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Abstract

Existing two-sample testing techniques, particularly those based on choosing a kernel for
the Maximum Mean Discrepancy (MMD), often assume equal sample sizes from the two
distributions. Applying these methods in practice can require discarding valuable data, un-
necessarily reducing test power. We address this long-standing limitation by extending the
theory of generalized U-statistics and applying it to the usual MMD estimator, resulting in
new characterization of the asymptotic distributions of the MMD estimator with unequal
sample sizes (particularly outside the proportional regimes required by previous partial re-
sults). This generalization also provides a new criterion for optimizing the power of an
MMD test with unequal sample sizes. Our approach preserves all available data, enhancing
test accuracy and applicability in realistic settings. Along the way, we give much cleaner
characterizations of the variance of MMD estimators, revealing something that might be sur-
prising to those in the area: while zero MMD implies a degenerate estimator, it is sometimes
possible to have a degenerate estimator with nonzero MMD as well. We give a construction
of such a case, and a proof that it does not happen in common situations.

1 Introduction

Two-sample testing is a fundamental problem in statistical inference, where the objective is to determine
whether two arbitrary distributions, P and Q, differ, based only on samples drawn from each. Applications
include distinguishing treatment and control groups (e.g. Kobayashi et al., 2017), evaluating and training
generative models (e.g. Li et al., 2015; Dziugaite et al., 2015; Bińkowski et al., 2018; Jayasumana et al.,
2024), and domain adaptation (e.g. Long et al., 2013), among many others. Given a dataset S := (SP ,SQ),
where SP := (xi)i∈[nX ] ∼ PnX and SQ = (yi)i∈[nY ] ∼ QnY , the goal is to test the null hypothesis H0 : P = Q
versus the alternative H1 : P ̸= Q. Typically, we do this by comparing a test statistic τ(S) to a threshold cα

for a given significance level α, say 0.05. The null hypothesis is rejected if τ(S) > cα. The threshold should
be set such that if H0 holds, the probability of τ(S) exceeding cα (the false rejection rate) is at most α.

In recent years, tests based on the kernel maximum mean discrepancy or MMD (Gretton, Borgwardt, et
al., 2012), or equivalently (Sejdinovic et al., 2013) tests based on energy statistics (Székely and Rizzo,
2013), have gained popularity due to their flexibility, adaptivity to various settings, ease of implementation,
computational simplicity, and desirable theoretical properties. Setting the threshold cα is now usually
addressed by permutation testing (Sutherland et al., 2017; Hemerik and Goeman, 2018) rather than the
asymptotic distribution, for both computational and statistical reasons. Methods for choosing a kernel that
will perform well on the particular task at hand, however, are mostly based on an estimate of the asymptotic
behavior of the test statistic under both the null and the alternative distributions (Gretton, Sejdinovic, et al.,
2012; Sutherland et al., 2017; Liu et al., 2020; Kübler et al., 2022; Deka and Sutherland, 2023).

When the number of samples from both distributions is equal, an MMD estimator can be constructed as
a U-statistic. This allows for the application of well-established asymptotic results for U-statistics (see e.g.
Lee, 2019) in designing the testing procedure, as has been done in practice for the line of work cited above
(excepting that of Kübler et al. (2022), who use a different and more limited framework).
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In practice, however, sample sizes are often unequal, leading to an MMD estimator that is not a U-statistic.
Consequently, the theoretical framework developed for the equal sample size case cannot be directly applied.
(Even when sample sizes are equal, the U-statistic estimator is slightly different from the usual, lower-
variance, unbiased estimator.) Liu et al. (2020) addressed this by training on equal-sized subsamples, finding
a kernel which has roughly the best test power for a test between samples of equal size, then perhaps applying
that kernel to a test set with differing sizes. While this procedure works, it is wasteful.

This paper addresses this limitation by deriving the asymptotic distributions and variance estimators for the
MMD estimator under unequal sample sizes. As noted by Kim et al. (2022), the typical MMD estimator
can be viewed as a generalized U-statistic, but the asymptotics of this more general framework are as yet
underdeveloped. We find the required general results and apply them to the MMD estimator to find its
asymptotic distribution under both null and alternative hypotheses, allowing us to choose kernel tests to
maximize their power (Sutherland et al., 2017; Liu et al., 2020; Deka and Sutherland, 2023). Along the way,
we also correct a common misconception in the literature about MMD under the alternative hypothesis.

Furthermore, we demonstrate that our generalized testing procedure reduces to the previous approach when
sample sizes are equal, thus establishing it as a natural extension of the existing framework. This unification
of methods provides a comprehensive approach to two-sample testing using MMD, accommodating a wider
range of practical scenarios while maintaining theoretical rigor.

2 Preliminaries

The Maximum Mean Discrepancy (MMD) is a widely used metric to measure the distance between proba-
bility distributions. Its versatility and theoretical properties make it particularly useful in various statistical
applications, including two-sample testing.

2.1 Kernel mean embeddings and Hilbert-Schmidt operators

Let k : X × X → R be the kernel of a reproducing kernel Hilbert space (RKHS) H of functions X → R; the
notation k(·, x) denotes the element t 7→ k(t, x), which satisfies the reproducing property ⟨f, k(·, x)⟩H = f(x)
for all f ∈ H, and hence k(x, y) = ⟨k(·, x), k(·, y)⟩H. The mean embedding of a distribution P is

µP = E
X∼P

[k(X, ·)] ∈ H.

The mean embedding exists and is well-defined when E∥k(X, ·)∥ = E
√
k(X,X) < ∞; it satisfies a reproduc-

ing property for distributions, ⟨f, µP ⟩H = EX∼P f(X) for any f ∈ H. A related concept is the (centered)
covariance operator of a distribution P , given by

CP = E
X∼P

[k(X, ·) ⊗ k(X, ·)] − µP ⊗ µP ,

which exists as long as E k(X,X) < ∞. Here the outer product f ⊗ g for f, g ∈ H is viewed as an H → H
operator with [f ⊗g](g′) = f⟨g, g′⟩, so that ⟨f, CP g⟩ = CovX∼P (f(X), g(X)) for any f, g ∈ H. The elements
f ⊗ g and CP are Hilbert-Schmidt operators from H → H, denoted by f ⊗ g ∈ HS(H,H); this is itself a
Hilbert space with inner product ⟨f ⊗ f ′, g ⊗ g′⟩HS = ⟨f, g⟩H⟨f ′, g′⟩H. The review of Muandet et al. (2017)
describes these two objects further. Throughout this paper, we will assume that they are well-defined:
Setting A. We assume that k : X × X → R is a kernel which induces a separable RKHS H, and that the
covariance operator CP and mean embedding µP exist for all considered distributions, i.e. EX∼P k(X,X) <
∞.

For separability, it suffices to have a separable X and continuous k (Steinwart and Christmann, 2008, Lemma
4.33). This gives us a variety of results, such as the following.
Proposition 2.1. In Setting A, for independent random variables X ∼ P, Y ∼ Q, we have E[k(X,Y )2] < ∞.

Proof. Since µP , CP exist, the uncentered covariance operator C̃P = CP + µP ⊗ µP = E[k(·, X) ⊗ k(·, X)]
is Hilbert-Schmidt, and likewise for C̃Q = E[k(·, Y ) ⊗ k(·, Y )]. By Bochner integrability, we can move
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expectations in and out of inner products, obtaining that the following inner product must be finite:

⟨C̃P , C̃Q⟩HS =
〈
E
X
k(·, X) ⊗ k(·, X),E

Y
k(·, Y ) ⊗ k(·, Y )

〉
HS

= E
[
⟨k(·, X), k(·, Y )⟩2

H
]

= E
[
k(X,Y )2].

2.2 Maximum Mean Discrepancy

Definition 2.2. Given a reproducing kernel Hilbert space H, the MMD between distributions P and Q is
defined as

MMD(P,Q) := sup
f∈H:∥f∥H≤1

E
X∼P

f(X) − E
Y ∼Q

f(Y ).

The MMD always satisfies all properties of a metric except that it may have MMD(P,Q) = 0 for some
P ̸= Q; this does not happen for characteristic kernels (Sriperumbudur et al., 2011). None of our results
will require a characteristic kernel.

Using the reproducing property, under Setting A MMD can be rewritten as (Gretton, Borgwardt, et al.,
2012)

MMD2(P,Q) = ∥µP − µQ∥2
H = E

X,X′∼P
[k(X,X ′)] + E

Y,Y ′∼P
[k(Y, Y ′)] − 2 E

X∼P,Y ∼Q
[k(X,Y )].

Estimators for the MMD are often based on this last form. Assuming independent samples SP :=
{xi}i∈[nX ] ∼ PnX and SQ = {yi}i∈[nY ] ∼ QnY , the typical unbiased estimator is

M̂MD2 = 2
nX(nX − 1)

nX∑
i=1

nX∑
j=i+1

k(xi, xj) + 2
nY (nY − 1)

nY∑
i=1

nY∑
j=i+1

k(yi, yj) − 2
nXnY

nX∑
i=1

nY∑
j=1

k(xi, yj). (1)

If nX = nY = n, we can obtain a simpler, nearly-equivalent estimator. Let zi = (xi, yi), and define

h(zi, zj) = k(xi, xj) + k(yi, yj) − k(xi, yj) − k(xj , yi) (2)

M̂MDU
2 = 1

n(n− 1)
∑
i ̸=j

h(zi, zj). (3)

This estimator differs from M̂MD2(SP ,SQ) only in that it omits the k(xi, yi) terms; this remains unbiased
for MMD2, but has very slightly higher variance (compare Proposition 2.6 and Theorem 3.4) and unlike
M̂MD2 depends on the order of the two samples. The difference can be directly bounded by McDiarmid’s
inequality (details in Appendix A).
Theorem 2.3. When the number of samples from P and Q are the same, we have that

Pr
X1,...,Xn∼P
Y1,...,Yn∼Q

(
|M̂MD2 − M̂MDU

2| ≤
8 supx∈X k(x, x)

n3/2

√
log 2

δ

)
≥ 1 − δ.

2.3 U-Statistics

The estimator M̂MDU
2 is an instance of a class of statistics known as U-statistics, introduced by Hoeffding

(1948). We will only need U-statistics of order two here.
Definition 2.4. Let Z1, . . . , Zn be i.i.d. random variables with support in Z, and let h : Z × Z → R be
symmetric in the sense that h(z1, z2) = h(z2, z1). A U-statistic of order two is defined as

Un = 1
n(n− 1)

∑
i̸=j

h(Zi, Zj).
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The function h is called the kernel of the U-statistic (not to be confused with the RKHS kernel k); for
M̂MDU

2 it is (2). These statistics have many general properties; we will be particularly interested in their
variance.
Proposition 2.5. Let Un be a U-statistic of order two with kernel h. Then, when n ≥ 2,

Var(Un) = 4(n− 2)
n(n− 1) Var

Z1

[
E
Z2

[h(Z1, Z2) | Z1]
]

+ 2
n(n− 1) Var

Z1,Z2
[h(Z1, Z2)]

= 4n− 6
n(n− 1) Var

Z1
[E
Z2

[h(Z1, Z2) | Z1]] + 2
n(n− 1) E

Z1
Var
Z2

[h(Z1, Z2) | Z1].

The first form is a textbook result, shown e.g. by Lee (2019, Section 1.3) or Serfling (1980, Section 5.2). The
second follows immediately from the first by the law of total variance. While this first form is well-known
and can be used to give an explicit form for the variance of M̂MDU

2 (Sutherland and Deka, 2019), we can
actually simplify the form considerably. The following result, shown in Appendix B, uses the approach of
He et al. (2025, Theorem 6.1).
Proposition 2.6. In Setting A, we have that

Var
SP ∼P n

SQ∼Qn

(
M̂MDU

2(SP ,SQ)
)

= 4
n

⟨µP − µQ, (CP + CQ)(µP − µQ)⟩H + 2
n(n− 1)∥CP + CQ∥2

HS. (4)

For a general U-statistic of order two, Var(Un) has three possible asymptotic behaviours: if Var(Un) =
Θ(1/n), we call Un non-degenerate or zeroth-order degenerate. If Var(Un) = Θ(1/n2), we call Un first-order
degenerate. Otherwise, Var(Un) = 0, which we term infinitely degenerate. Proposition 2.6 allows us to almost
fully characterize the degeneracy of M̂MDU

2. One of its results needs the following stronger assumptions:
Setting B. In Setting A, further assume that X = Rd, k is real-analytic, supx∈X k(x, x) is finite, and the
supports of P and Q each have positive Lebesgue measure.

In Setting B, which encompasses many common kernel choices such as the Gaussian, every function in H is
real-analytic (Chwialkowski et al., 2015, Lemma 1). The following result is proved in Appendix C.
Theorem 2.7. In Setting A, M̂MDU

2 is infinitely degenerate (the variance is zero) if and only if CP =
CQ = 0. Note that an infinitely degenerate MMD estimate may still be nonzero, such as if P and Q are
distinct point masses.

Now suppose that at least one of CP , CQ is nonzero, so M̂MDU
2’s order of degeneracy is either zero or one.

Then:

(i) If µP = µQ, M̂MDU
2 is first-order degenerate.

(ii) When µP ̸= µQ, M̂MDU
2 may be either non-degenerate or first-order degenerate.

(iii) Suppose X is a topological space, k(x, ·) is continuous for each x, and supx∈X k(x, x) is finite.
Further assume the supports of P and Q are not disjoint. Then M̂MDU

2 is degenerate if and only
if µP = µQ.

(iv) In Setting B, M̂MDU
2 is degenerate if and only if µP = µQ.

(v) In Setting B, ⟨µP − µQ, CP (µP − µQ)⟩ > 0 if and only if ⟨µP − µQ, CQ(µP − µQ)⟩ > 0.

It is well-known that if µP = µQ, the 1/n term is zero. To the best of our knowledge, however, it has not been
previously recognized in the literature that even when µP ̸= µQ, the estimator may be first-order degenerate,
and several papers make (informal) claims to the contrary. In many situations of interest, however, this is
impossible, as shown in parts (iii) and (iv). We also note that (iv) remains true if only one of P,Q has a
support with positive Lebesgue measure.

The asymptotic behavior of U-statistics is also highly relevant, and determined by the degree of degeneracy.
Here we need only textbook results, as shown by Lee (2019, Section 3.2) or Serfling (1980, Section 5.5).
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Theorem 2.8. Let Un be a U-statistic of order two with kernel h. Suppose that Un has mean θ =
Eh(X1, X2), and let σ2

1 = 4 VarX1 [EX2 [h(X1, X2) | X1]] be the leading term in the variance decomposition.

It holds as n → ∞ that
√
n (Un − θ) d−→ N (0, σ2

1), where if σ1 = 0 this convergence is to the point mass at 0.

If σ1 = 0, it also holds as n → ∞ that n (Un − θ) d−→
∑∞

j=1 λj(V 2
j − 1), where the {Vj}∞

j=1 are independent
standard normal variables, and (λj)∞

j=1 are the eigenvalues of the integral equation EX2 [h(x1, X2)f(X2)] =
λf(x1).

2.4 MMD-based tests

The eigenvalues λj in the degenerate case, as they depend on the kernel and the distribution, are often
difficult to find. Because M̂MDU

2 is degenerate under the null hypothesis, where MMD(P,Q) = 0, the test
threshold must be set based on the more complex distribution. The eigenvalues λj can be estimated based
on eigendecomposition of the sample kernel matrix (Gretton et al., 2009), but it is usually faster and more
effective to choose a threshold based on permutation testing (e.g. Sutherland et al., 2017). A variant of this
procedure also achieves finite-sample valid test thresholds (Hemerik and Goeman, 2018), rather than the
only asymptotic validity achieved from consistent estimates of λj .

Theorems 2.7 and 2.8 imply that if µP = µQ, then the (1−α)th quantile of M̂MDU
2 will be either Θ(1/

√
n) or

simply 0. On the other hand, if µP ̸= µQ so that MMD2 > 0, then M̂MD2 will be one of MMD2 + Op(1/
√
n),

MMD2 + Op(1/n), or simply MMD2, depending on the degeneracy behaviour. Thus as n → ∞, any test
whose asymptotic level is controlled will be consistent, regardless of the degree of degeneracy. That is,
whenever µP ̸= µQ, an MMD test will eventually reject as n → ∞.

To do so, however, may require a very large number of samples when the kernel is a poor match to the
problem at hand; for example, a Gaussian kernel based on image pixels does a reasonable job at identifying
pixel-level shifts on simple aligned image datasets like MNIST (see Sutherland et al., 2017), but would require
huge numbers of samples to identify “semantic” shifts in more complex natural image distributions.

To address this issue, Gretton, Sejdinovic, et al. (2012), Sutherland et al. (2017), Liu et al. (2020), and Kübler
et al. (2022) maximize the asymptotic power of a given MMD test with equal sample sizes. Assuming that
σ1(P,Q)2 as defined in Theorem 2.8 is nonzero,

Pr
(
n M̂MDU

2(SP ,SQ) > cα

)
= Pr

(
√
n

M̂MDU
2(SP ,SQ) − MMD2(P,Q)

σ1(P,Q) >

cα√
n

−
√
nMMD2(P,Q)
σ1(P,Q)

)
,

When σ1 > 0, the left-hand side of the inequality converges in distribution to a standard normal, and so

Pr
(
n M̂MDU

2(SP ,SQ) > cα

)
∼ 1 − Φ

(
cα√

n
−

√
nMMD2(P,Q)
σ1(P,Q)

)
= Φ

(√
n

MMD2(P,Q)
σ1(P,Q) − cα√

nσ1(P,Q)

)
,

where a ∼ b denotes a/b → 1 and Φ is the cdf of the standard normal distribution. Since MMD(P,Q),
σ1(P,Q), and cα are population quantities that do not depend on n, for large sample sizes the asymptotic
power expression is dominated by the signal-to-noise ratio MMD2(P,Q)/σ1(P,Q). Thus, we can choose a
kernel by maximizing a finite-sample estimate of this quantity on a training set, then run a test with that
kernel on an independent test set.

3 Asymptotic distribution of the MMD estimate

To generalize this approach to the case where nX ̸= nY , we will derive the asymptotic distributions of
the estimator M̂MD2, rather than M̂MDU

2. To do so, we fill in results about the theory of generalized
U-statistics (Serfling, 1980, Section 5.5.1), of which the M̂MD2 estimator is an instance even when nX ̸= nY .

Gretton, Borgwardt, et al. (2012, Theorem 12) previously considered the asymptotics of M̂MD2 when nX ̸=
nY , showing that if nX/nY converges to a positive, finite constant and MMD(P,Q) = 0, then (nX +
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nY ) M̂MD2 converges in distribution to a slightly different sum of shifted chi-squared variates. Our results,
by contrast, will also allow nX/nY → 0 or nX/nY → ∞; to do this, instead of scaling by nX + nY , we
scale by min(nX , nY ). In the proportional setting, this only differs by a constant, but we also allow for
non-proportional settings such as nY = n2

X .

Before giving our results, we first empirically demonstrate in Figures 1 and 2 that min(nX , nY ) is indeed the
correct scaling. In the proportional regime, either scaling works, while in a non-proportional setting only
the min(nX , nY ) scaling leads to convergence; it does so to the distributions predicted by our theorems.

3.1 Generalized U-Statistics

Definition 3.1 (Generalized U-statistic). For j ∈ [c] = {1, 2, . . . , c}, let (Xij)i∈[nj ] ∼ µ
nj

j be mutually
independent random variables. Let h be a real-valued function of m1 + · · ·+mc arguments which is symmetric
in the sense that the value of h(x11, . . . , xm11; . . . ;x1c, . . . , xmcc) remains unchanged if we permute any block
of arguments (x1j , . . . , xmjj). The c-sample generalized U-statistic associated with kernel h is defined by

Un =
c∏

j=1

(
nj

mj

)−1∑
σ1

· · ·
∑
σc

h(Xσ1(1),1, . . . , Xσ1(mj),1; . . . ;Xσc(1),k, . . . , Xσc(mc),c), (5)

where n = min{n1, . . . , nc}, and σj varies over each injection from [mj ] to [nj ].

In particular, as has been previously pointed out by Kim et al. (2022) and Schrab et al. (2023), M̂MD2 can
be viewed as a generalized U-statistic with c = 2, m1 = m2 = 2, using the kernel

h(xi, xj ; yi, yj) := k(xi, xj) + k(yi, yj) − 1
2 [k(xi, yj) + k(xj , yi) + k(xi, yi) + k(xj , yj)] . (6)

While a direct implementation of (5) would sum over O(n2
Xn

2
Y ) evaluations of the function h, in fact each term

in this h considers at most two elements; thus many terms in the average are irrelevant. An implementation
taking this into account becomes exactly that of M̂MD2 in (1), with O((nX + nY )2) kernel evaluations.

Let X = (X11, . . . , Xm11; . . . ;X1c, . . . , Xmcc) ∼
∏c

j=1 µ
mj

j . Sen (1974) derived the variance of a generalized
U-statistic as

Var(Un) =
m1∑

d1=0
· · ·

mc∑
dc=0

(
c∏

j=1

(
nj

mj

)−1(
mj

dj

)(
nj −mj

mj − dj

))
ζd1...dc

where ζd1...dc
= Var(E(h(X) | X11, . . . , Xd11, . . . , X1c, . . . , Xdcc)).

(7)

This motivates the following definition.

Definition 3.2. We say that a generalized U-statistic Un has order of degeneracy r if ζd1...dc
= 0 for all

d1 + · · · + dc ≤ r, and ζd1...dc > 0 for at least one d1 + · · · + dc = r + 1, where the ζs are as in (7). If
all ζd1...dc = 0, we say its order of degeneracy is infinite. If Un has order of degeneracy zero, we say Un is
non-degenerate.

The following result is then immediate from (7), since
(

nj

mj

)−1(mj

dj

)(
nj−mj

mj−dj

)
= Θ(n−dj

j ):

Proposition 3.3. For a generalized U-statistic with finite order of degeneracy r,

Var(Un) =
m1∑

d1=0
· · ·

mc∑
dc=0

Θ

 c∏
j=1

n
−dj

j

 ζd1...dc
= O

(
n−(r+1)

)
. (8)

For the MMD in particular, we can express the variance in a form similar in spirit to (4).
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(a) Proportional scaling, nY = nX/2.

(b) Non-proportional scaling, nY = 5√
nX .

Figure 1: Histograms of n M̂MD2 for P = Q = Laplace(0, 1/
√

2) and a unit-lengthscale Gaussian kernel;
orange (top) rows use n = min(nX , nY ), while blue (bottom) rows use n = nX + nY . In the proportional
setting (panel a), both converge; the only difference is a constant scaling, since nX+nX/2 = 3 min(nX , nX/2).
In the non-proportional setting (panel b), however, it is clear that the nX + nY scaling is not converging in
distribution, while the min(nX , nY ) scaling is. The min(nX , nY ) results include inset Q-Q plots, comparing
empirical quantiles to those predicted by the limiting distributions of Theorem 3.7; eigenvalues in that
distribution are estimated based on a sample with nX = nY = 5000.
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(a) Proportional scaling, nY = nX/2.

(b) Non-proportional scaling, nY = 5√
nX .

Figure 2: Histograms of
√
n(M̂MD2 − MMD) for P = Laplace(0, 1/

√
2), Q = Laplace(0, 3), and k is a unit-

lengthscale Gaussian kernel; here MMD(P,Q) > 0 is estimated based on 5000 samples. As in Figure 1,
orange (top) rows use n = min(nX , nY ), while blue (bottom) use n = nX + nY . We again see that the
nX + nY scaling is clearly not converging in distribution in the non-proportional setting (panel b), while
min(nX , nY ) converges in accordance with the distribution from Corollary 3.9. Quantiles of the limiting
distribution are computed based on a variance estimated based on a sample with nX = nY = 5000.
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Theorem 3.4. Under Setting A, it holds for any nX , nY ≥ 2 that

Var
SP ∼P nX

SQ∼QnY

(M̂MD2(SP ,SQ)) = 4
nX

(
1 − 4

nY
· nX − 2
nX − 1 · nY − 2

nY − 1

)
⟨µP − µQ, CP (µP − µQ)⟩

+ 4
nY

(
1 − 4

nX
· nX − 2
nX − 1 · nY − 2

nY − 1

)
⟨µP − µQ, CQ(µP − µQ)⟩

+ 2
nX(nX − 1)∥CP ∥2

HS + 2
nY (nY − 1)∥CQ∥2

HS + 4
nXnY

⟨CP , CQ⟩HS

+ 16
nXnY

(
nX − 2
nX − 1 · nY − 2

nY − 1

)
[⟨µP , CPµP ⟩ + ⟨µQ, CQµQ⟩] .

Notice that each of the factors in large parentheses has limit 1 as nX , nY → ∞, regardless of their relative
rate. The proof of Theorem 3.4, which follows from (7), is in Appendix D. The computation of conditional
variances also yields the following result about degeneracy.

Proposition 3.5. M̂MD2 has the same order of degeneracy as M̂MDU
2; thus Theorem 2.7 applies to M̂MD2

as well.

Remark 3.6. In the proportional regime ni = Θ(n), the rate of Proposition 3.3 becomes Θ(n−(r+1)), i.e. the
variance characterization is tight for any generalized U-statistic. The same holds for M̂MD2 in Setting B
via Theorem 2.7 part (v). In general, however, we only have O(n−(r+1)), not Θ: for instance, if CP = 0,
⟨µP −µQ, CQ(µP −µQ)⟩ > 0, and ⟨µQ, CQµQ⟩ > 0, M̂MD2 is non-degenerate but its variance in Equation (4)
is Θ

(
0 + 1

nY
+ 0 + 1

n2
Y

+ 0 + 1
nX nY

)
= Θ

( 1
nY

)
, which for nY = n10

X is Θ(n−10), not Θ(n−1).

3.2 Distribution when the MMD is zero

We first consider the distribution of the estimator when µP = µQ, which implies first-order degeneracy. (Per
Theorem 2.7, first-order degeneracy is also possible when µP ̸= µQ, but relatively uncommon; since it makes
the proof more difficult, we do not handle that case here.)

In Theorem E.5, stated in Appendix E, we derive the asymptotic distribution of a general U-statistic with
first order degeneracy and a square-integrable kernel. To our knowledge, the generality of this result (in
particular to c > 2 and to kernels which potentially treat the types of samples asymmetrically) is novel;
it extends the approach of Serfling (1980, Section 5.5.2) and Anderson et al. (1994), which was later used
specifically for M̂MD2 in the proportional setting by Gretton, Borgwardt, et al. (2012, Theorem 12).

Since our assumptions are minimal, the resulting distribution is somewhat complicated to describe. As such,
we leave the details to Appendix E, and only give the particular case for M̂MD2 here.

Theorem 3.7. Assume Setting A and that MMD2(P,Q) = 0. Assume min{nX , nY }/nX → ρX and
min{nX , nY }/nY → ρY for some ρX , ρY in [0, 1]. M̂MD2 converges in distribution as

min{nX , nY } M̂MD2 d−→ (ρX + ρY )
∞∑

l=1
λl

(
Z2

l − 1
)
,

where each Zl is independently N (0, 1), and the λl are the eigenvalues of the integral equation

E
X

[⟨ϕ(X) − µP , ϕ(y) − µP ⟩g(X)] = λg(y).

9
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For comparison’s sake, in our notation Theorem 12 of Gretton, Borgwardt, et al. (2012) says that1 if
nX/(nX + nY ) → ℓX and nY /(nX + nY ) → ℓY = 1 − ℓX for ℓX , ℓY ∈ (0, 1), then

(nX + nY ) M̂MD2 d−→ 1
ℓXℓY

∞∑
l=1

λl

(
Z2

l − 1
)
.

To confirm our results agree, suppose nY = 1
ρY
nX , with ρY ∈ (0, 1], so ρX = 1. Thus ℓX = 1

1+ 1
ρY

= ρY

1+ρY

and ℓY = 1
1+ρY

. Let D =
∑

l λl(Z2
l − 1). Then our result is nX M̂MD2 d−→ (1 + ρY )D = 1

ℓY
D, while since

nX +nY = (1 + 1
ρY

)nX = 1
ℓX
nX , theirs equivalently says that 1

ℓX
nX M̂MD2 d−→ 1

ℓX ℓY
D. As demonstrated by

Figures 1 and 2, however, their result cannot be generalized to non-proportional asymptotics.

3.3 Non-degenerate asymptotic normality

Our derivation of the asymptotic distribution under the alternative follows from a result on generalized
U-statistics, which is simpler to state than the corresponding result for the degenerate case. A similar result
was presented as an exercise, without details, by Serfling (1980, Section 5.5). Lehmann (1951) also stated
asymptotic normality for the special case c = 2, m1 = m2, but gave a proof only when n1 = n2.
Theorem 3.8. Let Un be a c-sample U-statistic with kernel h, where n = min{n1, . . . , nc}. If n/nj → ρj ∈
[0, 1] for each j ∈ [c], then

√
n(Un − E[h(X)]) d−→ N

0,
c∑

j=1
ρjm

2
j Var (E [h(X) | X1j ])

 ,

where N (0, 0) is interpreted as a point mass at 0. In particular if Un is non-degenerate and each ρj > 0 (the
proportional regime), the distribution above is normal with positive variance.

The following application to MMD is immediate from Theorem 3.8 and Theorem 2.7 part (v).
Corollary 3.9. Assume min{nX , nY }/nX → ρX and min{nX , nY }/nY → ρY for some ρX , ρY ∈ [0, 1]. The
estimator M̂MD2 is asymptotically normal, following√

min{nX , nY }(M̂MD2 − MMD2) d−→ N (0, 4ρXζX + 4ρY ζY ),

where ζX = ⟨µP − µQ, CP (µP − µQ)⟩ and ζY = ⟨µP − µQ, CP (µP − µQ)⟩.

In Setting B, when M̂MD2 is non-degenerate the distribution above has positive variance.

Estimating the variance

In order to maximize the power of an M̂MD2 test, notice that paralleling the case for M̂MDU
2, Corollary 3.9

implies that when σ2 = 4ρXζX + 4ρY ζY > 0,

Pr
(
n M̂MD2(SP ,SQ) > cα

)
∼ Φ

(√
n

MMD2

σ
− cα√

nσ

)
.

Thus we can choose the asymptotically best kernel for a test with a given sample size ratio by maximizing
the signal-to-noise ratio MMD2 /σ, which we can estimate by M̂MD2 /(σ̂+ λ) for some small λ > 0. To find
an estimator σ̂, notice that

ζX = Var
X

(
E
X′

[k(X,X ′)]
)

+ Var
X

(
E
Y

[k(X,Y )]
)

− 2 Cov
X

(
E
X′

[k(X,X ′)],E
Y

[k(X,Y )]
)

ζY = Var
Y

(
E
Y ′

[k(Y, Y ′)]) + Var
Y

(
E
X

[k(X,Y )]) − 2 Cov
Y

(
E
Y ′

[k(Y, Y ′)],E
X

[k(X,Y )]
)
.

1They wrote their limiting distribution as
∑∞

l=1 λl

(
(ℓ−1/2

X Al − ℓ
−1/2
Y Bl)2 − (ℓXℓY )−1

)
for Al, Bl standard normal; this

implies the above result by noting that ℓ
−1/2
X Al − ℓ

−1/2
Y Bl

d=
√

1
ℓX

+ 1
ℓY

Zl =
√

ℓY +ℓX
ℓX ℓY

Zl =
√

1
ℓX ℓY

Zl.

10
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We use simple plug-in estimators of the following form:

Var
X

[E
X′

[k(X,X ′)]] ≈ 1
m

m∑
j=1

(
1
m

m∑
i=1

k(xi, xj)
)2

−

 1
m2

m∑
j=1

m∑
i=1

k(xi, xj)

2

Var
X

(E
Y

[k(X,Y )]) ≈ 1
m

m∑
i=1

 1
n

n∑
j=1

k(xi, yj)

2

−

 1
nm

n∑
j=1

m∑
i=1

k(xi, yj)

2

Cov
X

(E
X′

[k(X,X ′)],E
Y

[k(X,Y )]) ≈ 1
m

m∑
i=1

(
1
m

m∑
a=1

k(xi, xa)
)(

1
n

n∑
b=1

k(xi, yb)
)

−

(
1
m2

m∑
i=1

m∑
a=1

k(xi, xa)
) 1

mn

m∑
j=1

n∑
b=1

k(xj , yb)

 .

These terms, as various means of the X-to-X, X-to-Y , and Y -to-Y kernel matrices, can be written straight-
forwardly in modern automatic differentiation libraries. Thus M̂MD2 /(σ̂ + λ) can be easily written as an
objective function for gradient-based optimization of kernel parameters. These plug-in estimators are biased,
both for simplicity and because biased estimators tend to work better in the denominator here. Unbiased
estimators (perhaps also incorporating the lower-order terms of Theorem 3.4), however, could also be derived
as was done for M̂MDU

2 by Sutherland and Deka (2019).

4 Experimental comparisons of tests

In this section, we evaluate the performance of two-sample tests based on our estimators when nX ̸= nY ,
showing that power is improved when we use as many samples as are available even when that number is
asymmetric. In all cases, we use a variant of permutation tests such that the Type-I error rate is exactly
controlled under the null (Hemerik and Goeman, 2018).

Synthetic problem: normals with different variances We first consider the behaviour of a simple
setting where P = N (0, 1) and Q = N (0, 1.2), and keep the number of samples nY = 50 from Q fixed while
varying nX ∈ {50, 100, 200, 400, 800}. We use a unit-lengthscale Gaussian kernel, and set the threshold for a
significance level of 0.05 based on 5, 000 permutations; we estimate the rejection rate using 5, 000 repetitions.
The resulting plots for power and type-1 error as functions of the sample size m are shown in Figure 3.
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Figure 3: Type-I error rate stays controlled as nX changes, while the power increases.
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CIFAR-10 vs. CIFAR-10.1. In this experiment, we compare the test subset of CIFAR-10 (Krizhevsky,
2009), consisting of 10,000 images, with the CIFAR-10.1 dataset (Recht et al., 2019) of 2,031 images.
Following the experimental setup of Liu et al. (2020), we extend the framework to accommodate unequal
sample sizes, taking advantage of the flexibility provided by our proposed method.

The experiment is carried out in the following steps:

1. Data Preparation: We randomly sample Ntr = 1000 images from CIFAR-10.1 and rNtr images
from CIFAR-10 for training, where r ∈ {1, 2, 4}. For testing, we use the remaining Nte = 1031
samples from CIFAR-10.1 and rNte samples from CIFAR-10.

2. Kernel Selection: We employ a deep kernel, as described in Liu et al. (2020), learned from the
training data to capture the data distributions in a high-dimensional feature space.

3. Testing Method: We apply our proposed test to measure the divergence between the distributions
P and Q. The rejection rates are calculated by averaging the results over multiple trials, each with
newly sampled test sets. We evaluate the test power as the sample size ratio r varies.

The results demonstrate that our method successfully distinguishes between the two distributions. For r = 1,
the test achieves a power of 0.71, for r = 2 a power of 0.96, and for r = 4 the test achieves a perfect power of
1. This indicates that as the sample size disparity increases, our method becomes more effective at identifying
differences between the distributions.

5 Conclusion

In this paper we have shown that the generalized U-statistic estimator M̂MD2 provides an effective framework
for two-sample testing with unequal sample sizes. M̂MD2 is compatible with the classical setting where the
samples sizes are proportional, but our results extend to the situation where one sample is asymptotically
dominant by changing the scaling from nX + nY to min{nX , nY }. To derive the asymptotic distributions of
M̂MD2, we characterized generalized U-statistics based on the degeneracy of their kernel and matched this
order of degeneracy with the hypotheses H0 and H1 under appropriate assumptions. Even when nX = nY ,
while M̂MD2 and M̂MDU

2 are asymptotically equivalent in probability, M̂MD2 has strictly lower variance
on finite samples if ⟨CP , CQ⟩ ≠ 0; when nX ̸= nY , the variance gap can be large.

Leveraging our theoretical results, we derived an approximation to the asymptotic test power, which is
(nearly) monotonic in the signal-to-noise ratio MMD2 /σ. This yields a power-optimization scheme based on
maximizing M̂MD2 /(σ̂+λ), with which we demonstrated improved performance in distinguishing synthetic
Gaussians and CIFAR image data.

The main theoretical aspect we did not fully characterize is determining the conditions under which ζX and
ζY are positive, or have matching signs. Theorem 2.7 makes significant progress towards this, in the case
of continuous kernels (with overlapping support) and/or analytic kernels (with potentially non-overlapping
support); typical kernels defined by neural networks will be continuous but not analytic, leaving the disjoint-
support question with such kernels unknown. These questions, however, seem to be of particular interest only
when the supports are very complex; distributions with “simple” disjoint supports are easy to distinguish.
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A Proof of Theorem 2.3

Theorem 2.3. When the number of samples from P and Q are the same, we have that

Pr
X1,...,Xn∼P
Y1,...,Yn∼Q

(
|M̂MD2 − M̂MDU

2| ≤
8 supx∈X k(x, x)

n3/2

√
log 2

δ

)
≥ 1 − δ.

Proof. Letting K = supx∈X k(x, x), we have that

k(x, y) = ⟨k(x, ·), k(y, ·)⟩ ≤ ∥k(x, ·)∥∥k(y, ·)∥ =
√
k(x, x)k(y, y) ≤ K.

The difference between the estimators is

M̂MD2 − M̂MDU
2 = − 2

n2

∑
i,j

k(xi, yj) + 2
n(n− 1)

∑
i ̸=j

k(xi, yj)

= − 2
n2

n∑
i=1

k(xi, yi) + 2
n

(
1

n− 1 − 1
n

)∑
i ̸=j

k(xi, yj)

= 2
n

− 1
n

n∑
i=1

k(xi, yi) + 1
n(n− 1)

∑
i̸=j

k(xi, yj)

 .

This sum satisfies bounded differences: if we consider changing a single xi, it changes a single term in the
first sum by at most 2K, meaning that the first average changes by at most 2K/n. At most n − 1 terms
change in the second sum, again each by up to 2K, giving again a total change of at most 2K/n. Thus the
overall difference in estimators changes by at most 8K/n2. The same holds for changing a single yi. This
difference is also mean zero, so since all of the 2n arguments xi, yi are mutually independent, we can apply
McDiarmid’s inequality to get

Pr
(

|M̂MD2 − M̂MDU
2| ≤ 8K

n2

√
1
2(2n) log 2

δ

)
≥ 1 − δ.

B Proof of U-statistic variance decomposition (Proposition 2.6)

Proposition 2.6. In Setting A, we have that

Var
SP ∼P n

SQ∼Qn

(
M̂MDU

2(SP ,SQ)
)

= 4
n

⟨µP − µQ, (CP + CQ)(µP − µQ)⟩H + 2
n(n− 1)∥CP + CQ∥2

HS. (4)

Proof. This result follows directly from Theorem 6.1 of He et al. (2025), but we reproduce their approach
here for completeness.

Define δxy = k(x, ·) − k(y, ·) ∈ H, for any x, y ∈ X . Then h of (2) is h((x, y), (x′, y′)) = ⟨δxy, δx′y′⟩H. We
also have that E δXY = E k(X, ·) − E k(Y, ·) = µP − µQ and

E δXY ⊗ δXY = E k(X, ·) ⊗ k(X, ·) − E k(X, ·) ⊗ k(Y, ·) − E k(Y, ·) ⊗ k(X, ·) + E k(Y, ·) ⊗ k(Y, ·)
= (CP + µP ⊗ µP ) − µP ⊗ µQ − µQ ⊗ µP + (CQ + µQ ⊗ µQ)
= CP + CQ + (µP − µQ) ⊗ (µP − µQ).

For the first term in the variance decomposition of Proposition 2.5,

E
X′,Y ′

[h((x, y), (X ′, Y ′))] = ⟨δxy, µP − µQ⟩H

Var
X,Y

[
E

X′,Y ′
[h((X,Y ), (X ′, Y ′)) | X,Y ]

]
= ⟨µP − µQ, (CP + CQ)(µP − µQ)⟩H.
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For the second term,

Var
X′,Y ′

[h((x, y), (X ′, Y ′))] = Var
X′,Y ′

[⟨δxy, δX′Y ′⟩]

= E
[
⟨δxy, δX′Y ′⟩2]− (E⟨δxy, δX′Y ′⟩)2

= E⟨δxy, δX′Y ′⟩⟨δX′Y ′ , δxy⟩ − ⟨δxy, µP − µQ⟩2

= E⟨δxy, (δX′Y ′ ⊗ δX′Y ′)δxy⟩ − ⟨δxy, ((µP − µQ) ⊗ (µP − µQ)) δxy⟩
=
〈
δxy,

(
E(δX′Y ′ ⊗ δX′Y ′) − (µP − µQ) ⊗ (µP − µQ)

)
δxy

〉
=
〈
δxy,

(
CP + CQ

)
δxy

〉
= ⟨δxy ⊗ δxy, CP + CQ⟩HS

E
X,Y

[
Var

X′,Y ′
[h((X,Y ), (X ′, Y ′)) | X,Y ]

]
=
〈

E
X,Y

[δXY ⊗ δXY ] , CP + CQ

〉
HS

= ∥CP + CQ∥2
HS + ⟨(µP − µQ) ⊗ (µP − µQ), CP + CQ⟩HS

= ∥CP + CQ∥2
HS + ⟨µP − µQ, (CP + CQ)(µP − µQ)⟩H.

Letting ν = ⟨µP − µQ, (CP + CQ)(µP − µQ)⟩H for brevity, we have obtained (4):

Var
(

M̂MDU
2
)

= 4n− 6
n(n− 1)ν + 2

n(n− 1)
(
∥CP + CQ∥2

HS + ν
)

= 4
n
ν + 2

n(n− 1)∥CP + CQ∥2
HS.

C Proof of degeneracy characterization (Theorem 2.7)

Theorem 2.7. In Setting A, M̂MDU
2 is infinitely degenerate (the variance is zero) if and only if CP =

CQ = 0. Note that an infinitely degenerate MMD estimate may still be nonzero, such as if P and Q are
distinct point masses.

Now suppose that at least one of CP , CQ is nonzero, so M̂MDU
2’s order of degeneracy is either zero or one.

Then:

(i) If µP = µQ, M̂MDU
2 is first-order degenerate.

(ii) When µP ̸= µQ, M̂MDU
2 may be either non-degenerate or first-order degenerate.

(iii) Suppose X is a topological space, k(x, ·) is continuous for each x, and supx∈X k(x, x) is finite.
Further assume the supports of P and Q are not disjoint. Then M̂MDU

2 is degenerate if and only
if µP = µQ.

(iv) In Setting B, M̂MDU
2 is degenerate if and only if µP = µQ.

(v) In Setting B, ⟨µP − µQ, CP (µP − µQ)⟩ > 0 if and only if ⟨µP − µQ, CQ(µP − µQ)⟩ > 0.

Proof. Because CP and CQ are each positive semi-definite, CP + CQ = 0 if and only if CP = 0 = CQ.
Proposition 2.6 then immediately gives both the result about infinite degeneracy and (i).

Proof of (ii) Most usual settings are non-degenerate; for an explicit example, consider X = R, P =
N (0, 1), Q = N (1, 1), and k(x, y) = xy. Then µP = (t 7→ 0) = 0, µQ = (t 7→ t), CP = CQ = Id, and so
⟨µP − µQ, (CP + CQ)(µP − µQ)⟩ = 2∥µQ∥2

H = 2∥k(·, 1)∥2
H = 2k(1, 1) = 2.

For a degenerate case, consider X = R, k(x, y) = max(1 − |x − y|, 0), P = Uniform({1, 2}), and Q =
Uniform({3, 4}). These have nonzero kernel covariance operators: for instance,

⟨k(1, ·), CP k(1, ·)⟩ = Var
X∼P

[k(1, X)] = 1
2 · 12 + 1

2 · 02 −
( 1

2 · 1 + 1
2 · 0

)2 = 1
2 − 1

4 = 1
4 > 0.
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We also have µP ̸= µQ, as can be seen by considering their inner products with e.g. k(2.2, ·), or be-
cause P ̸= Q and k is characteristic (Sriperumbudur et al., 2008, Corollary 8). Notice, however, that
PrX∼P,Y ∼Q(k(X,Y ) = 0) = 1. Thus, if we write

M̂MDU
2 = 1

n(n− 1)
∑
i ̸=j

k(xi, xj) + 1
n(n− 1)

∑
i ̸=j

k(yi, yj) − 2
n2

∑
i̸=j

k(xi, yj),

the last sum is identically zero, leaving us with the sum of two independent U-statistics with kernel k.
Applying Proposition 2.5 for the first such sum, Var[E[k(X,X ′) | X]] = VarX′∼P [µP (X ′)] = 0 because
µP (1) = µP (2) = 1

2 , and P = Uniform({1, 2}); however, for any x ∈ {1, 2}, Var[k(x,X)] = 1
4 as seen above,

and hence the variance is 2
n(n−1) · 1

4 = 1
2n(n−1) . The other term is independent and has the same variance.

Thus the variance of M̂MDU
2 is 1/(n(n−1)), so it must be first-order degenerate: we have a situation where

µP ̸= µQ, CP ̸= 0, CQ ̸= 0, and yet M̂MDU
2 is degenerate.

Proof of (iii) and (iv) If µP = µQ, then Proposition 2.6 immediately implies that M̂MDU
2 is degenerate.

Thus, suppose that M̂MDU
2 is degenerate for CP , CQ not both zero; we will show that µP = µQ, or

equivalently that ∆ = µP −µQ is the zero function. Since CP and CQ are positive semi-definite and we have
assumed degeneracy, Proposition 2.6 implies that we must have

⟨µP − µQ, CP (µP − µQ)⟩ = Var
X∼P

(∆(X)) = 0 and ⟨µP − µQ, CQ(µP − µQ)⟩ = Var
Y ∼Q

(∆(Y )) = 0.

Thus, there must be cP , cQ ∈ R such that

Pr
X∼P

(∆(X) = cP ) = 1 and Pr
Y ∼Q

(∆(Y ) = cQ) = 1.

But notice that

∥µP − µQ∥2 = ⟨µP ,∆⟩ − ⟨µQ,∆⟩ = E
X∼P

[∆(X)] − E
Y ∼Q

[∆(Y )] = cP − cQ,

and so if cP = cQ then µP = µQ.

For (iii), let x be in the support of P , and suppose that ∆ = µP −µQ has ∆(x) ̸= cP . But then by continuity
there is an open neighbourhood Nx ∋ x for which |∆(x′) − cP | > ϵ for all x′ ∈ Nx; since x is in the support
of P , P (Nx) > 0, contradicting that ∆(x) = cP P -almost surely. We similarly have ∆(y) = cQ for all y in
the support of Q; thus, if there is a point in both supports, we must have cP = cQ.

For (iv), k being bounded and real-analytic implies that each f ∈ H is as well (Chwialkowski et al., 2015,
Lemma 1). As before, degeneracy implies ∆(x) = cP for all x in the support of P , and ∆(y) = cQ for all y in
the support of Q. Mityagin (2015) shows that if a real-analytic function is zero on a set of positive Lebesgue
measure, the function is identically zero; since ∆ − cP is analytic, it must be zero on all of X . But since Rd

is Hausdorff, the support of Q is nonempty, and hence cQ = cP .

Proof of (v): Reusing our previous notation, positive semi-definiteness implies ⟨∆, CP ∆⟩, ⟨∆, CQ∆⟩ are
either zero or positive. Suppose ⟨∆, CP ∆⟩ = 0; then following the proof of (iv) we know that the function
∆ is almost surely a constant cP on the support of P , and since it is also real-analytic and P ’s support has
positive Lebesgue measure, it is equal to cP everywhere. Thus ⟨∆, CQ∆⟩ = VarY ∼Q ∆(Y ) = 0. The same
reasoning applies for Q, and so ⟨∆, CQ∆⟩ = 0 implies ⟨∆, CP ∆⟩ = 0.

D Two Sample MMD Variance

We now decompose the variance of M̂MD2 based on the formula (7).
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Theorem 3.4. Under Setting A, it holds for any nX , nY ≥ 2 that

Var
SP ∼P nX

SQ∼QnY

(M̂MD2(SP ,SQ)) = 4
nX

(
1 − 4

nY
· nX − 2
nX − 1 · nY − 2

nY − 1

)
⟨µP − µQ, CP (µP − µQ)⟩

+ 4
nY

(
1 − 4

nX
· nX − 2
nX − 1 · nY − 2

nY − 1

)
⟨µP − µQ, CQ(µP − µQ)⟩

+ 2
nX(nX − 1)∥CP ∥2

HS + 2
nY (nY − 1)∥CQ∥2

HS + 4
nXnY

⟨CP , CQ⟩HS

+ 16
nXnY

(
nX − 2
nX − 1 · nY − 2

nY − 1

)
[⟨µP , CPµP ⟩ + ⟨µQ, CQµQ⟩] .

Proof. We will need to compute various conditional expectations of the MMD estimator kernel function
h(x, x′; y, y′) = ⟨k(x, ·) − k(y, ·), k(x′, ·) − k(y′, ·)⟩. For brevity, in this proof we will use ϕ(x) to denote the
feature map k(x, ·). We can omit some calculations because of the additional symmetry h(x, x′; y, y′) =
h(y, y′;x, x′).

As CP , CQ are self-adjoint, we have the useful identity

⟨µP , CPµP ⟩ + ⟨µQ, CPµQ⟩ − 2⟨µQ, CPµP ⟩ = [⟨µP , CPµP ⟩ − ⟨µP , CPµQ⟩] + [⟨µQ, CPµQ⟩ − ⟨µQ, CPµP ⟩]
= ⟨µP , CP (µP − µQ)⟩ + ⟨µQ, CP (µQ − µP )⟩
= ⟨µP − µQ, CP (µP − µQ)⟩,

and similarly ⟨µQ, CQµQ⟩ + ⟨µP , CQµP ⟩ − 2⟨µP , CQµQ⟩ = ⟨µP − µQ, CQ(µP − µQ)⟩.

Order 1 terms.

E(h(X,X ′;Y, Y ′) | X) = µP (X) + E k(Y, Y ′) − µQ(X) − E k(X ′, Y )

ζX = Var(µP (X) − µQ(X) + const)
= ⟨µP − µQ, CP (µP − µQ)⟩

Order 2 terms.

E(h(X,X ′;Y, Y ′)|X,X ′) = k(X,X ′) + E k(Y, Y ′) − µQ(X) − µQ(X ′)

Var(k(X,X ′)) = E[k(X,X ′)2] − (E[k(X,X ′)])2

= E⟨ϕ(X) ⊗ ϕ(X), ϕ(X ′) ⊗ ϕ(X ′)⟩HS − ∥µP ∥4

= (∥CP ∥2
HS + 2⟨CP , µP ⊗ µP ⟩HS + ∥µP ∥4) − ∥µP ∥4

= ∥CP ∥2
HS + 2⟨µP , CPµP ⟩

Cov(µQ(X), k(X,X ′)) = E[µQ(X)k(X,X ′)] − E[k(X,Y )]E[k(X,X ′)]
= ⟨µQ, CPµP ⟩

ζXX′ = Var(k(X,X ′)) + Var(µQ(X)) + Var(µQ(X ′))
− 2 Cov(µQ(X), k(X,X ′)) − 2 Cov(µQ(X ′), k(X,X ′))

= ∥CP ∥2
HS + 2⟨µP , CPµP ⟩ + 2⟨µQ, CPµQ⟩ − 4⟨µQ, CPµP ⟩

= ∥CP ∥2
HS + 2⟨µP − µQ, CP (µP − µQ)⟩
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Let C̃P = E[ϕ(X) ⊗ ϕ(X)] and define C̃Q analogously.

E(h(X,X ′;Y, Y ′)|X,Y ) = µP (X) + µQ(Y ) − 1
2 [µQ(X) + µP (Y ) + k(X,Y ) + E k(X,Y )]

⟨CP , CQ⟩HS = ⟨C̃P , C̃Q⟩HS − ⟨C̃P , µQ ⊗ µQ⟩HS − ⟨C̃Q, µP ⊗ µP ⟩HS + ⟨µP , µQ⟩2

= E[k(X,Y )2] − ⟨CP , µQ ⊗ µQ⟩HS − ⟨CQ, µP ⊗ µP ⟩HS − ⟨µP , µQ⟩2

= Var(k(X,Y )) − ⟨µQ, CPµQ⟩ − ⟨µP , CQµP ⟩

ζXY = Var
(

(µP (X) − 1
2µQ(X)

)
+ Var

(
µQ(Y ) − 1

2µP (Y )
)

+ 1
4 Var(k(X,Y ))

+ Cov
(
µP (X) − 1

2µQ(X), k(X,Y )
)

+ Cov
(
µQ(Y ) − 1

2µP (Y ), k(X,Y )
)

= ⟨µP − 1
2µQ, CP (µP − 1

2µQ)⟩ + ⟨µQ − 1
2µP , CQ(µQ − 1

2µP )⟩

+ 1
4 ⟨CP , CQ⟩HS + 1

4 ⟨µQ, CPµQ⟩ + 1
4 ⟨µP , CQµP ⟩ + ⟨µP − 1

2µQ, CPµQ⟩

+ ⟨µQ − 1
2µP , CQµP ⟩

= 1
4 ⟨CP , CQ⟩HS + ⟨µP , CPµP ⟩ + ⟨µQ, CQµQ⟩,

where the last line follows by

⟨µP − 1
2µQ, CP (µP − 1

2µQ)⟩ + 1
4 ⟨µQ, CPµQ⟩ + ⟨µP − 1

2µQ, CPµQ⟩

=
[
⟨µP − 1

2µQ, CP (µP − 1
2µQ)⟩ + ⟨µP − 1

2µQ, CP
1
2µQ⟩

]
+
[

1
4 ⟨µQ, CPµQ⟩ + ⟨1

2µP − 1
4µQ, CPµQ⟩

]
= ⟨µP − 1

2µQ, CPµP ⟩ + ⟨1
2µP , CPµQ⟩ = ⟨µP − 1

2µQ, CPµP ⟩ + ⟨1
2µQ, CPµP ⟩ = ⟨µP , CPµP ⟩.

Order 3 terms.

E(h(X,X ′;Y, Y ′) | X,X ′, Y ) = k(X,X ′) + µQ(Y ) − 1
2 [k(X,Y ) + µQ(X ′) + k(X ′, Y ) + µQ(X)]

Let R := k(X,X ′) − 1
2 [k(X,Y ) + k(X ′, Y )], then we may write

ζXX′Y = Var(µQ(Y )) + 1
4 Var(µQ(X ′)) + 1

4 Var(µQ(X)) + Var(R)

+ 2 Cov(µQ(Y ), R) − Cov(µQ(X ′), R) − Cov(µQ(X), R)

= ⟨µQ, CQµQ⟩ + 1
2 ⟨µQ, CPµQ⟩ + Var(R) + 2 Cov(µQ(Y ), R)

− 2 Cov(µQ(X ′), R).
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We may simplify the terms including R

Var(R) = Var(k(X,X ′)) + 1
4 Var(k(X,Y )) + 1

4 Var(k(X ′, Y )) − Cov(k(X,X ′), k(X,Y ))

− Cov(k(X,X ′), k(X ′, Y )) + 1
2 Cov(k(X,Y ), k(X ′, Y ))

= ∥CP ∥2
HS + 2⟨µP , CPµP ⟩ + 1

2 [⟨CP , CQ⟩HS + ⟨µQ, CPµQ⟩ + ⟨µP , CQµP ⟩]

− 2⟨µP , CPµQ⟩ + 1
2 ⟨µP , CQµP ⟩

= ∥CP ∥2
HS + 2⟨µP , CPµP ⟩ + 1

2 ⟨CP , CQ⟩HS + 1
2 ⟨µQ, CPµQ⟩ + ⟨µP , CQµP ⟩ − 2⟨µP , CPµQ⟩

Cov(µQ(Y ), R) = Cov
(
µQ(Y ),−1

2 [k(X,Y ) + k(X ′, Y )]
)

= − Cov(µQ(Y ), k(X,Y )) = −⟨µQ, CQµP ⟩

Cov(µQ(X ′), R) = Cov
(
µQ(X ′), k(X,X ′) − 1

2k(X ′, Y )
)

= ⟨µQ, CPµP ⟩ − 1
2 ⟨µQ, CPµQ⟩

Plugging the above into the variance equation gives

ζXX′Y = ⟨µQ, CQµQ⟩ + 1
2 ⟨µQ, CPµQ⟩ + ∥CP ∥2

HS + 2⟨µP , CPµP ⟩

+ 1
2 ⟨CP , CQ⟩HS + 1

2 ⟨µQ, CPµQ⟩ + ⟨µP , CQµP ⟩ − 2⟨µP , CPµQ⟩

− 2⟨µQ, CQµP ⟩ − 2⟨µQ, CPµP ⟩ + ⟨µQ, CPµQ⟩

= ∥CP ∥2
HS + 1

2 ⟨CP , CQ⟩HS + 2[⟨µP , CPµP ⟩ + ⟨µQ, CPµQ⟩ − 2⟨µP , CPµQ⟩]

+ [⟨µQ, CQµQ⟩ + ⟨µP , CQµP ⟩ − 2⟨µQ, CQµP ⟩]

= ∥CP ∥2
HS + 1

2 ⟨CP , CQ⟩HS + 2⟨µP − µQ, CP (µP − µQ)⟩

+ ⟨µP − µQ, CQ(µP − µQ)⟩

= ∥CP ∥2
HS + 1

2 ⟨CP , CQ⟩HS + ⟨µP − µQ, (2CP + CQ)(µP − µQ)⟩

Order 4 terms. Let R′ := k(Y, Y ′) − 1
2 [k(X ′, Y ′) + k(X,Y ′)], we have h(X,X ′;Y, Y ′) = R +R′. Similar

to the calculation for R we have

Var(R′) = ∥CQ∥2
HS + 2⟨µQ, CQµQ⟩ + 1

2 ⟨CP , CQ⟩HS + 1
2 ⟨µQ, CPµQ⟩ + ⟨µP , CQµP ⟩ − 2⟨µQ, CQµP ⟩.

Next we have

2 Cov(R,R′) = 2 Cov
(
k(X,X ′) − 1

2 [k(X,Y ) + k(X ′, Y )], k(Y, Y ′) − 1
2 [k(X ′, Y ′) + k(X,Y ′)]

)
= − Cov(k(X,X ′), k(X ′, Y ′) + k(X,Y ′)) − Cov(k(Y, Y ′), k(X,Y ) + k(X ′, Y ))

+ 1
2 Cov(k(X,Y ) + k(X ′, Y ), k(X ′, Y ′) + k(X,Y ′))

=
= −2⟨µP , CPµQ⟩ − 2⟨µQ, CQµP ⟩ + ⟨µQ, CPµQ⟩

Finally we have

ζXX′Y Y ′ = Var(R) + Var(R′) + 2 Cov(R,R′)
= ∥CP ∥2

HS + ∥CQ∥2
HS + ⟨CP , CQ⟩HS + 2[⟨µP , CPµP ⟩ + ⟨µQ, CPµQ⟩ − 2⟨µP , CPµQ⟩]

+ 2[⟨µQ, CQµQ⟩ + ⟨µP , CQµP ⟩ − 2⟨µQ, CQµP ⟩]
= ∥CP ∥2

HS + ∥CQ∥2
HS + ⟨CP , CQ⟩HS + 2⟨µP − µQ, (CP + CQ)(µP − µQ)⟩
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Simplification Plugging the ζ values into (7) yields the variance for M̂MD2 of

4
nX

(
nX − 2
nX − 1 · nY − 2

nY
· nY − 3
nY − 1

)
ζX + 4

nY

(
nX − 2
nX

· nX − 3
nX − 1 · nY − 2

nY − 1

)
ζY

+ 2
nX(nX − 1)

(
nY − 2
nY

· nY − 3
nY − 1

)
ζXX′ + 2

nY (nY − 1)

(
nX − 2
nX

· nX − 3
nX − 1

)
ζY Y ′

+ 16
nXnY

(
nX − 2
nX − 1 · nY − 2

nY − 1

)
ζXY

+ 8
nX(nX − 1)nY

(
nY − 2
nY − 1

)
ζXX′Y + 8

nXnY (nY − 1)

(
nX − 2
nX − 1

)
ζXY Y ′

+ 4
nX(nX − 1)nY (nY − 1)ζXX′Y Y ′ ,

where

ζX = ⟨µP − µQ, CP (µP − µQ)⟩ ζY = ⟨µP − µQ, CQ(µP − µQ)⟩
ζXX′ = ∥CP ∥2

HS + 2⟨µP − µQ, CP (µP − µQ)⟩ ζY Y ′ = ∥CQ∥2
HS + 2⟨µP − µQ, CQ(µP − µQ)⟩

ζXY = 1
4 ⟨CP , CQ⟩HS + ⟨µP , CPµP ⟩ + ⟨µQ, CQµQ⟩

ζXX′Y = ∥CP ∥2
HS + 1

2 ⟨CP , CQ⟩HS + ⟨µP − µQ, (2CP + CQ)(µP − µQ)⟩

ζXY Y ′ = ∥CQ∥2
HS + 1

2 ⟨CP , CQ⟩HS + ⟨µP − µQ, (CP + 2CQ)(µP − µQ)⟩

ζXX′Y Y ′ = ∥CP ∥2
HS + ∥CQ∥2

HS + ⟨CP , CQ⟩HS + 2⟨µP − µQ, (CP + CQ)(µP − µQ)⟩.

Let νP = ⟨µP − µQ, CP (µP − µQ)⟩ and νQ = ⟨µP − µQ, CQ(µP − µQ)⟩. Then

ζX = νP ζY = νQ

ζXX′ = ∥CP ∥2
HS + 2νP ζY Y ′ = ∥CQ∥2

HS + 2νQ

ζXY = 1
4 ⟨CP , CQ⟩HS + ⟨µP , CPµP ⟩ + ⟨µQ, CQµQ⟩

ζXX′Y = ∥CP ∥2
HS + 1

2 ⟨CP , CQ⟩HS + 2νP + νQ

ζXY Y ′ = ∥CQ∥2
HS + 1

2 ⟨CP , CQ⟩HS + νP + 2νQ

ζXX′Y Y ′ = ∥CP ∥2
HS + ∥CQ∥2

HS + ⟨CP , CQ⟩HS + 2νP + 2νQ.

This means that Var(M̂MD2) is

4
nX

(
nX − 2
nX − 1 · nY − 2

nY
· nY − 3
nY − 1

)
νP + 4

nY

(
nX − 2
nX

· nX − 3
nX − 1 · nY − 2

nY − 1

)
νQ

+ 2
nX(nX − 1)

(
nY − 2
nY

· nY − 3
nY − 1

)
(∥CP ∥2

HS + 2νP ) + 2
nY (nY − 1)

(
nX − 2
nX

· nX − 3
nX − 1

)
(∥CQ∥2

HS + 2νQ)

+ 4
nXnY

(
nX − 2
nX − 1 · nY − 2

nY − 1

)
[⟨CP , CQ⟩HS + 4⟨µP , CPµP ⟩ + 4⟨µQ, CQµQ⟩]

+ 8
nX(nX − 1)nY

(
nY − 2
nY − 1

)[
∥CP ∥2

HS + 1
2 ⟨CP , CQ⟩HS + 2νP + νQ

]
+ 8
nXnY (nY − 1)

(
nX − 2
nX − 1

)[
∥CQ∥2

HS + 1
2 ⟨CP , CQ⟩HS + νP + 2νQ

]
+ 4
nX(nX − 1)nY (nY − 1)

[
∥CP ∥2

HS + ∥CQ∥2
HS + ⟨CP , CQ⟩HS + 2νP + 2νQ

]
.
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Gathering νP terms, we get a coefficient of 4/nX times

(nX − 2)(nY − 2)(nY − 3) + (nY − 2)(nY − 3) + 4(nY − 2) + 2(nX − 2) + 2
(nX − 1)nY (nY − 1)

= (nX − 1)(nY − 2)(nY − 3) + 4(nY − 2) + 2(nX − 1)
(nX − 1)nY (nY − 1)

= (nY − 2)(nY − 3) + 2
nY (nY − 1) + 4(nY − 2)

(nX − 1)nY (nY − 1)

= n2
Y − 5nY + 8
nY (nY − 1) + 4(nY − 2)

(nX − 1)nY (nY − 1)

= nY (nY − 1) − 4(nY − 2)
nY (nY − 1) + 4(nY − 2)

(nX − 1)nY (nY − 1)

= 1 − 4(nY − 2)
nY (nY − 1)

(
1 − 1

nX − 1

)
= 1 − 4

nY
· nX − 2
nX − 1 · nY − 2

nY − 1 ;

the νQ terms are symmetric, so that term’s coefficient is

4
nY

(
1 − 4

nX
· nX − 2
nX − 1 · nY − 2

nY − 1

)
.

Next gathering the ∥CP ∥2
HS terms, we find a coefficient of

2
nX(nX − 1) · (nY − 2)(nY − 3) + 4(nY − 2) + 2

nY (nY − 1) = 2
nX(nX − 1)

n2
Y − nY

nY (nY − 1) = 2
nX(nX − 1) ,

and the ∥CQ∥2
HS terms are again symmetric for a coefficient of 2/(nY (nY − 1)). Finally, the ⟨CP , CQ⟩HS

terms gather to a coefficient of 4/(nXnY ), since

(nX − 2)(nY − 2) + (nY − 2) + (nX − 2) + 1
(nX − 1)(nY − 1) = (nX − 1)(nY − 2) + (nX − 1)

(nX − 1)(nY − 1) = (nX − 1)(nY − 1)
(nX − 1)(nY − 1) = 1.

The result follows.

E Asymptotics of Generalized U-statistics

This section characterizes the asymptotic behaviour of generalized U-statistics by filling in and generalizing
the approach of Serfling (1980, Chapter 5). Throughout the section we fix a generalized U-statistic Un

constructed from the kernel h(x11, . . . , xm11, . . . , x1c, . . . , xmcc) and random samples S = {Xij : j ∈ [c], i ∈
[nj ]}, where (Xij)i∈[nj ] ∼ µ

nj

j for each j. Additionally define

X = (Xij : j ∈ [c], i ∈ [mj ]) ∼
c∏

j=1
µ

mj

j , θ = E[h(X)], h̃ = h− θ.

To make our presentation more concise, we introduce an abbreviation to our expression in Definition 3.1
with Un =

∏c
j=1

(
nj

mj

)−1∑
X h(X), X varying over each distinct collection of arguments in S.

Definition E.1. The order r projection of Un is given by

Ûn,r = θ +
∑

(i1j1),...,(irjr)

(E[Un | Xi1j1 , . . . , Xirjr
] − θ) ,

where the sum is over each subset of S of size r.
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Often we will simplify the projection of Un using its order of degeneracy. This is made precise by the following
proposition.
Proposition E.2. Let X,X′ be subsets of the sample S where X ∼

∏c
j=1 µ

mj

j , then E[h(X) | X′] = E[h(X) |
X ∩ X′] where we interpret E[h(X) | ∅] = E[h(X)]. In particular if Un is order r degenerate and |X ∩ X′| ≤ r
then E[h̃(X) | X′] = 0.

Proof. Since S consists of independent variables, E[h(X) | X′] is obtained by integrating out the arguments
in h(X) which are not shared with X′. It then follows that E[h(X) | X′] = E[h(X) | X ∩ X′]. Now if Un

is order r degenerate and |X ∩ X′| ≤ r, the symmetries of h imply Var(E[h̃(X)|X ∩ X′]) = 0 and in turn
E[h̃(X)|X′] = E[h̃(X)] = 0.

The following lemma shows that if Un has order-r degeneracy (identifying r = 0 with non-degeneracy) then
its asymptotic distribution can be approximated by Ûn,r+1 in the mean-square norm.

Lemma E.3. If Un is a generalized U-statistic with order of degeneracy at least r, then E |Un − Ûn,r+1|2 =
O(n−(r+2)).

Proof. Expanding E[Un | Xi1j1 , . . . , Xir+1jr+1 ] yields

Un − Ûn,r+1 =
c∏

j=1

(
nj

mj

)−1∑
X

h̃(X) −
∑

(i1j1),...,(ir+1jr+1)

E[h̃(X) | Xi1j1 , . . . , Xir+1jr+1 ]

 .
Turning to the inner sum, Proposition E.2 implies E[h̃(X) | Xi1j1 , . . . , Xir+1jr+1 ] = 0 if X and
Xi1j1 , . . . , Xir+1jr+1 share less than r + 1 terms. Thus removing these zero-valued terms leaves us with

Un − Ûn,r =
c∏

j=1

(
nj

mj

)−1∑
X

h̃(X) −
∑

(i1j1),...,(ir+1jr+1)∈X

E[h̃(X) | Xi1j1 , . . . , Xir+1jr+1 ]

 , (9)

where (i1j1), . . . , (ir+1jr+1) ∈ X denotes that X contains Xi1j1 , . . . , Xrr+1,jr+1 . The above puts Un − Ûn,r in
the form a generalized U-statistic and furthermore conditioning on any r + 1 terms in X gives

E

h̃(X) −
∑

(i1j1),...,(ir+1jr+1)∈X

E[h̃(X) | Xi1j1 , . . . , Xir+1jr+1 ]

∣∣∣∣∣ Xs1t1 , . . . , Xsr+1tr+1


= E[h̃(X) | Xs1t1 , . . . , Xsr+1tr+1 ] − E[h̃(X) | Xs1t1 , . . . , Xsr+1tr+1 ] = 0 by Proposition E.2.

If we had conditioned on fewer than r + 1 variables, the term above would be zero again due to Un’s order
of degeneracy. Therefore Un − Ûn,r’s order of degeneracy is at least r + 1. Since Un − Ûn,r has zero mean,
it follows from the variance formula (8) that E |Un − Ûn,r|2 = O(n−(r+2)).

The next two results builds on our lemma and deduces the asymptotic distribution of generalized U-statistics
based on their first and second order projections.

Theorem 3.8. Let Un be a c-sample U-statistic with kernel h, where n = min{n1, . . . , nc}. If n/nj → ρj ∈
[0, 1] for each j ∈ [c], then

√
n(Un − E[h(X)]) d−→ N

0,
c∑

j=1
ρjm

2
j Var (E [h(X) | X1j ])

 ,

where N (0, 0) is interpreted as a point mass at 0. In particular if Un is non-degenerate and each ρj > 0 (the
proportional regime), the distribution above is normal with positive variance.
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Proof. By Lemma E.3 we have that
E[|

√
n(Un − Ûn,1)|2] = nE[|Un − Ûn,1|2] = nO(n−2) = O(n−1),

so it suffices to deduce the distribution of
√
n(Ûn,1 − θ). Define h̃j = E[h̃(X) | X1j = ·], we may write

Ûn,1 − θ =
c∏

j=1

(
nj

mj

)−1 c∑
j=1

nj∑
i=1

∑
X

E[h̃(X) | Xij ]

Note that if Xij is not contained in X then Proposition E.2 implies E[h̃(X) | Xij ] = 0, thus counting the
number of X containing Xij leaves us with

Ûn,1 − θ =
c∏

j=1

(
nj

mj

)−1 c∑
j=1

nj∑
i=1

(
nj − 1
mj − 1

) ∏
j′ ̸=j

(
nj′

mj′

)
h̃j(Xij) =

c∑
j=1

mj

nj

nj∑
i=1

h̃j(Xij).

If Var(E[h(X) | X1j ]) > 0, we may combine the central limit theorem and Slutsky’s theorem to get

√
n

(
mj

nj

nj∑
i=1

h̃j(Xij)
)

=
√

n

nj
mj

(
1

√
nj

nj∑
i=1

h̃j(Xij)
)

d−→ N
(
0, ρjm

2
j Var(E[h(X) | X1j ])

)
.

Otherwise if Var(E[h(X) | X1j ]) = 0 then
∑nj

i=1 h̃j(Xij) is almost surely zero. The desired limiting distri-
bution follows by applying the continuous mapping theorem to

√
n(Ûn,1 − θ). If Un is non-degenerate then

Var(E[h(X) | X1j ]) > 0 for some j, thus proportionality guarantees that the variance is positive.

To deal with the asymmetric kernel associated with second order projections of generalized U-statistics, we
have a preliminary result analogous to a singular value decomposition (SVD) for square-integrable kernels.
Lemma E.4 (Kernel SVD). Let k ∈ L2(X × Y, µ× ν) and L2(X , µ), L2(Y, ν) be separable. Then k has the
representation as an L2 limit

k(x, y) =
∑

n

σnvn(x)un(y),

where σn are the singular values of the operator T : L2(X , µ) → L2(Y, ν) defined by

T : f 7→
∫
k(x, ·)f(x) dµ(x),

and {vn} ⊂ L2(X , µ), {un} ⊂ L2(Y, ν) are orthonormal.

Proof. Since k is square integrable, T is Hilbert-Schmidt and hence compact. Letting T ∗ denote the adjoint,
T ∗T is a compact self-adjoint operator and hence provides a countable orthonormal basis of eigenvectors
{vn} of T ∗T with corresponding eigenvectors {λn} arranged so that λ1 ≥ λ2 ≥ · · · ≥ 0. For all non-zero λn,
put σn =

√
λn and un = σ−1

n Tvn. Notice that

⟨un, um⟩ = 1
σnσm

⟨Tvn, T vm⟩ = 1
σnσm

⟨T ∗Tvn, vm⟩ = σn

σm
⟨vn, vm⟩

so {un} is orthonormal in L2(Y, ν). Thus we have∫∫ ∣∣∣∣∣k(x, y) −
L∑

n=1
σnvn(x)un(y)

∣∣∣∣∣
2

dµ(x)dν(y)

=
∫∫ (

|k(x, y)|2 − 2
L∑

n=1
σnk(x, y)vn(x)un(y) +

L∑
n=1

σ2
nv

2
n(x)u2

n(y)
)
dµ(x)dν(y)

= ∥k∥2
2 − 2

L∑
n=1

σn

∫
un(y)(Tvn)(y) dν(y) +

L∑
n=1

σ2
n

= ∥k∥2
2 −

L∑
n=1

σ2
n = ∥k∥2

2 −
L∑

n=1
⟨T ∗Tvn, vn⟩2 = ∥k∥2

2 −
L∑

n=1
∥Tvn∥2

2.
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It is a standard result that ∥k∥2 = ∥T∥HS. Therefore the final term vanishes as L → ∞ .

Observe that Ûn,2 is a linear combination of the conditional kernels

h̃jj := E(h̃(X) | X1j = ·, X2j = ·), 1 ≤ j ≤ c

h̃st := E(h̃(X) | X1s = ·, X1t = ·), 1 ≤ s < t ≤ c.

Now assuming each h̃jj ∈ L2(µ2
j ) and h̃st ∈ L2(µs × µt) leads to a variety of kernel decompositions. For the

symmetric kernel h̃jj , Dunford and Schwartz (1988, Section VI, Exercises 44 and 56) give the decomposition

h̃jj(x1, x2) =
∞∑

l=1
λjlψjl(x1)ψjl(x2), (10)

where the limit is taken with in L2 norm, and {ψjl}, {λjl} are the (orthonormal) eigenfunction-eigenvalue
pairs of Tj := f 7→ EX∼µj [h̃jj(·, X)f(X)]. The aforementioned Lemma E.4 applies to h̃st giving

h̃st(x1, x2) =
∞∑

l=1
σstlvstl(x1)ustl(x2). (11)

These results are applicable to the coming proof.

Theorem E.5. Let Un be a c-sample generalized U-statistic with an associated kernel h, where n =
min{n1, . . . , nc} and ρj := limn→∞ n/nj exists for each j. Further for assume h̃jj ∈ L2(µ2

j ) for j ∈ [c]
and h̃st ∈ L2(µs × µt) for 1 ≤ s < t ≤ c, admitting the decompositions (10) and (11). If Un is first-order
degenerate then n(Un − θ) converges in distribution to Y , where

Y =
c∑

j=1

(
mj

2

)
ρj

∞∑
l=1

λjl(a2
jl − 1) +

∑
s<t

msmt
√
ρsρt

∞∑
l=1

σstlbstlcstl,

and {ajl}, {bstl}, {cstl} are marginally N (0, 1) variables obtained from the weak limits

1
√
nj

nj∑
i=1

ψjl(Xij) →d ajl,
1

√
ns

ns∑
i=1

vstl(Xis) →d bstl,
1

√
nt

nt∑
i=1

ustl(Xit) →d cstl.

Proof. By Lemma E.3, n(Un − θ) converges in L2 to Vn := n(Ûn,2 − θ). Writing the projection explicitly

n−1Vn =
c∑

j=1

∑
i1<i2

[E(Un | Xi1j , Xi2j) − θ] +
∑
s<t

∑
i1,i2

[E(Un | Xi1s, Xi2t) − θ],
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which may be simplified by removing the zero-valued terms according to Proposition E.2

∑
i1<i2

[E(Un | Xi1j , Xi2j) − θ] =
c∏

j′=1

(
nj′

mj′

)−1 ∑
i1<i2

∑
X

E(h̃(X) | Xi1j , Xi2j)

=
c∏

j′=1

(
nj′

mj′

)−1 ∑
i1<i2

(
nj − 2
mj − 2

) ∏
j′ ̸=j

(
nj′

mj′

)
h̃jj(Xi1j , Xi2j)

=
(
mj

2

)(
nj

2

)−1 ∑
i1<i2

h̃jj(Xi1j , Xi2j)

∑
i1,i2

[E(Un | Xi1s, Xi2t) − θ] =
c∏

j=1

(
nj

mj

)−1 ∑
i1,i2

∑
X

E(h̃(X) | Xi1s, Xi2t)

=
c∏

j=1

(
nj

mj

)−1 ∑
i1,i2

(
ns − 1
ms − 1

)(
nt − 1
mt − 1

) ∏
j ̸=s,t

(
nj

mj

)
h̃st(Xi2,s, Xi2t)

= msmt

nsnt

∑
i1,i2

h̃st(Xi2,s, Xi2t).

Thus we’re left with

n−1Vn =
c∑

j=1

(
mj

2

)(
nj

2

)−1 ∑
i1<i2

h̃jj(Xi1j , Xi2j) +
∑
s<t

msmt

nsnt

∑
i1,i2

h̃st(Xi1s, Xi2t).

Replacing h̃jj and h̃st with their L2 expansions, we define the truncation of Vn to L eigenfunctions

n−1VnL :=
c∑

j=1

(
mj

2

)(
nj

2

)−1 L∑
l=1

∑
i1<i2

λjlψjl(Xi1j)ψjl(Xi2j)

+
∑
s<t

msmt

nsnt

L∑
l=1

∑
i1,i2

σstlvstl(Xi1s)ustl(Xi2t). (12)

and the truncation of Y by

YL :=
c∑

j=1

(
mj

2

)
ρj

L∑
l=1

λjl(a2
jl − 1) +

∑
s<t

msmt
√
ρsρt

L∑
l=1

σstlbstlcstl.

Using VnL and YL as points of comparison, we have the following error decomposition in terms of character-
istic functions:

|E exp(ixVn) − E exp(ixY )| ≤ |E exp(ixVn) − E exp(ixVnL)| + |E exp(ixVnL) − E exp(ixYL)|

+|E exp(ixYL) − E exp(ixY )|.

The rest of the proof is divided in three sections, each focused on bounding a term above.

26



Under review as submission to TMLR

First term: We first apply the inequality | exp(iz) − 1| ≤ |z|

|x|−1 E | exp(ixVn) − exp(ixVnL)|

≤ E |Vn − VnL| ≤ [E |Vn − VnL|2]1/2 by Hölder’s inequality

≤
c∑

j=1

(
mj

2

)E ∣∣∣∣∣n
(
nj

2

)−1 ∞∑
l=L+1

∑
i1<i2

λjlψjl(Xi1j)ψjl(Xi2j)

∣∣∣∣∣
2
1/2

︸ ︷︷ ︸
Aj

+
∑
s<t

msmt

E
∣∣∣∣∣∣ n

nsnt

∞∑
l=L+1

∑
i1,i2

σstlvstl(Xi1s)ustl(Xi2t)

∣∣∣∣∣∣
2


1/2

︸ ︷︷ ︸
Bst

.

Since VnL → Vn in L2 we have

A2
j = n2

(
nj

2

)−2
E

∣∣∣∣∣
∞∑

l=L+1

∑
i1<i2

λjlψjl(Xi1j)ψjl(Xi2j)

∣∣∣∣∣
2

= n2
(
nj

2

)−2 ∞∑
l=L+1

λ2
jl E

∣∣∣∣∣∑
i1<i2

ψjl(Xi1j)ψjl(Xi2j)

∣∣∣∣∣
2

by orthogonality

= n2
(
nj

2

)−2 ∞∑
l=L+1

λ2
jl

∑
i1<i2

∑
i3<i4

E[ψjl(Xi1j)ψjl(Xi2j)ψjl(Xi3j)ψjl(Xi4j)].

First-order degeneracy implies

E[h̃jj(·, Xij)] =
∞∑

l=1
λjl E[ψjl(Xij)]ψjl(·) = 0

so by linear independence of the eigenfunctions we must have E[ψjl(Xij)] = 0 if λjl ̸= 0. It follows by
independence that

E[ψjl(Xi1j)ψjl(Xi2j)ψjl(Xi3j)ψjl(Xi4j)] =
{

1 if (i1, i2) = (i3, i4)
0 otherwise.

Hence we get

A2
j = n2

(
nj

2

)−1 ∞∑
l=L+1

λ2
jl = 2n2

nj(nj − 1)

∞∑
l=L+1

λ2
jl ≤ 4

∞∑
l=L+1

λ2
jl.

We may similarly show that E[vstl(Xi1s)] = E[ustl(Xi2t)] = 0 if σstl ̸= 0, thus

B2
st =

(
n

nsnt

)2
E

∣∣∣∣∣∣
∞∑

l=L+1

∑
i1,i2

σstlvstl(Xi1s)ustl(Xi2t)

∣∣∣∣∣∣
2

=
(

n

nsnt

)2 ∞∑
l=L+1

σ2
stl E

∣∣∣∣∣∣
∑
i1,i2

vstl(Xi1s)ustl(Xi2t)

∣∣∣∣∣∣
2

= n2

nsnt

∞∑
l=L+1

σ2
stl ≤

∞∑
l=L+1

σ2
stl.

Since the eigenvalues {λjl} and singular values {σstl} belong to Hilbert-Schmidt operators, their squared
series converge. Therefore limL→∞ E | exp(ixVn) − exp(ixVnL)| = 0 as it is a linear combination of the
Aj , Bst. Importantly, our choice of L is independent of n.

27



Under review as submission to TMLR

Second term: Fix any L ≥ 1, we will focus on the following terms in expression (12) of VnL

αj := 2
nj

L∑
l=1

∑
i1<i2

λjlψjl(Xi1j)ψjl(Xi2j)

βst := 1
√
nsnt

L∑
l=1

∑
i1,i2

σstlvstl(Xi1s)ustl(Xi2t),

which we may rewrite as

αj = 1
nj

L∑
l=1

λjl

( nj∑
i=1

ψjl(Xij)
)2

−
nj∑

i=1
ψ2

jl(Xij)


=

L∑
l=1

λjl

( 1
√
nj

nj∑
i=1

ψjl(Xij)
)2

− 1
nj

nj∑
i=1

ψ2
jl(Xij)


βst =

L∑
l=1

σstl

(
1

√
ns

ns∑
i1=1

vstl(Xi1s)
)(

1
√
nt

nt∑
i2=1

ustl(Xi2t)
)
.

Note that 1
nj

∑nj

i=1 ψ
2
jl(Xij) → 1 a.s. by the law of large numbers. By the above we may view VnL as a

continuous function in terms of the sample means and (Z1, . . . , Zc), where Zj is the vector concatenating(
1

√
nj

nj∑
i=1

ψjl(Xij) : 1 ≤ l ≤ L

)⊤

(
1

√
nj

nj∑
i=1

vjtl(Xij) : 1 ≤ l ≤ L, j < t

)⊤

(
1

√
nj

nj∑
i=1

usjl(Xij) : 1 ≤ l ≤ L, s < j

)⊤

.

That is, Zj contains all normalized samples from µj . The central limit theorem gives Zj →d N (0,Σj) as
nj → ∞, where Σj is the covariance matrix between pairs of ψjl(Xij), vjtl(Xij), usjl(Xij). Moreover Zj is
independent across each j, so we have the joint convergence (Z1, . . . , Zc) →d N (0,Σ) as n → ∞, where Σ
is the block diagonal matrix diag(Σ1, . . . ,Σc). A final application of the continuous mapping theorem and
Slutsky’s theorem gives

VnL =
c∑

j=1

(
mj

2

)
n

nj − 1αj +
∑
s<t

msmt
n

√
nsnt

βst

−→d

c∑
j=1

(
mj

2

)
ρj

L∑
l=1

λjl(a2
jl − 1) +

∑
s<t

msmt
√
ρsρt

L∑
l=1

σstlbstlcstl = YL.

Convergence in distribution accordingly gives |E exp(ixVnL) − E exp(ixYL)| → 0 as n → ∞.

Third term: Recall that Y is the L2 limit of YL, so again using | exp(iz) − 1| ≤ |z| we get

|E exp(ixYL) − E exp(ixY )| ≤ |x|[E |YL − Y |2]1/2 → 0 as L → ∞.

To complete the proof, pick ε > 0. For L sufficiently large the first and third term are less than ε/3. Fixing
this L, we may pick N such that the second term is bounded by ε/3 for all n ≥ N , giving

|E exp(ixVn) − E exp(ixY )| < ε, ∀n ≥ N.
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We can now determine the null distribution of M̂MD2 as a specialized case of the preceding theorem. We shall
see this distribution has a much cleaner form than above due to the additional symmetries of the MMD kernel.

Theorem 3.7. Assume Setting A and that MMD2(P,Q) = 0. Assume min{nX , nY }/nX → ρX and
min{nX , nY }/nY → ρY for some ρX , ρY in [0, 1]. M̂MD2 converges in distribution as

min{nX , nY } M̂MD2 d−→ (ρX + ρY )
∞∑

l=1
λl

(
Z2

l − 1
)
,

where each Zl is independently N (0, 1), and the λl are the eigenvalues of the integral equation

E
X

[⟨ϕ(X) − µP , ϕ(y) − µP ⟩g(X)] = λg(y).

Proof. Theorem 3.4 implies that M̂MD2 is first-order degenerate so we seek to use Theorem 3.7. Define

h̃XX = E[h(X,X ′;Y, Y ′) | X = ·, X ′ = ·]
h̃Y Y = E[h(X,X ′;Y, Y ′) | Y = ·, Y ′ = ·]
h̃XY = E[h(X,X ′;Y, Y ′) | X = ·, Y = ·]

Since MMD2(P,Q) = 0 implies µP = µQ, we calculate the conditional kernels as

h̃XX(X,X ′) = k(X,X ′) + E k(Y, Y ′) − µQ(X) − µQ(X ′)
= ⟨ϕ(X) − µQ, ϕ(X) − µQ⟩
= ⟨ϕ(X) − µP , ϕ(X) − µP ⟩

h̃XY (X,Y ) = µP (X) + µQ(Y ) − 1
2 (µQ(X) + µP (Y ) + k(X,Y ) + E k(X ′, Y ′))

= 1
2 (µP (X) + µP (Y ) − k(X,Y ) − E k(X ′, Y ′))

= −1
2 ⟨ϕ(X) − µP , ϕ(Y ) − µP ⟩

and by symmetry h̃Y Y (Y, Y ′) = ⟨ϕ(X) − µP , ϕ(Y ) − µP ⟩ as well. It follows that the integral operators of
h̃XX , h̃Y Y , h̃XY share the same normalized eigenfunctions, and the eigenvalues of h̃XY carry an extra factor
of −1/2. Now Proposition 2.1 implies h̃XX , h̃Y Y , h̃XY are square integrable with respect to P 2, Q2, P ×Q,
so following Theorem E.5

min{nx, ny} M̂MD2 →d ρX

∞∑
l=1

λl(a2
l − 1) + ρY

∞∑
l=1

λl(b2
l − 1) − 2√

ρXρY

∞∑
l=1

λlalbl,

where al, bl ∼ N (0, 1) are independent. Finally we may complete the square, simplifying the above to

∞∑
l=1

λl

[
(ρ1/2

X al − ρ
1/2
Y bl)2 − (ρX + ρY )

]
=

∞∑
l=1

λl

[
(ρX + ρY )Z2

l − (ρX + ρY )
]

= (ρX + ρY )
∞∑

l=1
λl(Z2

l − 1),

as desired.
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