clustering. Comparison of performance on clustering performance
across different distributions. Reported error is the L2 distance between predicted and ground truth means.
Methods in the bottom half of table operate on observations in bulk and thus are not directly comparable.

10 Observations 30 Observations 50 Observations 100 Observations

Figure 3: Qualitative Visualization of OBM-Net. Illustration of OBM-Net execution on the Normal distribu-
tion setting. Decoded value of hypothesis (with size corresponding to confidence) shown in red, with ground
truth clusters in black. Observations are shown in blue.
parameters. Unless otherwise noted, models except OBM-Net are given and asked to predict the
ground truth number of componentsK, while OBM-Net uses 10 hypothesis slots. Results are reported
in terms of MSE error 1

K minj‖yk − mj‖ (with respect to the most confident K hypotheses for
OBM-Net).

5.1 ONLINE CLUSTERING

Setup. To check the basic operation of the model and understand the types of problems for which it
performs well, we first test our approach on simple clustering problems with the same input and output
spaces, but different types of data distributions, each a mixture of three components. We train on 1000
problems with observation sequences of length 30 drawn from each problem distribution and test
on 5000 problems from the same distribution. In every case, the means of the three components are
drawn at random for each problem. We consider a set of five problem distributions, a Normal setting
in which each component is a 2D Gaussian with identical variance across individual dimensions and
components, Enlongated and Mixed settings where 2D Gaussians have more variation across different
components and Angular and Noise settings where underlying distributions are non-Gaussian in
nature. We provide precise details about distributions in Section E.1.
Baselines and Metrics. In addition to the online learned baselines described in Section 5, we
compare our approach with following task specific clustering methods: Batch, non-learning: K-
means++ (Arthur and Vassilvitskii, 2007) and expectation maximization (EM) (Dempster et al.,
1977) on a Gaussian mixture model (SciKit Learn implementation); Online, non-learning: vector
quantization (Gray, 1984); Batch, learning: set transformer (Lee et al., 2018) and slot attention
(Locatello et al., 2020).
Results. We compare our approach to each of the baselines for the five problem distributions
in Table 1. The results in this table show that on Normal, Mixed, and Elongated tasks, OBM-Net
performs better than learned and constructed online clustering algorithms, but does slightly worse
than offline clustering algorithms. Such discrepancy in performance is to be expected due to the fact
that OBM-Net is running and being evaluated online. On the Angular and Noise tasks, OBM-Net is
able to learn a useful metric for clustering and outperforms both offline and online alternatives.

Next, we provide a qualitative illustration of execution of OBM-Net on the Normal clustering task in
Figure 3 as a trajectory of observations are seen. We plot the decoded values of hypothesis slots in
red, with size scaled according to confidence, and ground-truth cluster locations in black. OBM-Net
is able to selectively refine slot clusters to be close to ground truth cluster locations even with much
longer observation sequences than it was trained on. We provide qualitative visualization of individual
modules of OBM-Net in Section A.2 as well as performance on increased numbers of clusters in
Section A.4. We further provide ablations of each proposed component of OBM-Net in Section A.3.
Generalization. We next assess the ability of OBM-Net to generalize at inference time to dif-
ferences in the number of input observations as well as differences in the underlying number of
hypothesis slots used on the Normal distribution. On the left side of Figure 4, we plot the error of
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3 5 7

OBM-Net
10 0.162 0.214 0.242
20 0.175 0.195 0.213
30 0.188 0.197 0.205

Set Transformer - 0.261 0.279 0.282

Vector Quantization - 0.171 0.199 0.205

Figure 4: (left) Generalization with Increased Observations. Plot of LSTM, Set Transformer and OBM-Net
errors when executed at test time on different number of observations from the Normal distribution. With
increased observations, OBM-Net error continues to decrease while other approaches obtain higher error.
(right) Generalization with Different Hypothesis Slots. Error of OBM-Net, when executed at test time with
a different number of hypothesis slots on test distributions with different numbers of ground true components. In
all cases, OBM-Net is trained on 3-component problems with 10 slots. OBM-Net achieves good performance
with novel number of hypothesis slots, and outperforms different instances of the Set Transformer trained with
the ground truth number of cluster components as well as vector quantization.

LSTM, Set Transformer, and OBM-Net as a function of the number observations seen at inference
time. We find that when OBM-Net is given more observations then seen during training time (all
models are trained with observations of length 30), it is able to further improve its performance, while
both LSTM and Set Transformer results suffer. We believe that such generalization ability is due to
the inductive bias added to OBM-Net, and provide an analysis in Section A.3. We provide additional
analysis of this generalization across all distributions in Table A6 and find similar results.

On the right side of Figure 4, we investigate the generalization ability of OBM-Net at inference time
to increases in both the number of hypothesis slots and the underlying number of mixture components
from which observations are drawn. We compare to the set transformer and to VQ, both of which
know the correct number of components at inference time. We find that OBM-Net generalizes well to
increases in hypothesis slots, and exhibits improved performance with large number of underlying
components, performing comparably to or better than the VQ algorithm. We further note that none of
the learning baselines can adapt to different numbers cluster components at inference time, but find
that OBM-Net outperforms the set transformer even when it is trained on the ground truth number of
clusters in the test. We provide additional generalization analysis in Section A.1.

5.2 IMAGE-BASED DOMAINS

We next validate the ability of OBM-Net to perform entity monitoring on image inputs, which requires
OBM-Net to synthesize a latent representation for slots, and learn to perform association, update, and
transition operations in that space.
Setup. We experiment with two separate image-based domain, each consisting of a set of similar
entities (2D digits or 3D airplanes). We construct entity monitoring problems by selecting K objects
in each domain, with the desired y values being images of those objects in a canonical viewpoint.
An input observation sequence is generated by randomly selecting one of those K objects, and
generating an observation z corresponding to a random viewpoint of the object. Our two domains are:
(1) MNIST: Each object is a random image in MNIST, with observations corresponding to rotated
images, and the desired outputs being the un-rotated images; (2) Airplane: Each object is a random
object from the Airplane class in ShapeNet (Chang et al., 2015), with observations corresponding
to airplane renderings (using Blender) at different viewpoints and the desired outputs the objects
rendered in a canonical viewpoint. We provide details in Section E.1 and use K = 3 components.
Baselines. In addition to our learned baselines, we compare with a task specific baseline, batch
K-means, in a latent space that is learned by training an autoencoder on the observations. In this
setting, we were unable to train the Set Transformer stably and do not report results for it.
Results. In Table 2, we find that our approach significantly outperforms other comparable baselines
in both accuracy and generalization. We further visualize qualitative predictions from our model in
Figure 5. We find that our highest confidence decoded slots correspond to ground truth objects.

5.3 SIMULATED HOUSEHOLD ROBOT DOMAINS

Finally, we validate that OBM-Net can solve the entity monitoring task in simulated robotic settings.
Setup. We model a robot moving within a house, as pictured in Figure 1, in the PyBullet simulation
environment. In this house, each problem will involve following a trajectory consisting of a sequence
of 50 locations. These locations are distributed across 5-6 separate rooms, with later locations
potentially revisiting earlier locations. At each location, the robot looks around and if there is a table
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Model Learned MNIST Airplanes

Observations 10 30 50 100 10 30 50 100

OBM-Net + 7.143 5.593 5.504 5.580 4.558 4.337 4.331 4.325
LSTM + 9.980 9.208 9.166 9.267 5.106 4.992 4.983 4.998
K-means + 13.596 12.505 12.261 12.021 7.246 6.943 6.878 6.815

Table 2: Quantitative Results on Image Domain. Comparison of entity-monitoring performance on MNIST
and Airplane datasets across 10, 30, 50, 100 observations. For OBM-Net, LSTM and K-means we use a
convolutional encoder/decoder trained on the data. We train models with 30 observations and report MSE error.

Ground Truth Objects Decoded Slots

Training ObservationsTraining Objects

Decoded SlotsGround Truth Objects Decoded Slots

Training ObservationsTraining Objects

Figure 5: Qualitative Visualization of OBM-Net Execution on Images. Qualitative visualization of two
image-based association tasks (left: MNIST, right: airplanes). At the top of each is an example training problem,
illustrated by the true objects and an observation sequence. Each of the next rows shows an example test problem,
with the ground truth objects and decoded slot values. The three highest-confidence hypotheses for each problem
are highlighted in red, and correspond to ground-truth objects.
within view (which happens about 50% of the time), it will get an observation of one of the objects
on the table or an empty observation otherwise. Each new problem has 8 tables whose locations
are drawn from a larger set of potential table locations and on each table there will be two objects
drawn from a small set of classes, e.g. lamp, cushion, etc. Each object class has a characteristic
stochastic movement pattern, with one object class sequentially teleporting between tables (details in
appendices). The goal is for the robot to be able to construct hypotheses for each distinct object it has
seen and to be able to predict for each object the table it is currently on and its location relative to the
table. More precisely, the input sequence of observations z corresponds to a segmented depth map
of a single object visible given the camera pose at a particular location in the trajectory (or an empty
observation in the case no object is visible), as well as which table it is resting on and its positional
offset relative to the table. The desired output y values are, for each object seen so far, is the predicted
table yt it is on currently as well its associated offsets relative to the predicted table, yo.

We train on a total of 10000 randomly sampled trajectories in the same floor plan, but with new
randomly drawn object instances and tables for each trajectory. We test using 1000 trajectories, with
test object meshes drawn from a set disjoint from the set of object meshes used during training (but
sharing the same semantic class). To test the flexibility of the approach, we consider three different
configurations of object classes on tables, with the motion pattern of each of the 3 object classes
illustrated in Section E.1, as well additional setup details and example observations.
Metrics. To test the efficacy of our approach, we measure to what extent each hypothesis slot mi

can recover both the table that the associated object is on, as well as the object’s position relative
to the table. We match a hypothesis slot k with each object label yi by computing argmink‖yoi −
mo

k‖+ LossCE(y
t
i −mt

k). For each match, we report the accuracy of mt
k matching yti , and as well

the mean absolute error between yoi and mo
k. When the table prediction for yi is incorrect, we set

mean absolute error to be equal to half the table size (0.15), as reported table offsets are meaningless
in that case. In this setting, both OBM-Net and associated baselines use 10 hypothesis slots.
Baselines. In addition to our learned baselines, we compare to two task specific baselines. We
construct a simple clustering baseline for this problem. Given a localized input-segmented depth map,
we extract object offsets by averaging all points in the point cloud associated with each segment. To
associate objects dynamically across time, we use batch K-means clustering on the inferred object
candidate offsets and associated table identities to obtain a set of objects. We further compare OBM-
Net with the more complex spatial-temporal clustering method used in the STRANDS project (Hawes
et al., 2017) to infer objects in a real robotic setup from our underlying segmented depth maps, as
well as a hand-crafted DAF system using ground truth dynamics. For all learned models, we convert
the segmented depth maps into downsampled 3D pointclouds.
Results. Table 3 shows that OBM-Net outperforms the baselines in both estimating the supporting
tables and regressing the relative position of the objects across different number of observations.
Figure 6 (left) shows the prediction error of all methods as a function of the number of steps since
the robot last saw an object; observe that OBM-Net is substantially better at long-term memory than
the LSTM and set transformer, and still outperforms the clustering and STRANDS baselines even
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Model Learned Configuration A Configuration B Configuration C

Table Accuracy Position Error Table Accuracy Position Error Table Accuracy Position Error

Observations 10 25 50 10 25 50 10 25 50 10 25 50 10 25 50 10 25 50

OBM-Net + 0.984 0.926 0.809 0.019 0.041 0.078 0.989 0.924 0.795 0.021 0.046 0.082 0.988 0.932 0.873 0.027 0.052 0.080
Set Transformer + 0.883 0.619 0.476 0.034 0.066 0.089 0.919 0.771 0.542 0.024 0.052 0.093 0.885 0.745 0.649 0.037 0.056 0.089
LSTM + 0.839 0.661 0.406 0.058 0.093 0.126 0.875 0.716 0.514 0.053 0.094 0.123 0.892 0.717 0.519 0.052 0.091 0.130
Clustering - 0.761 0.695 0.485 0.053 0.070 0.103 0.761 0.695 0.488 0.053 0.070 0.103 0.761 0.695 0.488 0.053 0.069 0.103
STRANDS - 0.900 0.733 0.610 0.033 0.057 0.085 0.940 0.841 0.737 0.023 0.048 0.087 0.973 0.832 0.774 0.031 0.055 0.086
DAF - 0.959 0.807 0.670 0.022 0.043 0.081 0.937 0.871 0.787 0.021 0.039 0.084 0.974 0.914 0.803 0.030 0.053 0.083

Table 3: Quantitative Analysis of OBM-Net on Simulated Household Domain. Quantitative comparison of
OBM-Net with baselines across 3 studied household domain configurations across 10, 25, 50 observations.
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Object Recovery vs Time

LSTM
SLAM
OBM-Net
Oracle

3D Shape Prediction
(LSTM)

3D Shape Prediction
(Set Transformer)

3D Shape Prediction
(OBM-Net)

Inferred Grasp
(OBM-Net)

Inferred Grasp
(Applied to Real Scene)

Figure 6: (left) Object Recovery over Time. Percentage of objects correctly recovered as a function of
timesteps since seeing the object last. OBM-Net performs similarly to an oracle with ground truth dynamics.
(middle) 3D Reconstructions. Illustration of 3D reconstructions of hypothesis from each model. OBM-Net
obtains accurate 3D reconstructions. (right) Estimated Grasps. We utilize the predicted 3D mesh from
OBM-Net to infer a grasp which successfully enables the grasp of a real object in the ground truth scene.
with long inter-observation gaps. As an upper bound, we compare with an oracle model, which
knows ground truth object identity and dynamics (ignoring object collision). We find that OBM-Net
performs similarly to the oracle model (performance across all models drops due to stochasticity),
and in some cases does better, perhaps by taking account object collisions.

By adding a shape occupancy prediction head (Mescheder et al., 2019) to OBM-Net, we can also
regress the underlying 3D shapes of our objects. We predict each shape at 32× 32× 32 resolution,
decoding each occupancy at each voxel coordinate using a MLP head conditioned on a hypothesis
state. Quantitatively, we find that our approach gets 95.33% accuracy compared to 72.74% accuracy
obtained by a LSTM and 73.67% obtained by a set transformer when predicting voxels for each test
mesh in the test set. We provide visualization of predicted shapes from OBM-Net in Figure A4.
Object fetching. Finally, we verify that object hypotheses from OBM-Net can usefully support
a task in which a robot has to retrieve an object it has previously observed. First, we consider the
task of finding a previouly-encountered object. We train LSTM, set transformer, and OBM-Net to
predict underlying object class yc for each object hypothesis, as well as shape estimate and location.
Given a desired object class (for example, either a plant, cushion, or bucket in configuration A)) we
wish to find, the robot examines each prediction (yi, ci) and navigates in the simulated world to look
for an object of the specified class, based on predictions of yti and yoi . We measure the number of
predictions that need to be queried to find the object, as well as a overall success percentage of trials
in which the robot succeeded within 10 attempts. On this task, we find that a LSTM obtains an overall
planning success of 68.75% with an average number of 5.38 hypotheses investigated before finding
an object. In contrast, the set transformer obtains a planning success of 81.25% with on average 4.88
attempts. We find that OBM-Net performs best and is able to find the object of the desired class 100%
of the time, with an average of 2.03 hypotheses examined before finding the object.

Next, we qualitatively analyze the 3D reconstructions of each object hypothesis and its ability to
support manipulation. Given a 3D reconstruction, we compute grasps on the underlying shape by
looking for parallel planar surfaces large enough to accommodate the gripper. We then try to execute
that grasp on the target 3D object we wish to grasp in the (simulated) real world. As illustrated in
Figure 6, we find that the 3D reconstruction of object hypotheses from OBM-Net is accurate enough
to enable grasping of a real 3D shape. In contrast, predictions from LSTM and set transformer
baselines are significantly poorer and do not enable downstream manipulation.
Discussion This work has demonstrated that using algorithmic bias inspired by a classical solution
to the problem of filtering to estimate the state of multiple objects simultaneously, coupled with
modern machine-learning techniques, we can arrive at solutions that learn to perform and generalize
well. Importantly, the same underlying system, with no prior knowledge about the types of obser-
vations or desired output hypotheses or the frequency of observations, is able to learn to perform
data-association and state estimation to solve a variety of entity monitoring problems as well as to
support an object-based memory system for a robot in a dynamically changing environment.
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Appendix

To fully understand the underlying machinery of OBM-Net, we provide additional qualitative and
quantitative verification of OBM-Net on online clustering in Section A, on dynamic clusters in
Section B and in simulated household domains in Section C. We provide a derivation of the sparsity
loss utilized in training in Section D. Finally, we provide experimental and architecture details of
OBM-Net in Section E.

A ONLINE CLUSTERING RESULTS

We provide quantitative and qualitative results on online clustering to further analyze and understand
the underlying performance and algorithmic computation performed by OBM-Net. First, we analyze
the generalization of OBM-Net to increased number of clusters of inputs in Section A.1. Next, we
provide qualitative visualization of OBM-Net in Section A.2, and ablations in Section A.3. We further
analyze performance on problems with a larger number of clusters in Section A.4.

A.1 GENERALIZATION

We provide additional analysis of the ability of OBM-Net to generalize at test time to increased
number of observations and an increased number of clusters.
Generalization to Increased Observation Number. We report performance of different models
across different distributions in Table A6 when executed at test time with an increased number of
observations. We find that OBM-Net is able to obtain better performance with increased number
of observations across all different distributions, while other learned baselines perform worse. Fur-
thermore, we find that OBM-Net outperforms other learned baselines in all distributions except
for rotation. For rotation we find that when training with 10,000 different distributions, OBM-Net
exhibits better performance of 0.555 compared to Set Transformer performance of 0.647 and LSTM
performance of 0.727 with 30 observations (and similarly outperforms Set Transformer and LSTM at
larger number of observations).
Inferring Object Number. In contrast to other algorithms, OBM-Net learns to predict both a set
of object properties yk of objects and a set of confidences ck for each object. This corresponds to the
task of both predicting the number of objects in a set of observations, as well as the associated object
properties. We evaluate the ability of OBM-Net to regress object number at test time in scenarios
where the number of objects (underlying clusters) is different than that of training. We evaluate on
the Normal distribution with a variable number of component distributions, and measure inferred
components through a threshold confidence. OBM-Net is trained on a dataset with 3 underlying
components. We find in Figure A1 that OBM-Net is able to infer the presence of more component
distributions (as they vary from 3 to 6), with improved performance when cluster centers are sharply
separated (right figure of Figure A1).

A.2 QUALITATIVE VISUALIZATION

Submodule Visualization. We find that individual modules learned by OBM-Net are interpretable.
We visualize the attention weights of each hypothesis slot in Figure A2 and find that each hypothesis
slot learns to attend to a local region next to the value it decodes to. We further visualize a plot
of relevance weights in Figure A3 across an increasing number of observations where individual
observations are drawn distributions with different levels of noise with respect to cluster centers. We
find that as we see more observations, the relevance weight of new observations decreases over time,
indicating that OBM-Net learns to pay the most attention towards the first set of observations it sees.
In addition, we find that in distributions with higher variance, the relevance weight decreases more
slowly, as later observations are now more informative in determining cluster centers.

A.3 ABALATIONS

We ablate each component of OBM-Net and present results in Table A1 on the Normal distribution.
We test removing Lsparse (sparsity), removing learned slot embeddings (learned memory) — where
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Figure A1: Generalization to Increased Cluster Number. Plots of inferred number of components using a
confidence threshold in OBM-Net compared to the ground truth number of clusters (OBM-Net is trained on only
3 clusters). We consider two scenarios, a noisy scenario where cluster centers are randomly drawn from -1 to 1
(left) and a scenario where all added cluster components are well seperated from each other (right). OBM-Net is
able to infer more clusters in both scenarios, with better performance when cluster centers are more distinct from
each other.

Figure A2: Visualization of Attention Weights. Plot of decoded
values of slots (in red) with confidence shown by the size of dot
(left), and what slot each input assigns the highest attention towards
(right) (each slot is colored differently, with assigned inputs colored
in the same way). Note alignment of regions on the right with the
decoded value of a slot on the left.
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Figure A3: Visualization of Relevance
Weights. Plots of the magnitude of rele-
vance weights with increased observation
number on different distributions with dif-
fering standard deviation (noise).

instead, in individual hypothesis slots, we store the explicit values of inputs, removing the suppress
modules (suppression) and removing the relevance module (relevance). We find that each of our
proposed components enables better performance on the underlying clustering task. Interestingly, we
further find that the addition of relevance enables our approach to generalize at test time to larger
numbers of observations.

Sparsity Learned Supression Relevance Observations
Memory

10 30 50 100

– – – – 0.382 0.452 0.474 0.487
+ – – – 0.384 0.412 0.423 0.430
+ + – – 0.335 0.357 0.366 0.387
+ + + – 0.279 0.274 0.278 0.282
+ + + + 0.238 0.157 0.137 0.131

Table A1: Abalation Analysis. We ablate each component of OBM-Net on the Normal distribution . When
learned memory is ablated, OBM-Net updates states based on observed values (appropriate in the Normal
distribution dataset).

A.4 LARGER NUMBER OF CLUSTERS

We measure the performance of OBM-Net when trained with a large number of clusters and slots.
We utilize the Normal distribution setting, but generate underlying training input observations from a
total of 30 difference components, and train OBM-Net with a total of 30 slots. We train OBM-Net
with 50 observations, and measure performance at inferring cluster centers with between 50 to 100
observations. We report performance in Table A2 and find that OBM-Net obtains good performance
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Model Online Observations

50 65 80 100

OBM-Net + 0.158 0.154 0.151 0.147
VQ + 0.162 0.157 0.153 0.148

K-means++ - 0.155 0.151 0.148 0.146
GMM - 0.156 0.151 0.149 0.147

Table A2: Performance on Large Number of Clusters. Comparison of performance on Normal distribution,
when underlying distributions have a large number of components. We use 30 components, and train models
with 50 observations. Each cluster observation and center is drawn between -1 and 1, with reported error as the
L2 distance between predicted and ground truth means.

in this setting, out-performing the strong online baseline VQ, and performing similarly to K-means++
which directly operates on all input observations at once.

B DYNAMIC DOMAINS

We further verify the ability of OBM-Net to perform entity monitoring in a dynamic setting and
compare its performance with that of a classical data-association filter.
Setup. We evaluate performance of dynamic entity monitoring using moving 2D objects. A
problem involves a trajectory of observations z of the K dynamically moving objects, with desired
y values being the underlying object positions. Objects evolve under a linear Gaussian dynamics
model, with a noisy observation of a single object observed at each step (details in Section E.1).
This task is typical of tracking problems considered by DAF. All learning-based models are trained
on observation sequences of length 30. To perform well in this task, a model must discover that it
needs to estimate the latent velocity of each object, as well as learn the underlying dynamics and
observation models. We utilize K = 3 for our experiments.
Baselines. We compare with the de-facto standard method, Joint Probabilistic Data Association
(JPDA) (Bar-Shalom et al., 2009), which uses hand-built ground-truth models (serving as an oracle).
We further compare with our learned online baselines of Set Transformer (Lee et al., 2018) and LSTM
(Hochreiter and Schmidhuber, 1997) methods.
Result. Quantitative performance, measured in terms of prediction error on true object locations,
is reported in Table A3. We can see that the Set Transformer cannot learn a reasonable model at all.
The LSTM performs reasonably well for short (length 30) sequences but quickly degrades relative to
OBM-Net and JPDA as sequence length increases. We note that OBM-Net performs comparably to,
but just slightly worse than, JPDA. This is strong performance because OBM-Net is generic and can
be adapted to new domains given training data without the need to hand-design the models in JPDA.
We believe that these gains are due to the inductive biases built into our architecture.

Model Observations

10 20 30 40

OBM-Net 0.415 0.395 0.382 0.394
Set Transformer 0.699 0.701 0.854 1.007
LSTM 0.422 0.400 0.445 0.464

JPDA (oracle) 0.683 0.372 0.362 0.322

Table A3: Performance on Dynamic Objects. Comparison of different methods on estimating the state of 3
dynamically moving objects. All learning models are trained with 1000 sequences of 30 observations. We report
MSE error. JPDA uses the ground-truth observation and dynamics models.

C HOUSEHOLD DOMAINS RESULTS

We provide additional analysis of the ability of OBM-Net to perform entity monitoring in a simulated
household domain.
Additional Simulated Household Robot Results. We present qualitative visualizations of 3D
shapes obtained by OBM-Net when executed on test trajectories. In Figure A4 we illustrate different
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Figure A4: 3D Reconstructions of OBM-Net. Illustration of predicted 3D shapes from OBM-Net when
OBM-Net is executed on a test trajectory. We further visualize ground truth meshes seen in the trajectory and
find that predicted shapes coarsely match ground truth meshes.

.

Robot

Figure A5: Illustration of iGibson Environment. (left) Illustration of example RGB input in our iGibson
environment. (right) Example configuration of tables in our iGibson environment (tables drawn in blue).

predicted 3D shapes with their associated ground truth 3D shape. We find that reconstructions from
OBM-Net appear to coarsely match the underlying shape of ground truth 3D meshes.
iGibson Environment. We further validate the efficacy of OBM-Net on the more complex
household domain of iGibson. We illustrate an example input observation of our environment, and
the corresponding configuration of tables and objects in Figure A5. We utilize the same configuration
settings as the Pybullet environment, training models on trajectories of length 50, consisting of 8 tables
with 2 objects on them each. We utilize object classes and movement patterns from Configuration A
described in Section 5.3 in the main paper. We provide additional dataset details in Section E.1. We
compare OBM-Net with LSTM and clustering baselines discussed in Section 5.3 of the main paper.
We use the same metrics as described in Section 5.3. In Table A4 we report results on this household
setting. We find that OBM-Net performs significantly better than LSTM and Clustering baselines.
Scanned iGibson Environment. We further validate the efficacy of OBM-Net on utilizing real
house scans from Figure A5 as the background of our environment. We utilize the same configuration
settings as the Pybullet environment, training models on trajectories of length 50, consisting of 8 tables
with 2 objects on them each. We utilize object classes and movement patterns from Configuration A
described in Section 5.3 in the main paper. We provide additional dataset details in Section E.1. We
compare OBM-Net with LSTM and clustering baselines discussed in Section 5.3 of the main paper.
We use the same metrics as described in Section 5.3. In Table A5 we report results on this household
setting. We find that OBM-Net performs significantly better than LSTM and Clustering baselines.

Model Learned Table Accuracy Position Error

Observations 10 25 50 10 25 50

OBM-Net + 0.992 0.925 0.813 0.159 0.234 0.301
LSTM + 0.883 0.625 0.489 0.203 0.294 0.354

Clustering - 0.798 0.638 0.554 0.204 0.266 0.318

Table A4: Quantitative Results on iGibson. Comparison of performance of OBM-Net and baselines on the
iGibson environment.

Model Learned Table Accuracy Position Error

Observations 10 25 50 10 25 50

OBM-Net + 0.970 0.889 0.782 0.153 0.232 0.296
LSTM + 0.891 0.628 0.499 0.195 0.297 0.344

Clustering - 0.802 0.632 0.576 0.212 0.258 0.304

Table A5: Quantitative Results on Scanned Gibson Houses. Comparison of performance of OBM-Net and
baselines on scanned Gibson environment.
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Dynamic DomainGaussian Domain Robotic Domain

Figure A6: Qualitative Visualization of Domains. Visualizations of the Normal Gaussian, Dynamic domains
and Robotic domains. Observations are transparent while ground truth states are bolded for gaussian and
dynamic domains. Four sample image observations shown for robotic domain.

D SPARSITY LOSS

In this section, we show that Lsparse(c) encourage confidences c to be sparse. Recall that
Lsparse(c) = − log‖c‖ . (2)

where ‖c‖ is the L2 norm which is a convex function. Recall that c, the confidence vector, defines a
polyhedron, since it is the set of points that are non-negative, and whose elements sum up to one. The
maximum of a convex function over a polyhedra must occur at the vertices, which correspond to an
assignment of 1 to a single ci and 0s to every other value of c. Next we consider the minimum of
‖c‖ given that its elements sum up to one. This is equivalent to finding the stationary points of the
Lagrangian L(c, λ)

L(c, λ) =
∑
i

c2i + λ(
∑
i

ci − 1) (3)

By taking the gradient of the above expression, we find that the stationary value corresponds to each
ci being equal. Since the function is convex, this corresponds to the minimum of ‖c‖. Thus Lsparse(c)
is maximized when each individual confidence is equal.

E EXPERIMENTAL DETAILS

In this section, we provide details of our experimental approach. We first discuss the details of
datasets used in Section E.1. Next, we provide the model architectures used in Section E.2. Finally,
we provide details on the baselines we compare with in Section E.3.

E.1 DATASET DETAILS

We first provide detailed experimental settings for each of the datasets considered in the paper.
Online Clustering. In online clustering, we utilize observations drawn from the following distri-
butions, where Gaussian centers are drawn uniformly from -1 to 1.

1. Normal: Each 2D Gaussian has standard deviation 0.2. The normal setting is illustrated in
Figure A6.

2. Mixed: Each distribution is a 2D Gaussian, with fixed identical variance across each individual
dimension, but with the standard deviation of each distribution drawn from a uniform distribution
from (0.04, 0.4).

3. Elongated: Each distribution is a 2D Gaussian, where the standard deviation along each dimen-
sion is drawn from a uniform distribution from (0.04, 0.4), but fixed across distributions.

4. Angular: Each distribution is a 2D Gaussian with identical standard deviation across dimension
and distribution, but points above π are wrapped around to −π and points below −π wrapped to
π. Gaussian means are selected between (−π,−2π/3) and between (2π/3, π). The standard
deviation of distributions is 0.3 ∗ π.

5. Noise: Each distribution has 2 dimensions parameterized by Gaussian distributions with standard
deviation 0.5, but with the values of the remaining 30 dimensions drawn from a uniform
distribution from (−1, 1).

Dynamic Domains. Next, in the dynamics domain, we implement our dataset using the StoneSoup
library*. We initialize the location of each cluster from a Gaussian distribution with standard deviation

*https://stonesoup.readthedocs.io/en/v0.1b3/stonesoup.html
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Figure A7: Object Dynamics in Household Domain. Illustration of object dynamics in our simulated
household environment. Objects exhibit either vertical, horizontal, or teleportation motion, dependent on the
object class across configurations A, B, C. We illustrate the motion of each object class, with start and end
images corresponding to 20 timesteps of motion of a object, except for objects that teleport – these change at
each timestep.

1.5 and initialize velocity in each directory from a Gaussian distribution with standard deviation of
0.02. At each timestep, Gaussian noise is added to velocities with magnitude 1e-4. We show example
tracks in Figure A6. Our JPDA implementation is also from the StoneSoup library.
Image Domains. In the image domain, for MNIST, we use the 50000 images in the training set to
construct the training problems, and the 10000 images in the non-overlaping test set to construct the
test problems. For the Airplane dataset, we use 1895 airplanes to construct the training problems, and
211 different airplanes to construct the test problems. Each airplane is rendered with 300 viewpoints.
Robotics Domains. For the robotics domains, we implement our embodied house environment
in Pybullet, and construct a house with x and y axis between −1 and 1. We utilize furniture assets
from (Xia et al., 2020) for each of the individual classes of objects considered, with 50% of the
objects (sorted alphabetically) being used for the training dataset and the 50% of the objects used
for the test dataset. Each individual object is scaled by a factor of 0.1 to fit on each table. Each
table has size 0.15 by 0.1 in our setting. Our constructed house environment uses the floor plan
illustrated in Figure 1 of the main paper. Across configurations, objects, which each individual step
of the trajectory corresponding to a 1/60 of second advancement of simulation time in PyBullet. In
each configuration, objects in separate object classes move with velocities of (0.6, 0.0), (0.0, 0.6)
and (0.3, 0.3) units per second respectively. In the presence of collision, all objects involved in the
collision event stop moving, making the underlying dynamics of objects a stochastic process. We
illustrate example images observations from our environment in Figure A6 (though segmented depth
maps of objects are instead input to our model) and illustrations of the underlying dynamics of objects
in Figure A7. Objects which teleport, teleport at each timestep (provided there is no collision).

For the iGibson house, we utilize the Pomaria environment in iGibson environment. This house
has x and y axis roughly between −4 and 4, and thus we scale tables to a size of 0.45 by 0.3 in the
environment, and proportionally scale up the size of individual objects as well as their underlying
movement speed. To sample trajectories in both settings, we sample a set of points across rooms in a
house and utilize motion planning to infer paths connecting each individual point.

E.2 MODEL/BASELINE ARCHITECTURES

We provide the overall architecture details for the LSTM in Figure A8a, for the Set Transformer in
Figure A8b and OBM-Net in Figure A9a. For image experiments, we provide the architecture of the
encoder in Figure A10a and decoder in Figure A10b. Both LSTM, OBM-Net, and autoencoding
baselines use the same image encoder and decoder. For robotics experiments, we provide the
architecture of the shape decoder in Figure A9b.

In OBM-Net memory, the function update(sk, nk, e) is implemented by applying a 2 layer MLP
with hidden units h which concatenates the vectors sk, nk, e as input and outputs a new state uk of
dimension h. The value nk is encoded using the function 1

1+nk
, to normalize the range of input to

be between 0 and 1. The function attend(sk, nk, e) is implemented in an analogous way to update,
using a 2 layer MLP that outputs a single real value for each hypothesis slot.

For the function relevance(sk, nk, e), we apply NN1 per hypothesis slot, which is implemented as a 2
layer MLP with hidden units h that outputs a intermediate state of dimension h. (sk, nk, e) is fed into
NN1 in an analogous manner to update. NN2 is applied to average of the intermediate representations
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of each hypothesis slot and is also implemented as a 2 layer MLP with hidden unit size h, followed by
a sigmoid activation. We use the ReLU activation for all MLPs. NN3 is represented is GRU, which
operates on the previous slot value.

E.3 BASELINE DETAILS

All baseline models are trained using prediction slots equal to the ground truth of components. To
train the Set Transformer to act in an online manner, we follow the approach in (Santoro et al., 2018)
and we apply the Set Transformer sequentially on the concatenation of an input observation with the
current set of hypothesis slots. Hypothesis slots are updated based off the new values of the slots
after applying self-attention (Set Transformer Encoder). Hypothesis slots are updated based off the
new values of the slots after applying self-attention (Set Transformer Encoder). We use the Chamfer
loss to train baseline models, with confidence set to 1.
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Dense→ h

Dense→ h

LSTM(h)

Dense→ h

Dense→ output

(a) The model architecture of the LSTM baseline. The
hidden dimension h used is 96 for synthetic Gaussian
distributions and 128 for Image datasets. For image
experiments, the first 2 and last 2 fully connected
layers are replaced with image encoders and decoders.

Dense→ h

Dense→ h

Set Transformer Encoder

Set Transformer Decoder

(b) The model architecture of the Set Transformer
baseline. The hidden dimension h is 48 for the syn-
thetic Gaussian distributions. We use the encoder and
decoder defined in (Lee et al., 2018) with 4 heads and
hidden dimension h.

Figure A8: Architecture of baseline models.

Dense→ h

Dense→ h

OBM-Net Memory

Dense→ h

Dense→ output

(a) The model architecture of OBM-Net. The hidden
dimension h is 64 is for synthetic Gaussian distribu-
tions and 128 for the image/robotics experiments. For
image experiments, the first and last 2 linear layers are
replaced with convolutional encoders and decoders.

(x, y, z)→ Dense→ h

Concat(h, state)

Dense→ h

Dense→ 1

(b) The shape decoder of OBM-Net used in the robotics
experiments. The shape decoder takes as input a voxel
coordinate as well as a slot value and predicts a occu-
pancy for the voxel.

Figure A9: Architecture of OBM-Net and the shape decoder.

5x5 Conv2d, 32, stride 2, padding 2

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 64, stride 2, padding 1

3x3 Conv2d, 128, stride 2, padding 1

Flatten

Dense→ h

(a) The model architecture of the convolutional
encoder for image experiments.

Dense→ 4096

Reshape (256, 4, 4)

4x4 Conv2dTranspose, 128, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

4x4 Conv2dTranspose, 64, stride 2, padding 1

3x3 Conv2d, 3, stride 1, padding 1

(b) The model architecture of the convolutional decoder
for image experiments.

Figure A10: The model architecture of the convolutional encoder and decoder for image experiments.
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Type Model Online Observations

10 30 50 100

Normal

OBM-Net + 0.235 0.162 0.146 0.128
Set Transformer + 0.390 0.388 0.388 0.389

LSTM + 0.288 0.260 0.269 0.288
VQ + 0.246 0.172 0.147 0.122

Set Transformer + 0.295 0.261 0.253 0.247
K-means++ - 0.183 0.107 0.086 0.066

GMM - 0.189 0.118 0.087 0.067

Mixed

OBM-Net + 0.255 0.184 0.164 0.147
LSTM + 0.306 0.274 0.284 0.290

Set Transformer + 0.415 0.405 0.407 0.408
VQ + 0.262 0.192 0.169 0.145

Set Transformer - 0.309 0.274 0.266 0.261
K-means++ - 0.206 0.135 0.105 0.088

GMM - 0.212 0.136 0.105 0.079

Enlongated

OBM-Net + 0.258 0.192 0.173 0.161
LSTM + 0.314 0.274 0.288 0.300

Set Transformer + 0.394 0.391 0.394 0.394
VQ + 0.265 0.194 0.172 0.149

Set Transformer - 0.309 0.244 0.240 0.232
K-means++ - 0.213 0.139 0.113 0.092

GMM - 0.214 0.141 0.112 0.086

Rotation

OBM-Net + 0.892 0.794 0.749 0.736
LSTM + 0.799 0.796 0.795 0.794

Set Transformer + 0.793 0.794 0.782 0.782
VQ + 0.956 1.000 1.000 0.984

Set Transformer - 0.815 0.784 0.779 0.772
K-means++ - 0.827 0.834 0.823 0.802

GMM - 0.842 0.875 0.867 0.848

Noise

OBM-Net + 0.375 0.343 0.338 0.334
LSTM + 0.419 0.406 0.405 0.407

Set Transformer + 0.434 0.424 0.425 0.424
VQ + 1.479 0.948 0.826 0.720

Set Transformer - 0.436 0.407 0.398 0.394
K-means++ - 1.836 1.271 1.091 0.913

GMM - 1.731 1.215 1.056 0.856

Table A6: Generalization with Increased Observations. Error of different models when executed
at test time on different number of observations across different distributions. We train models with 3
components and 30 observations.
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